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Abstract

We study the problem of routing between two nodes in a hypercube with blocking

nodes using shortest path. This problem has been previously studied by other re-

searchers, they have proposed a few algorithms to solve the problem. Among the

work done, one has found several sufficient conditions for such a path to exist. One

such condition states that a shortest path between node 0n and 1n exists if the num-

ber of blocking nodes is less than n in an n-dimensional hypercube. We improve this

condition by proposing the condition that if the size of a SDR (system of distinct

representatives) for the blocking nodes is less than n, then a shortest path between

the two nodes 0n and 1n exists. Since the number of blocking nodes can be greater

than or equal to n, while the size of SDR is less than n, thus this result improves the

previous sufficient condition.
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Chapter 1

Introduction

In interconnection networks, routing is one of the most basic problems. According

to the number of source nodes and target nodes, routing problems can be classified

into three categories: (1) routing from one node to another node (one-to-one); (2)

routing from one fixed node to a set of nodes (one-to-many); (3) routing from a set of

nodes to another set of nodes (many-to -many). There are a lot of work done on many

well-known interconnection networks for various routing paradigms, especially for the

first two categories. There are different versions of routing problems depending on

the conditions applied, for example, routing from source node to target node with

a few blocking nodes. We can also impose that the path is shortest. Routing with

blocking nodes, or fault tolerant routing for the hypercube has been widely studied,

significant results were proposed by Chiu and Wu [1], Day et al [2], and Kanedo and

Ito [4]. In this project, we focus on routing from one source node to the target node

on the hypercube with blocking nodes using shortest path.

As one of the most popular interconnection networks, a hypercube [5,6] of dimen-

sion n, or an n-cube, consists of 2n nodes which can be labeled as 0, 1, 2, · · · ,2n-1.
Each node has a unique binary representation. Two nodes are considered connected

if and only if their binary representations differ in exactly one bit. For instance,

in a 3-cube, node a = 5 whose binary representation is 101, is connected to node

b = 7 which is 111. Note that the binary representation of a node in an n-cube is

v = v1v2 · · · vn where vi ∈ {0, 1} and 1 ≤ i ≤ n. Fig. 1.1 shows a 3-cube Q3.

One important characteristic of hypercubes is that they are symmetric. This

allows us to assume the source node as 0n and target node being 1n without loss of

generality. Note that the blocking nodes cannot be the source node nor the target

node. Therefore, our problem can be stated as follows.

Given the source node s = 0n and the target node t = 1n in an n-cube Qn, and m
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Figure 1.1: 3-Cube

other blocking nodes denoted as bi where bi ̸= s, bi ̸= t, 1 ≤ i ≤ m, does there exist

a shortest path from s to t that does not intersect any blocking node bi?

In a hypercube, a path between two nodes, say node u and v, are considered

shortest only when its length is equal to the Hamming distance between u and v,

denoted as H(u, v), namely, the number of positions in which u and v differ. We

want to examine the conditions for such a path to exist. Clearly, the shortest path

between s and t has to be H(s, t) which is n in this case. Thus, there are n+1 nodes

on the shortest path, which indicates that, m can be at most 2n− (n+1) and we still

have a shortest path from 0n to 1n. In addition, we want to determine the sufficient

condition for such a path to exist.

Defined by Kanedo and Ito [4], a nonfaulty node is called unsafe if it is adjacent

to at least two faulty nodes or more than two faulty or unsafe nodes, it is safe oth-

erwise. Chiu and Wu [1] showed that a shortest path from s to t not involving any

faulty node exists if either s or t is safe. This is clearly a sufficient condition since

such a path could still exist even if both s and t are unsafe. Kanedo and Ito [4]

introduced the notion of full reachability and found out that a nonfaulty node u is

fully reachable if every nonfaulty node that is h Hamming distance away from u is

reachable by a path of length h. Their algorithm has been proven by the simulation

results to perform better than the one from [1]. In [2], there are meaningful results

provided, but we consider their problems to be different from ours since their assump-

tions are different. For example, they assume the number of blocking nodes to be

at most n-1, node failures occur dynamically, and each node only knows the faulty

status of its neighbours. However, in our case, we assume the number of blocking

nodes could be greater than n-1, and we know all the blocking nodes in advance. Our

routing problem has been considered in [3], in which the following lemma is proposed.

Lemma 1. In Qn, n ≥ 2, if the number of blocking nodes is less than n, then there
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exists a shortest path from s to t that does not intersect any of the blocking nodes.

Definition 1. ([5]) Let (A1, A2, · · · , Am) be a collection of subsets of a set A =

{a1, a2, · · · , an}, m ≤ n. An ordered set of distinct elements [ai1 , ai2 , · · · , aim] is

called a system of distinct representatives SDR if aij ∈ Aj, for 1 ≤ j ≤ m.

That is, for example, if A = {1,2,3,4} and A1 = {2,3}, A2 = {1,4} and A3 =

{1,3}, then [2,1,3] is an SDR for A1, A2 and A3, and [2,4,1] is another. While if A1

= {3}, A2 = {1,3} and A3 = {1} then an SDR does not exist for A1, A2 and A3.

To create a SDR for a given set of m blocking nodes denoted as u1, u2, · · · , um,

we need to convert their binary representations into sets of integers as follows. If uij

= 1, then set Ui contains j. For example, for the following 4 block nodes in Q4:

u1 = 1100

u2 = 0110

u3 = 1010

u4 = 0001

We have:

U1 = {1,2}
U2 = {2,3}
U3 = {1,3}
U4 = {4}

One SDR for the four sets is [2,3,1,4]. The size of a given SDR, denoted as |SDR| is
simply the number of elements in it. By the original definition of SDR, |SDR| of m
blocking nodes must be m. However, in case a SDR does not exist, we seek the largest

possible SDR for a subset of blocking nodes. For example, blocking nodes 100, 101,

001 correspond to sets {1}, {1,3}, {3}, clearly, no SDR exists, while the largest SDR:

[1,3] has size 2. Note that the original definition of SDR indicates that m ≤ n, while

in our case, m can be greater than n. Thus, we will seek the max matching of the m

blocking nodes and use its size as the size of the SDR. [6] introduces how to construct

the bipartite graph based on a given set of nodes, and find the max matching of it. For

example, given 4 blocking nodes in Q3, u1 = 100, u2 = 010, u3 = 110 and u4 = 111,

their corresonping sets are U1 = {1}, U2 = {2}, U3 = {1,2} and U4 = {1,2,3}, the
bipartite graph is shown in Fig.1.2. From now on, whenever we talk about SDR, we

mean the SDR with the largest cardinality.
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Figure 1.2: A Bipartite Graph for Four Blocking Nodes in Q3
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Main Result

In addition to the symmetric property, the hypercube has another important property

which is recursive property: An n-cube can be decomposed into two disjoint (n-1)-

cubes along dimension i, for any 0 ≤ i ≤ n− 1, in the way that all nodes whose i-th

bits are 0’s form one (n-1)-cube, denoted as QL
n−1, similarly, all the other nodes with

i-th bits being 1’s form the other (n-1)-cube denoted as QR
n−1. Thus, QL

n−1 always

contains the 0n node.

It is trivial that provided a Qn, the m blocking nodes and their SDR with size

n-1, Qn can always be decomposed into QL
n−1 and QR

n−1 such that the |SDR| for QL
n−1

is n-1, and QR
n−1 contains no blocking nodes if |SDR| of the given m blocking nodes

is n-1. Otherwise, |SDR| of Qn would be n. An example of such a decomposition

is that if SDR = {0, 1, 2, · · · , n − 2}, then Qn can be decomposed along dimension

n-1. In general, if SDR = {0, 1, · · · , i− 1, i+ 1, · · · , n− 1} for 0 ≤ i ≤ n− 1, we can

decompose Qn along dimension i.

Our main result is given in the following theorem:

Theorem 1. Given m blocking nodes in a Qn, if |SDR| ≤ n-1 for the blocking nodes,

then there exists a shortest path (of length n) from 0n to 1n that does not intersect

with any of the blocking nodes.

Proof: We apply induction to n. When n = 1, Q1 is simply an edge between 0 and

1, and m has to be 0, thus, it is trivial that a shortest path always exists between the

nodes.

When n = 2, if |SDR| = m = 1, let’s assume the blocking node is 01, then the

shortest path is 00 → 10 → 11. Similarly, the shortest path exists if the blocking

node is 10.
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Induction Hypothesis (I.H.): Assume that the theorem is true for n-1, that is, if

|SDR| ≤ n-2 for the blocking nodes in Qn−1, there exists a shortest path between 0n−1

and 1n−1, we show how to find a shortest path between 0n and 1n with m blocking

nodes whose |SDR| ≤ n-1 in the following way.

We need to consider the following two cases:

Case1: 1n has only one free neighbor (meaning it is not a blocking node), without

loss of generality, we can assume that this node is 01n−1. Then we decompose Qn

along dimension 1 and consider the following situations in QL
n−1 that contains 0n−1

(0n in Qn):

If |SDR| in QL
n−1 is n-2 or less, we are done by the I.H.: shortest path exists from

0n to 01n−1 within this QL
n−1, then from 01n−1 to 1n is trivial. The shortest path is:

0n → · · · → 01n−1 → 1n

If |SDR| in QL
n−1 is n-1: this is impossible since this SDR union any of the block-

ing nodes in QR
n−1 (not containing 0n) gives a SDR of size n which is impossible as

we assume the size of SDR is n-1 for Qn. In fact, if |SDR| = n-1 and there is only

one free neighbor for 1n, then QL
n−1 must have no blocking node for otherwise, |SDR|

would be n.

Case2: 1n has two (or more) free neighbors. As in Case 1, each free neighbor defines

a QL
n−1, therefore, there are two (or more) QL

n−1 that contains 0n. We now consider

the following two situations:

If one of the sub-cubes has |SDR| = n-2 or less, done by I.H. (see Case 1).

If both have |SDR| = n-1, this is impossible since each SDR contains n-1 elements

from {1, 2, · · ·n} and the two SDR’s can not be the same, therefore, their union must

be a SDR of size n, which contradicts the assumption that the size of SDR is n-1 for

Qn.

An example in Q4 for the above situation is: Two free neighbors are 0111 and

1110, decompose the Q4 along dimension 1 and 4 resulting in two different QL
3 ’s. If

the SDR’s in both QL
3 ’s have |SDR| = 3, they must be [2,3,4] and [1,2,3] respectively,

thus the union of them are [1,2,3,4] with size 4 which contradicts the assumption.

Therefore, we have proven the theorem. Fig. 2.1 illustrates a case when the

number of blocking nodes is greater than n-1, yet a shortest path exists between 0n

and 1n.
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Figure 2.1: An example of Q3 with 3 blocking nodes.
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Conclusion

We have considered the problem that given the source node s = 0n and the target

node t = 1n in an n-cube Qn, and m other blocking nodes denoted as bi where bi ̸= s,

bi ̸= t, 1 ≤ i ≤ m, does there exist a shortest path from s to t that does not intersect

any blocking node bi. Based on some of the previous work done on this problem

and some similar problems, we proposed a sufficient condition for the path to exist

which is considered an improvement of Lemma 1 [2] because m could be bigger than

n-1. There are already efficient algorithms that finds the shortest path if it exists, our

future work is to study the possibility of improving these currently existing algorithms

and try to improve them.
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