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Abstract
Christandl and Zuiddam [12] study the multilinear complexity of d-fold matrix multiplication in the
context of quantum communication complexity. Bshouty [8] investigates the multilinear complexity
of d-fold multiplication in commutative algebras to understand the size of so-called testers. The
study of bilinear complexity is a classical topic in algebraic complexity theory, starting with the
work by Strassen. However, there has been no systematic study of the multilinear complexity of
multilinear maps.

In the present work, we systematically investigate the multilinear complexity of d-fold multi-
plication in arbitrary associative algebras. We prove a multilinear generalization of the famous
Alder-Strassen theorem, which is a lower bound for the bilinear complexity of the (2-fold) multiplic-
ation in an associative algebra. We show that the multilinear complexity of the d-fold multiplication
has a lower bound of d · dim A − (d − 1)t, where t is the number of maximal twosided ideals in A.
This is optimal in the sense that there are algebras for which this lower bound is tight. Furthermore,
we prove the following dichotomy that the quotient algebra A/ rad A determines the complexity of
the d-fold multiplication in A: When the semisimple algebra A/ rad A is commutative, then the
multilinear complexity of the d-fold multiplication in A is polynomial in d. On the other hand, when
A/ rad A is noncommutative, then the multilinear complexity of the d-fold multiplication in A is
exponential in d.
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1 Introduction

A fundamental problem in algebraic complexity theory is the question about the costs of
multiplication, for instance, of matrices, triangular matrices, or polynomials. To be more
specific, let F be a field and let A be a finite dimensional associative F-algebra with unity 1.
By fixing a basis of A, say v1, . . . , vN , we can define a set of bilinear forms corresponding to
the multiplication in A. If vµvν =

∑N
κ=1 αµ,ν,κvκ for 1 ≤ µ, ν ≤ N with structural constants

αµ,ν,κ ∈ F, then these constants and the identity

1 Work done during an internship at Saarland University.
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12:2 On the Multilinear Complexity of Associative Algebras

(
N∑

µ=1
Xµvµ

)(
N∑

ν=1
Yνvν

)
=

N∑
κ=1

bκ(X, Y )vκ

define the desired bilinear forms b1, . . . , bN . The bilinear complexity or rank of b1, . . . , bN

is the smallest number of bilinear multiplications necessary and sufficient to compute
b1, . . . , bN from the indeterminates X1, . . . , XN and Y1, . . . , YN . A bilinear multiplication
is a multiplication of the form uρ(X1, . . . , XN )vρ(Y1, . . . , YN ), where uρ and vρ are linear
forms. Additions and multiplications with scalars from F are free of costs.

It is easy to see that the bilinear complexity of b1, . . . , bN does not depend on the choice of
v1, . . . , vN , thus we may speak about the bilinear complexity (or rank) of (the multiplication
in) A. Equivalently, we can formulate the problem as a tensor rank problem. Given the
structure tensor (αµ,ν,κ) of the algebra, which you can think of as a three-dimensional matrix,
the bilinear complexity of an algebra is exactly the number of rank-one tensors that are
needed to write the structure tensor of an algebra as a sum of rank-one tensors. For an
introduction to algebraic complexity theory and for further background on tensor rank, we
recommend [11, 18].

The best general lower bound for the bilinear complexity of an associative algebra A is
due to Alder and Strassen [1], they show

R(A) ≥ 2 dim A − t , (1)

where t is the number of maximal twosided ideals in A. (See Section 2 for more background
on algebras.) This bound has been improved for a large class of so-called semisimple algebras
to 5

2 dim A − 3n, where n is the sum of the sizes of the matrices in the decomposition
of A into simple algebras [3]. The Alder–Strassen theorem itself even holds for a more
general complexity measure, the so-called multiplicative complexity. Algebras for which the
Alder–Strassen bound is tight are called algbras of minimal rank or minimal multiplicative
complexity. They have been characterised in terms of their algebraic structure in [4] and [6].

The most prominent algebra is the algebra of n × n-matrices. Strassen [23] proved that
the rank of 2 × 2-matrix multiplication is upper bounded by 7, giving rise to his famous
matrix multiplication algorithm. Winograd [25] proved that the bound of 7 is optimal, which
can be considered as a first instance of the Alder–Strassen theorem. Over the past decades,
an exciting development of fast matrix multiplication algorithms has taken place, culminating
in the current fastest algorithms with running time O(n2.373) [14, 22, 24, 16, 2], see [5] for
an overview. The best lower bound is due to Landsberg [17] and is R(Fn×n) ≥ 3n2 − o(n2).

When an algebra A is associative, the d-fold multiplication is a multilinear map A × · · · ×
A → A. The notion of bilinear complexity naturally generalizes: Instead of bilinear products,
we have d-linear products. Equivalently, we can study the tensor rank of tensors of higher
orders. Christandl and Zuiddam [12] recently studied the multilinear complexity of d-fold
matrix multiplication, which is a so-called graph tensor on the cycle graph of length d. The
multilinear complexity of such graph tensors plays a particular role in quantum communication
complexity, see e.g. [10]. Prior to this, Nisan and Wigderson studied depth-three circuits for
iterated matrix multiplication using the partial derivative method [19].

Bshouty [9] invented the concept of testers. Testers are a useful tool in algebraic algorithms
to reduce identity testing from large domains to smaller ones. In the case of the class of
multilinear forms of degree d over an algebra A, he proves that the size of the optimal tester
is exactly equal to the multilinear complexity of the d-fold multiplication in the algebra A [8].
Thus, it is interesting to understand the multilinear complexity of d-fold multiplication of
arbitrary algebras.
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Related models have been studied in algebraic complexity theory, like (set-multilinear)
depth-3-circuits, higher order tensor rank, or Waring rank, see e.g. the surveys [21, 7]. But
there has been no systematic study of the multilinear complexity of d-fold multiplication
maps.

1.1 Our work
We initiate the systematic study of the multilinear complexity of d-fold multiplication in an
associative algebra. Our motivation comes from the work mentioned above that relies on
bounds for the multilinear complexity in certain algebras.

We prove a multilinear generalization of the Alder–Strassen theorem (Theoreom 19),
namely that

R(A, d) ≥ d · dim A − (d − 1)t,

where t is the number of maximal twosided ideals in A. Here R(A, d) denotes the rank of
d-fold multiplication in A (see Section 3). This bound is tight in the sense that there are
algebras for which equality holds, for instance, products of simply generated division algebras
(see Section 5.3). For d = 2, we exactly recover the Alder–Strassen theorem.

Moreover, an interesting phenomenon arises. When we keep the algebra A fixed and
consider the multilinear complexity R(A, d) as a function of d, then the growth is either
polynomial (where the exponent might depend on A) or exponential. When A/ rad A is
commutative, then R(A, d) is polynomial, more precisely R(A, d) ≤ d(s−1)(D+1) · D(D+3)s,
where D is the dimension of A and s is the so-called index of nilpotency, which can be upper
bounded by D (Theorem 18). This result holds over large enough perfect fields. Note that
most fields are perfect, like fields of characteristic zero, finite fields, or algebraically closed
fields. On the other hand, when A/ rad A is noncommutative, then we prove an exponential
lower bound (Theorem 13 together with Lemma 5). So we obtain a dichotomy.

We would like to stress once again that the motivation for this work are the above
mentioned applications in quantum communication and the study of testers. Multilinear
computations are in general not suited to actually evaluate d-fold multiplication maps
in practice. While for instance Christandl and Zuiddam [12] prove that the multilinear
complexity of d-fold matrix multiplication is exponential in d, we can of course multiply d

matrices in polynomial time. The reason is that in practice, we first multiply two matrices,
then multiply the result with the third one and so on. In multilinear computations, we
cannot reuse results. It is essentially the same as the difference between formula and circuit
size, which can be exponential, too. Nevertheless, bilinear algorithms have been successfully
used to construct algorithms for the multiplication of two matrices, because in the case d = 2,
bilinear computations and circuit size only differ by a factor of 2, see e.g. [5].

1.2 Organisation of the paper
Section 2 provides some basic facts about associative algebras. In Section 3, we introduce the
model of computation and prove some basic facts about it. Then we prove how to remove the
radical in Section 4, similar to the original proof of the Alder–Strassen theorem. In Sections 5
and 6, we study semisimple algebras, first semisimple algebras that are in addition basic and
then arbitrary semisimple algebras. Then we go on with a study of the algebra of upper
triangular matrices in Section 7, which is an example of a noncommutative algebra such that
A/ rad A is commutative. In constrast to general matrices, for which we have an exponential
lower bound, we prove a polynomial upper bound for the multilinear complexity (as a function

STACS 2023



12:4 On the Multilinear Complexity of Associative Algebras

of d). In Section 8, we generalize this result to arbitrary, potentially noncommutative algebras
A for which A/ rad A is commutative. Finally, we prove the generalized Alder–Strassen
theorem in Section 9.

2 Structure of associative algebras

We collect some elementary properties of associative algebras. The term algebra here always
means a finite dimensional associative algebra with identity 1 over some field F. The term
left module and right module always means a finitely generated left module and right module
over some algebra A, respectively. By the embedding α 7→ α · 1, F becomes a subalgebra of A.
Hence, every A-left module or A-right module is also a finite dimensional F-vector space. If
we speak of a basis of an algebra or a module, we always mean a basis of the underlying
vector space. Further material as well as proofs of the mentioned properties can be found
in [20, 13, 15].

A left ideal I (and in the same way, a right ideal or twosided ideal) is called nilpotent, if
In = {0} for some positive integer n.

▶ Fact 1. For all finite dimensional algebras A, the following holds:
1. The sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which contains every

nilpotent right ideal of A. This twosided ideal is called the radical of A and is denoted by
rad A.

2. The quotient algebra A/ rad A contains no nilpotent ideals other than the zero ideal.
3. The radical of A is contained in every maximal twosided ideal of A.
4. The algebras A and A/ rad A have the same number of maximal twosided ideals.

We call an algebra A semisimple, if rad A = {0}. By the above fact, A/ rad A is semisimple.
An algebra A is called simple, if there are no twosided ideals in A, except the zero ideal and
A itself.

We now describe some of the most important ways to construct new algebras from given
ones: If A and B are F-algebras, then the direct product A × B with componentwise addition
and multiplication is again an F-algebra. The set of all n × n–matrices with entries from
A forms an F-algebra (with the usual definition of addition and multiplication of matrices).
This algebra is denoted by Mn(A) or An×n.

We denote the set of all units of an algebra A, that is, the set of all invertible elements,
by A×. An algebra D is called a division algebra, if D× = D \ {0}. An algebra A is called
local, if A/ rad A is a division algebra, and A is called basic, if A/ rad A is a direct product of
division algebras.

If x ∈ A, we denote by AxA the ideal generated by x. If A is commutative, we will also
write (x) for short. Furthermore, F[x] denotes the smallest subalgebra of A that contains
x. If x1, . . . , xm ∈ A mutually commute, then F[x1, . . . , xm] denotes the smallest subalgebra
of A that contains x1, . . . , xm. For elements v1, . . . , vn of some vector space, ⟨v1, . . . , vn⟩
denotes their linear span.

The following fundamental theorem describes the structure of semisimple algebras.

▶ Theorem 2 (Wedderburn). Every finite dimensional semisimple algebra is isomorphic to
a finite direct product of simple algebras. Every finite dimensional simple F-algebra A is
isomorphic to an algebra Mn(D) for an integer n ≥ 1 and an F-division algebra D. The
integer n and the algebra D are uniquely determined by A (the latter one up to isomorphism).
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3 Multilinear computations

For a vector space V , V ∗ denotes the dual space of V , that is, the vector space of all linear
forms on V .

We define multilinear complexity in a coordinate-free way. The d-fold multiplication in
an algebra is a multilinear map ϕ : Ad → A. A multilinear computation consists of linear
forms Fi,δ ∈ A∗, 1 ≤ δ ≤ d, and elements wi ∈ A, 1 ≤ i ≤ r, such that

x1 · x2 · . . . · xd =
r∑

i=1
Fi,1(x1)Fi,2(x2) . . . Fi,d(xd) · wi

for all x1, . . . , xd ∈ A. r is called the length of the computation. The length of a shortest
computation for the d-fold multiplication is the d-linear complexity of A. We denote this
quantity by R(A, d).

In the remainder of this section, we collect some useful properties of multilinear complexity.
If we choose vector spaces Vi ⊆ A, 1 ≤ δ ≤ d, we get a multilinear map ϕ′ : V1 × . . . , ×Vd → A

in the canonical way. By restricting each Fi,δ to Vδ, the computation above turns into a
computation for ϕ′ of the same length. Obviously, R(ϕ′) ≤ R(ϕ).

If I is a twosided ideal of A, then A/I is an algebra again. Each Fi,δ induces a linear
form on A/I in the canonical way. By replacing each Fi,δ with this linear form and mapping
each wi to its image in A/I, the computation turns into a computation for the multiplication
in A/I.

We can define an equivalence relation on the set of all d-linear computations for an
algebra. Let a0, . . . , ad ∈ A be invertible. We have the identity

a−1
0 a0x1a−1

1 a1x2a−1
2 a2 . . . ad−1xdad

−1ad = x1 . . . xd.

Therefore, the computation given by F̂i,δ(x) = Fi,δ(ai−1xa−1
i ), 1 ≤ δ ≤ d, and ŵi = a−1

0 wiad

is again a computation for ϕ, the multiplication in A. The action of (A×)d+1 defines an
equivalence relation on the set of all computations of length r.

The following claim will turn out useful in our lower bound proofs:

▷ Claim 3. Consider a computation for an algebra A of dimension N as above. For every
j, F1,j , F2,j , . . . , Fr,j span A∗. That is, we can have F1,j , . . . , FN,j as a basis of A∗ after
reordering.

Proof. Assume they do not span A∗ for some j, then there is an element y ∈ A\{0} such that
F1,j(y) = F2,j(y) = . . . = Fr,j(y) = 0. This means that x1 · x2 · . . . · xj−1 · y · xj+1 · . . . · xd = 0
for all x1, . . . , xd. By setting xi = 1 for i ̸= j, we get that y = 0, which is a contradiction.
We can reorder the Fi,j ’s such that F1,j , . . . , FN,j span A∗. ◁

The first item of the following fact follows from the trivial decomposition. The second by
setting xd+1 = 1.

▶ Fact 4.
1. R(A, d) ≤ (dim A)d

2. R(A, d) ≤ R(A, d + 1)

The d-fold multiplication in an algebra corresponds to a tensor in tA,d ∈ A∗ ⊗· · ·⊗A∗ ⊗A.
The rank of tA,d is the minimum number r of rank-one tensors uρ,1 ⊗ · · · ⊗ uρ,d ⊗ vρ ∈
A∗ ⊗ · · · ⊗ A∗ ⊗ A such that

tA,d =
r∑

ρ=1
uρ,1 ⊗ · · · ⊗ uρ,d ⊗ vρ.

Tensor rank and multilinear complexity coincide, that is, R(tA,d) = R(A, d).

STACS 2023



12:6 On the Multilinear Complexity of Associative Algebras

4 Removing the radical rad(A)

We start by generalizing the first lemma of the proof by Alder-Strassen to multilinear
complexity, allowing us to work with the semisimple algebra A/ rad(A), which has a nicer
structure than a general algebra.

▶ Lemma 5.

R(A, d) ≥ R(A/ rad(A), d) + d · dim(rad(A)).

Proof. Consider an algebra A over the field F. Let ϕ be a length r computation with
Fi,j ∈ A∗ and wi ∈ A such that the d-fold multiplication of A is computed by the following
equation:

x1 · x2 · . . . · xd =
r∑

i=1
Fi,1(x1)Fi,2(x2) . . . Fi,d(xd) · wi.

We will inductively construct vector spaces V1, . . . , Vd such that Vδ ⊕ rad(A) = A and
1 ∈ Vδ. Let ϕj be the multiplication map restricted to V1 × · · · × Vj × A × · · · × A. We will
now prove that R(A, d) ≥ R(ϕj) + j · dim(rad(A)). The base case j = 0 is clear.
Induction Hypothesis: R(A, d) ≥ R(ϕj−1) + (j − 1) · dim(rad(A)).
Induction Step: We obtain a basis of A∗ using the following claim similar to Claim 3, which

we prove later.

▷ Claim 6. For all j, we have that in a computation for ϕj−1, F1,j , F2,j , . . . , Fr,j span A∗.
That is, we can have F1,j , . . . , FN,j as a basis of A∗ after reordering. Here, N = dim A.

Now for the basis F1,j , . . . , FN,j of A∗, we calculate the dual basis a1,j , . . . , aN,j , which
is a basis of A as A∗∗ = A (A is finite dimensional). Note that from the definition of dual
basis, Fi,j(ak,j) = δik, where δik is Kronecker’s delta.

Consider the canonical projection P : A −→ A/ rad(A). Let dim(rad(A)) = ρ. Then
dim(A/ rad(A)) = N − ρ. After rearrangement, we can have that P (a1,j), . . . , P (aN−ρ,j)
form a basis of A/ rad(A). So we can assume w.l.o.g. that P (ai,j) for i ∈ [N − ρ] span
A/ rad(A). In particular, with Vj := ⟨a1,j , . . . , aN−ρ,j⟩, we have that Vj ∩ rad A = {0}.

We also observe that 1 ̸∈ rad(A). Now, we want that a1,j , . . . , aN−ρ,j span 1. If they
don’t, then there must exist z ∈ rad(A) such that 1 − z is spanned by a1,j , . . . , aN−ρ,j , i.e.,
there are β1, . . . , βN−ρ ∈ F such that

1 − z =
N−ρ∑
i=1

βiai,j .

As z ∈ rad(A), there exists an s such that zs = 0. Therefore, 1 − z is invertible and has
inverse 1 + z + z2 + . . . + zs−1. We can write

x1 . . . xj−1xjxj+1 . . . xd = x1 . . . xj−1(xj(1 − z))((1 − z)−1xj+1) . . . xd,

which changes the computation as follows:

∀i ∈ [r] : F̂i,j(xj) = Fi,j(xj(1 − z)), and F̂i,j+1(xj+1) = Fi,j+1((1 − z)−1xj+1).

All other Fi,h are not changed. If j = d, then wi is changed instead of Fi,d+1 (which does
not exist). Compare also Section 3.
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The dual basis will change as âi,j = ai,j(1 − z)−1. As we have 1 − z in the span of
a1,j , . . . , aN−ρ,j , we will have that 1 is in the span of â1,j , . . . , âN−ρ,j . Note that this does
not change the spaces V1, . . . , Vj−1. So, we have 1 =

∑N−ρ
i=1 βiâi,j .

Set Vj = ⟨â1,j , . . . , âN−ρ,j⟩. By the choice of Vj , Fi,j |Vj = 0 for i ∈ {N − ρ + 1, . . . N}, as
F̂i,j(âk,j) = Fi,j(ak,j) = 0 if i ̸= k. Thus when restricting to Vj , we can remove ρ products
from the computation. By the induction hypothesis, we get that

R(A, d) ≥ R(ϕj−1) + (j − 1) dim(rad A)) ≥ R(ϕj) + dim(rad A) + (j − 1) dim(rad A)).

This finishes the proof of the induction step.
We now have a multilinear map ϕd : V1 × · · · × Vd → A with R(A, d) ≥ R(ϕd) + d ·

dim(rad A)). To finish the proof of the lemma, it suffices to prove R(ϕd) ≥ R(A/ rad A, d).
Since Vδ ∩ rad A = {0} for δ ∈ [d], the restriction of the projection P to Vδ is an isomorphism.
The following diagram commutes:

V1 × . . . × Vd −→ A

↓ . . . ↓ ↓
A/ rad A × . . . × A/ rad A −→ A/ rad A

Thus a computation for ϕd can be turned into a computation for the d-fold multiplication in
A/ rad A (compare Section 3). ◀

We also give a proof of Claim 6, which we made in the proof above.

Proof of Claim 6. Assume they do not span A∗ for some j, then there is an element y ∈ A\{0}
such that F1,j(y) = F2,j(y) = . . . = Fr,j(y) = 0. This means that x1 · x2 · . . . · xj−1 · y ·
xj+1 · . . . · xd = 0 for all x1, . . . , xd. Since 1 ∈ Vδ for every δ, this means y = 0, which is a
contradiction. We can reorder the Fi,j ’s such that F1,j , . . . , FN,j span A∗. ◁

4.1 A tight example
An example we can consider is the algebra A = F[x]/(xn) of univariate polynomials modulo
xn. We clearly have dim(A) = n. We see that all polynomials in the algebra with zero
constant term are nilpotent. Therefore, rad(A) = ⟨x, x2, . . . , xn−1⟩ and dim(rad(A)) = n − 1.

From Lemma 5, we get that R(A, d) ≥ R(A/ rad(A), d) + d · dim(rad(A)), i.e. for this
case R(A, d) ≥ d · (n − 1) + 1 as A/ rad(A) is just F.

For the upper bound, we see that the d-fold product (without reduction modulo xn)
f = f1 · f2 · . . . · fd will actually be a polynomial of degree d(n − 1). We can evaluate each
fi at d(n − 1) + 1 points (which is free of costs in our model) and multiply the evaluations
with d(n − 1) + 1 costing multiplication operations to get an evaluation of f at d(n − 1) + 1
points. (This assumes that our field F is large enough.) Using d(n − 1) + 1 evaluations of
f , we can obtain f using interpolation, which is again free of costs. We ignore the terms
with degree higher than n, thus obtaining the final result f . This gives an upper bound of
d · (n − 1) + 1, proving that our lower bound is tight in this case.

5 Products of division algebras

Now that we are to work on R(A/ rad(A), d), we see that A/ rad(A) is a semisimple algebra.
Using Theorem 2, we have

A/ rad(A) = A1 × A2 × . . . × Ak

where Ai = Mni(Di), i.e., ni × ni matrices with entries from a division algebra Di.
In this section, we will mainly focus on case when ni = 1, i.e., all Ai are division algebras.

STACS 2023



12:8 On the Multilinear Complexity of Associative Algebras

5.1 Single division algebra (k = 1)
For simplicity, we will first take a look at the following lemma, for the case when k = 1, i.e.,
A = D where D is any division algebra. Let N = dim(A).

▶ Lemma 7. Let A be a division algebra. Then

R(A, d) ≥ d · dim(A) − (d − 1).

Proof. Let r = R(A, d). We consider an optimal length r computation for the d-fold
multiplication of A. By Claim 3, F1,1, . . . , FN,1 is a basis of A∗. Let a1,1, . . . , aN,1 be the
dual basis, that is, Fi,1(aj,1) = δi,j . We know that the a1,1, . . . , aN,1 are all invertible. Let
us define a new basis âi,1 = ai,1a1,1

−1, i ∈ [N ]. Let

∀i ∈ [r] : F̂i,1(x1) = Fi,1(x1a1,1), F̂i,2(x2) = Fi,2(a1,1
−1x2), and F̂i,j(xj) = Fi,j(xj), j ≥ 3.

We note that â1,1 = 1 and F̂i,1(1) = Fi,1(a1,1) = δi,1. We have that:

1 ·x2 · . . . ·xd = F̂1,1(â1,1)F̂1,2(x2) . . . F̂1,d(xd) ·w1 +
r∑

i=N+1
F̂i,1(â1,1)F̂i,2(x2) . . . F̂i,d(xd) ·wi.

As there are r − N + 1 terms to sum, R(A, d − 1) ≤ r − N + 1 = R(A, d) − N + 1. Since
R(A, 1) = N , we have by induction that

R(A, d) ≥ N + (N − 1)(d − 1) = d · dim(A) − (d − 1). ◀

5.2 Arbitrary products of division algebras
Now A = D1 × · · · × Dk is a product of division algebras.

▶ Theorem 8.

R(A, d) ≥ d · dim(A) − (d − 1)k.

Proof. As in the single division algebra case, we consider an optimal length r computation
for the d-fold multiplication in A:

x1 · x2 · . . . · xd =
r∑

i=1
Fi,1(x1)Fi,2(x2) . . . Fi,d(xd) · wi.

Similarly to the single division algebra case, F1,1, F2,1, . . . , FN,1 is w.l.o.g. a basis of A∗.
Let a1, a2, . . . , aN be the dual basis, that is, Fi,1(aj) = δi,j . Each ai can be written as
ai = (ai,1, ai,2, . . . , ai,k), where each ai,ℓ ∈ Dℓ, 1 ≤ ℓ ≤ k.

We can assume w.l.o.g. that the span of a1, . . . , ak contains an element b = (b1, . . . , bk)
that is nonzero in every component of D1 × · · · × Dk. Since each bℓ is nonzero, it is invertible,
because Dℓ is a division algebra. Thus b is invertible, too, and b−1 = (b−1

1 , . . . , b−1
k ).

Now, we define âj = ajb−1. Also, let F̂i,1(x1) = Fi,1(x1b) and F̂i,2 = Fi,2(b−1x2). By
construction, 1 = (1, . . . , 1) is contained in the linear span of â1, . . . , âk. Thus

1 · x2 · . . . · xd =
k∑

ℓ=1
F̂ℓ,1(1)F̂ℓ,2(x2) . . . F̂ℓ,d(xd) · wℓ +

r∑
i=N+1

F̂i,1(1)F̂i,2(x2) . . . F̂i,d(xd) · wℓ.

Similarly to the k = 1 case, we have that R(A, d − 1) ≤ r − N + k = R(A, d) − N + k.
Using induction, we get R(A, d) ≥ N + (d − 1)N + (d − 1)k, because R(A, 1) = N . ◀
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5.3 Tight example
An example we can consider is the divison algebra A = F[x]/(xn + 1), with xn + 1 being
irreducible (think of F = Q for instance). We clearly have dim(A) = n. This example is
similar to the one in Section 4.1.

From Lemma 7, we get that R(A, d) ≥ d · dim(A) − (d − 1). For the matching upper
bound, we see that f = f1 · f2 · . . . · fd will actually be a polynomial of degree d(n − 1).
We can evaluate each fi at d(n − 1) + 1 different points and multiply the evaluations to
get an evaluation of f at d(n − 1) + 1 points. Using these d(n − 1) + 1 evaluations of
f , we can obtain f using interpolation. Again, F needs to be large enough. Finally, we
calculate f mod (xn + 1), giving the final result in A. Thus, this yields an upper bound of
d · (n − 1) + 1 = d · dim A − (d − 1).

If we take the k-fold product Ak, we also see that the bound of Theorem 8 is tight, too,
for arbitrary k.

In general, we can get a polynomial upper bound (in d) on the multilinear complexity
of the d-fold multiplication in any commutative algebra, provided that the field F is large
enough. The exponent of the polynomial depends on the dimension of the algebra.

▶ Fact 9. Let A be a finite dimensional commutative algebra. Then there is a polynomial
ring R and an ideal I ⊂ R such that A = R/I.

▶ Lemma 10. Let A be a commutative algebra over a field F with k generators and highest
degree δ of a variable in a basis of the vector space R/I as above. Then R(A, d) ≤ (dδ + 1)k

provided that |F| ≥ dδ + 1.

Proof. The idea is to use the same construction as in the example above. Each element xi

in the d-fold product can be presented as a polynomial in k variables and degree at most δ

in each variable (modulo I). When we multiply these polynomials, we get a polynomial of
individual degree ≤ dδ in k variables. By multivariate Lagrange interpolation, it is enough to
interpolate on a k-dimensional grid with (dδ + 1) points in each direction and a total number
of (dδ + 1)k many points. In this way we get the stated upper bound because reduction
modulo I is free of costs in our model. ◀

We can bound k and δ − 1 in the lemma above by dim A. Thus the bound simplifies to
(d · dim A)dim A.

When A is simply generated, then the construction of the lemma becomes the construction
of the example above and we get the following tight bound.

▶ Corollary 11. If A is a simply generated commutative algebra, then R(A, d) = d · dim A −
(d − 1).

Let D be a commutative division algebra, that is, an extension field. If D is separable,
then by the primitive element theorem, it is simply generated and the corollary above applies.

6 General semisimple algebras

In this section, we will look at the case of semisimple algebras, that is A = A1 × · · · × Ak

and each Aℓ is a matrix algebra of format nℓ × nℓ with entries from a divison algebra Dℓ.
We can assume that at least one nℓ > 1, otherwise we have a product of divison algebras.
W.l.o.g. n1 > 1.

STACS 2023



12:10 On the Multilinear Complexity of Associative Algebras

6.1 Simple algebras (k = 1)
Christandl and Zuiddam [12] prove a lower bound for the case of a single matrix algebra
with entries from the ground field F using flattening. When d is odd, then their bound nd+1

is optimal. It is rather easy to generalize the flattening approach to semisimple algebras. We
start with simple algebras that are not division algebras.

▶ Theorem 12. Let n > 1 and let D be a division algebra of dimension ℓ, and let d be odd.
Then we have an exponential lower bound of

R(Mn(D), d) ≥ ℓ · nd+1.

Proof. Let f1 = 1, f2, . . . fℓ be a basis for the division algebra D. Let fi,j,λ be the matrix in
Mn(D) that has the element fλ in position (i, j) and zeros elsewhere. By the choice of f1,
fi,j,1 = ei,j , where ei,j is the matrix that has a 1 in position (i, j) and zeros elsewhere. The
set of all such fi,j,λ forms a basis of Mn(D). The multiplication tensor in this case looks like∑

i1,...,id+1∈[n],λ1,...,λd∈[ℓ]

f∗
i1,i2,λ1

⊗ . . . ⊗ f∗
id,id+1,λd

⊗ (fλ1 · fλ2 · . . . · fλd
)fid+1,i1,1.

The product fλ1 · fλ2 · . . . · fλd
is an element of D, so it can be written as

∑ℓ
h=1 αh

λ1,...,λd
fh

for suitable scalars αh
λ1,...,λd

. Thus, the tensor can be rewritten as

∑
i1,...,id+1∈[n],λ1,...,λd∈[ℓ]

f∗
i1,i2,λ1

⊗ . . . ⊗ f∗
id,id+1,λd

⊗
ℓ∑

h=1
αh

λ1,...,λd
fid+1,i1,h. (2)

Now we flatten the multilinear map into a matrix. The tensor defines a multilinear map

Dn×n
1 × Dn×n

2 × . . . × Dn×n
d −→ Dn×n

d+1 ,

where we use the subscript i in Di just to indicate the position. We will make it into a
((n2ℓ)(d+1)/2) × ((n2ℓ)(d+1)/2) matrix by combining the odd and even positions into the same
parts, respectively. Therefore, the odd positions will index the rows and even will index the
columns of the resulting matrix:

Dn×n
1 ⊗ Dn×n

3 ⊗ . . . ⊗ Dn×n
d −→ (Dn×n

2 )∗ ⊗ (Dn×n
4 )∗ ⊗ . . . ⊗ Dn×n

d+1 .

We further restrict this mapping to

Dn×n
1 ⊗ Fn×n ⊗ . . . ⊗ Fn×n −→ (Fn×n)∗ ⊗ (Fn×n)∗ ⊗ . . . ⊗ Dn×n

d+1 .

The matrix is then of size ℓnd+1 × ℓnd+1. For every vector fi1,i2,λ ⊗ fi3,i4,1 ⊗ · · · ⊗ fid,id+1,1 ∈
Dn×n

1 ⊗ Fn×n ⊗ . . . ⊗ Fn×n, there is exactly one element in (Fn×n)∗ ⊗ (Fn×n)∗ ⊗ . . . ⊗ Dn×n
d+1

such that the tensor product appears in Equation (2), namely, f∗
i2,i3,1 ⊗f∗

i4,i5,1 ⊗· · ·⊗fid+1,i1,λ.
(Note that in this case, only one of the coefficients αh

λ1,...,λd
is nonzero, namely αλ

λ,1...,1.)
This means that the matrix is the identity matrix after appropriate permutation of rows and
columns, which has rank ℓ · nd+1.

The rank of the matrix is a lower bound on the rank of the tensor, which in turn
is a lower bound on the multilinear complexity of Mn(D). Thus, we have R(Mn(D)) ≥
dim(D) · nd+1. ◀

We also note that computing the rank of the flattened matrix for small ℓ, n and d using a
computer algebra system gave us values suggesting the matrix rank to be ℓ · nd+1. Therefore,
a better lower bound using the flattening approach is unlikely.
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6.2 Semisimple algebras
We can generalize the above proof for the case when the algebra A = (D1)n1×n1 ×(D2)n2×n2 ×
. . . × (Dk)nk×nk .

▶ Theorem 13. Let A ∼=
∏k

i=1 Mni
(Di) for arbitrary ni > 1, arbitrary k, and Di being

a division algebra of dimension ℓi, and let d be odd. Then we have an exponential lower
bound of

R(A, d) ≥
k∑

i=1
ℓi · ni

d+1.

Proof. The multiplication in A is a direct sum of multiplications in the k factors. The
flattening matrix has a block structure when taking bases with respect to the k factors.
Therefore, the flattening ranks add up. ◀

If d is even, we get a lower bound by using the fact that R(A, d − 1) ≤ R(A, d). In the
theorem above, all ni > 1. The theorem also works in a similar way when ni = 1 but Di

is noncommutative. In this case, we simply replace F by its algebraic closure (or just the
splitting field of the division algebra). This will transform Di into a matrix algebra with
matrix size > 1.

6.3 Example
Consider the multiplication of d n × n matrices with elements from D = F[x]/(xℓ + 1) with
xℓ + 1 being irreducible, i.e., we want to upper bound R(Mn(D), d).

The degree of polynomials in the product matrix will be d · (ℓ − 1), which means we will
need d · (ℓ − 1) + 1 points to interpolate them. Thus, the algorithm is simply to evaluate the
matrices at d · (ℓ − 1) + 1 points, calculate the result matrices of the product (complexity
R(Mn(F), d)) and interpolate at the points to get the final result matrix.

The number of multiplications will be (d·(ℓ−1)+1)·R(Mn(F), d). We can do multiplication
of d matrices in complexity nd+1 using the straight forward algorithm. Thus, it gives an
upper bound of R(Mn(D), d) ≤ (d · (ℓ − 1) + 1) · nd+1. We note that there is still a gap
between our lower bound and this upper bound by a factor of d, but it is doubtful that the
lower bound can be improved using flattening methods.

In particular, Theorem 8 can be viewed as the case of Theorem 13 when each ni = 1 (the
proof also works in this case). The flattening bound gives the lower bound ℓ while Theorem 8
gives dℓ − (d − 1).

7 Upper triangular Matrices

In this section, we will look at the multilinear complexity of upper triangular matrices which
are one of the special cases when A is noncommutative, but A/ rad(A) is commutative. This
is interesting as we saw in the case when A/ rad(A) is noncommutative, we got exponential
lower bounds in d, but for commutative algebras we saw linear lower bounds, and examples
with linear upper bounds in d and polynomial upper bounds in general.

The result from Lemma 5 gives us a linear lower bound in d for general A. We will try
to get more relevant lower and upper bounds for the special example of upper triangular
matrices.

In the following, Un(F) denotes the algebra of upper triangular matrices. Its radical
rad(Un(F)) is the set of all upper triangular matrices with all diagonal elements 0. The
quotient Un(F)/ rad(Un(F)) will therefore be the set of all diagonal matrices, which is a
commutative algebra and isomorphic to Fn.
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7.1 Lower Bound for d ≤ n

We will use the flattening approach we used earlier to get a lower bound on the tensor rank
for upper triangular matrices.

▶ Theorem 14. For upper-triangular matrices, for d ≤ n odd, we have a lower bound of

R(Un(F), d) ≥
(

n + d

n

)
.

Proof. We will be using flattening arguments similar to the one for general matrices. The
multiplication tensor for the d-fold multiplication of upper triangular matrices looks as
follows:

U⊗d =
∑

i1,j1,...,id+1,jd+1∈[n]

ti1,j1,...,id+1,jd+1e∗
i1j1

⊗ . . . ⊗ e∗
idjd

⊗ ejd+1id+1

with ti1,j1,...,id+1,jd+1 = (
∏

k<d δjkik+1) · δjdjd+1 · δid+1i1 when ik ≤ jk for all k ∈ [d], otherwise
it will be 0. This means ti1,j1,...,id+1,jd+1 = 1 when ik = jk+1. From the upper triangular
condition, we also have ik ≤ jk.

We again flatten the tensor into a (n2)(d+1)/2 × (n2)(d+1)/2 matrix. As we saw in the
proof of Theorem 12, each row or column has exactly one 1 and the matrix has full rank.
With the extra condition of being upper triangular, we see that the rows will be non-zero if
i1 ≤ j1, . . . , id ≤ jd, and as the columns are fixed with j1 = i2 ≤ j2 = i3 . . ., we basically get
the rows with i1 ≤ j1 ≤ i3 ≤ j3 ≤ . . . ≤ id ≤ jd will have exactly one 1. A similar thing can
be done for the columns, with jd+1 ≤ i2 ≤ j2 ≤ i4 ≤ j4 ≤ . . . ≤ id+1 with exactly one element
1. Therefore, the rank of the matrix will be the number of i1 ≤ j1 ≤ i3 ≤ j3 ≤ . . . ≤ id ≤ jd

sequences with i, j ∈ [n]. This number is
(

n+d
n

)
. ◀

7.2 Upper Bound for d ≫ n

We see that unlike the case where A/ rad(A) is noncommutative, the complexity flattens
down as d becomes larger than n, becoming polynomial in d (for fixed n). We have the
following upper bound:

▶ Theorem 15. For multiplying upper-triangular matrices, for d ≫ n, we have an upper
bound of

R(Un(K), d) ≤ O

(
(2d)n

√
n

)
.

Proof. We can express the multiplication of d upper triangular matrices as

M1 · M2 · . . . · Md.

Additionally, we can deconstruct any upper triangular matrix Mi as Mi = Di + Ni, where
Di is a diagonal matrix and Ni has zeroes on the diagonal. We note that multiplying n

upper triangular matrices which have zeroes on the diagonal yields 0, because they are in
the radical. Then,

M1 · M2 · . . . · Md = (D1 + N1)(D2 + N2), . . . , (Dd + Nd).
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We call the Dj ’s diagonal terms and the Nj ’s radical terms. We expand the product on
the righthand side into a big sum. All the summands that have more than n − 1 of the
radical terms vanish. There are

(
d
k

)
summands that have k radical terms, which in turn

uniquely determines the positions of the diagonal terms in the summands. Therefore, there
are

∑n−1
k=0

(
d
k

)
nonzero summands all together. We decompose each summand into rank-

one tensors separately and in the trivial way. Each rank-one tensor in this decomposition
corresponds to a subsequence of (1, 2, . . . n) of the form (i1, j1, i2, j2, . . . , ik, jk) such that
i1 < j1 = i2 < j2 = j3 < . . . = ik < jk. The number of such subsequences is

(
n

k+1
)

as
choosing i1, i2, . . . , ik, jk uniquely determines the subsequence. This sequence of indices
corresponds to the basis elements eiκ,jκ

in each of the k radical terms. There is only one
diagonal element that can stand between eiκ,jκ and eiκ+1,jκ+1 , namely, ejκ,jκ . (Recall that
jκ = iκ+1.) Thus, each summand has a decomposition into rank-one tensors of length

(
n

k+1
)
.

Altogether, we have that

R(Un(K), d) ≤
n−1∑
k=0

(
d

k

)(
n

k + 1

)
.

We have
(

n
n/2
)

≥
(

n
k+1
)

for all 1 ≤ k ≤ n − 1 and we have that
∑n−1

k=0
(

d
k

)
≤ dn. Thus,

R(Un(K), d) ≤
(

n
n/2
)

· dn. Using Stirling’s approximation, we have that

R(Un(K), d) ≤ O

(
(2d)n

√
n

)
. ◀

8 General algebras with commutative semisimple part

We see the above method can be used to give an upper bound on general algebras with
commutative semisimple part, similar to the upper triangular matrices. We will only work
over perfect fields (see [15] for a definition). Note that most fields are perfect, for instance,
fields of characteristic zero, finite fields, and algebraically closed fields.

▶ Theorem 16 (Wedderburn-Malcev Theorem, see [15]). An algebra A over a perfect field
can be written as A = B ⊕ rad(A) with B being a subalgebra of A and B ∼= A/ rad(A).

We see that in the situation of the theorem, we can write any element x ∈ A as xB +xrad(A)
with xB ∈ B and xrad(A) ∈ rad(A). This decomposition is unique. There are examples over
non-perfect fields where such a B does not exist as a subalgebra of A, see [15].

The case when B is commutative is what is interesting to us, as the noncommutative
case has an exponential lower bound anyway and we can remove the radical with Lemma 5.
We focus on the case when d ≫ s, where s is the smallest integer such that (rad(A))s = {0}.
This number is also called the index of nilpotency. Obviously, s ≤ dim A.

When we consider a product x1 · x2 · . . . · xd, we write it as
∏d

i=1(xi,B + xi,rad(A)). In this,
terms with at least s terms from rad(A) will be 0. Therefore, when we expand the product
as a sum, each nonzero summand contains at most s − 1 factors from the radical.

Let ϕℓ denote the (ℓ + 1)-linear map Bℓ × rad(A) → rad(A), which takes b1, . . . , bℓ ∈ B

and r ∈ rad(A) and maps it to b1 · · · · · bℓ · r. This is a restriction of the (ℓ + 1)-fold
multiplication in A. We start with bounding the complexity of ϕℓ.

▶ Lemma 17. For all ℓ, R(ϕℓ) ≤ ℓDDD+2, where D denotes the dimension of A.

Proof. ϕ1 is the bilinear multiplication B × rad(A) → rad(A). We can simply bound this by
R(A, 2) ≤ D2, see Fact 4.
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By Lemma 10, we have R(B, ℓ) ≤ (ℓD)D. As seen above, R(ϕ1) ≤ D2. Consider a
computation for the ℓ-fold multiplication in B, that is,

b1 · b2 · . . . · bℓ =
r∑

i=1
Fi,1(b1)Fi,2(b2) . . . Fi,ℓ(bℓ) · wi,

where r ≤ (ℓD)D. Furthermore, take a computation for ϕ1,

b · m =
r′∑

j=1
Uj(b)Vj(m) · zj

with r′ ≤ D2. Plugging the first computation into the second, we get

b1 · · · · · bℓ · m =
r′∑

j=1
Uj

(
r∑

i=1
Fi,1(b1)Fi,2(b2) . . . Fi,ℓ(bℓ) · wi

)
Vj(m) · zj

=
r′∑

j=1

r∑
i=1

Fi,1(b1)Fi,2(b2) . . . Fi,ℓ(bℓ)Uj(wi)Vj(m) · zj

=
r′∑

j=1

r∑
i=1

Fi,1(b1)Fi,2(b2) . . . Fi,ℓ(bℓ)Vj(m) · (Uj(wi)zj).

Thus R(ϕℓ) ≤ rr′ = ℓDDD+2. ◀

Concatenating k of the mappings ϕℓ, we obtain an upper bound in a similar fashion to
the upper triangular matrices.

▶ Theorem 18. Let A be an algebra of dimension D over a perfect field F such that A/ rad A is
commutative. Then R(A, d) ≤ d(s−1)(D+1) · D(D+3)s, where s denotes the index of nilpotency
of rad A.

Proof. Consider a product of d elements and write it as

x1 · x2 · . . . · xd =
d∏

i=1
(xi,B + xi,rad(A)).

We expand the product on the righthand side into a large sum. Summands with at least s

factors from the radical will be zero by the definition of s. Let k < s. There are at most(
d
k

)
choices of k factors from the radical. As above, we will treat each summand separately.

A summand is characterized by the k positions of the factors of the radical; they cut the
product into k + 1 parts of lengths ℓ1, . . . , ℓk+1 with ℓ1 + · · · + ℓk+1 = d − k:

x1,B · · · xℓ1,B · xℓ1+1,rad(A)xℓ1+2,B · · · xℓ1+ℓ2+2,B · xℓ1+ℓ2+3,rad(A) · xℓ1+ℓ2+4,B · · · =
ϕℓ1(x1,B , . . . , xℓ1,B , xℓ1+1,rad(A)) · ϕℓ2(xℓ1+2,B , . . . , xℓ1+ℓ2+2,B , xℓ1+ℓ2+3,rad(A)) · · ·

(There are a total of k + 1 factors on the righthand side, but we only wrote down the first two
for the sake of readability.) For each ϕℓκ , we can bound R(ϕℓκ) ≤ ℓD

κ DD+2 using Lemma 17.
The last factor is a product of ℓk+1 elements from B, we can simply bound the rank by
(ℓk+1D)D ≤ ℓD

k+1DD+2.



M. Bläser, H. Mayer, and D. Shringi 12:15

We trivially have R(A, k + 1) ≤ Dk+1, see Fact 4. By plugging computations for the ϕℓκ

in the computation for the (k + 1)-fold multiplication in A, we get that there is a multilinear
computation for our summand of length

ℓD
1 DD+2 · · · ℓD

k+1DD+2 · Dk+1 ≤ dkD · D(D+3)(k+1).

Altogether we can bound the multilinear complexity by

s−1∑
k=0

(
d

k

)
dkD · D(D+3)(k+1) ≤ ds−1d(s−1)D · D(D+3)s = d(s−1)(D+1) · D(D+3)s. ◀

In the appendix, we present a more refined technique, that allows us to reduce the
exponent of d in the upper bound.

9 Multilinear Alder–Strassen theorem

Finally, we prove the multilinear generalization of the Alder–Strassen theorem.

▶ Theorem 19. Let A be a finite dimensional associative algebra with k maximal twosided
ideals. Then R(A, d) ≥ d · dim A − (d − 1)k.

Proof. We can assume d ≥ 3, since the case d = 1 is trivial and the case d = 2 is the classical
Alder–Strassen theorem.

By Lemma 5,

R(A, d) ≥ R(A/ rad A, d) + d · dim rad A. (3)

Since A has k maximal twosided ideals, A/ rad A has k maximal twosided ideals, too. and is
of the form A/ rad A = B1 × · · · × Bk with Bκ being simple algebras. Each Bκ = Mnκ

(Dκ)
with Dκ being a division algebra. Assume that n1 = . . . nj = 1 and nj+1, . . . , nk > 1. That
means that B1, . . . , Bj are division algebras.

We next prove that

R(A/ rad A, d) ≥ d · dim(B1 × · · · × Bj) − (d − 1)j + R(Bj+1 × · · · × Bk). (4)

This is done by showing by induction that for all 1 ≤ i ≤ j,

R(Bi × · · · × Bk) ≥ d · dim Bi − (d − 1) + R(Bi+1 × · · · × Bk). (5)

To prove Equation (5), we will inductively construct vector spaces V1, . . . , Vd such that
Vδ +Bi ×{0}×· · ·×{0} = Bi ×· · ·×Bk for all 1 ≤ δ ≤ d, (1, 0, . . . , 0) ∈ Vδ for 1 ≤ δ ≤ d−1,
and

R(ϕ) ≥ δ · dim Bi − δ + R(ϕ|V1×···×Vδ×(Bi×···×Bk)×···×(Bi×···×Bk)) for 1 ≤ δ ≤ d − 1,
R(ϕ) ≥ d · dim Bi − d + 1 + R(ϕ|V1×···×Vd

), (6)

where ϕ is the d-fold multiplication in Bi × · · · × Bk. The proof is similar to the one of
Theorem 8. Consider a multilinear computation for the d-fold multiplication in Bi × · · · × Bk,
i.e.,

x1 · x2 · . . . · xd =
r∑

i=1
Fi,1(x1)Fi,2(x2) . . . Fi,d(xd) · wi.
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Let N = dim Bi. Similar to before, we can achieve that F1,1, . . . , FN,1 restricted to Bi ×
{0} × · · · × {0} is a basis of (Bi × {0} × · · · × {0})∗. Let a1, . . . , aN be the dual basis. Like
before, we can assume that aN = (1, 0, . . . , 0) using sandwiching. We set V1 =

⋂N−1
ν=1 ker Fν,1.

Then V1 has the desired properties. Restricting to V1 trivializes N − 1 of the multilinear
products, namely, the products 1, . . . , N − 1. Since (1, 0, . . . , 0) ∈ V1, we can conclude that
w.l.o.g. FN−1,2, . . . , F2N−1,2 restricted to Bi × {0} × · · · × {0} form a basis and construct
V2 and so on. Since the induction stops at d, the dimension of the space Vd can be by one
smaller, since we do not need (1, 0, . . . , 0) ∈ Vd. Therefore, restricting to Vd trivializes even
N products and we obtain Equation (6).

Bi × {0} × · · · × {0} is a twosided ideal in Bi × · · · × Bk with the property that Bi+1 ×
· · · × Bk

∼= Bi × · · · × Bk/Bi × {0} × · · · × {0}. Thus (5) follows from (6) in the similar way
like in the end of the proof of Lemma 5.

Finally, we prove that

R(Bj+1 × · · · × Bk) ≥ d · dim(Bj+1 × · · · × Bk). (7)

This will finish the proof. To prove the last equation, we use Theorem 13 and get R(Bj+1 ×
· · · × Bk) ≥

∑k
i=j+1 dim Di · nd

i . (The exponent is d instead of d + 1, since d might be even.)
Since dim Bi = n2

i dim Di, we are done when we can show that nd
i ≥ d · n2

i . The latter
inequality is implied by nd−2

i ≥ d. Since ni ≥ 2, this is true when d ≥ 4. In the case when
d = 3, note that nd−1

i ≥ d is sufficient, since d is odd. Combining (3), (4), and (7) finishes
the proof. ◀

For d ≥ 3, the proof in fact yields the stronger lower bound d · dim A − (d − 1)j, where j

is the number of division algebras in the decomposition of A/ rad A into simple parts.
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A Improvements of Theorem 18

Wedderburn’s Theorem holds in a similar manner for modules over simple algebras. If A is
an algebra, let An×m denote the vector space of all n × m–matrices with entries from A.

▶ Theorem 20 (Wedderburn). Let A be a simple algebra with A ∼= Mn(D) for some division
algebra D. For every A-left module M ≠ {0}, there is a (unique) integer m ≥ 1 such that M

is isomorphic to Dn×m.

If C and D are algebras and M is a C-left module that is also a D-right module, then the
module M is called a (C, D)-bimodule, if in addition (am)b = a(mb) for all a ∈ C, m ∈ M ,
and b ∈ D. If C = D, M is also called a C-bimodule for short.

While the above bound of Theorem 18 is polynomial in d (when the dimension of the
algebra is fixed), the algorithm can be improved and the exponent can be reduced. We sketch
this approach below, but the actual bounds depend on a lot of parameters of the algebra,
captured by the so-called path diagram of the algebra.

STACS 2023

https://doi.org/10.4230/LIPIcs.ITCS.2017.24
https://doi.org/10.1007/s00037-018-0164-8
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/120880276
https://doi.org/10.1109/SFCS.1995.492458
https://github.com/dasarpmar/lowerbounds-survey/releases/tag/v9.0.3
https://github.com/dasarpmar/lowerbounds-survey/releases/tag/v9.0.3


12:18 On the Multilinear Complexity of Associative Algebras

We decompose the semisimple algebra B = B1 ⊕ · · · ⊕ Bn into simple algebras. (Here,
the decomposition is written additively, and we consider the Bν to be subspaces of B.) Each
Bν is a commutative division algebra. Let ℓν be its dimension.

Let eν be the unit element of the algebra Bν . It is well known [15], that 1 = e1 + · · · + en

and that the e1, . . . , en annihilate each other, that is, eµeν = 0 for all µ ̸= ν. Write

A = 1 · A · 1 = (e1 + · · · + en)A(e1 + · · · + en) =
n∑

µ,ν=1
eµAeν .

Since e1, . . . , en annihilate each other, the sum of vector spaces on the right hand side is
direct. In the same way, we can decompose rad A.

▶ Fact 21.
1. F[X] ⊗ F[Y ] = F[X, Y ] whenever X and Y are disjoint sets of variables.
2. Let I ⊆ F[X] and J ⊆ F[Y ] be ideals. Then F [X]/I ⊗ F[Y ]/J = F[X, Y ](I + J).

Since each Bi is commutative, we can write is as F[Xi]/Ii for some set of variables Xi

and an ideal Ii. We assume that the sets of variables are pairwise disjoint.
The opposite algebra Aopp is the algebra obtained by “reversing” the multiplication of A.

The multiplication ∗ in Aopp is defined by a ∗ b = b · a. When A is commutative, then Aopp

and A are isomorphic (as algebras).
Let Ri,j := ei(rad A)ej . The Ri,j are B left-modules and B right-modules, so they are

B-bimodules. However, the only nontrivial multiplication from the left is with elements from
Bi and the only nontrivial multiplication from the right is with Bj . So it is more natural
to view Ri,j as a (Bi, Bj)-bimodule. A (Bi, Bj)-bimodule is isomorphic to a Bi ⊗ Bopp

j -left
module. Since Bj is commutative, this is in turn isomorphic to a Bi ⊗ Bj module. Take an
element m ∈ Ri,j . (Bi ⊗ Bj)m is a submodule of Ri,j and since Bi ⊗ Bj is a quotient of a
polynomial ring, so is the submodule.

Let D = dim A. There are
(

d
k

)
choices for the factors from the radical, 0 ≤ k ≤ s. For

each factor of the radical, we choose a subspace Riκ,jκ
, 1 ≤ κ ≤ k, such that iκ+1 = jκ.

So essentially, we sum over all path in the so-called path diagram of the algebra, see [15],
which describes the structure of the radical. Along such a path, by the above consideration,
the multiplication can be simulated by a polynomial multiplication, so we can do the
multiplication “in one stroke” and do not need to glue different pieces like we did in the
proof above.


	1 Introduction
	1.1 Our work
	1.2 Organisation of the paper

	2 Structure of associative algebras
	3 Multilinear computations
	4 Removing the radical rad(A)
	4.1 A tight example

	5 Products of division algebras
	5.1 Single division algebra (k = 1)
	5.2 Arbitrary products of division algebras
	5.3 Tight example

	6 General semisimple algebras
	6.1 Simple algebras (k = 1)
	6.2 Semisimple algebras
	6.3 Example

	7 Upper triangular Matrices
	7.1 Lower Bound for d<=n
	7.2 Upper Bound for d > > n

	8 General algebras with commutative semisimple part
	9 Multilinear Alder–Strassen theorem
	A Improvements of Theorem 18

