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Abstract
For a fixed graph H, the H-Recoloring problem asks whether, given two homomorphisms from a
graph G to H, one homomorphism can be transformed into the other by changing the image of a
single vertex in each step and maintaining a homomorphism to H throughout. The most general
algorithmic result for H-Recoloring so far has been proposed by Wrochna in 2014, who introduced a
topological approach to obtain a polynomial-time algorithm for any undirected loopless square-free
graph H. We show that the topological approach can be used to recover essentially all previous
algorithmic results for H-Recoloring and that it is applicable also in the more general setting of
digraph homomorphisms. In particular, we show that H-Recoloring admits a polynomial-time
algorithm i) if H is a loopless digraph that does not contain a 4-cycle of algebraic girth 0 and ii) if
H is a reflexive digraph that contains no triangle of algebraic girth 1 and no 4-cycle of algebraic
girth 0.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Digraph Homomorphisms, Combinatorial Reconfiguration

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.43

Related Version Full Version: https://arxiv.org/abs/2205.09210 [14]

1 Introduction

Reconfiguration problems have been introduced formally by Ito et al. in [11] and their
complexity has been studied systematically since. Applications can be found in statistical
physics, combinatorial games, and uniform sampling of objects such as colorings and match-
ings. The general setting is the following: Given two feasible solutions of an instance of a
combinatorial problem, the goal is to decide whether one can be transformed into the other
in a step-by-step manner, visiting only feasible configurations during the transformation.
Related questions of interest are whether any two feasible solutions admit a transformation,
and if there is a transformation of at most a certain length between two given solutions. We
refer the reader to the surveys of Nishimura [15] and van den Heuvel [16] for a discussion of
results and applications in this area.

A digraph homomorphism maps the vertex set of a digraph G to the vertex set of a digraph
H such that each arc of G is mapped to an arc of H. The classical digraph homomorphism
problem CSP(H) asks whether there is a digraph homomorphism from a given digraph G

to a fixed ”template” digraph H. Besides the fact that CSP(H) generalizes graph coloring,
one of the motivations for studying its complexity is that it is polynomially equivalent to
the seemingly richer constraint satisfaction problem CSP(H), where the template H can be
any fixed finite relational structure [8]. The complexity of CSP(H) (and hence CSP(H))
is well understood in the sense that for any digraph H, the problem CSP(H) is known to
be either polynomial-time solvable or NP-complete, a result that has been proved recently
by Bulatov [5] and by Zhuk [18], settling in the affirmative a long-standing conjecture by
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43:2 Reconfiguration of Digraph Homomorphisms

Feder and Vardi [8]. Motivated by these recent developments we study the complexity of
the natural reconfiguration variant H-Recoloring associated with CSP(H), which is the
following question: Given two digraph homomorphisms α and β from a G to H, is there a
step-by-step transformation between α and β that changes the image of one vertex of G at a
time and maintains a digraph homomorphism from G to H throughout?

The complexity of H-Recoloring is known for several special cases, most notably cases
when H is from some class of undirected loopless graphs. Despite several positive [4, 6, 13, 17]
and negative [1, 4, 12] results, a complete classification of the complexity of H-Recoloring
even for undirected graphs H is not known. By replacing each edge of an undirected graph by
two directed edges of opposite orientation, we see that digraphs homomorphisms are strictly
more general than homomorphisms of undirected graphs in this context. For digraphs H,
we are aware of only two results for H-Recoloring, which consider the case where H is a
transitive tournament [7] and where H is some orientation of a reflexive digraph cycle [2] (a
graph is reflexive if it has a loop on each vertex).

The algebraic girth of the orientation of a cycle is the absolute value of the number of
forward arcs minus the number of backward arcs. In particular, a 4-cycle of algebraic girth
0 is either one of the two graphs shown in Figure 1a. We extend the topological approach
developed by Wrochna [17] in the context of undirected graphs to digraphs and obtain a
polynomial-time algorithm for CSP(H) for any graph H that contains no 4-cycle of algebraic
girth 0 as a subgraph.

▶ Theorem 1. Let H be a loopless digraph that contains no 4-cycle of algebraic girth 0 as a
subgraph. Then H-Recoloring admits a polynomial-time algorithm.

Theorem 1 generalizes the polynomial-time algorithm for CSP(H) given in [17] for
undirected graphs H without a cycle on four vertices as subgraph, which in turn is a
generalization of [6], where H is a complete graph on three vertices. The triangle of algebraic
girth 1 is shown in Figure 1b. For reflexive digraphs we obtain the following result.

▶ Theorem 2. Let H be a reflexive digraph that contains neither a triangle of algebraic girth 1
nor a 4-cycle of algebraic girth 0 as a subgraph. Then H-Recoloring admits a polynomial-time
algorithm.

Theorem 2 generalizes the algorithmic results from [2], where H is assumed to be a
reflexive digraph cycle and from [13], where H is a triangle-free reflexive undirected graph.
We remark that the algorithms of theorems 1 and 2 produce certificates for both Yes and No
instances and that their running time is polynomial in the size of G and the size of H. The
remaining known algorithmic results in [4, 7], while not implied directly by theorems 1 and 2,
can be obtained in a straight-forward manner using the topological approach, see sections B.2
and B.3. In the light of our results, to our knowledge, all previous algorithmic results for
H-Recoloring can be obtained by the topological approach. Therefore it seems natural to
ask whether there are digraphs H such that the topological approach for H-Recoloring does
not work, but there is nevertheless a polynomial-time algorithm. This question seems to be
a stepping stone to a complete classification of the complexity of H-Recoloring.

One intriguing property of reconfiguration problems is that they can be easy even if the
underlying decision problem is hard and vice versa. To illustrate this, consider the classical
3-Coloring problem, which can be formulated as follows: Given an undirected graph G,
decide if there is a homomorphism from G to the complete graph on three vertices. While
3-Coloring is NP-complete, Cereceda et al. showed [6] that, given two such homomorphisms
(“3-colorings”), there is a polynomial-time algorithm that decides whether there is a step-
by-step transformation between them. Theorem 1 generalizes the result of Cereceda et al.
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(a) The two non-isomorphic orientations of a 4-
cycle of algebraic girth zero.

(b) The orientation of a 3-cycle of algebraic
girth 1.

Figure 1 Orientations of a 4-cycle and a 3-cycle that appear in theorems 1 and 2.

and provides new examples with similar behavior. For instance, it is known that there are
orientations H of a tree such that CSP(H) is NP-complete, but Theorem 1 implies that for
any orientation H of any tree, the problem H-Recoloring admits a polynomial-time algorithm.
The situation is different for reflexive graphs: Here, deciding if a given graph G admits a
homomorphism to a fixed reflexive graph H is trivial, since a homomorphism may send all
vertices of G to the same looped vertex of H. However, deciding if two given homomorphisms
to a reflexive graph H admit a step-by-step transformation turns out to be non-trivial even
for restricted graphs H (see [3, 13] and the proof of Theorem 2) and is PSPACE-complete in
general [17].

1.1 Our results and their relation to Wrochna’s algorithm

We show that the topological approach introduced by Wrochna [17] for reconfiguring ho-
momorphisms of undirected graphs can be extended to the digraph homomorphisms. An
undirected graph is square-free if it does not contain a cycle on four vertices as a subgraph.
For a homomorphism G→ H of directed or undirected graphs, we refer to the image of a
vertex of G as its color. Two graph homomorphisms α, β : G → H admit a step-by-step
transformation if there is a sequence σ1, σ2, . . . , σℓ of homomorphisms G → H, such that
α = σ1, β = σℓ, and any two consecutive homomorphisms σi, σi+1 differ with respect to
the color of exactly one vertex. Such a sequence is called H-recoloring sequence (from α

to β). One key observation of Wrochna [17] is that if H is an undirected square-free graph
then, whenever the color of a vertex changes during a step-by-step transformation then all
of its neighbors must have the same color1. This so-called monochromatic neighborhood
property sets the stage for a topological approach to the H-Recoloring problem. Here, the
graphs are considered to be continuous objects, obtained by gluing edges represented by
unit intervals to their respective end-points, and graph homomorphism are continuous maps
between the corresponding topological spaces. The monochromatic neighborhood property
implies that if there is an H-recoloring sequence between two homomorphisms then they
are homotopy-equivalent. This permits to represent H-recoloring sequences satisfying the
monochromatic neighborhood property (up to re-ordering) by walks in H that correspond
to the color changes of a single vertex of G. Wrochna [17] provides a characterization of all
such walks for square-free graphs H, which leads to a polynomial-time algorithm for the
corresponding H-Recoloring problem.

1 It is easy to verify that if a vertex v of an undirected graph G has two neighbors with distinct colors
then a color change of v implies that H contains a square.
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43:4 Reconfiguration of Digraph Homomorphisms

At first sight, the crucial premise of Wrochna’s algorithm seems to be the square-freeness
of H. But in fact, the algorithm finds for any undirected graph H, square-free or not,
walks that represent all H-recoloring sequences satisfying the monochromatic neighborhood
property (possibly there is no such walk). In [17], Wrochna remarks the following.

▶ Remark 3 ([17]). We note that none of the proofs in this paper used any structural
properties of H. If we consider H-Recoloring for any graph H, but only allow recoloring a
vertex if all of its neighbors have one common color (in other words, a reconfiguration step is
allowed only when the homotopy class of the mapping does not change), the same results
will follow.

This remark implies immediately that his algorithm also works for undirected graphs H with
loops allowed, whenever H does not contain C4, K3 with one loop added and K2 with both
loops added.

For a loopless digraph H, a structural property that enforces the monochromatic neigh-
borhood property of any H-recoloring sequence is that H does not contain a 4-cycle of
algebraic girth 0 (see Figure 1a). Following the discussion of Wrochna’s algorithm above, we
may apply it to the corresponding undirected graph H̄ and it will return a description of
all walks that represent H̄-recoloring sequences satisfying the monochromatic neighborhood
property. To obtain Theorem 1, it remains to determine whether or not one of the walks
corresponds to an H-recoloring sequence that is compatible with the orientation of the arcs of
H. For this purpose we introduce the so-called zigzag condition and show that the walks in H

that represent H-recoloring sequences satisfying the monochromatic neighborhood property
and the zigzag condition are precisely those that are compatible with the orientation of H

(Theorem 16). Finally, to prove Theorem 1, we show that it can be checked in polynomial time
whether any of the walks found by Wrochna’s algorithm satisfies the zigzag condition. Using
ideas from [17], a polynomial-time algorithm for finding shortest H-recoloring sequences can
be obtained (see Section B.1).

In order to prove Theorem 2, the topological approach needs to be adapted to the setting
of reflexive graphs. For this purpose, we introduce the push-or-pull property, which is
similar to the monochromatic neighborhood property in a topological sense. We say that an
H-recoloring sequence satisfies the push-or-pull property if, whenever a vertex of a graph
G changes its color, say from a to b, then all its neighbors in G have either color a or b.
This property ensures that if we consider the graphs G and H as topological spaces and
homomorphisms G→ H as continuous mappings between them (as described above), then
all H-colorings of a given H-recoloring sequence satisfying the push-or-pull property are
homotopy-equivalent. See Figure 2 for an example of two homomorphisms to a reflexive
triangle that are not homotopy-equivalent: the first wraps around the triangle while the
second does not.

It is not hard to see that for any triangle-free reflexive undirected graph H, any H-
recoloring sequence satisfies the push-or-pull property. Similar to the loopless case we
characterize those walks in H that correspond to H-recoloring sequences satisfying the
push-or-pull property (see Theorem 20). From this characterization we obtain a polynomial-
time algorithm for H-Recoloring for any undirected reflexive graph H of girth at least 5
(Corollary 24 in [14]). Recently, Lee et al. [13] have obtained the same result using other
methods.

An advantage of the topological approach is that it allows for a generalization to di-
graphs H: we use the characterization of walks in Theorem 20 for the undirected graph
H̄ (almost) as a black box and then check whether any of the corresponding H̄-recoloring
sequences is compatible with the orientation of the arcs of H. Depending on which case of
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v0

v1

v2

v0 v1

v2

Figure 2 Two homomorphisms G → H that differ in the color of one vertex but which are not
homotopy-equivalent. The graph G (in black) is a triangle and the graph H (in gray) is a triangle
with a loop on each vertex.

Theorem 20 applies, different levels of sophistication are required, but in any case there is a
polynomial-time algorithm. Notice that the push-or-pull property implies that when a vertex
changes its color, say from a to b, then a and b are adjacent in H. Using ideas from [13], we
show that we can get rid of this restriction in the case that H contains no 4-cycle of algebraic
girth 0 which is the final ingredient of Theorem 2. The last step illustrates the connection
between H-Recoloring and the so-called Hom-graph, which is discussed in Section 3 in [14].

1.2 Related work
The complexity of H-Recoloring for undirected graphs H has been studied systematically,
in particular since the work of Cereceda et al. [6], who showed that if H = K3, a complete
graph on three vertices, then H-Recoloring admits a polynomial-time algorithm, despite
CSP(K3) (“3-Coloring”) being NP-complete. Wrochna [17] generalized this result, showing
that H-Recoloring admits a polynomial-time algorithm if H is loopless and square-free.
Brewster et al. [4] gave a complexity classification of H-Recoloring for circular cliques Cp,q.
Note that their polynomial-time algorithm for 2 ≤ p/q < 4 includes graphs H that are not
square-free. Recently, Lee et al. [13] adapted Wrochna’s algorithm to the case that H is
reflexive and has girth at least 5. On the negative side, it is known that H-Recoloring is
PSPACE-complete if H is a clique on at least four vertices [1], a circular clique Cp,q where
p/q ≥ 4 [4], a wheel on a k-cycle, where k ≥ 3 and k ̸= 4 [12], or a quadrangulation of the
2-sphere with certain properties [12].

We are aware of two results for H-Recoloring for digraphs H. The first one is by Brewster
et al. [2], who showed that H-Recoloring admits a polynomial-time algorithm if H is a
reflexive digraph cycle that does not contain a 4-cycle of algebraic girth 0. In spirit this
algorithm uses the topological approach similar to that of Wrochna (but more involved) that
reduces the task of finding H-recoloring sequences to finding vertex walks in H. Secondly,
Dochterman and Singh [7] study the Hom-complex for digraphs G and H and show that it
is connected (in the topological sense) if H is the transitive tournament Tn on n vertices.
From this they conclude that any instance of Tn-Recoloring is a Yes-instance and give a
polynomial-time algorithm that finds a Tn-recoloring sequence. The algorithm is simple
and does not need any topological tools. It boils down to the fact that a homomorphism of
an acyclic digraph into a tournament corresponds to a linear extension of a partial order.
To reconfigure one linear extension into another, we may greedily take the last element
where the two linear extensions disagree and assign to the vertex with the smaller image the
larger image (w.r.t. the total order). The same result can be obtained using the topological
approach (see Section B.3).

Further results are known for H-Recoloring for a relational structure H on a Boolean
domain. This problem corresponds to the reconfiguration of satisfying assignments of
Boolean formulas. In [9], Gopalan et al. provide a complexity dichotomy for this problem
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43:6 Reconfiguration of Digraph Homomorphisms

by characterizing the relations for which Boolean satisfiability reconfiguration admits a
polynomial-time algorithm and showing that the problem is PSPACE-complete otherwise.
Another popular theme with a different flavor is the reconfiguration of subgraphs, which may
be considered to be homomorphisms (injective or not) from a fixed graph H to a given graph
G. In this context, Ito et al. showed that reconfiguring directed paths is PSPACE-complete.
Often however the graph H is not fixed, but any subgraph of a certain “shape”, e.g., any tree,
would be acceptable. We refer the readers to the survey of Nishimura [15] for an overview
of known results in this direction, in particular those on the reconfiguration of independent
sets, as well as [10] for results on spanning and induced subgraphs. A general introduction
to reconfiguration problems that also discusses their relation to combinatorial games and
puzzles can be found in [16].

1.3 Organization

Section 2 contains notation and basic definitions that are needed to prove Theorems 1 and 2.
Section 3 gives an overview of the proof of Theorem 1, which implies a polynomial-time
algorithm for H-Recoloring if H is a loopless digraph that contains no 4-cycle of algebraic
girth 0. This section also serves as a blueprint for the more involved proof of Theorem 2,
which is sketched in Section 4. Due to space limitations the full proofs are deferred to the
appendix.

2 Preliminaries

A directed graph (digraph) is a pair (V (G), A(G)) where V (G) is a finite set of vertices and
A(G) ⊆ V (G)× V (G) are arcs. We write u→ v when uv ∈ A(G). We say that a digraph G

is symmetric if vu ∈ A(G) whenever uv ∈ A(G). A digraph G is reflexive if uu ∈ A(G) for
each vertex u ∈ V (G). We interpret a symmetric digraph as undirected graph and think of
two edges {uv, vu} as undirected edge, which we also write as uv since it should be clear
from the context whether we refer to a directed or undirected edge. We write E(G) for the
set of undirected edges of a symmetric graph G. For any digraph G, we canonically associate
to G an undirected graph Ḡ where V (Ḡ) = V (G) and uv ∈ E(Ḡ) if u → v or v → u. Let
G be a digraph. The in-neighborhood (resp., out-neighborhood) of a vertex v ∈ V (G) is
given by N−

G (v) := {w ∈ V (G) | w → v} (resp., N+
G (v) := {w ∈ V (G) | v → w}). If G is

symmetric (undirected), the neighborhood NG(v) of a vertex v ∈ V (G) is the set of vertices
adjacent to v in G, that is, NG(v) := {w ∈ V (G) | vw ∈ E(G)}. Let G and H be digraphs. A
homomorphism ϕ : G→ H or (H-coloring of G) is a map V (G)→ V (H) that preserves arcs,
that is, for each u→ v, we have ϕ(u)→ ϕ(v). Similarly, for undirected graphs G and H, a
homomorphism ϕ : G→ H is a map V (G)→ V (H) that preserves edges (but not necessarily
non-edges). A homomorphism α : G→ H also induces a homomorphism ᾱ : Ḡ→ H̄.

A sequence W = (v1v2)(v2v3) . . . (vn−1vn) of consecutive edges of an undirected graph
G is a walk. The reverse walk W −1 of a walk W = (v1v2)(v2v3) . . . (vn−1vn) is the walk
W −1 = (vnvn−1) . . . (v2 v1). The length |W | of W the number of edges of W . A cycle C is
a closed walk, i.e., a walk such that v1 = vn on n− 1 distinct vertices. A walk in digraph
G is a walk in Ḡ. The algebraic girth of a cycle C in a digraph G is the absolute value of
the number of forward arcs minus the number of backward arcs. We say that a graph or a
digraph G is connected if for any two vertices u, v ∈ V (G) there is a walk from u to v in G.
A walk W = (v1v2) . . . (vn−1vn) in a digraph is directed if vi → vi+1 for all 1 ≤ i ≤ n − 1.
The walk W is symmetric if both W and W −1 are directed. We denote the empty walk by ε.
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W1

W2

W3

Figure 3 Consider the gray graph H and the three walks W1, W2 and W3 in H (their successive
vertices are drawn in black). The walk W1 reduces to W2. The walk W3 is already reduced.

Fundamental groupoid

Let H be an undirected or directed graph. Given a walk W = (v1 v2)(v2 v3) . . . (vn−1 vn) in
H, we call reduction the two following operations (see Figure 3):

The operation of deleting (vi vi+1)(vi+1 vi+2) from W if vi = vi+2 and 1 ≤ i ≤ n− 2
The operation of deleting (vi vi+1) from W if vi = vi+1 and 1 ≤ i ≤ n− 1. Note that this
operation requires a loop on vi, so it applies in particular if H is reflexive.

We say that W is reduced if none of the two operations above is applicable. That is, for
1 ≤ i ≤ n− 2, we have vi+2 ̸= vi and for 1 ≤ i ≤ n− 1, we have vi+1 ≠ vi. We can reduce
a walk W by iteratively applying reductions on it; we can easily see that by doing so we
obtain a unique reduced walk. By considering two walks to be equivalent if they reduce to
the same walk, we obtain an equivalence relation ∼ on the walks in H. The fundamental
groupoid π(H) is the set of all equivalence classes of walks in H under ∼. Its groupoid
operation is the concatenation · of walks and its neutral element is the empty walk ε. For
any walk W = (v1 v2) . . . (vn−1 vn), the inverse of (the class of) W in π(H) is (the class of)
the reversed walk W −1 = (vn vn−1) . . . (v2 v1) since both WW −1 and W −1W reduce to ϵ. In
the next sections of this paper, we will write W1 = W2 in π(H) if W1 ∼W2, that is, W1 and
W1 reduce to the same walk.

Cyclic reduction

We say that closed walk C = (v1v2) . . . (vn−1v1) is cyclically reduced if it is reduced and
additionally v2 ̸= vn−1. We can cyclically reduce any reduced closed walk C by iteratively
deleting from it both its first and last edges while one is the inverse of the other. This
operation leads to a unique decomposition C = A−1C0A where A is the sequence of deleted
edges of C and C0 is cyclically reduced.

H-recoloring

Let G and H be digraphs. Recall that two digraph homomorphisms α, β : G→ H admit an
H-recoloring sequence if for some ℓ there are digraph homomorphisms σ1, σ2, . . . , σℓ : G→ H,
such that α = σ1, β = σℓ and for 1 ≤ i < ℓ, the two homomorphisms σi and σi+1 differ
with respect to the color of a single vertex of G. The problem H-Recoloring asks whether,
given a graph G and two digraph homomorphisms α, β : G→ H, the homomorphisms α and
β admit an H-recoloring sequence. An H-recoloring sequence satisfies the monochromatic
neighborhood property if, whenever a vertex v of G changes its color then all neighbors of v

in G have the same color.
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43:8 Reconfiguration of Digraph Homomorphisms

In this entire paper we assume that G and H are directed or undirected, (weakly)
connected graphs, with at least two vertices

One can see that assuming the connectivity of G and H imposes no restrictions, since if G is
not connected, we may consider the recoloring of each connected component of G separately.
If H is not connected, observe that any connected component of G maps to a connected
component of H.

3 Loopless digraphs

In this section we prove Theorem 1. To do so, we extend the polynomial-time algorithm
from [17] for H-Recoloring for the case that H is symmetric and square-free to the case
where H is any loopless digraph that contains no 4-cycle of algebraic girth 0. We assume in
the following that G and H are simple weakly connected digraphs with at least two vertices.
Observe that since H is a subgraph of the symmetric graph H̄, any H-recoloring sequence is
also a H̄-recoloring sequence. Furthermore, if H contains no 4-cycle of algebraic girth 0 then
any H-recoloring sequence satisfies the monochromatic neighborhood property. To see this,
consider a step of any H-recoloring sequence where the color of a vertex u ∈ V (G) changes
from a to b (a, b ∈ V (H)). Let v be any neighbor of u and let h be the current color of v. If a
color different from h appears in the neighborhood of u then H contains a cycle of algebraic
girth 0, that is, one of the two orientations of the 4-cycle shown in Figure 1a. To prove
Theorem 1, the main idea is to run Wrochna’s algorithm on the symmetric graphs Ḡ and
H̄ to obtain a description of those H̄-recoloring sequences that satisfy the monochromatic
neighborhood property. We then check whether one of these sequences is compatible with
the orientation of the edges of H.

3.1 Realizable walks in H̄

We recall several results and definitions from [17] that will be useful later on, stating them
in a slightly different manner for the sake of better integration in the context of digraph
homomorphisms. Largely the same proofs apply however, as pointed out in Remark 3.

Let S = σ0, . . . , σℓ be a H̄-recoloring sequence satisfying the monochromatic neighborhood
property and let v be a vertex of G. For each 0 ≤ i < ℓ, let Si(v) be given by

Si(v) =
{

ϵ if σi(v) = σi+1(v), and
(σi(v) h)(h σi+1(v)) otherwise,

where h is the unique color of the neighbors of v with respect to σi(v) and σi+1(v). We
associate with S and v the walk S(v) := S0(v)S1(v) · · ·Sℓ(v) in H. Suppose that S(v) =
(a1 a2)(a2 a3) · · · (an−2 an−1)(an−1 an). Then according to S the vertex v changes its color
from a1 to a3 while its neighbors have color a2, then it changes color from a3 to a5 while
its neighbors all have color a4 (so all the neighbors must change their color from a2 to a4
before), and so on until v changes its color from an−2 to an while its neighbors all have color
an−1.

Let us pick any vertex q ∈ V (G) and let Q be a reduced walk from α(q) to β(q).
Furthermore, let (Wv)v∈V (G) be a set of walks from q to each v ∈ V (G). We say that Q

and (Wv)v generate the walks Sv := α(Wv)−1 · Q · β(Wv) ∈ π(H). We will say that Q is
H̄-realizable for α, β, q if there is a H̄-recoloring sequence S satisfying the monochromatic
neighborhood property such that Q = S(q). Hence, by Lemma 4, if Q is H̄-realizable then Sv
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does not depend on Wv. We say that Q is H-realizable for α, β, q if there is a H-recoloring
sequence S satisfying the monochromatic neighborhood property such that Q = S(q). Clearly,
if Q is H-realizable then it is H̄-realizable2.

According to Remark 3, we obtain the next results by following the proofs in [17] nearly
word by word.

▶ Lemma 4 ((∗) see [17, Lemma 4.1]). Let S = σ0, . . . , σℓ be an H̄-recoloring sequence from
α = σ0 to β = σℓ satisfying the monochromatic neighborhood property and let W be any
walk in G connecting two vertices u and v. Then S(v) = α(W )−1 · S(u) · β(W ) in π(H).
In particular, for any set (Wv)v∈V (G) of walks from q to all vertices v ∈ V (G), if a walk Q

from α(q) to β(q) is H̄-realizable then the other vertex walks in any associated H̄-recoloring
sequence are the walks α(Wv)−1 ·Q · β(Wv) ∈ π(H).

The next theorem gives a description of all H̄-realizable walks.

▶ Theorem 5 (see [17, Theorem 8.1]). Let α, β : G→ H and q ∈ V (G). Let Π̄ be the set of
all reduced walks that are H̄-realizable for α, β, q. Then one of the following holds:
1. Π̄ = ∅.
2. Π̄ = {Q} for some Q ∈ π(H).
3. Π̄ = {RnP | n ∈ Z}, for some R, P ∈ π(H).
4. Π̄ contains all reduced walks of even length from α(q) to β(q).
Furthermore, there is an algorithm that determines in time O(|V (G)| · |E(G)| + |E(H)|)
which case holds and outputs Q or R, P in cases 2 3 such that |Q|, |R|, |P | are bounded by
the total running time O(|V (G)| · |E(G)|+ |E(H)|).

The following lemma tells us that from any H̄-realizable walk we can obtain in polynomial
time an H̄-recoloring sequence. We will later generalize it to digraphs, which allows us to
construct in polynomial time an H-recoloring sequence from a given H-realizable walk (see
Lemma 8).

▶ Lemma 6 (see [17, Theorem 6.1]). Given an H̄-realizable walk Q we can construct an
associated H̄-recoloring sequence in time O(|V (G)|2 + |V (G)| · |Q|).

3.2 Orientation compatibility

We now characterize H̄-recoloring sequences that both satisfy the monochromatic neighbor-
hood property and are compatible with the orientation of H. To this end we give a simple
condition, the zigzag condition, on the reduced walks of the vertices of G obtained from
a given H̄-recoloring sequence. We show that it suffices to check the zigzag condition for
each vertex of G in order to determine whether a given H̄-recoloring sequence is also an
H-recoloring sequence. From this we obtain a polynomial-time algorithm that, given two
H-colorings α, β : G→ H and a vertex v of G, finds a walk from α(v) to β(v) in H that is
compatible with the orientation of H or reports correctly that no such walk exists. For the
remainder of this section let us fix two digraph homomorphisms α, β : G→ H.

2 This definition generalizes the definition of realizability from [17] such that H̄-realizability becomes a
necessary condition for H-realizability. When H̄ is square-free our definition coincides with the one
from [17].
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v2

v3

q

β

S(v3) Q = S(q)

Figure 4 Homomorphisms α and β map a graph G on 6 vertices to the gray graph H. The walk
Q = S(q) satisfies the zigzag condition and generates walks that also satisfy the zigzag condition like
S(v3), so it is orientation compatible. We will see soon that the vertices of the triangle v0 v1 v2 must
have symmetric vertex walks, so they cannot change colors for the lack of a symmetric edge in H.

3.2.1 The zigzag condition
Let v ∈ V (G) and Sv = (a1a2) . . . (an−1an) be a walk of even length from α(v) to β(v)
(think of Sv as the walk of v induced by some H̄-recoloring sequence S that satisfies the
monochromatic neighborhood property; in particular, S and Sv could have been obtained
by combining Theorem 5 and Lemma 6). We say that Sv satisfies the zigzag condition if
a1 ← a2 → a3 ← . . . ← an−1 → an is a walk in H whenever N−

G (v) ̸= ∅ (then we also say
that Sv zigzags correctly with respect to its in-neighborhood) and a1 → a2 ← a3 → . . .→
an−1 ← an is a walk in H whenever N+

G (v) ̸= ∅. Notice that at least one of N−
G (v) and

N+
G (v) is non-empty by our assumptions on G. Also, observe that if Sv is not reduced and

satisfies the zigzag condition then it will still satisfy that condition after reduction.
Based on Lemma 4 we can state a definition of orientation compatibility for walks: given

α, β : G→ H, q ∈ V (G) and a set of walks (Wv) from q to v. We say that a reduced walk of
even length Q ∈ π(H) from α(q) to β(q) is orientation compatible for the set (Wv)v∈V (G) if
for each vertex v ∈ V (G) and any walk Wv from q to v, the walk α(Wv)−1 ·Q ·β(Wv) ∈ π(H)
satisfies the zigzag condition. See Figure 4 for illustrations of the zigzag condition and of
orientation compatibility. Observe that by Lemma 4, if Q is H̄-realizable, then the orientation
compatibility of Q does not depend of the choice of the walks (Wv)v∈V (G).

▶ Lemma 7. Let q ∈ V (G). Let Q be an H̄-realizable walk for α, β, q. Then Q is H-realizable
if and only if Q is orientation compatible.

Proof. Let Q be an H̄-realizable walk. First assume that Q is H-realizable. Then let S be
a H-recoloring sequence from α to β such that Q = S(q). Let v ∈ V (G) and Wv a walk
from q to v in G. Then α(Wv)−1Qβ(Wv) = S(v) and we can write S(v) as a reduced walk
(a1a2)(a2a3) . . . (an−1an). If N−

G (v) ̸= ∅ then there is an arc w → v for some w ∈ V (G).
At each color change of v from ai to ai+2, the vertex w must have color ai+1 because S

satisfies the monochromatic neighborhood property. Since S is a H-recoloring sequence, its
homomorphisms all preserve the arc w → v. Hence a1 ← a2 → . . .← an−1 → an is a path
in H. Similarly, if N+

G (v) ̸= ∅ then we have the same path with all arcs reversed. As this
holds for each vertex v ∈ V (G), Q is orientation compatible.
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Conversely, if Q is orientation compatible, then let S be the H̄-recoloring sequence
constructed via Lemma 6. Consider any step σi, σi+1 of S, say when a vertex v changes color
from a to b while its neighbors have color c. This color change is recorded in S(u) which
satisfies the zigzag condition so if σi induces a homomorphism G→ H, then σi+1 too. By
induction, each homomorphism of S induces a homomorphism G→ H so we eventually have
a H-recoloring sequence. ◀

The proof of Lemma 7 implies the following generalization of Lemma 6.

▶ Lemma 8 (∗). Given an H-realizable walk Q, we can construct an associated H-recoloring
sequence in time O(|V (G)|2 + |V (G)| · |Q|).

Furthermore, the zigzag condition can be exploited in order to decide efficiently whether
a given walk from α(q) to β(q) is H-realizable. To show this, we need the following lemma,
which is contained in Wrochna’s proof of Lemma 6.

▶ Lemma 9 ([17]). Given any walk Q from α(q) to β(q), we can decide in time O(|E(G)| ·
(|Q|+ |V (G)|)) if Q is H̄-realizable.

▶ Lemma 10 (∗). There is a polynomial-time algorithm that, given a walk Q from α(q) to
β(q), decides in time O(|E(G)| · (|Q|+ |V (G)|)) if Q is H-realizable for α, β, q.

3.2.2 Characterizing orientation-compatible walks
The following three technical observations (see Definition 11) on the zigzag condition help us
to find all orientation compatible walks (for any set of walks (Wv)v∈V (G)). More precisely:
1. For any arc u→ v, if Su satisfies the zigzag condition then Sv satisfies the part of the

zigzag condition for the in-neighborhood (See Lemma 12).
2. It turns out that a walk Q from α(q) to β(q) is H-realizable if and only if it satisfies the

zigzag condition and generates symmetric walks on a certain set of vertices of G (See
Lemma 13).

3. By checking possible reductions for the walks on that set of vertices (see Lemma 15), we
obtain the lemma, which provides a description of all orientation compatible walks.

▶ Definition 11. Let Q be an even walk from α(q) to β(q). Furthermore, let v ∈ V (G) and
let Wv be a walk from q to v. Suppose that Sv := α(Wv)−1 ·Q · β(Wv) = (a1 a2) . . . (an−1 an)
is the reduced walk generated on v by Q and Wv. We say that v is of type in if N−

G (v) ̸= ∅
and it is of type out if N+

G (v) ̸= ∅. Furthermore, we say that Sv is in-compatible (resp.,
out-compatible) if v is of type in and additionally a1 ← a2 → a3 ← . . .← an−1 → an is a
path in H (resp., v is of type out and additionally a1 → a2 ← a3 → . . .→ an−1 ← an is a
path of H). Finally, if v is of type in and of type out, we say that v is of type sym and that
Sv is sym-compatible if it is in-compatible and out-compatible, this means in particular that
Sv has only symmetric edges.

By Lemma 7, we have that an even walk Q is orientation compatible for the set (Wv)v∈V (G)
if and only if for every vertex v, if v is of type in, then Sv is in-compatible and if v is of type
out, then Sv is out-compatible.

▶ Lemma 12. For any arc u→ v of G, the walk Su is out-compatible if and only if Sv is
in-compatible.
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Proof. Note that u is of type out and v is of type in. By the monochromatic neigh-
borhood property, if Su is out-compatible then since α and β are homomorphisms,
(α(v) α(u))Su(β(u) β(v)), is in-compatible. As Sv is precisely this walk after reduction,
it is then in-compatible. Similarly, if Sv is in-compatible, then Su is out-compatible. ◀

▶ Lemma 13 (∗).
1. If G has no vertex of type sym and Q satisfies the zigzag condition then Sv satisfies the

zigzag condition for all v ∈ V (G).
2. Let {v1, . . . , vk} ⊆ V (G) be the subset of vertices of G of type sym. If Svi

satisfies the
zigzag condition for 1 ≤ i ≤ k then Sv satisfies the zigzag condition for all v ∈ V (G).

▶ Lemma 14 (∗). Let (Wv) be a set of walks from q0 to all vertices v ∈ V (G). There is
some vertex q ∈ V (G) such that the set of orientation compatible walks for q and the set
(W −1

q Wv)v∈V (G) is one of the followings:
1. ∅.
2. {Q} for some reduced walk Q of even length |Q| = O(|V (G)|).
3. The set of all reduced walks of even length from α(q) to β(q) that satisfy the zigzag

condition.
Furthermore, we can determine in time O(|V (G)| · |E(G)|) which case holds, and output Q

in Case 2.

▶ Lemma 15. Let V ′ ⊂ V (G) be any nonempty set of vertices of G. Let q ∈ V ′ and for each
v ∈ V ′, let Wv be a walk from q to v of length |Wv| ≤ |V (G)|. Then the set of walks from
α(q) to β(q) that generate symmetric vertex walks with the set (Wv)v∈V ′ on V ′ is one of the
following:
1. ∅.
2. {Q} for some symmetric walk Q of length at most 2|V (G)|.
3. All symmetric walks from α(q) to β(q).
Furthermore, we can decide in time O(|V (G)| · |E(G)|) which case holds and output Q in
Case 2.

Proof. Assume that Q and (Wv)v∈V (G) generate symmetric vertex walks. Then, in particular,
Q is symmetric. Note that α(Wv) and β(Wv) may have non symmetric edges, but since Q

generates only symmetric walks and Sv is the reduced walk obtained from α(Wv)−1 ·Q·β(Wv),
we have that the non-symmetric edges of α(Wv) and of β(Wv) must be the same and appear in
the same order. Suppose that e1, e2, . . . , ep are the non-symmetric edges of α(Wv) and β(Wv).
Then we can write α(Wv) = A1e1A2 . . . ApepAp+1 and β(Wv) = B1e1B2 . . . BpepBp+1, where
A1, . . . , Ap+1 and B1, . . . , Bp+1 are symmetric. Note that if α(Wv) and β(Wv) are symmetric
then α(Wv) = A1 and β(Wv) = B1. Since all non-symmetric edges cancel in Sv, we obtain

A−1
p · · ·A−1

2 e1A−1
1 QB1e1B2 · · ·Bp = ε .

So in particular, Q = A1B−1
1 (so |Q| ≤ 2|V (G)|) and A−1

p . . . A−1
2 B2 . . . Bp = ε.

It remains to show that there is an algorithm that decides in time O(|V (G)| · |E(G)|)
which case holds and outputs Q in Case 2. The algorithm repeats the following for each
vertex v ∈ V ′:

Compute α(Wv) and β(Wv) and search for non symmetric edges. If all edges in α(Wv)
and β(Wv) are symmetric, continue with the next vertex. Else do the next steps.
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Check that α(Wv) and β(Wv) have the same non-symmetric edges appearing in the same
order. If not, there is no symmetric walk Q that generates a symmetric walk Sv and we
may conclude that Case 1 holds. Otherwise, let e1 and e2 be respectively the first and
the last non-symmetric edge of α(Wv) and β(Wv). Decompose α(Wv) = A1e1A2e2A3
and β(Wv) = B1e1B2e2B3.
If in some previous iteration a reduced walk Q has been fixed, check that Q = A1B−1

1 . If
not, then report Case 1. If no walk Q has been fixed in an earlier iteration, fix Q to be
the reduced walk A1B−1

1 ∈ π(H).
Finally, check that A−1

p . . . A−1
2 B2 . . . Bp = ε. If this equality doesn’t hold, report Case 1.

Then, report case 2 and Q if some walk Q has been fixed. Otherwise, report case 3.
Each step runs in time O(|E(G)|) and will repeat at most |V (G)| times, so this algorithm

runs in time O(|V (G)| · |E(G)|). ◀

We are now able to obtain a description of all H-realizable walks.

▶ Theorem 16. Let α, β : G→ H. We can find in time O(|V (G)|) a vertex q ∈ V (G) such
that the set Πq of H-realizable walks from α(q) to β(q) is one of the following:
1. Πq = ∅.
2. Πq = {Q} for some Q ∈ π(H).
3. Πq = {RnP | n ∈ Z} for some R, P ∈ π(H).
4. Πq contains all reduced walks of even length from α(q) to β(q) that satisfy the zigzag

condition.
Moreover, we can determine in time O(|V (G)| · |E(G)|+ |E(H)|) which case holds and output
Q or R, P in cases 2 or 3. In case 4, we can find such a walk in time O(|E(G)|) (or certify
there is none).

Theorem 16 will be proved in the next subsection. Combining Lemma 8 and Lemma 10
with Theorem 16, we immediately obtain Theorem 1.

3.2.3 Proof of Theorem 16
In order to prove Theorem 16 we need the following technical lemma.

▶ Lemma 17. Let R0 be cyclically reduced walk and let P be a reduced walk starting at the
base point of R0. We can find in time O(|R0|+ |P |) an integer n0 such that none of R0 and
R−1

0 entirely cancels with Rn0P .

Recall that for α, β : G → H and q ∈ V (G), we denote by Πq the set of all walks from
α(q) to β(q) that are H-realizable. We are now ready to prove Theorem 16.

Proof of Theorem 16. Fix any q0 ∈ V (G) and use breadth first search to compute shortest
walks Wv from q0 to v for all v ∈ V (G) in time O(|V (G)| · |E(G)|). We invoke Lemma 14 for
q0 and (Wv)v∈V to obtain in time O(|V (G)| · |E(G)|) a vertex q ∈ V (G) and a description of
the set of orientation compatible walks for q and (Wv)v∈V (G). We distinguish the possible
outcomes:
Case 1 There is no orientation-compatible walk. Then report that there is no H-realizable

walk.
Case 2 There is a unique orientation-compatible reduced walk Q of even length. By

Lemma 10, we can decide in time O(|E(G)| · (|Q| + |V (G)|) = O(|V (G)| · |E(G)|) if
|Q| is H-realizable as |Q| = O(|V (G)|).
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Case 3 All reduced walks of even length from α(q) to β(q) that satisfy the zigzag condition
and are orientation compatible. Invoke Theorem 5 to get in time O(|V (G)| · |E(G)| +
|E(H)|) a description of the set Π̄q of all H̄-realizable walks from α(q) to β(q). We again
distinguish the four possible outcomes.
1. Π̄q = ∅. There is no H̄-realizable walk for α, β, q, so there is no H-realizable walk.
2. Π̄q = {Q}. There is a unique reduced walk Q that is H̄-realizable. Then we can check

in time O(|Q|) = O(|E(G)| · |V (G)|+ |E(H)|) whether it satisfies the zigzag condition
and hence is orientation compatible.

3. Π̄q = {RnP | n ∈ Z} with R, P ∈ π(H) and R closed and of even length. If R does
not satisfy the zigzag condition then the following claim allows us to conclude.

▷ Claim 1. Suppose that R does not satisfy the zigzag condition. Then at most one
of the H̄-realizable walks RnP , n ∈ Z, satisfies the zigzag condition. Furthermore, we
can find such a walk in time O(|V (G)| · |E(G)|+ |E(H)|) or conclude there is none.

Proof. Decompose R = AR0A−1 with all walks minimal and R0 cyclically reduced.
Apply Lemma 17 with the walks R0 and A−1P and obtain in time O(|R0|+ |P |) =
O(|V (G)| · |E(G)|+ |E(H)|) an integer n0 ∈ Z such that none of R−1

0 and R0 entirely
cancels with Rn0

0 A−1P .
If A does not satisfy the zigzag condition, then none of RnP do for n ̸= n0, so
only Rn0P can possibly satisfy the zigzag condition, which can be checked in time
O(|Rn0P |) = O(|V (G)| · |E(G)|+ |E(H)|).
Otherwise, if A satisfies the zigzag condition, then so do the edges of A−1, so R0 does
not satisfy the zigzag condition (since R does not). For n > n0 + 1, RnP ∈ π(H)
contains an entire R0 that does not reduce, so it cannot satisfy the zigzag condition.
Similarly if n < n0−1, then RnP does not satisfy the zigzag condition since it contains
an entire R−1

0 . Eventually we only need to test Rn0−1P , Rn0P and Rn0+1P , which
can be done in time O(|P |) = O(|V (G)| · |E(G)|+ |E(H)|). Observe that each edge of
R0 belongs to precisely two of those three walks, so as it is the case for the edges of
R0 that do not fit the zigzag condition, we deduce that at most one of Rn0−1P , Rn0P

and Rn0+1P satisfies the zigzag condition. ◁

On the other hand, if R satisfies the zigzag condition then P satisfies the zigzag
condition if and only all walks RnP do. To see this, notice that ”badly oriented” edges
of P must reduce with ”badly oriented” edges of Rn, but there is none in Rn since it
is orientation-compatible. So we can again distinguish between Case 1 and Case 3 in
time O(|E(G)| · |V (G)|+ |E(H)|) and report the result.

4. Π̄q contains all reduced walks of even length from α(q) to β(q). We report Case 4.
Using breadth first search in the tensor product G × K2 (we construct the graph
G×K2 by creating for each vertex vi of G two copies ui and wi; two vertices ui and
wj of G×K2 are adjacent if and only if vi and vj are adjacent in G), we can find such
a walk in time O(|E(G)|) or conclude there is none. ◀

4 Reflexive graphs

In this section we sketch the proof of Theorem 2. First, we assume that the graphs G and H

are undirected and reflexive. The following property can be thought of as an analogue of the
monochromatic neighborhood property for reflexive graphs.
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▶ Definition 18. Let α, β : G→ H and let S be a H-recoloring sequence from α to β. Then
S has the push-or-pull property if whenever a vertex u ∈ V (G) changes its color from a to b

then any neighbor v ∈ V (G) of u has color a or b.

Intuitively, whenever a vertex u of G changes its color, for any neighbor v of u, we have
that u is either “pushed” away from the color of v or “pulled” towards the color v. Notice
that if H is triangle-free then any H-recoloring sequence satisfies the push-or-pull property:
if a neighbor v of u has a color different from a and b then H contains a triangle.

Let α, β : G→ H and let S be an H-recoloring sequence from α to β such that S satisfies
the push-or-pull property. We associate to each vertex u ∈ V (G) the vertex walk S(u) in
H corresponding to the successive colors of u according to S. Given a vertex q and a walk
Q from α(q) to β(q), we say that Q is H-realizable for α, β, q if there is an H-recoloring
sequence S from α to β such that Q = S(q) and S satisfies the push-or-pull property. By the
next lemma, we have that for any vertex v ∈ V (G), the corresponding walk S(v) generates
the walk S(u) of any other vertex by conjugation. Notice that for irreflexive graphs H,
the same holds for H-recoloring sequences that satisfy the monochromatic neighborhood
property ([17, Lemma 4.1], Lemma 4).

▶ Lemma 19 (∗). Let S be a H-recoloring sequence from α to β satisfying the push-or-pull
property. Then for any u, v ∈ V (G) and any u-v walk W , we have S(v) = α(W )−1S(u)β(W )
in π(H).

Lemma 19 allows us to characterize H-realizable walks based on an algorithm that
finds vertices of G whose color cannot change. We end up with the following result which
immediately implies that if H is reflexive and triangle-free then H-Recoloring admits a
polynomial-time algorithm on reflexive instances, under the condition that if the color of a
vertex changes then the old and new colors are neighbors in H (see [13, Theorem 1.1]).

▶ Theorem 20 (∗). Let G and H be reflexive undirected graphs and let α, β : G→ H and
q ∈ V (G). Let Π̄ be the set of all walks that are H-realizable for α, β, q (in particular, the
corresponding H-recoloring sequences satisfy the push-or-pull property). Then one of the
following holds:
1. Π̄ = ∅.
2. Π̄ = {Q} for some Q ∈ π(H).
3. Π̄ = {RnP | n ∈ Z}, for some R, P ∈ π(H).
4. Π̄ contains all reduced walks from α(q) to β(q).
Furthermore, we can determine in time O(|V (G)| · |E(G)|+ |E(H)|) which case holds and
output Q or R, P in cases 2 and 3 such that |Q|, |R|, |P | are bounded by the total running
time O(|V (G)| · |E(G)|+ |E(H)|). Case 4 happens when α(C) = β(C) = ε in π(H) for all
closed walks C in G.

In order to obtain Theorem 2, we run the algorithm of Theorem 20 on H̄ and check
for each of the four cases whether there is a corresponding H̄-recoloring sequence that is
compatible with the orientation of the arcs of H. In Case 1 there is no H-recoloring sequence
since there is no H̄-recoloring sequence. To deal with Case 2, we use a greedy-type algorithm
(“move-forward algorithm”) that first constructs from the walk Q the vertex walks of all other
vertices of G using Lemma 19 and then either finds a H-recoloring sequence moving vertices
to their next color step-by-step or detects an obstruction in the form of a cyclic dependency
of color changes. We essentially reduce Case 3 to Case 2, by showing that it suffices to check
the H-realizability of the walks {RnP | n ∈ Z} only for a polynomial number of values of n.
For each value n of interest, we run the move-forward algorithm for the walk RnP . In Case 4,
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we first compute the set V ′ of vertices of G that belong to some directed closed walk. We
show that the H-realizable walks are exactly those which generate symmetric walks on V ′.
We use a characterization of such walks in order to conclude whether there is a H-recoloring
sequence satisfying the push-or-pull property or not.

Notice that Theorem 20 requires both graphs G and H to be reflexive. The final step in
the proof of Theorem 2 is to observe that if H contains no 4-cycle of algebraic girth 0 then
we can remove this requirement for the graph G.

5 Conclusion

We showed that H-Recoloring admits a polynomial-time algorithm whenever i) H is a loopless
digraph without a 4-cycle of algebraic girth 0 and ii) H is a reflexive digraph containing
neither a triangle of algebraic girth 1 nor a 4-cycle of algebraic girth 0. For this purpose we
make use of the topological approach developed by Wrochna [17]. Additionally, we showed
that all known polynomial-time algorithms for H-Recoloring can be obtained using this
approach. That is, in all cases, whenever there is a H-recoloring sequence then in particular
all H-colorings of in such a sequence are homotopy-equivalent. This leads to the interesting
question, whether homotopy-equivalence is exactly the condition that makes H-Recoloring
tractable.
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A Proofs omitted from Section 3

Proof of Lemma 4. We use induction on the length ℓ of S. Let ℓ = 1 and suppose σ0 ̸= σ1,
so a vertex w ∈ V (G) is recolored from σ0(w) = a to σ1(w) = b and all neighbors of w have
color h. By definition, we have S(w) = (a h)(h b) and S(v) = ε for v ∈ V (G) \ {w}. If W = ε

then σ0(W ) = σ1(W ) = ε and S(u) = S(v) since u = v, so we are done. If W has length one
then, without loss of generality, W = u→ v. We consider three cases:

u ̸= w and v ̸= w. Then S(u) = S(v) = ε and σ0(W ) = σ1(W ).
u ̸= w and v = w. Then S(u) = ε, S(v) = (ah)(hb). Since S satisfies the monochromatic
neighborhood property, all neighbors of v, including u, have color h, so σ0(W ) = (h, a),
σ1(W ) = (h, b).
u = w and v ̸= w. Then S(u) = (ah)(hb) and S(v) = ε. Again using the fact that
S satisfies the monochromatic neighborhood property, we have σ0(W ) = (ah) and
σ1(W ) = (bh).

In each case we have S(v) = σ0(W )−1S(u)σ1(W ). If W has length at least two then we may
split W inductively into W = W1W2 such that W2 is of length one, so W1 is a walk from u

to z and W2 is a walk from z to v. Then we have

σ1(W ) = σ1(W1)σi(W2)
= σ1(W1)S(z)−1σ0(W2)S(v)
= S(u)−1σ0(W )S(v) .

If the sequence S has length more than one we use the same idea and split S inductively into
S = S1S2 such that S2 has length one. Then for each v ∈ V (G) we have S(v) = S1(v)S2(v)
and

S(v) = S1(v)S2(v)
= S1(v)σℓ−1(W )−1S2(u)σℓ(W )
= σ0(W )−1S(u)σℓ(W ) ,

which concludes the proof. ◀

Proof of Lemma 10. Use Lemma 9 to decide in time O(|E(G)| · (|Q|+ |V (G)|)) whether Q

is H̄-realizable for α, β, q. If not then Q is not H-realizable for α, β, q. Otherwise, for each
vertex v ∈ V (G), use breadth first search to find a shortest walk Wv from q to v in G in time
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O(|E(G)|), then compute S(v) := α(Wv)−1 ·Q · β(Wv), reduce the resulting walk and check
the zigzag condition in time O(|Q|+ |V (G)|). By Lemma 7, the zigzag condition is satisfied
for each vertex v ∈ V (G) if and only if Q is H-realizable for α, β, q. In total, for each vertex
v ∈ V (G) the computations can be performed in time O(|Q|+ |E(G)|). ◀

Proof of Lemma 13. We prove the first statement. Assume there is no vertex of type sym
and that Q satisfies the zigzag condition. Without loss of generality, we may assume that
q is of type in, so Q is in-compatible. Let v be any other vertex of G and P a path from
q to v in G. Since there is no vertex of type sym we deduce that P is alternating between
vertices of type in and vertices of type out. By Lemma 12 Sw satisfies the zigzag condition
for each vertex w in P . In particular, Sw does.

It remains to prove the second statement. Let X = {v1, . . . , vk} ⊆ V (G) be the vertices
of G of type sym and suppose that Svi

satisfies the zigzag condition for 1 ≤ i ≤ k. Let
v ∈ V (G) be any vertex that is not of type sym and let P be a shortest path from X to v.
Again, P is alternating between vertices of type in and vertices of type out and hence for
each vertex w of P , we obtain that Sw satisfies the zigzag condition by Lemma 12. ◀

Proof of Lemma 14. Let V ′ ⊆ V (G) be the set of vertices of type sym. Notice that V ′ can
be computed in time O(|E(G)|). Suppose first, suppose that V ′ = ∅. Then, by statement A
the orientation-compatible walks are precisely those of even length that satisfy the zigzag-
condition. We can therefore indicate Case 3 with q := q0. Now suppose that V ′ ̸= ∅. Let
q ∈ V ′ and apply Lemma 15 to determine in time O(|V (G)| · |E(G)|) all walks from α(q) to
β(q) that generate symmetric walks with the set (Wv)v∈V ′ on all vertices of V ′. Invoke the
second statement of Lemma 13 to deduce that:
1. In Case 1 of Lemma 15 we report Case 1, i.e., there is no orientation-compatible walk.
2. In Case 2 of Lemma 15 we report Case 2 and output Q if Q has even length and Case 1

otherwise.
3. In Case 3 of Lemma 15 we report Case 3.
The total runtime is dominated by the algorithm of Lemma 15, hence O(|V (G)| · |E(G)|) as
claimed. ◀

Proof of Lemma 17. Start with n = 0. Check if R0 entirely reduces with Rn
0 P and if so

then replace n by n + 1. Similarly, if R−1
0 reduces with Rn

0 P , then replace n by n− 1. Repeat
until none of R−1

0 or R0 entirely reduces with Rn
0 P . Each step is done in |R0| and reduces

|Rn
0 P | by |R0|, so we deduce that this process terminate in time O(|R0|+ |P |). Also observe

that |n0| is polynomial in |V (G)| and |V (H)|. ◀

B Additional results

B.1 Shortest H-recoloring
Let H be a fixed digraph. Given a digraph G and two homomorphism α, β : G → H, the
problem Shortest H-Recoloring asks for the length of a shortest H-recoloring sequence from
α to β (if there is none, the shortest length is∞). The topological approach, in particular the
description of H-realizable walks, is also useful for finding shortest H-recoloring sequences.
Again, we may follow Wrochna’s arguments from [17] to obtain a polynomial-time algorithm
for Shortest H-Recoloring under the conditions of of Theorem 1.

▶ Theorem 21. Let H be a loopless digraph that contains no 4-cycle of algebraic girth 0 as
a subgraph. Then Shortest H-Recoloring admits a polynomial-time algorithm.
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We observe that for any H-recoloring sequence, the corresponding walk S(v) of a vertex
v (see Section 3.1) is reduced.

▶ Lemma 22 ([17, see Corollary 6.2]). Let H be a loopless digraph that contains no 4-
cycle of algebraic girth 0 as a subgraph. Let α, β : G → H be graph homomorphisms and
S := σ0, . . . , σℓ a shortest H-recoloring sequence from α = σ0 to β = σℓ. Then for any vertex
v ∈ V (G), the walk S(v) is reduced.

Proof. Observe that the length |S| of the H-recoloring sequence S is |S| = 1
2

∑
v∈V (G) |S(v)|.

Fix any base vertex q ∈ V (G) to notice that Q = S(q) is H-realizable. Reducing for v ∈ V (G)
all walks S(v) to Sr(v), Lemma 8 constructs an associated H-recoloring sequence of length∑

v∈V (G) |Sr(v)|. Since Sr(v) is the reduction of S(v), we have |Sr(v)| ≤ |S(v)|. Thus if |S| is
minimal then |S(v)| = |Sr(v)| for each v ∈ V (G) and hence the walks S(v) are reduced. ◀

Following the proof of [17, see Theorem 8.1] nearly word by word and additionally taking
care the orientation compatibility yields Theorem 21.

Proof of Theorem 21. By Lemma 22, it suffices to choose a walk Q ∈ Π′ from the description
in Theorem 16 that minimizes∑

v∈V (G)

|S(v)| =
∑

v∈V (G)

|α(Wv)−1 ·Q · β(Wv)| , (1)

where Wv is an arbitrary chosen walk from q to v. In cases 1 and 2 of Theorem 16 this
is trivial. Recall that in Case 3 we have Q = Rn · P for any n ∈ N. It is easy to see that
|n| ≤ 2|V (G)| + |P | in a shortest sequence, since repeating R will eventually increase all
summands of (1). It thus suffices to compute (1) for all these choices of n.

In Case 4, consider an H-realizable walk Q, i.e., any reduced walk of even length from
α(q) to β(q) that satisfies the zigzag condition. Let P1 be the longest common prefix of
Q and α(Wv) ∈ π(H), choosing v ∈ V (G) to maximize its length. That is, P1 is longest
such that all of P1 will reduce with α(Wv)−1 in some summand of (1). Similarly, let P2 be
the longest common suffix of Q and some β(Wv)−1 ∈ π(H). Either P1 and P2 overlap, or
Q = P1Q′P2, for some Q′ ∈ π(H). In the latter case, since P1 and P2 are longest, no element
of Q′ will reduce in any summand of (1), the sum can be written as∑

v∈V (G)

|α(Wv)−1 ·Q · β(Wv)| =
∑

v∈V (G)

(
|α(Wv)−1 · P1|+ |Q′|+ |P2 · β(Wv)|

)
.

Where we take α(Wv)−1 and β(Wv) after reduction in π(H). Also observe that both P1 and
P2 must zigzag properly according to the type of q (see Definition 11), i.e., if q is of type in
and P1 = (a1a2) . . . (an−1an), then a1 ← a2 → a3 . . . up to an (so the orientation of the last
arc depends on parity). Similarly if P2 = (bnbn−1) . . . (b2b1), then . . . b3 ← b2 → b1. Thus we
can guess P1 by enumerating all prefixes of all α(Wv) that zigzag properly according to the
type of q, similarly guess P2 and guess how much they overlap. In case they do not overlap,
the sum is minimized by taking Q′ to be an arbitrary shortest path of appropriate parity,
and that zigzags correctly according to the type of q, from the tail of P1 to the head of P2
in H. Enumerating all possibilities for (the length of) P1, P2 and the overlap can be done
in polynomial time, and a shortest path of given parity that zigzags correctly in H can be
found by duplicating every vertex, i.e., finding a shortest path that zigzags correctly in the
tensor product H ×K2. ◀
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i = σ(u)

Figure 5 Cp for the circular clique Gp,p′ with p = 7 and p′ = 2. If (uv) ∈ E(G) and σ(u) = i is
the vertex in the bottom, then σ(v) must belong to the path in red.

B.2 H-recoloring for circular cliques

Given two integers p, p′ such that p/p′ ≥ 2, the circular clique Gp,p′ has as vertex set the
set Zp of integers modulo p and has edge set {(ij) | i − j mod p ≤ p′}. The p-cycle Cp is
a graph on the vertex set Zp and edge set {(i(i + 1)) | i ∈ Zp}. We sketch a proof of the
following result by Brewster at al. from [4] using the topological approach of Wrochna.

▶ Theorem 23 (See [4]). Let p, p′ be fixed positive integers with 2 ≤ p/p′ < 4. Let H := Gp,p′

be the circular clique of parameters p, p′. Then H-Recoloring admits a polynomial-time
algorithm.

By the definition of homomorphisms G→ Gp,p′ we have for each neighbor u of a vertex
v ∈ V (G), the color of v must belong to a path Pu(v) on Cp which depends on the color
of u (see Figure 5). The constraint p/p′ < 4 is necessary to ensure that the intersection
P (v) =

⋂
u∈N(v) Pu(v) is a path on Cp, which is the set of all colors to which the color of v

can change. Thus, we can associate vertex walks S(v) in Cp to an H-recoloring sequence S by
associating to each color change of v the (unique) walk in P (v) between the two consecutive
colors. Also, we convert walks W in Gp,p′ to walks W̃ in Cp as follows: replace each edge
(ab) in W by the walk (a (a + 1)) . . . ((b− 1) b) in Cp and concatenate to obtain W̃ . We can
prove the following lemma.

▶ Lemma 24. Let S be a Gp,p′-recoloring sequence from α to β, then for any u, v ∈ V (G)

and any uv walk W , we have S(v) = α̃(W )
−1

S(u)β̃(W ) in π(Cp).

This lemma implies in particular that vertex walks must be topologically valid: for any
vertex q ∈ V (G) and any closed walk C from q to q, β̃(C) = S(q)−1α̃(C)S(q) in π(Cp). In
particular, the walk of any vertex q ∈ V (G) generates all the others. Again, we can define that
a closed walk C = (v0 v1) . . . (vn−1 vn) from q = v0 to q = vn is α-tight if α(vi+1) = α(vi)+p′

mod p for all i ∈ {0, . . . , n− 1}. We say that a walk Q from α(q) to β(q) in Cp is realizable
if there is a Gp,p′ -recoloring sequence from α to β such that Q = S(q) in π(Cp). We obtain
again a similar construction theorem the as in the previous sections.
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▶ Theorem 25. Let α, β : G→ Gp,p′ be two Gp,p′-colorings of a graph G. Furthermore, let
q ∈ V (G) be any vertex and let Q be a reduced walk from α(q) to β(q). Then Q is realizable
for α, β, q if and only if
1. Q is topologically valid for α, β, q.
2. For each α-tight closed walk in G and any vertex v on this walk, for any walk W from v

to q, we have Q = α̃(W )
−1

β̃(W ) in π(H).
Furthermore, there is an algorithm that, given a reduced walk Q, constructs a H-recoloring
sequence S from α to β or certifies that Q cannot satisfy one of the previous conditions. This
algorithm runs in time O(|V (G)|2 + |V (G)| · |Q|). The H-recoloring sequence S is such that
S(q) = Q.

The proof of Theorem 25 is essentially the same that the proof of Theorem 29 in [14]
or of Theorem 6.1 in [17]. The only difference is that we will provide recoloring sequences
that are longer since the color changes will follow edges in Cp. Using Theorem 5 from [14]
(and that an α-tight closed walk can be found in polynomial time if there is one), we directly
obtain a description of realizable walks:

▶ Theorem 26. Let α, β : G → H = Gp,p′ and q ∈ V (G). Let Π be the set of all reduced
walks that are realizable for α, β, q. One of the following holds:
1. Π = ∅.
2. Π = {Q} for some Q ∈ π(Cp).
3. Π = {RnP | n ∈ Z}, for some R, P ∈ π(Cp).
Furthermore, there is an algorithm that determines in time O(|V (G)| · |E(G)|) which case
holds and outputs Q or R, P in cases 2, 3 such that |Q|, |R|, |P | are bounded by the time
O(|V (G)| · |E(G)|).

Since here π(Cp) ≃ Z, it turns out that the case where all walks from α(q) to β(q) in Cp

are realizable happens in Case 3 when R turns a single time around Cp. So Theorem 23
directly follows. Notice that this result is already proved in [4] together with a dichotomy
Theorem for H-recoloring where H-is a circular clique. Our goal here was to show how
the topological approach can be exploited even without the monochromatic neighborhood
property or the push-or-pull property.

B.3 H-recoloring for transitive tournaments
The transitive tournament Tn is an acyclic orientation of the complete graph on n vertices.
Dochtermann [7] showed that when H is a transitive tournament then H-Recoloring is
always Yes and a corresponding H-recoloring sequence can be found in polynomial-time.
However, we can easily recover this result using the following construction: Say {1, . . . , n}
are the vertices of Tn, with i → j if and only if i < j. Let Pn be the undirected path on
the same vertices with only the edges {i, i + 1}, 1 ≤ i < n. So for any instance (G, α, β) of
H-Recoloring, for each v ∈ V (G), there is a unique reduce walk Sv in Pn from α(v) to β(v)
which can be realized (as a vertex walk) by the following special case of the move-forward
algorithm (see Lemma 30 in [14]): for each vertex v of G, try to move v onto its next color in
Sv and repeat until we reach β. Suppose by contradiction that at any step σ, there is a cycle
of obstruction C = (u0u1) . . . (unu0) where for all i, ui prevents its neighbor ui from moving.
Suppose without loss of generality that Su0 is increasing in Pn. So σ(u1) > σ(u0), hence
u0 → u1 and eventually Su1 since it must remain above σ(u0). So by induction, all walks
Su0 are increasing and we have a directed cycle u0 → u1 → . . .→ un → u0 in G, which is
impossible.

The homotopy group π(Pn) being trivial, it is not necessary to define topological validity
in this case.
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