
Using Domain-Independent Problems
for Introducing Formal Methods

Raymond Boute

INTEC, Universiteit Gent, Belgium,
Raymond.Boute@intec.UGent.be

Abstract. The key to the integration of formal methods into engineer-
ing practice is education. In teaching, domain-independent problems —
i.e., not requiring prior engineering background— offer many advantages.

Such problems are widely available, but this paper adds two dimen-
sions that are lacking in typical solutions yet are crucial to formal meth-
ods: (i) the translation of informal statements into formal expressions;
(ii) the role of formal calculation (including proofs) in exposing risks or
misunderstandings and in discovering pathways to solutions.

A few example problems illustrate this: (a) a small logical one show-
ing the importance of fully capturing informal statements; (b) a com-
binatorial one showing how, in going from “real-world” formulations to
mathematical ones, formal methods can cover more aspects than clas-
sical mathematics, and a half-page formal program semantics suitable
for beginners is presented as a support; (c) a larger one showing how a
single problem can contain enough elements to serve as a Leitmotiv for
all notational and reasoning issues in a complete introductory course.

An important final observation is that, in teaching formal methods,
no approach can be a substitute for an open mind, as extreme mathpho-
bia appears resistant to any motivation.

Index terms — Domain-independent problems, Formal methods, Func-
tional Predicate Calculus, Funmath, Generic functionals, Teaching, Spec-
ification, Word problems

1 Introduction: motivation and overview

A gap in engineering professionalism One often hears the complaint that the use
of formal methods into everyday software engineering practice is taking a long
time in becoming commonplace (except for critical and some embedded systems)
and that, as a result, professionalism in software design is generally low.

Yet, the published literature reports many projects for which formal methods
were essential or at least the key to success. Why, then, is the software industry
at large so slow in exploiting the advantages?

Many explanations have been conjectured by diverse people, but the fol-
lowing one seems inescapable as “Occam’s razor”: universities are providing far
from sufficient education in formal methods to generate the massive injection of
qualified people necessary for enabling industry to integrate formal methods into

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55878912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

their everyday software design practice. The success stories remain restricted to
companies that are either consultants specialized in the area of formal methods
or users of ad hoc support for specific projects from consultants and universities.

The contrast with classical engineering disciplines, in particular electrical
engineering, is significant. Mathematical modelling has not only proven indis-
pensable for todays communications technology, but has been accepted de facto
since centuries as an essential part of engineering education. It is commonplace in
industry, and no university engineer would dare confessing to his project leader
that he doesn’t know enough elementary calculus or algebra to cope with this.

Yet, some universities still turn out software “engineers” whose grasp of logic
is not better than high school level, and whose highest abstraction “tool” for
specifying systems is some program-like code which they are unable to model
and analyze mathematically. Complaints from industry are not surprising [19].
A serious educational obstacle pointed out by one of the reviewers is that logic
is much harder than differential calculus, as also indicated by other studies [1].

On using tools A similar gap exists in the ability to use software tools judiciously.
High school education provides sufficient mathematics for starting to use tools
for classical mathematics like Mathematica, Maple, Matlab, Mathcad with ease,
and a good calculus or analysis course at the freshman and junior level prepares
for more advanced use by providing a solid basis and insight (not a luxury, given
the many “bugs” reported in the literature). Mathematicians and engineers 150
years ago would have no difficulty in using today’s tools without a “tutorial”.

By contrast, for software tools supporting CS-oriented formal methods, classi-
cal mathematics offers no preparation, and too many computing curricula do not
even start filling this gap. Using the tools themselves in an introductory course as
a vehicle for introducing (or, worse, as a surrogate for) the relevant mathematics
is highly inappropriate1 since such tools are still very design-specific2 and hence
induce a narrow and misleading view in beginners, turning them into sorcerer’s
apprentices. Of course, tools can be very useful as an illustration, especially for
the shortcomings in and the differences between them. In fact, in the same vein
some of the best analysis texts provide exercises with tools precisely to show the
pitfalls [21], and always keep the mathematics and “thinking” central.

In brief: the best preparation for using tools is solid mathematics education.

Curriculum design Providing the relevant mathematics early creates the oppor-
tunity for other computer-oriented courses (HW and SW) to start using serious
mathematical modeling, rather than remaining stuck at the old descriptive level
with some elementary programming exercises as the highest intellectual activity.
For classical mathematics, preparation usually starts in high school but, as uni-
versities have no control at this level, the earliest opportunity to teach the basic

1 This observation assumes today’s state of the art; only vast progress can alter it.
2 Unlike software tools for classical mathematics, which support mature notational

and formal calculation conventions, current tools in the formal methods area are still
based on overly specific logics and too reflective of various implementation decisions.

3

mathematics for computing science and engineering is the freshman level. A typ-
ical embedding in a traditional curriculum is achieved by thoroughly changing
the content of an existing discrete mathematics course for this purpose, as ex-
emplified in the textbook by Gries and Schneider [11] and the BESEME (BEtter
Software Engineering through Mathematics Education) project [15].

To summarize, an early start paves the way for “weaving formal methods
into the undergraduate curriculum” as advocated by Wing [23]. The extent to
which other courses catch this opportunity depends on the quality of the staff,
and determines the ability of the students to use formal methods.

The role of domain-independent problems Providing the mathematical basis for
CS early in the curriculum is facilitated by assuming no prior technical or en-
gineering background, as is also customary in calculus courses. An independent
reason is the principle of separation of concerns: not overburdening the student
by combining new mathematical with new (or recent) engineering concepts.

Any basic course needs illustrations and, more importantly, problems to en-
hance insight in the concepts and to learn using them in problem solving.

Domain-independent problems combine all the above requirements. They can
be understood by anyone, and are fun to solve. Furthermore, they are widely
available in both educational [2, 11] and recreational literature [9, 17]. Finally,
courses and textbooks on this basis can reach more easily over boundaries be-
tween disciplines. One might ask how this pertains to CS-oriented mathematics,
given its specialistic reputation. Actually, this reputation is undeserved, given
the rapidly growing evidence that the insights and reasoning styles fostered by
CS have wide applicability in mathematics [8], in science and in engineering [5].

New dimensions in solving domain-independent problems Concerns arising from
the application of formal methods add new dimensions to problem solving that
are also best illustrated by domain-independent problems.

Indeed, solutions to such problems, especially “puzzles”, are traditionally
often presented with a “look how clever” undertone of impressing the audi-
ence. Unfortunately, this effect often comes at the expense of hiding steps in the
calculation or in the conversion from the informal statement to mathematical
formulas. Sometimes this is forgivable, e.g., when common notation falls short.

When using formal methods in practice, avoiding or exposing hidden steps
and assumptions is part of the task. Hence, in the introduction of formal meth-
ods, domain-independent problems can help emphasizing the following two im-
portant issues: (i) the translation of informal statements into formal expressions;
(ii) the role of formal calculation (including proofs) in exposing misunderstand-
ings or possible risks and in discovering pathways to solutions.

Scope of this paper and approach We will show that even small domain-inde-
pendent problems can have sufficiently rich ramifications for illustrating central
issues in formal methods, and that medium ones can contain enough elements
to serve as the Leitmotiv for illustrating all notational and reasoning issues in a
complete introductory course on basic mathematics for CS.

4

For notation and reasoning we use Funmath (Functional Mathematics) [3, 5],
a very general formalism unifying mathematics for classical engineering and CS.

The language [3] uses just four constructs, yet suffices to synthesize familiar
notations (minus the defects) as well as new ones. It supports formal calculation
rules convenient for hand calculation and amenable to automation.

The reasoning framework has two main elements. First, concrete generic func-
tionals [4] support smooth transition between pointwise and point-free formu-
lations, facilitating calculation with functionals and exploiting formal common-
alities between various engineering mathematics. Second, a functional predicate
calculus [5] makes formal logic practical for engineers, allowing them to calculate
with predicates and quantifiers as fluently as with derivatives and integrals.

Here we use the language mostly in its “conservative mode”, restricted to ex-
pressions with the same look and feel as common mathematical conventions. We
only lift this restriction when common notation cannot express what is needed.

As a result, most of this paper requires neither prior knowledge of nor intro-
duction to Funmath, and we can refer to [5] for details or for exploring deeper.

Overview We consider some selected issues only; any attempt at completeness
would rapidly grow into a textbook. Section 2 uses a very small word problem (at
the level of propositional logic) to highlight some psychological and educational
issues and to demonstrate the importance of completeness when capturing infor-
mal statements. Section 3 shows via a small combinatorial problem how steps in
the transition from “real-world” formulations to mathematical ones are missed
in traditional solutions, yet can be captured by formal methods. A half-page
formal program semantics suitable for beginners is presented as a support. Sec-
tion 4 shows how a single problem can give rise to enough topics for a complete
introductory course on formal methods. Section 5 presents some conclusions and
observes that, in teaching formal methods, no approach can be a substitute for
an open mind, as extreme mathphobia appears resistant to any motivation.

2 On logic and properly formalizing informal statements

Most people would attribute to themselves a basic “natural” understanding of
logic. Yet, studies by Johnson-Laird [13] about logic reasoning by humans expose
serious flaws. Table 1 describes two typical experiments and their outcomes.

One step further: most engineers and mathematicians would consider them-
selves fairly fluent in logic by profession3. We have no data on how this group as a
whole would perform on the test, but experience with the subgroup in computer
science/engineering —where logic is vital— gives reason for concern.

Indeed, we found that even CS students who previously had a full semester
course on formal logic elsewhere generally did poorly on this test.
3 Introductions to logic that are too elementary (as in traditional discrete math

courses) only strengthen this feeling, since they offer little more than a semi-formal
notation or even syncopation [20] for expressing something they were already doing
informally in mathematics before and will continue doing informally afterwards.

5

Table 1. Two experiments as reported by Johnson-Laird

(a) One of the following assertions is true about a particular hand of cards,
and one of them is false about the same hand of cards:

If there is a king in the hand, then there is an ace in the hand
If there isn’t a king in the hand, then there is an ace in the hand.

Q: What follows?
Subjects overwhelmingly infer that there is an ace in the hand.

(b) Only one of the following assertions is true about a particular hand of cards:
There is a king in the hand, or an ace, or both.
There is a queen in the hand, or an ace, or both.
There is a jack in the hand, or a ten, or both.

Q: Is it possible that there is an ace in the hand?
Nearly every participant in our experiment responded: ‘yes’.

Analysis of the answers suggests that here some other effect is responsible
than the one Johnson-Laird observes in people without logic background. Indeed,
the most common error for problem (a) was taking the conjunction of the two
assertions listed. The errors for problem (b) were more diverse. However, the
answers indicated that often the “preamble” (the part of the problem statement
before the list of assertions) was simply ignored. Even students who attempted
formalizing the problem statement left the preamble out of this process.

In general there seems to be a strong tendency to skip parts of the prob-
lem statement (which are perhaps perceived as mere padding) and, as a result,
“jumping to conclusions”. It is safe assuming that the same effect occurs with
more complex specifications stated as many pages of text. Recently, Vaandrager
mentioned that IEEE specifications of complex protocols are typically stated in
words, with at best an appendix where fragments are formalized [22].

We suggest the following discipline to eliminate, or at least reduce, this effect:
start by formalizing every sentence separately as accurately as the formalism
used permits, and simplify or combine only afterwards. . In particular, discard
seemingly irrelevant parts only if due consideration justifies doing so.

For instance, in solving (a), do not directly formalize the problem statement
in one step as (k ⇒ a)⊕ (¬ k ⇒ a) ≡ 1 (the identifier conventions are obvious).
Instead, in a first version, maintain one-to-one correspondence with the text, as
illustrated in the following set of equations, and simplify afterwards.

α⊕ β ≡ 1
α ≡ k ⇒ a

β ≡ ¬ k ⇒ a

As an aside: in programming, one discourages writing if b = true then ...
since if b then ... is better style. In logic, it is often better style to give
equations the shape of equations; so we wrote α⊕β ≡ 1 rather than just α⊕β.

More importantly, in view of faithfully formalizing informal statements, one
might argue that using ⊕ in the first equation already skips ahead of things,

6

since the preamble is a conjunction of two sentences. The shortcut reflects the
fact that proposition logic is insufficiently expressive to formalize this.

Indeed, the sentences in the preamble imply counting the number of true and
false assertions. For many reasons not discussed here, Funmath views Booleans as
numbers, subject to common arithmetic, which turns out advantageous for this
kind of problems as well. We first make “one of the following assertions” more
precise as “at least one of the following assertions”, since interpretation with
“exactly one” would make the second conjunct redundant, albeit this is clear
only in the total context and gives the same end result (but that is hindsight).

A faithful translation of the preamble then proceeds as follows. The sentence
“[at least] one assertion is true (false)” is in natural language shorthand for “the
number of assertions that are true (false) is [at least] one”. So, for the preamble,∑

(α, β) ≥ 1 ∧
∑

(¬α,¬β) ≥ 1 . (1)

Equivalence with α⊕ β ≡ 1 for Boolean α and β can be shown in many ways,
e.g., the following head calculation in 3 steps using the formal rules of Funmath.

Generally, a family of sentences (such as α, β in problem (a) or α, β, γ in
problem (b)) is a predicate, say P , and expressions like

∑
P ≥ n or

∑
P = n as

appropriate reflect the counting. The case
∑

P ≥ 1 is equivalent to ∃P , which
is the formal rule for rewriting (1) in one step as ∃ (α, β)∧∃ (¬α,¬β). A second
step using ∃ (p, q) ≡ p ∨ q yields (α ∨ β) ∧ (¬α ∨ ¬β), which equals α⊕ β.

The reader may wish to try this approach on problem (b) and then on some
of the word problems in [11] or in the mathematical puzzles literature [9, 17].

From the classical “cleverness-oriented” problem solving point of view, faith-
ful translation may seem overkill, but in the context of formal methods and
textual specifications it can reduce errors. In view of the expressiveness and rich
collection of formal rules in Funmath, the extra work need not be prohibitive.

3 Intermediate phases in formalizing informal statements

The preceding example already illustrated how to handle certain intermediate
phases, but the problem statement itself was “static” and already logic-oriented.

Some interesting additional issues arise in the following problem from [7].

A school has 1000 students and 1000 lockers, all in a row. They all start
out closed. The first student walks down the line and opens each one.
The second student closes the even numbered lockers. The third student
approaches every third locker and changes its state. If it was open he
closes it; if it was closed he opens it. The fourth student does the same
to every fourth locker, and so on through 1000 students. To illustrate, the
tenth locker is opened by the first student, closed by the second, reopened
by the fifth, and then closed by the tenth. All the other students pass
by the tenth locker, so it winds up being closed. How many lockers are
open?

Here is the solution offered in [7].

7

The nth locker is opened or closed by student number k precisely when
k divides n. So if student k changes locker n, so does student n/k. They
cancel each other out. This always holds unless students k and n/k are
precisely the same person. That is, k = n/k. The lockers that are exact
squares will remain open. These are lockers 1, 4, 9, 16, 25, etc. How
many of these are there in a row of 1000? You can go all the way up to
31× 31 = 961, hence there are 31 lockers open.

In formalizing the problem statement, a first step is tightening the wording and
removing examples. Here is the result.

A school has 1000 students and 1000 lockers in a row, all initially closed.
All students walk successively along the row, and the kth student inverts
the state of every kth locker, that is: opens the locker if it was closed and
vice versa. How many lockers are open in the end?

The formal equations reflecting the informal reasoning in the proposed solution,
parametrized by the number of lockers N and the number of students K, are

Answer = |{n : 1 ..N | Open n}| Legend: |S| = size of set S

Open n ≡ Odd |{k : 1 ..K | k divides n}| Legend: Oddm ≡ number m is odd

Elaborating yields a “nicer” expression for the answer, but this is not the issue.
The problem statement describes a procedure, the equations only the result.

Classical mathematics cannot express the intermediate steps, but a procedural
language can, and formal semantics allows deriving the equations formally.

A more faithful rendering of the procedure in the problem statement is

for k in 1..K do

(for n in 1..N do if (k divides n) then inv (L n) fi od) od .

Here inv (L n) (for “invert the state of locker L n”) can be refined in many
ways, for instance L n := L n ⊕ 1 if L n is defined as taking values in 0 .. 1.
Program semantics allows calculating the final value of L (given that initially L
is zero everywhere) and hence the answer

∑
L. The calculation is facilitated by

observing that the loops are interchangeable (even parallelization is possible).
In an introductory course, a scaled-down formal semantics can be used, kept

simple by some restrictions on generality, as exemplified next.

Intermezzo: Microsemantics, a scaled-down formal semantics We show one of
many forms for a simple program semantics presentable early in an introductory
course when handling problems of this kind. It is assumed that one of the starting
lessons was about substitution and instantiation, as in Gries and Schneider [11].
Substituting expression d for variable v in expression e is written e [v := d],
compacted as e[vd (written ev

d in [11]). As in [11], v and d may be tuples. The
operator [vd affects expressions only, the counterpart for commands is 〈vd.

In this example of a scaled-down semantics, the state s is the tuple of vari-
ables, in simple problems the one variable that is changed. A command c is a

8

function from states to states (direct functional semantics) defined recursively
by axioms of the form c s = e (instantiated c d = e[sd). Here are axioms for the
basic commands assignment (v := e), composition (c ; c′) and selection.

(v := e) s = s[ve or, as a nice pun, (v := e) s = s [v := e]
(c ; c′) s = c′ (c s)

(if b then c else c′ fi) s = b ? c s c′s

The last right hand side is a conditional expression with axiom (b ? e1 e0) = eb.
The following derived commands are expressed in terms of the basic ones.

skip = v := v

if b then c fi = if b then c else skip fi

while b do c od = if b then (c ; while b do c od) fi

for i in e .. e′ do c od = i, i′ := e, e′ ; while i ≤ i′ do c ; i := i +1 od

Finally, for arrays, A i := e is by definition shorthand for A := (i 7→ e) >©A.
In Funmath, d 7→ e is a maplet as in Z [18], and (f >©g)x = (x ∈ D f) ? f x g x.

With these preliminaries, calculating the final value for L (after loop inter-
change) is left as an exercise for the reader. As this kind of approach is meant
for an introductory course, elaboration should be done carefully and in detail
(at least the first time) and at a pace that all students can follow.

Variants and ramifications An interesting item is the k divides n test, which
is an indirect interpretation of “every kth locker” in the problem statement. A
more direct interpretation is that the kth student always proceeds directly to the
kth following locker. This is reflected by the inner loop in the procedure below.

for k in 1..K do (n := k; while n ≤ N do inv (L n); n := n + k od) od

Some might find (n := 0; while n + k ≤ N do n := n + k; inv (L n) od) more
stylish (I do). Anyway, now the loops are not interchangeable any more. Clearly
the interplay between faithfulness of translation and simplicity of derivation pro-
vides enough sustenance for an entire course on specification and transformation.

As an aside, observe that this problem illustrates the reverse of program
design, which starts from an abstract specification and results in a procedure.
Here we start with a procedure and derive mathematical equations. In terms of
axiomatic semantics, the solution involves calculating strongest postconditions,
which also play an important role in the theory of reverse software engineering.

In the literature, the theoretical basis for postconditions is somewhat ne-
glected as compared to preconditions (or anteconditions as we prefer to call
them) and often presented as a footnote or afterthought. This is why we provide
a more symmetric treatment in [6], where furthermore axiomatic semantics is not
formulated via postulates but derived calculationally from program equations.

Again from the “cleverness-oriented” viewpoint, the procedural description
and its analysis may seem superfluous, yet it shows how formal methods can
attach “handles” to intermediate steps not expressible in standard mathematics.

A wealth of examples on algorithmic problem solving can be found in [2].

9

4 Using wide-scope domain-independent problems

Finally, we show that domain-independent problems can have a sufficiently wide
scope to serve as a running example for all notational and reasoning issues in a
complete introductory course on a mathematical basis for formal methods.

The chosen puzzle is designed as a brain-teaser and hence may appear some-
what artificial, but this is compensated by the fact that it was not designed at
all for our purpose: it was proposed by Propp [16] in Mathematical Horizons.
Moreover, its self-referential character is a good preparation for CS students.

Problem statement Table 2 is the test from [16]; we only renumbered the ques-
tions to range from 0 to 19. The author of the test further comments:

The solution to [this] puzzle is unique; in some cases the knowledge
that the solution is unique may actually give you a short-cut to finding
the answer to a particular question, but it’s possible to find the unique
solution even without making use of the fact that the solution is unique.
(Thanks to Andy Latto for bringing this subtlety to my attention.)
I should mention that if you don’t agree with me about the answer to
#19, you will get a different solution to the puzzle than the one I had in
mind. But I should also mention that if you don’t agree with me about
the answer to #19, you are just plain wrong. :-)

Formalization in Funmath Table 3 is the translation of Table 2 into mathemat-
ical equations. We directly encode the letters A .. E for the answers by 0 .. 4 to
avoid the unnecessary clutter of explicit conversion mappings, so the answer to
the test is a string a : 20→ 5 satisfying this system of equations.

The notation is basic Funmath [4, 5] and hence needs no comment. We just
mention m ..n = {k : Z | m ≤ k ≤ n} and n = 0 ..n − 1. A property of ∧| is
m = ∧| (n :S | P n) ≡ P m ∧ ∀n :S . P n ⇒ m ≤ n for any subset S of N and
predicate P on N with ∃n :S . P n. The choice operator has axiom R f 6= ∅ ⇒

f ∈ R f . Also, f− is the generalized inverse of f , yielding inverse images iff they
are unique [4], and n $ a =

∑
i :D a . a i = n counts occurrences of n in a. The

uniqueness operator ! is defined by !P ≡ ∀ (x, y) : (D P)2 . P x ∧ P y ⇒ x = y.
A few ad hoc operators: abs is the absolute value operator, and Evn etc. are

appropriate predicates on N (i.e., their type is N→B).
Note: we provide some extra information by stating here that no equation

contains out-of-domain applications (e.g., a right-hand side outside 5). This is
ensured by the designer of the test and captured in the formalization.

Calculating the solution(s) We shall use very few words; justifications are written
between 〈 〉, equation references between []. Heuristic: we scan the list various
times; first looking for equations yielding an answer by themselves, then extract-
ing the maximum of information out of single equations, then in combination
etc.. The numbering indicates how many answers are still left. Obviously, at the
side we keep a running inventory of all answers found thus far, and occasionally
we will show it.

10

Table 2. Self-Referential Aptitude Test

0. The first question whose answer is B is question
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

1. The only two consecutive questions with identical answers are questions
(A) 5 and 6 (B) 6 and 7 (C) 7 and 8 (D) 8 and 9 (E) 9 and 10

2. The number of questions with the answer E is
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

3. The number of questions with the answer A is
(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

4. The answer to this question is the same as the answer to question
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

5. The answer to question 16 is
(A) C (B) D (C) E (D) none of the above (E) all of the above

6. Alphabetically, the answer to this question and the answer to the following one are
(A) 4 apart (B) 3 apart (C) 2 apart (D) 1 apart (E) the same

7. The number of questions whose answers are vowels is
(A) 4 (B) 5 (C) 6 (D) 7 (E)

8. The next question with the same answer as this one is question
(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

9. The answer to question 15 is
(A) D (B) A (C) E (D) B (E) C

10. The number of questions preceding this one with the answer B is
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

11. The number of questions whose answer is a consonant is
(A) even (B) odd (C) a perfect square (D) a prime (E) divisible by 5

12. The only even-numbered problem with answer A is
(A) 8 (B) 10 (C) 12 (D) 14 (E) 16

13. The number of questions with answer D is
(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

14. The answer to question 11 is
(A) A (B) B (C) C (D) D (E) E

15. The answer to question 9 is
(A) D (B) C (C) B (D) A (E) E

16. The answer to question 5 is
(A) C (B) D (C) E (D) none of the above (E) all of the above

17. The number of questions with answer A equals the number of questions with answer
(A) B (B) C (C) D (D) E (E) none of the above

18. The answer to this question is:
(A) A (B) B (C) C (D) D (E) E

19. Standardized test is to intelligence as barometer is to
(A) temperature (B) wind-velocity (C) latitude (D) longitude (E) all of the above

11

Table 3. Equations formalizing Table 2

a 0 = ∧| i : 5 | a i = 1
a 1 = (i : 5 .. 9 | P i)− 5 and ∃P∈5 .. 9 and ! P where P := i : 19 . a (i + 1) = a i
a 2 = 4 $ a
a 3 = 0 $ a− 4
a 4 = (a<5)

− (a 4)
a 5 = (3, 3, 0, 1, 2) (a 16)
a 6 = 4− abs (a 7− a 6)
a 7 = (0 $ a + 4$ a)− 4

a 8 = ∧| i : 5 | a (i + 9) = a 8
a 9 = (3, 0, 4, 1, 2)− (a 15)
a 10 = 1 $ a<10

a 11 = ((Evn, Odd, Sqr, Prm, Mof)T (1 $ a + 2$ a + 3$ a))− 1
a 12 = ((aEvn)

− 0− 8)/2
a 13 = 3 $ a− 6
a 14 = a 11
a 15 = (3, 2, 1, 0, 4)− (a 9)
a 16 = (3, 3, 0, 1, 2) (a 5)
a 17 = ∀ (i : 1 .. 4 . 0 $ a 6= i $ a) ? 4 (($ a) e (1 .. 4))− (0 $ a)− 1
a 18 = a 18
a 19 = 4 Question 19 is not mathematical, but asks an opinion.

With the numbering conventions as explained, here are the calculations.
20. [19] a 19 = 4
19. [4] a 4 = (a<5)− (a 4)

≡ 〈Note〉 a 4 = (a<5)− (a 4) ∧ a 4 ∈ D (a<5)−

≡ 〈Lemma −〉 a 4 = 4 ∧ ∀ i : 5 . i 6= 4 ⇒ a i 6= a 4
Lemma: f j ∈ D f− ≡ j ∈ D f ∧ ∀ i :D f . i 6= j ⇒ f i 6= f j (exercise)

18. [0] a 0 =∧| i : 5 | a i = 1
≡ 〈Prop. ∧| 〉 a (a 0) = 1 [α]

∧ ∀ i : 5 . a i = 1 ⇒ a 0 ≤ i [β]
[α] ⇒ 〈Leibniz〉 a 0 = 0 ⇒ a 0 = 1

⇒ 〈Leibniz〉 a 0 = 0 ⇒ 0 = 1
≡ 〈p ⇒ 0 ≡ ¬ p〉 a 0 6= 0 [α′]

[β] ⇒ 〈Instantiate i := 0〉 a 0 = 1 ⇒ a 0 ≤ 0
⇒ 〈Leibniz〉 a 0 = 1 ⇒ 1 ≤ 0
≡ 〈p ⇒ 0 ≡ ¬ p〉 a 0 6= 1 [β′]

[α] ⇒ 〈Leibniz〉 a 0 = 2 ⇒ a 2 = 1
≡ 〈[2]〉 a 0 = 0 ⇒ a 2 = 1 ∧ a 2 = 4 $ a
⇒ 〈a 4 = 4 ∧ a 19 = 4〉 a 0 = 2 ⇒ a 2 = 1 ∧ a 2 ≥ 2
≡ 〈p ⇒ 0 ≡ ¬ p〉 a 0 6= 2 [γ′]

[4] ⇒ 〈From step 19, Leibniz〉 ∀ i : 4 . a i 6= 4
⇒ 〈Instantiate i := 0〉 a 0 6= 4
⇒ 〈[α′, β′, γ′], a 0 ∈ 5〉 a 0 = 3

17. [α] ⇒ 〈a 0 = 3〉 a 3 = 1 ⇒ 〈[3]〉 0 $ a = 5

12

16. [9] a 9 = ‘30412’− (a 15)
≡ 〈Note〉 a 9 = ‘30412’− (a 15) ∧ a 15 ∈ D ‘30412’−

⇒ 〈y ∈ D f− ⇒ x = f−y ⇒ y = f x〉 a 15 = ‘30412’ (a 9) [δ]
[15] a 15 = ‘32104’− (a 9), hence:
a 9 = 〈Similarly〉 ‘32104’ (a 15)

= 〈[δ]〉 ‘32104’ (‘30412’ (a 9))
= 〈Def. ◦〉 (‘32104’ ◦ ‘30412’) (a 9)
= 〈Calcul. ◦〉 ‘03421’ (a 9)

The equation x = ‘03421’ x has just one solution, x = 0, so a 9 = 0.

15. a 15 = 〈[δ], a 9 = 0〉 3 Hence a 15 = 3

14. [16] a 16 = ‘33012’ (a 5)
⇒ 〈[5]〉 a 16 = ‘33012’2 (a 16)
⇒ 〈Calcul. ◦〉 a 16 = ‘11330’ (a 16)
⇒ 〈Solutions〉 a 16 = 1 ∨ a 16 = 3

[1] ⇒ ∃ (i : 5 .. 9 . a (i + 1) = a i) ∧ ! i : 19 . a (i + 1) = a i
⇒ 〈Lemma〉 ∀ i : 19 . i 6∈ 5 .. 9 ⇒ a (i + 1) 6= a i
⇒ 〈Instantiate i := 15〉 a 16 6= a 15
⇒ 〈Leibniz, a 15 = 3〉 a 16 6= 3
⇒ 〈a 16 = 1 ∨ a 16 = 3〉 a 16 = 1

Lemma: ! P ⇒ X ⊆ D P ⇒ ∃P∈X ⇒ ∀x :D P . x 6∈ X ⇒ ¬P x

13. a 5 = 〈[5], a 16 = 1〉 3 Hence a 5 = 3

12. [6] a 6 = 4− abs (a 7− a 6)
⇒ 〈Arithmetic〉 a 6 = 4− (a 7− a 6)

∨ a 6 = 4− (a 6− a 7)
⇒ 〈Arithmetic〉 a 7 = 4

∨ a 7 = 2 · (a 6− 2)
⇒ 〈Weaken〉 Evn (a 7)

[7] a 7 = (0 $ a + 4 $ a)− 4
⇒ 〈[2, 3], a 3 = 1〉 a 7 = a 2 + 1 [σ]
⇒ 〈[γ′′] a 2 ≥ 2〉 a 7 ≥ 3
⇒ 〈Evn (a 7)〉 a 7 = 4

11. [σ] ⇒ 〈a 7 = 4〉 a 2 = 3

We show the inventory thus far. Note: no more answers can be 4 (all used up).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a i 3 3 1 4 3 4 0 3 1 4

10. [12] a 12 = ((aEvn)− 0− 8)/2
a 12 = 0 ≡ 〈Def. −〉 (aEvn)− 0 = 12

≡ 〈Eq. 12〉 a 12 = 2
a 12 = 1 ≡ 〈Eq. 12〉 (aEvn)− 0 = 10

≡ 〈Def. −〉 a 10 = 0
≡ 〈[10], a 3 = 1〉 0

So a 12 6∈ {0, 1, 2}, hence a 12 = 3

13

9. [12] a 12 = ((aEvn)− 0− 8)/2
≡ 〈a 12 = 3〉 3 = ((aEvn)− 0− 8)/2
≡ 〈Arithmetic〉 (aEvn)− 0 = 14
⇒ 〈Def. −〉 a 14 = 0

8. [14] a 14 = a 11
⇒ 〈a 14 = 0〉 a 11 = 0

7. [1] ⇒ ∃ i : 5 .. 9 . a i = a (i + 1)
≡ 〈Expand〉 a 6 = a 5 ∨ a 7 = a 6 ∨ a 8 = a 7 ∨ a 9 = a 8 ∨ a 10 = a 9
≡ 〈Known〉 a 6 = 3 ∨ 4 = a 6 ∨ a 8 = 4 ∨ 0 = a 8 ∨ a 10 = 0
≡ 〈No more 4’s〉 a 6 = 3 ∨ a 8 = 0 ∨ a 10 = 0
≡ 〈(aEvn)− 0 = 14〉 a 6 = 3

6. [1] ⇒ a 1 = (i : 5 .. 9 | a (i + 1) = a i)− 5 ∧ ! i : 19 . a (i + 1) = a i
⇒ 〈Lemma, a 5 = a 6〉 a 1 = 0

Lemma: !P ⇒ X ⊆D P ⇒ ∀x :D P . x∈{x :X | P x} ⇒ x= x :X | P x
5. [8] a 8 =∧| i : 5 | a (i + 9) = a 8

⇒ 〈Prop. ∧| 〉 a (a 8 + 9) = a 8 [κ]
a 8 = 0 ⇒ 〈[12], a 12 6= 0〉 0
a 8 = 1 ⇒ 〈[κ, 10]〉 a 10 = 1 ∧ a 10 = 2
a 8 = 2 ⇒ 〈[κ], 8.〉 a 11 = 2 ∧ a 11 = 0

So a 8 6∈ {0, 1, 2}, hence a 8 = 3
4. [10] a 10 = 1 $ a<10

⇒ 〈a<10 = ‘3031433430’〉 a 10 = 1
We show once more the running inventory.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a i 3 0 3 1 4 3 3 4 3 0 1 0 3 0 3 1 4

3. Letting b := a6∈{13,17,18}, earlier answers yield
i 0 1 2 3 4

i $ b 4 3 0 7 3
From step 17, 0 $ a = 5, so calculation (not shown) yields 0 $ a∈{13,17,18} = 1.
[17] ⇒ 〈a 17 6= 4, 0 $ a = 5〉 a 17 = (($ a) e (1 .. 4))− 5− 1 [µ]

⇒ 〈Note, prop.−〉 ∃! i : 1 .. 4 . i $ a = 5
⇒ 〈Arith.〉 1 $ a = 5
⇒ 〈[µ], 1 $ b = 3〉 a 17 = 0 ∧ a 13 = a 18 = 1

0. Result: a = ‘30314334301031031014’.

This was an intermediate version, still needing some restyling, yet instructive also
by its style imperfections. Although detailed, the formal derivation is not much
larger than the informal statement. Deep mathematical problems like Fermat’s
“last theorem”will cause more expansion, “real-life” problems usually less.

As before, the point is not solving problems that cannot be solved without
formal methods: the web contains informal solutions for this example. Even
more: for a beginner, solving any but the smallest problem formally is harder,
since it forces concentrating on solving the problem and learning the formalism.

The point is that the statement of this problem can be understood by any
student without background in computing or other fields of engineering, yet

14

the formalization provides the opportunity for illustrating all notational issues
relevant in modeling engineering systems and most formal rules needed to reason
calculationally about them. Therefore, problems of this kind are ideal as running
examples for any introductory course or textbook on formal methods.

5 Final remarks

An important observation Popular belief holds that formal methods are of little
use in deriving formulas from informal statements, almost by definition. Yet,
formal methods are especially valuable for this translation in the following way.

Precisely because informal statements are subject to interpretation, transla-
tion into formulas will generally yield different results — in fact, almost certainly
if done from different viewpoints or, ideally, by different people. Formal calcula-
tion can then elucidate the relationship between the formalizations: equivalence,
refinement, contradiction, hidden hypotheses etc., as the case may be.

Again, the problem in Section 4 can illustrate this: a literal translation of the
statements in Table 2 will, for most of them, yield precursors of the equations
in Table 3 rather than the equations themselves. Even more: problem solvers
cited on the website mentioned in [16] have observed that some questions can
be interpreted in emtirely different ways.

On language expressiveness Faithful translation requires a very expressive lan-
guage, otherwise steps have to be skipped or even the link between the informal
specification and the formulas is not easy to see. Since, with the current state of
the art, automated tools still reflect to a large degree the restrictions imposed
by the implementation or even some peculiar logic, they cause gaps.

An example of a tool-supported specification language that suffers less from
this drawback than its peers is Lamport’s TLA+ [14], as it was designed with
mathematical expression in mind. Therefore I particularly enjoy using this lan-
guage and support tool (TLC) for the laboratory exercises in one of my courses.

Yet, a fully-fledged declarative language, designed with a preference for ex-
pressiveness over implementability, still offers advantages. Here is an example.

Informal specification: given a sequence of symbols, replace successive ap-
pearances of the same symbol (aptly called stuttering in the context of [14])
by a single appearance of that symbol. Sequences are defined as functions on
natural numbers, e.g., of type N→S for infinite sequences of elements of S.

Before continuing, the reader should express this in his/her preferred formal-
ism. Even more interesting is letting students do this as a homework assignment.

Lamport’s formal specification is the following. For any infinite sequences σ,

\σ
∆= let f [n ∈ Nat] ∆= if n = 0 then 0

else if σ[n] = σ[n− 1]
then f [n− 1]
else f [n− 1] + 1

S
∆= {f [n] : n ∈ Nat}

in [n ∈ S 7→ σ[choose i ∈ Nat : f [i] = n]]

15

I wanted to derive a formula from the informal specification that reflects the
intuitive simplicity of the mapping. An essential feature that emerges from the
statement is that the elements the sequence remain intact and in order; only the
corresponding domain points are changed. This is exploited as follows.

Let us first provide some background. In Funmath, any function f satisfies
f = x :D f . f x for new variable x (like N = λx.Nx for lambda terms), but also
f =

⋃
· x :D f . x 7→ f x, a merge of maplets. The effect of merge (

⋃
·) for simple

cases can be inferred from its use here, but its generic definition in [4] is more
subtle and yields extra properties that make it extremely flexible, as illustrated
by f− =

⋃
· x :D f . f x 7→x for any (not necessarily injective) function.

With this background, any sequence β can be written
⋃
· n :D β . n 7→β n. To

transform this according to the specification, it suffices replacing the the domain
point n to the left of 7→ by the number of times that a new “stutter” started
before, which is

∑
k : n . β (k + 1) 6= β k. This yields the Funmath definition

\.β =
⋃
· n :D β .

∑
(k : n . β (k + 1) 6= β k) 7→β n (2)

for finite as well as infinite sequences. In a complete Funmath definition, equation
(2) would be preceded by def \. :Sω →Sω with, specifying the types.

Note that equation (2) is as succinct as the informal specification and easy
to relate to the informal specification: immediately for those familiar with the
formalism, and with the above derivation otherwise. Proving equivalence of equa-
tion (2) with Lamport’s specification for infinite sequences, or with the semantics
of a recursive Haskell program having the stated effect on finite sequences is a
typical exam problem (subdivided into subproblems with helpful hints).

Educational issues In an ideal world, separation of concerns would be well-served
by domain-independent problems making things easier on students. Yet, this
does not guarantee a positive reception by all concerned. In courses, we found
that some students react adversely, and a small minority (about 2 in 25) ‘strongly
asserts’ (!) not being interested in puzzles or even in analogies with more tangible
phenomena, but only wanting to do “real” applications and programming.

Taking such comments at face value is misleading. Indeed, when offered the
choice between a ‘theoretical’ and an ‘application’ problem in a test, students
mostly choose the former. In class exercises, they do less well on practical prob-
lems, and the mistakes or breaks in the answers show diffculties with combined
concerns. Deeper probing via separate questionnaires strongly suggests that sta-
ting a preference for “real” problems is often only a pose, and that a dislike
of mathematics is the real problem. Many prefer programming because of the
immediate feedback from the computer and the chance to tinker until it works.

We conjecture that the growing supply of CS courses with just programming
assignments on seemingly ‘practical’ but intellectually insignificant problems [19]
degrades the ability to cope with the delay in gratification when doing math.

Yet, not taking the aforesaid comments for granted is also risky, because
colleagues responsible for interpreting the questionnaires may well take them
literally, especially if they are adverse to formal methods. In that case, the teacher
faces the choice between serving the students or serving the administrators.

16

References

1. Vicki L. Almstrum, “Investigating Student Difficulties With Mathematical Logic”,
in: C. Neville Dean, Michael G. Hinchey, eds, Teaching and Learning Formal Meth-
ods, pp. 131–160. Academic Press (1996)

2. Roland Backhouse, Algorithmic Problem Solving. Lecture Notes, University of Not-
tingham (2005). On the web: http://www.cs.nott.ac.uk/~rcb/G5AAPS/aps.ps

3. Raymond T. Boute, Funmath illustrated: a declarative formalism and application
examples. Declarative Systems Series No. 1, Computing Science Institute, Univer-
sity of Nijmegen (1993)

4. R. Boute, “Concrete Generic Functionals: Principles, Design and Applications”,
in: Jeremy Gibbons and Johan Jeuring, eds., Generic Programming, pp. 89–119,
Kluwer (2003)

5. Raymond Boute, “Functional declarative language design and predicate calculus:
a practical approach”, ACM TOPLAS, Vol. 27, No. 5, pp. 988–1047 (Sep. 2005)

6. Raymond Boute, “Calculational semantics: deriving programming theories from
equations by functional predicate calculus”, to appear in ACM TOPLAS (2006)

7. Karl Dahlke, “Fun and Challenging Math Problems for the Young, and Young At
Heart ” http://www.eklhad.net/funmath.html

8. Edsger W. Dijkstra, “How Computing Science created a new mathematical style”,
EWD 1073 (1990) http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1073.PDF

9. Martin Gardner, My Best Mathematical and Logic Puzzles. Dover (1994)
10. David Gries, The Science of Programming. Springer (1981, 5th printing 1989)
11. David Gries and Fred Schneider, A Logical Approach to Discrete Math. Springer

(1993)
12. David Gries, “The need for education in useful formal logic”, IEEE Computer 29,

4, pp. 29–30 (Apr. 1996)
13. Philip N. Johnson-Laird, (example problems in the psychological study of human

reasoning), http://www.princeton.edu/~psych/PsychSite/fac phil.html

14. Leslie Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

15. Rex Page, BESEME: Better Software Engineering through Mathematics Educa-
tion, project presentation http://www.cs.ou.edu/~beseme/besemePres.pdf

16. Jim Propp, “Self-Referential Aptitude Test”, Math Horizons, Vol. 12, Feb. 2005,
p. 35 (Feb. 2005) http://www.maa.org/mathhorizons/volume/volume12.html

17. Raymond Smullyan, The Lady or the Tiger. Random House (1992)
18. J. Mike Spivey, The Z notation: A Reference Manual. Prentice-Hall (1989).
19. Joel Spolsky, “The Perils of JavaSchools”, in: Joel on Software (Dec. 29, 2005)

http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html

20. Paul Taylor, Practical Foundations of Mathematics (second printing), No. 59 in
Cambridge Studies in Advanced Mathematics, Cambridge University Press (2000);
quotation from comment on chapter 1 in
http://www.dcs.qmul.ac.uk/~pt/Practical Foundations/html/s10.html

21. George B. Thomas, Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas’s
Calculus (11th. ed.). Addison Wesley (2004)

22. Frits Vaandrager, private communication (Feb. 2006)
23. Jeannette M. Wing, “Weaving Formal Methods into the Undergraduate Curricu-

lum”, Proceedings of the 8th International Conference on Algebraic Methodology
and Software Technology (AMAST) pp. 2–7 (May 2000)
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/calder/www/amast00.html

