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Abstract. Home health care (HHC) management needs to plan their
operations to synchronize professionals and allocate resources to perform
several HHC services needed by patients. The growing demand for this
type of service dictates the interest of all the stakeholders (professionals
and patients) in finding high-quality daily solutions and logistics. Rout-
ing and scheduling are problems of combinatorial nature, extremely com-
plex, and require sophisticated optimization approaches. This work aims
to contribute to cost-efficient decision-making in the general improve-
ment of the service quality. Thus, a mixed integer linear programming
model, a genetic algorithm, and a hybrid approach were used to solve the
operational planning through test instances of different sizes for public
home care providers. Computational results are presented, followed by a
discussion on the advantages and shortcomings, highlighting the strength
of each approach.

Keywords: Home Health Care · Optimization · MILP · Genetic Algo-
rithm.

1 Introduction

The world population is increasingly aging and a decrease in informal care leads
to increasing demand for HHC services [18]. In this context, health institutions
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need help to provide these services in order to reduce costs and increase service
quality, since it is economically advantageous to keep people at home instead of
in health units or hospitals [5, 17]. HHC aims to provide medical, paramedical,
or social services to patients at their homes. In this sense, and taking Portugal
as an example, there has been a steady increase in demand for HHC services,
becoming an important topic of public, social and health concern. HHC oper-
ations need to plan human and physical resources, such as health professionals
(mainly nurses) and vehicles, considering working hours, and operational con-
straints, among other assumptions. The HHC problem arises when a variety of
health care services must be provided in patients’ homes in cases of illness or in-
jury, by health professionals from the same geographic area, aiming to optimize
the scheduling and routes design, considering time or distance traveled [2]. Also,
some problems are characterized by an inherent uncertainty in travel times, care
duration, evolution of patients’ needs, etc., and a wide variety of workers with
different skills and constraints (nurse, auxiliary nurse, social technician, among
others). However, these problems present some challenges to optimization, since
most of these home visiting services still operate manually and without resorting
to computational methods to support the scheduling and routing. Thus, these
optimization problems have become increasingly complex and the search for im-
provements has been gaining impact in recent years [3].

This emerging sector has opened new research avenues in the field of in-
dustrial engineering, optimization and operational research (OR). In this sense,
it is possible to cite some works that investigated, for example, a proper allo-
cation of resources to each district, complying with various criteria [1], choice
and dimensioning of internal resources [12], assignment of the various workers
to patients [14], optimization of workers’ routes to patients’ homes, operational
scheduling, and others. In terms of this work, the main focus is on the HHC
routing and scheduling, at an operational level. These problems consist in as-
signing tasks to staff members of the HHC units, planning visiting hours for a
set of patients, and designing the routes of visits while respecting regulatory and
logistical and operational constraints [6, 22]. Other works are more focused on
HHC scheduling and routing problems, for example, a comprehensive overview
of existing works in the field of routing and scheduling in HHC [5]. In a later
work, Cissé et al. [2], analyzed the literature on OR models applied to this topic.

In this sense, mathematical programming techniques, such as deterministic
methods including (integer) linear programming, and stochastic or evolutionary
approaches are two highly successful streams for optimizing combinatorial prob-
lems [20, 4]. These types of approaches are frequently applied in many highly
important, practical fields, for example, classic vehicle routing problem (VRP),
transportation logistics, scheduling, designing efficient communication networks,
supply chain and food delivery [9, 11, 23]. Formulations of HHC problems deal-
ing with real configurations and capturing all the complexity are a challenge
for optimization researchers. In the past, optimization techniques have played
a fundamental role in the research of scheduling of resources in HHC crew and
emergence vehicles routing [17, 19, 21].
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Therefore, the main goal of this work focuses on the solution of a real routing
and scheduling problem in HHC in an interior region of Portugal. The strategy
is based on two different approaches, evolutionary algorithm and exact method,
with a subsequent hybrid approach of the two and respective analyses. Besides
that, this work will contribute to the discussion of the two techniques producing
a sensitivity analysis in post optimization to the results of different test instances
that may result in better decision support on a benchmark of HHC real cases.

The rest of the paper is organized as follows: Section 2 describes the problem
under study, including problem sets, parameters, and the mathematical model.
In Sect. 3 the optimization approaches, which will support the test instances
in the Sect. 4, will be presented. The numerical results will be presented and
analyzed in Sect. 5. Finally, Sect. 6 rounds up the paper with some conclusions
and future work perspectives.

2 Problem Statement

This study deals with the problem that arises from the HHC services, needing to
automatically find the optimal operational planning that combines routes design,
health professional’s scheduling and patients allocation. The goal is to find the
best schedule, considering the criteria, resources and constraints presented in
the problem, in a reasonable time.

For that, it is important to define the general properties and/or assumptions
of the problem, such as the HHC planning process, which includes, geographical
area, resource dimension and their different instances, the care workers and pa-
tients. Therefore, the number and characterization of health professionals, the
number of patients and treatments they need, and patient locations, are con-
sidered. This information and data allow the creation of a mathematical model,
that represents the time spent on patient visits and travel.

Thus, considering a public Health Unit in Bragança, with a domiciliary team
that provides home care to patients requiring different treatments, all the entities
involved in the problem were identified.

Consider the following fixed parameters:

– P̄ is the set of np ∈ N patients that receive home care visits, P̄ = {p1, . . . , pnp}
and P = {1, . . . , np} is the corresponding index set;

– N̄ is the set of nn ∈ N nurses that perform home care visits, N̄ = {v1, . . . , vnn}
and N = {1, . . . , nn} is the corresponding index set;

– L̄ is the set of nl ∈ N locations for home care visits, L̄ = {l1, . . . , lnl} and
L = {1, . . . , nl} is the corresponding index set;

– T̄ is the set of nt ∈ N treatments required by patients, T̄ = {t1, . . . , tnt} and
T = {1, . . . , nt} is the corresponding index set;

– Q is the vector with treatments duration, Q ∈ Rnt;

– Dnl×nl is the time distance matrix between the nl locations. dij represents
the distance (travel time) from node i to node j.
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Taking into account the information regarding these sets and parameters, a
mathematical programming problem can be formulated to minimize the travel
time spent on visits.

The mathematical model presented is an extension of the Cumulative Rout-
ing Problem model (CumVRP) described in [10]. Considering a routing network
G = (L0, A) with nodes L0 = {0, 1, 2, . . . , nl} (node 0 is the healthcare unit and
the others are patient locations) and A = {(i, j) : i, j ∈ L0, i ̸= j} is the set of
routes. An instance of the problem is defined by the following parameters:

– uik: equal to 1 if patient i ∈ P can be attended by nurse k ∈ N and 0
otherwise;

– MQ: maximum duration of any nurse route (maximum shift duration).

This work proposes a mixed integer flow formulation with two sets of decision
variables:

– xijk – binary variable, 1 if the nurse k ∈ N goes from i ∈ L0 to j ∈ L0 and
attends patient that is located in the location j and 0 otherwise;

– yijk – flow variables, they are used to accumulate the time spent on travel
and patient care after each visit.

The cost or the objective function aims to minimize the longest route. A
compact mathematical formulation of the proposed model follows. The index
i, j ∈ L0 are associated with the nodes (L0 set) and k ∈ N to nurses index.

Min max
i,k

yi0k (1)

s.t.
∑
i

x0ik = 1, ∀k ∈ N (2)∑
i

xi0k = 1, ∀k ∈ N (3)∑
i

∑
k

xijk = 1, ∀j ∈ L (4)∑
j

∑
k

xijk = 1, ∀i ∈ L (5)

∑
i

xijk =
∑
i

xjik, ∀j ∈ L, ∀k ∈ N (6)

yijk ≤ MQ · xjik, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ N (7)

y0ik = x0ik · d0i, ∀i ∈ L0, ∀k ∈ N (8)∑
i

yjik −
∑
i

yijk =
∑
i

xjik (dji + qj) , ∀j ∈ L, ∀k ∈ N (9)∑
i

xijk ≤ ujk, ∀j ∈ L0, ∀k ∈ N (10)

xijk ≥ 0 and integer, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ N (11)
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yijk ≥ 0, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ N (12)

Equation (1) is the objective function. Equations (2) ensure that all nurses
start at the depot, while equations (3) ensure that all nurses arrive at the depot.
Equations (4) guarantee that exactly one nurse arrives at any patient node,
while equations (5) guarantee that exactly one nurse departs from every patient
node. Equations (6) state that the nurse arriving at some patient node must also
depart that same node. Equations (7) put an upper bound to the flow in the arcs.
Equations (8) initialize the flow in the arc from the depot to the first patient
to be equal to the travel time. After that, equations (9) are flow conservation
constraints and assure that the flow in each arc accumulates travel and patient
care times of all the previous visits in one route. Finally, equations (10) ensure
that every patient is visited by a specialized nurse, according to the compatibility
coefficients defined before. Equations (11) and (12) define the lower bounds and
types of the variables.

If the compatibility matrix between patients and nurses is very restrictive
there will be a number of variables whose bound will be set to zero by constraints
(10), effectively deleting the variables from the formulation. The number of con-
straints is in the order of nl × nn2, most of them being the bounds on the flow
variables imposed by constraint set (7).

3 Optimization Approaches for Operational Planning

This section presents the different approaches to deal and support the opera-
tional planning for the problem presented in Sect. 2. One approach is based
on the mixed integer linear programming model (MILP), where the problem is
solved using a deterministic technique. Another approach is the genetic algo-
rithm, where the problem will be solved by a meta-heuristic method. Finally, a
hybrid approach will be used, which is based on the combination of the two pre-
vious approaches. The main goal is to identify the advantages and the strengths
of each approach, individually and/or in combination.

3.1 Mixed Integer Linear Programming Approach

For solving the MILP, the CPLEX and optimization programming language
(OPL) were used. The model presented in the Sect. 2 was implemented in OPL
and optimized using the CPLEX Solver V12.10.0 with the default optimization
parameters. According to the documentation [8], by default, CPLEX Solver em-
ploys preprocessing and probing of the model (coefficient reduction, elimination
of redundant variables and constraints, etc.) and model strengthening by means
of several types of cuts, with the idea of speeding up the solving process. The
algorithm was run with the default parameters with the exception of adding
stopping criteria of 1 hour (3600 seconds) in the case the optimal solution is not
found within that period.
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In order to strengthen the model and improve computational results, some
extra sets of constraints were added to the formulation. The first one is∑

i

xjik ≤ ujk, ∀j ∈ L0, ∀k ∈ N (13)

This constraint mirrors constraint (10) such that only a specialized or compat-
ible nurse is allowed to leave a given location. Of course, this constraint was
already implied by constraints (6), but preliminary testing shows their inclusion
to improve computational times. We also enforced a lower limit on individual
flows in all arcs by means of the following constraints:

yijk ≥ xjik · (qi + dij) , ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ N (14)

Similar to the previous set, these constraints are also implied by the flow con-
servation constraints of the compact model, but they seem to improve compu-
tational performance.

Finally, it was imposed a global lower bound (ZLB) on the objective function.
This bound is computed with

ZLB =

∑
i qi +

∑
j mini̸=j dij + nl ·mini ̸=0 di0

nl
(15)

The lower bound is just the quotient of the minimum possible time required to
complete all visits by the number of vehicles (nurses). The minimum possible
time is computed by adding the time for treatments with the minimum time
to reach a patient given an unknown location and with the minimum time for
the return trip to the central hub for all nurses. This lower bound is not very
tight but it seems to improve performance. Although these constraints seem to
improve computational performance in preliminary testing, the tests were very
limited and further examination of each one is still needed.

3.2 Genetic Algorithm Approach

A Genetic Algorithm (GA) [7] is used to solve the HHC optimization problem
(1) to (12) in Sect. 2. GA is inspired by the natural biological evolution, uses
a population of individuals and new individuals are generated by applying the
genetic operators of crossover and mutation [13]. Genetic algorithms are partic-
ularly well suited to solve vehicle scheduling problem that is non-convex with
discrete decision variable and couple with the combinatorial nature of the search
space [15]. The flexibility of representation of the solutions and genetic operators
allows for handling hard constraints.

The GA used in this work is summarized in Algorithm 1. Initially, a popula-
tion ofNpop individuals is randomly generated. Each individual in the population
is a vector of decision variables x. Next, for each generation, crossover and mu-
tation operators are applied to generate new solutions. These genetic operators
were designed in order to guarantee that new solutions are feasible.
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Algorithm 1 : Genetic Algorithm

1: P0 = initialization: randomly generate a population of Npop individuals.
2: Set iteration counter k = 0.
3: while stopping criterion is not met do
4: P′ = crossover(Pk): apply crossover procedure to individuals in population Pk.

5: P′′ = mutation(Pk): apply mutation procedure to individuals in population Pk.

6: Pk+1 = selection(Pk ∪ P′ ∪ P′′): select the Npop best individuals of Pk ∪ P′ ∪ P′′.
7: Set k = k + 1.
8: end while

The best individuals in the population have a high probability of being se-
lected to generate new ones by crossover and mutation. Therefore, the good
features of the individuals tend to be inherited by the offspring. In this manner,
the population converges towards better solutions [16]. The iterative procedure
terminates after a maximum number of iterations (NI) or a maximum number
of function evaluations (NFE).

The model in Sect. 2 and the algorithm presented was implemented and
coded in MatLab®. In complex problems belonging to non-deterministic classes,
GAs are promising algorithms for searching for fast and good solutions in many
applications, areas and domains planning and controlling several operations [15].

In this approach, the scheduling solution can be expressed by the vector x
of dimension n = 2× np with the following structure:

x = (w, z) = (w1; ...;wnp; z1; ...; znp)

where the patient wi ∈ P will be visited by the nurse zi ∈ N , for i = 1, . . . , np.
In this structure, wi ̸= wj for ∀i ̸= j with i, j ∈ P . Therefore, for a given x it is
possible to define the nurse’s route scheduling by taking into account the order
of the components of x.

For a nurse schedule x, the function dl(x), for l = 1, .., nn, gives the total
distance (in time) required to perform all visits of the nurse l

f(x) = max
l=1,...,nn

dl(x) (16)

Then, the optimization problem can be defined as:

min
x∈Ω

f(x) (17)

where x ∈ Ω is the decision variable space and Ω = {(w, z) : w ∈ Pnp, z ∈
V np and wi ̸= wj for all i ̸= j} is the feasible set. For that reason, GA was used
to solve the model presented previously.

3.3 Hybrid Approach

Operations research (OR) is often described as a toolbox of methods, from which
the most appropriate method for solving any particular problem can be selected.
Since all OR methods have different strengths and weaknesses, a hybrid approach
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(mixing methods) offers the potential to overcome some of the drawbacks of using
a single approach. For example, it is expected that working with a MILP model
of the identified problem (HHC), it may take a long time to solve to optimality
(even for a small case and/or instance).

In this sense, the hybrid approach will be based on the combination of the
two previously mentioned approaches (GA and MILP), with the expectation of
applying a computational technique that will provide more advantages to detect
better solutions for the HHC problem than using the approaches individually.
Thus, the idea is to initialize the MILP approach with a feasible solution (quickly
obtained) from the GA (feed into the model), also known as “warm start”. The
strategy goes through supply hints to help MILP find an initial solution. The
warm start comes from the same problem, already solved and with a feasible
solution.

4 Test Instances

The HHC service at this Health Unit provides several types of care that can be
classified into five different treatments. Clinical data was properly collected and
treated following strict anonymity and confidentiality procedures.

The data allowed to combine different types of treatments according to their
areas of application and/or performance required by patients, their average time
and the different health professionals who perform them (Table 1).

The treatments are thus divided according to their specificity. Thus, Treat-
ment 1 (T.1) refers to curative care (characterized by pressure ulcers, traumatic
wounds, and burns, among others) with an average time of 30 minutes, while
Treatment 2 (T.2) refers to Surveillance and Rehabilitation (characterized by
evaluations and patient monitoring), with an average duration of 60 minutes.
Treatment 3 (T.3) is Curative and Surveillance care (characterized by wound
treatment, frequency and tension monitoring, among other pathology) averag-
ing 75 minutes, while Treatment 4 (T.4) is only Surveillance care (assess the
risk of falls, self-care, dietary, among others) and has average care of around 60
minutes. Finally, Treatment 5 (T.5) concerns more general health care (charac-
terized by support mourning for example) such as support and monitoring and
has an average of 60 minutes as well. The health unit has a total of 12 health
professionals (mostly nurses) assigned to the various days of home visits.

The complete dataset has a total of 40 patients, which can be assigned to a
single day or divided over several days of home visits. The same is true for health
professionals, who have specific hours of primary health care at home and, there-
fore, may not always be on the same working day. Thus, the need arose not only
to solve the combinatorial problem computationally according to the approaches
in HHC planning but also to analyze the sensitivity of different cases/instances
(Table 2). Each patient required specific medical assistance consisting of one or
more different treatments from the 5 treatments that nurses can perform.

In total, 9 cases will be solved (from different instances) and draw the appro-
priate conclusions thereof, according to the optimization techniques and gener-
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Table 1. Treatments performed by the nurses.

T.1 T.2 T.3 T.4 T.5
(30 min) (60 min) (75 min) (60 min) (60 min)

Nurse 1 X X
Nurse 2 X X X
Nurse 3 X X
Nurse 4 X X X
Nurse 5 X X
Nurse 6 X X X X
Nurse 7 X X X
Nurse 8 X X
Nurse 9 X X
Nurse 10 X X
Nurse 11 X X
Nurse 12 X X

Table 2. List of test instances.

Dataset Parameters
Case 1 20 patients, 8 nurses, 19 locations
Case 2 20 patients, 10 nurses, 19 locations
Case 3 20 patients, 12 nurses, 19 locations
Case 4 30 patients, 8 nurses, 25 locations
Case 5 30 patients, 10 nurses, 25 locations
Case 6 30 patients, 12 nurses, 25 locations
Case 7 40 patients, 8 nurses, 28 locations
Case 8 40 patients, 10 nurses, 28 locations
Case 9 40 patients, 12 nurses, 28 locations

ated approaches. From Table 2, it is verified that the routes of nurses allocation
and scheduling take into account a total of 28 locations, representative of the
patients homes in the region under study.

The travel time (in minutes) between the locations is shown in Table 3 (ap-
propriately numbered locations for data protection and used as a time matrix
resource), whose diagonal indicates the typical time required to attend to several
patients in the same area (e.g., same streets).

Table 3. Time matrix with sources and targets to list locations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 7 32 12 11 10 29 9 30 24 9 18 8 27 13 35 14 27 7 10 24 11 14 26 10 12 12 6 28
2 32 7 33 35 31 31 33 43 41 35 29 29 29 35 27 31 31 33 35 44 35 28 30 33 32 32 32 40
3 12 33 7 12 13 30 10 33 24 6 21 14 29 15 37 9 24 11 7 18 9 17 28 6 7 6 10 25
4 11 35 12 7 11 32 10 35 27 12 24 14 31 19 39 10 25 13 10 24 10 15 30 11 12 11 12 26
5 10 31 13 11 7 27 8 32 28 13 20 11 26 17 34 15 26 11 11 26 11 10 25 13 15 14 10 27
6 29 31 30 32 27 7 30 37 38 32 26 26 16 32 24 28 36 30 32 41 32 25 18 30 29 29 29 37
7 9 33 10 10 8 30 7 33 25 10 21 11 8 15 36 12 26 9 8 23 8 12 26 9 11 11 9 27
8 30 43 33 35 32 37 33 7 28 32 27 28 38 26 46 31 42 28 33 43 7 29 37 32 31 32 29 43
9 24 41 24 27 28 38 25 28 7 26 28 27 36 23 44 22 37 24 25 22 27 28 35 23 22 23 23 38
10 9 35 6 12 13 32 10 32 26 7 23 12 30 14 38 11 25 10 8 20 9 17 29 8 8 8 9 26
11 18 29 21 24 20 26 21 27 28 23 7 16 24 21 32 19 30 19 22 31 23 17 23 20 19 19 18 31
12 8 29 14 14 11 26 11 28 27 12 16 7 25 12 33 17 25 10 12 26 13 10 24 13 15 14 9 26
13 27 29 29 31 26 16 8 38 36 30 24 25 7 30 12 25 34 27 29 38 30 22 13 28 26 27 26 35
14 13 35 15 19 17 32 15 26 23 14 21 12 30 7 38 16 30 11 15 28 16 18 29 17 16 17 11 31
15 35 27 37 39 34 24 36 46 44 38 32 33 12 38 7 33 42 35 37 46 38 30 21 36 34 35 35 43
16 14 31 9 10 15 28 12 31 22 11 19 17 25 16 33 7 21 14 9 20 9 14 25 9 8 9 13 22
17 27 31 24 25 26 36 26 42 37 25 30 25 34 30 42 21 7 28 26 33 25 22 34 25 24 25 27 18
18 7 33 11 13 11 30 9 28 24 10 19 10 27 11 35 14 28 7 10 24 11 15 27 11 13 12 5 29
19 10 35 7 10 11 32 8 33 25 8 22 12 29 15 37 9 26 10 7 19 6 15 29 6 8 8 9 26
20 24 44 18 24 26 41 23 43 22 20 31 26 38 28 46 20 33 24 19 7 22 26 38 18 17 18 23 35
21 11 35 9 10 11 32 8 7 27 9 23 13 30 16 38 9 25 11 6 22 7 13 28 6 8 7 9 25
22 14 28 17 15 10 25 12 29 28 17 17 10 22 18 30 14 22 14 15 26 13 7 23 18 20 19 14 25
23 26 30 28 30 25 18 26 37 35 29 23 24 13 29 21 25 34 27 29 38 28 23 7 28 27 28 27 35
24 10 33 6 11 13 30 9 32 23 8 20 13 28 17 36 9 25 11 6 18 6 18 28 7 6 5 11 24
25 12 32 7 12 15 29 11 31 22 8 19 15 26 16 34 8 24 13 8 17 8 20 27 6 7 7 12 23
26 12 32 6 11 14 29 11 32 23 8 19 14 27 17 35 9 25 12 8 18 7 19 28 5 7 7 12 24
27 6 32 10 12 10 29 9 29 23 9 18 9 26 11 35 13 27 5 9 23 9 14 27 11 12 12 7 28
28 28 40 25 26 27 37 27 43 38 26 31 26 35 31 43 22 18 29 26 35 25 25 35 24 23 24 28 7
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The health unit prefers to have average values between locations in the same
area (which are not always reached) and assigned these values on the diagonal
to make sure they are not exceeded. In this way, each node (e.g., location 1 (first
row) and location 1 (first column) are the same location, and so on) identifies a
set of origins and destinations between each address or residence. The response
is computed using optimization techniques for M : N routes computation.

In this sense, a sensitivity analysis was generated to the uncertainty in the
output of a set of different instance sizes. The strategy involves an evaluation of
the robustness of the deterministic, stochastic and hybrid approaches, in terms
of their behaviors and impacts when subject to different parameters.

5 Numerical Results

In this section it is intended to qualitatively evaluate the flexibility and effective-
ness of each of the approaches, taking into account their variability and solutions.
The range of values of the numerical results is examined by analyzing how the
output value (from all approaches) behaves.

5.1 MILP Results

In order to test the proposed MILP formulation, all the datasets in the Table 2
have been solved. The developed OPL model was instantiated with data from
the different problems and optimization was run until the optimal solution was
found or when a time limit of 1 hour (3600 seconds) was reached. The experiment
was carried out using a laptop equipped with an Intel® Core™ i7-10510U CPU
with 16 GB of memory. Table 4 summarizes the results.

Table 4. Summary of optimization results for the MILP model.

Case P N R C B Best LB Gap Time
1 20 8 4119 3942 2032 186 186 0.0% 45
2 20 10 4963 4754 2452 186 186 0.0% 58
3 20 12 5807 5566 2872 186 186 0.0% 39
4 30 8 10819 10542 5372 264 210 20.5% 3601
5 30 10 13223 12894 6572 220 169 23.2% 3601
6 30 12 15627 15246 7772 187 148 20.9% 3601
7 40 8 17354 17003 8630 349 285 18.3% 3601
8 40 10 21078 20663 10490 296 229 22.6% 3604
9 40 12 24802 24323 12350 284 284 0.0% 2938

For each case the following information is presented: the number of patients
to be treated (P) and the number of vehicles or nurses (N); the number of rows
(R), columns (C) and binaries (B) after the resolve and probing as reported
by CPLEX, which reflect the effective size of the problem; the objective value
for the best solution found (Best), the lower bound (LB), the percentage gap
(Gap) between the best solution and the lower bound and the time (in seconds)
CPLEX spent to solve the problem. In a case where CPLEX found the optimal
solution, the gap is zero (cases 1, 2, 3, and 9).
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5.2 GA Results

Following the previous approach, the proposed meta-heuristic (GA) was also
applied to the dataset in Table 2.

The experiment was carried out using a laptop equipped with an Intel®

Core™ M-5Y71 CPU 1.4GHz with 8 GB of memory. The numerical results were
obtained using the MatLab®. The values of the control parameters used in
GA for this problem were tuned after preliminary experiments. A population
size of 30 individuals (Npop = 30) and a probability rate of 50% for crossover
and mutation procedures were used. The stopping criterion was based on the
maximum number of iterations defined as 100 (NI = 100) or the maximum
number of function evaluations of 5000 (NFE = 5000). Since GA is a stochastic
algorithm, 30 runs were carried out with random initial populations. GA found
feasible solutions for all runs in a reasonable time. This study analyses the effect
of defined parameters on the output directly and on model performance, thus
the analysis is evaluated by comparing the corresponding observations.

Table 5 gives the sensitivity rank of all the parameters for all criteria, starting
with criteria on the performance in all runs for each case, such as best or minimal
solution (fmin), the solution average (favg), the standard deviation (SD), the
number of different best solutions found (Nmin) and, finally the average time to
solve the optimization problem (Time), in seconds.

Table 5. Summary of optimization results for the GA meta-heuristic.

Case fmin favg SD Nmin Time
1 233 262 18 2 29.9
2 212 240 17.2 1 31.4
3 188 228 14.4 1 37
4 333 361 16 1 38.4
5 272 324 19.4 1 43.8
6 246 287 21.3 1 48.6
7 425 483 22.8 1 48.7
8 372 430 25.6 2 54.9
9 331 397 22.9 1 57.5

Table 5 presents the results for the different defined criteria that allow to
statistically evaluate the balance of the solution outputs. The goal of applying
GA is to characterize how the meta-heuristic programming responds to changes
in input, with an emphasis on finding the input parameters to which outputs
are more or less sensitive to different cases from different instances.

5.3 Discussion

In this section, the results of the two previous approaches are analyzed and
compared. In this sense, the illustration of a scheduling example on a Gantt
chart, according to the two approaches under study, for the instance of case 2 is
shown in Figure 1. It is possible to see in Figure 1, the different allocations of
patients to their respective nurses and to view the complete routes of home visits,
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which include travel times, patient treatment times, and consequent return to the
point of origin (Health Unit). Both approaches present optimized management
of the routes with a good workload balancing between the different entities.

Nurse

Nurse 10

Nurse 9

Scheduling management by CPLEX

Nurse 8

Nurse 7

Nurse 6

Nurse 5

Nurse 4 P 15 - T.3 P 20 - T.3

P 4 - T.1 P 16 - T.4

P 18 - T.5 P 5 - T.2

P 17 - T.1 P 12 - T.1

P 3 - T.1 P 8 - T.1

P 10 - T.1 P 19 - T.1

P 2 - T.1 P 1 - T.1

Nurse 3

Nurse 2

P 4 - T.1

P 7 - T.2 P 6 - T.2

186

Nurse 1 P 9 - T.1 P 13 - T.1 P 11 - T.1

Nurse

Nurse 10

Nurse 9

Scheduling management by GA

Nurse 8

Nurse 7

Nurse 6

Nurse 5

Nurse 4

Nurse 3

Nurse 2

Travel

Patient Treatment

P 16 - T.4 P 4 - T.1

P 10 - T.1

P 9 - T.1

P 8 - T.1 P 20 - T.3

P 18 - T.5 P 5 - T.2

P 14 - T.1 P 3 - T.1 P 17 - T.1

P 15 - T.3 P 12 - T.1

P 11 - T.1 P 1 - T.1 P 19 - T.1

P 7 - T.2 P 6 - T.2

P 13 - T.1 P 2 - T.1

212

Nurse 1

Fig. 1. Example of a scheduling management by the two approaches for case 2.

Regarding the maximum value reached by the two approaches, concerning the
total time of home visits, it has a value of 212 minutes for the GA meta-heuristic
and the optimal solution of 186 minutes for the MILP model by CPLEX. On
the other hand, Figure 2 summarizes Tables 4 and 5.
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Fig. 2. Objective values for GA and MILP.
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Figure 2 compares the results for the GA meta-heuristic (boxplots for the 30
runs of the algorithm) and for the MILP model (best solution and lower bound).
It can be seen that the MILP model finds either optimal or better solutions than
the GA. However, computational times presented by GA reach solutions more
quickly (never exceeding 60 seconds even in the largest instances), and in some
cases with solutions close to the optimum, which makes it possible to support
the decision-making in emergency scheduling needs.

5.4 Hybrid Results

In order to further enhance our computational findings, it was also performed
a warm start procedure with the MILP model combined with GA solutions.
The procedure consisted in starting the optimization in CPLEX from an initial
solution. The solution provided to CPLEX was the best solution from the GA.
Table 6 shows the results from the experiment, where for each case and/or
instance the objective values of the starting solution, the best solution, the lower
bound, and computation time are presented.

Table 6. Warm start computational results in MILP

Case Start Best LB Time
1 233 186 (0.0%) 186 (0.0%) 47 (4.4%)
2 212 186 (0.0%) 186 (0.0%) 51 (-12.1%)
3 188 186 (0.0%) 186 (0.0%) 67 (71.8%)
4 333 259 (-1.9%) 210 (0.0%) 3600 (0.0%)
5 272 222 (0.9%) 171 (1.2%) 3601 (0.0%)
6 246 186 (-0.5%) 186 (25.7%) 3565 (-1.0%)
7 425 350 (0.3%) 285 (0.0%) 3600 (0.0%)
8 372 293 (-1.0%) 232 (1.3%) 3600 (-0.1%)
9 331 284 (0.0%) 284 (0.0%) 1294 (-56.0%)

The percentage change relative to the default CPLEX start is shown inside
the brackets. Figure 3 shows a visualization of the results in terms of boxplots.

The results have high variability and drawing definitive conclusions is dif-
ficult with such a small number of instances. The results for the best solution
seemed to be about the same. The same applies to the lower bound with the
exception of one case (case 6) for which it was possible to close the gap and
reach the optimal solution. The computational times show a global decrease of
7.9%, mainly explained by the decrease in one case (case 9).

The time taken by the GA meta-heuristic to reach the initial solutions was
390 seconds (about 6.5 minutes) and thus the decrease in total time would be
only 6%. Taking everything into account, the warm start seems to be beneficial
for optimizing the computational time and reaching the optimal solutions.

In conclusion, it is important to mention that all solutions were validated
(but not yet applied in real context) by the health institution (nurses), which
positively reinforces the different strategies used. Furthermore, the different solu-
tions achieved significant savings rates in route optimization when compared to
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Fig. 3. Default and warm start comparison for MILP model.

existing planning in the institution (manually scheduling/calendar), in addition
to simplifying the planning process with faster response rates.

6 Conclusions and Future Work

In this paper, three optimization approaches, GA, MILP, and a hybrid approach
involving the first two have been proposed, formulated, and applied for the co-
ordinated decision-making in HHC services under different test instances based
on real cases. This study analyzes and quantifies the impact of one or more vari-
ables in the final results to evaluate the robustness of all approaches, reduction
of uncertainty, and calibration model for the operational planning to support
HHC services. The optimal solution, or the quickest solution, may depend on
the needs of the moment, knowing in advance that, with health, great robustness
in responses and solutions is always necessary.

According to these principles, and taking into account the numerical results
obtained, it was found that the approaches are successful in route allocating and
scheduling, reflecting some differences in the solutions for home care visits. It
is visible that the CPLEX solution presents a better workload balancing and
consequently reaches the optimal solution. In case 2 in particular, the MILP
solution has a minimization of the maximum time of almost half an hour when
compared to GA. In general terms, the MILP model finds either optimal or bet-
ter solutions than the GA method, however, in terms of computational times,
CPLEX only solved the initial 3 cases in a reasonable time. Therefore, in com-
putational expenses, GA reaches the solutions extremely fast and in some of
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the test instances it is close to the optimal solution. In conclusion, in terms of
screening, it is possible to state that in small instances the optimal solution is
easily obtained using the deterministic technique, but when the cases become
more complex, GA becomes more attractive.

Encouraged by these results, a hybrid approach was designed, which consisted
of a warm start procedure with the MILP model. GA solutions will be used as
initial solutions in CPLEX, allowing to refine and eliminate the search space,
that is, to combine the advantages of both methods. Basically, in CPLEX it
means installing an advanced base and using it as a starting point, allowing
to prune the branching tree. The warm start proved to be beneficial for the
performance of MILP solvers, accelerating the resolution of the instances of the
HHC problem, thus enhancing the MILP solution.

Some limitations of the work have already been identified, namely the non-
inclusion of the priority factor among patients, possible time windows in the
attendance and periodic visits, which nowadays are parameters to improve the
model of HHC. The natural continuation of this work would be the digitalization
of the route definition process, which would involve the creation of an interface
that would allow the user to change the problem data (e.g., number and char-
acteristics of patients), as well as the visualization of the routes obtained by the
optimization. The accuracy of the model parameters (distances, travel times and
treatments) could also be improved through google micro-services. Furthermore,
future work will be devoted to extending the approach to different algorithms
as well as different methodologies (e.g., multi-agent systems).
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