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Abstract

New approaches on industrial mobile robots are changing the localization systems from old methods such as magnetic tapes to laser beacons
based systems and natural landmarks since they are more adaptable and easier to install on the shop floor. Sensor fusion methods needs to be
applied since there is information provided from different sources. Extended Kalman Filters are very used in the pose estimation of mobile robots
with sensors that detect beacons and measure its distance and angle in a local referential frame. In certain situations, like for example wheels
slippage, the number of impulses read for the encoders is wrong, resulting in a very large displacement or rotation and causing a bad estimation
at the end of the prediction step. This bad estimation is used for the linearization of the non-linear equations, causing a bad linear approximation
and probably a failure in the Kalman Filter. In this paper it is demonstrated that if we use the last state estimation calculated in the update step at
the last cycle, instead of the estimation from the prediction step in the actual cycle, the result is an estimator much more robust to errors in the

odometry information. Simulated and real results from several experiments are illustrated to demonstrate this new approach.
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1. Introduction

Industrial mobile robots (Automatic Guided Vehicles,
AGVs), are vehicles that can self-localize and move au-
tonomously without human intervention. They are commonly
used to transport materials between workstations in warehouses
and production lines. They have been used in industrial envi-
ronments for more than 50 years and both the algorithms and
hardware, in which they rely on, have been evolving in order to
increase the accuracy, robustness and flexibility, while decreas-
ing the costs of construction and operation.

Actually, the Industry 4.0 concept requires that a mobile
robot should decide and plan the trajectory to reach the goal
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position, avoiding unknown obstacles and moving in a unstruc-
tured environment. The localization of the mobile robot is of
crucial importance since it is needed to perform the correct path
planning. Moreover, in industry environment, it iS common to
use beacons reflectors placed in specified places in order to the
robots could localize themselves. It is also common to use a
sensor fusion algorithm to combine several information pro-
vided by different sensors. One approach combined with the
laser localization is the odometry that estimates the pose varia-
tion based on the wheels movement. In fact, this input allows to
increase the localization accuracy but the slippage of the wheels
deteriorates the localization estimation and can result in a fatal
loss of the localization algorithm.

This paper proposes a new approach for mobile robots lo-
calization using an Extended Kalman Filter where, in certain
random and timely situations, the estimated state obtained in
the prediction phase is poor. Since in the correction phase, the
linearization of the equations is calculated in the estimated state
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resulting from the prediction phase, a wrong calculation of this
linearization may lead to the filter diverging.

In a short cycle period and observations in every cycle, the
state does not differ much from cycle to cycle. The innovative
proposal of this approach is to linearize using the last estimate
where there was a fusion with the observations as an alterna-
tive to linearize around the intermediate state obtained in the
prediction phase.

A concrete example of this is the case of a mobile robot
where odometry is generally relatively reliable, but in certain
unforeseen situations one (or both) of the robot’s wheels slide
causing an estimate based on the equation of motion (predic-
tion phase), very wrong. Even with a low slippage values, this
occurrence may cause a divergence from the Kalman filter state
estimate. This paper exemplifies this situation with a differential
traction robot initially using simulations and then even using a
real robot, showing its greater robustness without significantly
affecting the estimate of the robot pose in normal situations.
In order to test and validate the approach, a mobile robot, pre-
sented in figure 1 was developed. It is equipped with a YDLI-
DAR X4 lidar.

Fig. 1. Mobile robot.

The paper is organized as follows: after a brief introduc-
tion, section 2 presents the state of the art on the extended
Kalman filtering procedures and the associated problems re-
lated to the non-linearities. Section 3 addresses the system ar-
chitecture where the robot and simulation model are stressed.
This section also presents the Ground-truth system that was
used for validation. Section 4 proposes the algorithm to enhance
the localization of a mobile robot based on odometry and bea-
cons. Section 5 presents the results whereas last section rounds
up the paper with conclusions and presents some future work.

2. Related work

For several years ago, a wide scientific community has been
dedicated to the localization problem of mobile robots [12]. The
extensive state of the art in this area proposes several solutions
based on different algorithms with different types of sensors,
starting from the oldest ones following a magnetic tape or line
tracking [2, 3], to the modern lasers based on natural landmarks
(Map Matching algorithm, as example), the reflector beacons
[5, 10], image processing [7] or Wireless Sensor Network [8]
such as Ultra wide band technology [11].

Odometry, brings unavoidable accumulated errors over long
distances and needs to utilize the previous position to estimate

the next relative one and during which, the drift, the wheel slip-
page, the uneven floor and the uncertainty about the structure of
the robot will together cause errors [9]. Due to this cumulative
errors it is common to combine different localization methods.

Map matching algorithms are an important class of solutions
based on the natural features of the environment [13]. However
in industry, AGVs are commonly equipped with a laser scanner
and the environment is populated by beacons (typically reflect-
ing surfaces) [3].

The literature addresses the localization based on indistin-
guishable beacons, where the global localization is based on
the observed distance between reflectors [6]. In this approach,
odometry data from encoders sometimes is not used, and the
global pose is computed without previous information on robot
localization, while taking into account false detections (out-
liers). This approach results in a noisy estimation for the robot
localization.

On the other hand, using an algorithm for sensorial data fu-
sion in this problem is indeed relevant. It merges data from laser
scanners (distances and angles measured from reflectors) with
the odometry data.

In the specific case of localization estimation, sensors such
as accelerometers, gyroscopes and encoders coupled to the
wheels are typically used to estimate the robot movement from
the last pose (dead reckoning). In the present paper, the odom-
etry is used based on wheel encoders.

At the end, it is desired to estimate the robot state (position
and orientation) from values of sensors that fits as much as pos-
sible with the observed data. From a mathematical perspective,
there is a set of redundant observations, and the goal is to find
the set of parameters that provides the best fit to the observed
data that are corrupted by errors and the propagation of noise
in the measurement process [1]. Moreover, robot environments
are inherently unpredictable that combined to the measurement
errors and noise can introduce wrong measurements [4].

There are some well-known algorithms capable of per-
forming the sensor fusion, such as Bayesian networks, Maxi-
mum Likelihood and Maximum Posterior, Particle Filters and
Kalman filter [1].

The extended Kalman filter can give reasonable performance
and is the standard in navigation systems.

3. System Description

This section addresses the developed mobile robot to evalu-
ate this approach. It is composed by a brief description of the
robot, the simulation environment and the ground truth local-
ization system used for real scenario.

3.1. Robot Hardware and mechanical description

A differential mobile robot prototype of 16 cm x 15 cm size
and a distance between wells of 20 cm (figure 2) was developed
having in mind the tests of the proposed methodology.

It is composed by two drive wheels and a castor wheel. Two
DC motors drive the differential mobile robot, a typical config-
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Fig. 2. Mobile robot and beacons layout.

uration in mobile robots. The maximum speed of the robot is
1 m/s but the tests presented in Results section were achieved
with 10% of speed. It is powered by onboard 14.8 V LiPo bat-
tery and a DC/DC step down converter allows to supply the
electronic modules composed by a Raspberry 3 model and ar-
duino microcontroller board. The upper level is composed by
a Raspberry microcomputer that runs raspbian operative sys-
tem and is responsible for the Kalman filter processing, Wi-
Fi communications and decision. The Arduino microcontroller
boards deal with the low level control of motors, voltages, cur-
rent, power management and odometry. It is equipped with a
YDLIDAR X4 lidar that scans the 5 cm of diameter beacons
(see figure 2 right).

3.2. Simulation Model

The simulation was implemented in the SimTwo environ-
ment. It is a realistic simulation system that can support several
types of robots. Its main purpose is the simulation of mobile
robots that can have wheels or legs, although industrial robots,
conveyor belts and lighter-than-air vehicles can also be simu-
lated. The dynamics realism in SimTwo is obtained by decom-
posing a robot in rigid bodies and electric motors. Each body
behaviour is numerically simulated using its physical charac-
teristics: shape, mass and moments of inertia, surface friction
and elasticity. It is also possible to define standard joints such
as socket, hinge and slider which can be coupled with an ac-
tuator or a sensor. More details about the SimTwo simulator
can be found at [14]. Figure 3 presents the simulation environ-
ment where it can be seen three vertical beacons and the mobile
robot. The time step of simulation control loop is 40 ms, the
same as the real robot control.

3.3. Ground-Truth

Optical motion capture technology is a very useful tool for
collecting and analysing positions and movements in several ar-
eas such as movement sciences, virtual reality, sports education,
and robotics amoung the others [15]. Over the last decades, a
variety of new systems have been developed [16].

Fig. 3. Mobile robot and beacons layout on the simulation environment based
on SimTwo.

(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4

(e) Camera 5 (f) Camera 6

Fig. 4. Six OptiTrack cameras placed on the top

The ground truth system OptiTrack Motion Capture was
used to compare the estimated positioning of our proposed sys-
tem.

The OptiTrack, an isometric, passive marker-based optical
motion capture system, consisted of six cameras in our case.
The marker clusters used in this experiment were created using
four spheres to triangulate the center point of the robot.

Figure 4 presents the six cameras placed on the top of the
room.

4. Proposed Methodology

The model that is used is non-linear. So it is necessary to use
an extended Kalman filter.

4.1. Extended Kalman Filter

The general motion model equation for an extended Kalman
filter is presented in equation 1 where x; is the state at time &,
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it has a non-linear relation, f, with the state at time k — 1, x;_1,
the input at time k — 1, u4—; and the noise present at k — 1, wy_;.

X = f(x-1, Up—1, Wi—1) (1)

In equation 2 the observation z; at time £ is also a non-linear
function £ of the state at time k and the noise v at time k.

2 = h(xg, i) (2)

The equation 3 represents how the estimated observation Zx
is calculated. This is also equation 2 where the noise is substi-
tuted by its mean value.

% = h(%, 0) 3

The equations 4, 5, 6 and 7 are the linearization of f and h
with respect to the x, u, w and v.

lij] = %(fm,uk,o) 4)
Hyi j = gil—:jﬂ(ik,O) 5)
Wiy = :%Ilj](ik—ls ug, 0) (6)
Viij = gf:;i (%, 0) %)

In the equation 8, %, is the state update from ;. This re-
sults from equation 1 where the noise is substituted by its mean
value.

X = f(Rk-1, -1, 0) (®)

The equation 9 presents the covariance state update, P
where the Qy_; is the covariance of wy_;.

P, = A P AL+ Wil Qe W ©®

Considering the R_; is the covariance of observation noise
(vk-1), equation 10 presents the estimated Kalman gain (Kj).

Ki = P H (H Py H! + Vi (R V)™ (10)

In equation 11, X, presents the updated state estimate,
whereas equation 12 presents the updated covariance estimate,
Py With z; equals to the measures provided by the sensors.

X = X + Kz — h(%;, 0) an

Py = (I - KeH)Py, 12)

A 4

Fig. 5. Robot and reflector.
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Assuming that the robot can detect up to L,,, reflectors,
equation 13 represents a set of pairs distance (r') and angle (¢')
measured for each reflector. This setup is presented in figure 5.

{7 = (rl o) ¢k si € [1, L]} (13)

Equation 14 represent the robot pose (X;) while in equation
15 uy; represent the input signals: Adj is the linear movement
from the last sample and A6 is the angular displacement from
last sample. These values are estimated by the odometry sys-
tem.

Xy
Xe= |y (14)
Ok
[ Ady
U = [Aek] (15)

The equation 16 is the non-linear function used for the robot
motion estimation.

X; + Adjcos (Hk + %)
f(Xk, u) = Yk + Adjsin (9k + %) (16)
O + AG;

From equation 4, the A; matrix is presented in equation 17.

1 0 —Adysin (ek + %)
Ac={01 Adicos (6, + %) (17)
00 1

From equation 6, the W, matrix is presented in equation 18.

cos (9k + %) —1Adysin (Hk + %)
Wi = | sin (6 +5%) LAdycos (6 + %) (18)
0 1

Equation 19 represents the odometry covariance, Q.

2.0
w38 w

Each pair of reflector measurement (distance ' and angle )
with additive noise, N(0, Ry) of average 0 and covariance Ry, is
presented in equation 20 and equation 21.

[ 2] = h(M'. X,) + NO.Ry) (20)

o 0
T

Equation 22 presents the non-linear function for each reflec-
tor observation where M' = (x',y') are the coordinates of the
reflector.

h (M", Xk) =

\/(xi - xk)2 +( - )7/()2 } (22)

atan? (yi -V, X = xk) — 6

From equation 5, the H; matrix is presented in equation 23.

i

_ - _ Y v 0
i ) (viev, ) i )4 (viev, )
P R R G S

N e SN v

4.2. Innovative Extended Kalman Filter approach

When using an extended Kalman Filter, there are some cases
where the estimated state obtained in the prediction phase is
quite wrong. Once in the correction phase, the linearization of
the equations is calculated in the estimated state from the pre-
diction phase, it happens that there is a wrong calculation of
this linearization which can take to the filter to diverge. With
a very short cycle period and observations in almost every cy-
cle, the state will not be not so different from cycle to cycle.
The innovative approach is to perform the linearization using
the last estimate when there was a fusion with the observations
instead of making the linearization around the intermediate es-
timate obtained in the prediction phase.
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A concrete example of this situation is the case of a mo-
bile robot where the odometry is usually reliable, but in certain
unpredictable cases, one (or both) robot wheels slides caus-
ing an estimate based on the equation of motion (prediction
phase) wrong. Even with low slippage values, this occurrence
can cause a divergence in the Kalman filter estimate. In this
paper, this situation is exemplified with a differential traction
robot using at the beginning simulations and after that a real
robot, showing its greater robustness without significantly af-
fecting the estimate of the robot’s pose in normal situations.
The innovative approach will be stressed in slippage contitions
and results will be presented in sext section.

5. Results

In order to validate the proposed innovative Kalman filter
adaptation, two experiments were done on simulation environ-
ment and three on the real mobile robot, as early presented.
The presented section is splitted according to these experiments
methods. Emphasizing the slippage on wheels, both experi-
ments address the same tests without and with the proposed
filter. On the conducted experiments, the state of the robot (x,
y and ) were acquired and the robot angle 6, where the ad-
vantage of the new approach is more clear, is presented. All
the following graphics, green line presents the real angle of the
robot (provided by simulator on simulation and provided by the
Optitrack ground truth system on the real robot experiments)
whereas the gray line presents the estimated angle as the output
of the Kalman filter (sensor fusion).

5.1. Simulation Results

At the simulation environment, is was carried out three ex-
periments. The first one was designed without any slippage and
with the standard Kalman Filter. The beacons are placed on po-
sitions [x y]: [-0.27 0.4], [0.27 0.4] e [0.27 -0.4]. For the first
simulation test, the robot starts at position [x y 8]=[-0.27 0 -71/2]
and the target position is [0 0 0].

As it can be seen in figure 6, both lines are coincident that
means the Kalman filter is computing correctly.

The second simulation experiment shows that when there is
a slippage on a wheel, a standard Kalman filter approach will
diverge (as presented in Figure 7).

Finally, yet on simulation environment, the proposed
Kalman filter innovative approach shows that for the same con-
ditions the Kalman filter results on a convergence.

By this way, it is promising the use of the proposed Kalman
filter adaptation. Nevertheless, some similar experiments will
be done with the real robot and will be addressed in next sub-
section.

5.2. Real Robot Results

The real robot was stressed with three different experiments,
and each one without and with the proposed Kalman filter adap-
tation in order to validate it. First experiment apparatus was

Simulation: Angle without slippage movement

0
0.
0.
0
1
1

Th est —Theta

Fig. 6. Rotational movement with standard Kalman Filter estimation without
slippage.

Simulation: Angle for the classical filter with slippage

Theta (rad)

Th_est Thets

Fig. 7. Rotational movement with standard Kalman Filter estimation with slip-
page.

Simulation: angle for the proposed filter with slippage

me (s)

Th est emmTheta

Fig. 8. Rotational movement with proposed Kalman Filter estimation with slip-
page.

based on keeping the robot still while suspended (this means
the wheels rotate, like a trick to the filter). As stated in Figure 9,



518 A. Paulo Moreira et al. / Procedia Manufacturing 51 (2020) 512-519

the ground truth shows the root angle zero while the estimated
angle is turning.

Real robotexperience 1: Robot suspended

Thoest Theta

Fig. 9. Real robot suspended, without proposed filter.

The same experiment was conducted, but with the proposed
Kalman Filter adaptation. This case is presented in Figure 10
that shows the Kalman filter is converging to the real state of
the robot.

Real Robot experience 1: Robot suspended with proposed filter

e (rad)

Angl

Time (s)

Th est Theta

Fig. 10. Real robot suspended, with the proposed filter.

The second experiment condition is to make a linear move-
ment to the robot. But in this case, one of the wheels will be
removed the friction arc (that allow the wheel to hold the floor
avoiding the slippage). In this case, presented in Figure 11, the
output of the Kalman Filter will diverge.

When using the proposed approach, presented in Figure 12
is can be stated that the Kalman filter will converge to the real
localization (presented the angle).

Last conducted experiment, experiment three, is presented
on figure 13, where it is desired to turn the robot approximately
one turn. In fact, without the proposed adaptation to the Kalman
Filter, there will be an error of about 0.5 rads.

Real Robot experiment 2: Linear motion with slippage

1 15

Angle (rad)

Thest ——Theta

Fig. 11. Real experiment 2; Linear motion with slippage, without proposed fil-
ter.

Real robot experiment 2: Linear motion with slippage, proposed filter

1 15

—Thera Thest

Fig. 12. Real experiment 2; Linear motion with slippage, with proposed filter.

Real Robot experiment 3: angular motion with slippage

Time (s)

Th est =——Thetz

Fig. 13. Real experiment 3; Rotational motion with slippage, without proposed
filter.
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According to figure 14 where the innovative approach is in-
troduced, the same experiment will tend the error to zero rads.

Real Robot Experiment 3: Angular motion with slippage, proposed filter

Fig. 14. Real experiment 3; Rotational motion with slippage, with proposed
filter.

As a final remark, in all situations the proposed innovative
Kalman filter adaptation will allow to converge the output even
with strange input data (such as the slippage).

6. Conclusions and Future Work

This paper presented a new approach for mobile robot local-
ization based on Extended Kalman Filter. The original Kalman
Filter approach is well-known to observe, predict and fuse dif-
ferent data but in circumstances of slippage it will easily di-
verge, even with AGVs that typically have good odometry. The
proposed solution was validated through simulation and using
a real mobile robot, developed for this purpose. It was shown
that the developed strategy is beneficial specially in the cases
of slippage. The methodology that was addressed in this paper
handles the error in odometry and thus can also be useful for
different situations, such as floor with irregularities, ramps or
wheels that are already worn out. At industry level this solution
can be adopted in the presence of floors with debris or dirt.

As future work direction, it is pointed out the implementa-
tion and validation of the proposed approach for different robots
types, such as tricycle and omnidirectional, among others.
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