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Abstract
The micromouse competition has been gaining prominence in the robotic atmosphere, due to the challenging and 
multidisciplinary characteristics provided by the teams’ duels, being a gateway for those who intend to deepen their 
studies in autonomous robotics. In this context, this paper presents a realistic micromouse simulator developed with 
Unity software, a widely game engine with dynamics and 3D development platform used. The developed simulator 
has hardware-in-the-loop capabilities, aims to be simple to use, it can be customizable, and designed to be as similar 
as possible to the real robot configurations. In this way, the proposed simulator requires few modifications to port the 
microcontroller code to a real robot. Therefore, the framework presented in this work allows the user to simulate the 
development of new algorithm strategies dedicated to competition and also hardware updates. The simulation supports 
several mazes, from previous competitions and has the possibility to add different mazes elaborated by the user. Thus, 
the features and functionality of the simulator can serve to accelerate the project’s development of the beginning and 
advanced competitors, using real models to reduce the gap between the mouse robot behavior in the simulation and 
the reality. The developed simulation environment is available to the community.

Keywords  Micromouse · Robotics competition · Mobile robot · Simulation · Unity

1  Introduction

Robotics competitions are an excellent way to encourage 
research and to attract students to technological areas. 
The robotics competitions present problems that can be 
used as a benchmark to evaluate and to compare the per-
formances of different approaches [1].

Adopting autonomous robots to explore unknown 
mazes can be fun and challenging, representing a unique 
tool to multidisciplinary and cognitive activity [2]. Simula-
tions with faithful models of robots, actuators and sensors 
are highly recommended to solve problems with mazes, 

reducing software or firmware development and debug-
ging time. A robust simulator for a micromouse can reduce 
the difficulty of the transition between simulation and real 
contest.

By this way, the micromouse challenge addresses 
a problem in mobile robots area. The competition is 
straightforward: to place the robot in the start square in 
the bottom left corner of the maze and let it find the cen-
tral goal square [3]. The mouse must be able to navigate, 
self-localize and map an unknown maze or environment. 
When the mapping is done, the robot must calculate and 
go through the best path to the goal in the lowest time 
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possible [4]. Each robot gets a total of 10 min for the com-
petition (exploration and find the best route), and when-
ever it returns to the start square a new run timer is started 
only its shortest run counts.

The micromouse competition begins in New York City 
[5] and, since then, competitors have developed their 
approaches and adapted the new rules. Initially, purely 
electromechanical systems were used, without any digi-
tized data or microprocessor. Over the years, technologi-
cal improvements and the mastery of advanced sensors 
and actuators combined with the use of microprocessors 
are essential requirements for a micromouse team, show-
ing a high level in these competitions. In this sense, 3D 
simulation environments with faithful models are gaining 
prominence.

Bearing in mind the competitors’ demand for a simu-
lator that brings together all the challenges and func-
tionality of a real robot, in a Hardware-in-the-loop (HIL) 
approach, the Unity platform was used to develop the 
3D micromouse simulator presented in this work. Unity 
is a real-time 3D development platform that consists of a 
rendering and physics engine as well as a graphical user 
interface called the Unity Editor [6]. The platform’s focus on 
the development of general-purpose mechanisms, with 
mechanisms that enable the creation and representation 
of complex 3D models. That is helpful to simulate robot 
applications with sensors and actuators, dynamic and 
physical characteristics, with easy distribution and flex-
ible control and communication systems. The framework 
can run on different platforms such as Windows, Linux, or 
macOS. Regarding all aspects, the software Unity may be 
ideal for the development of micromouse 3D simulator.

Despite being widespread worldwide, micromouse 
competition presents some obstacles for new competi-
tors and enthusiasts, not having a official simulator that 
represents 3D components, representations of dynamic 
models, and sensors for localization besides the possibility 
of applying these features in different mazes. In this sense, 
it becomes complex to implement codes and strategies 
that can be reproduced in real environments, resulting in 
a delay in real implementation due to errors that cannot 
be detected only in 2D simulators.

This work aims to develop a micromouse simulator in 
Unity, to enhance the experience of competing teams in 
the micromouse. The simulator has all the requirements 
and features necessary for a quick transition to the real 
robot. The proposed simulator is based on HIL approach 
through serial communication with a real microcontroller. 
Thus, the simulation shows the strategy performance 
inserted by the competitors respecting the microcontroller 
constraints used. Besides, a typical robot model and the 
floodfill algorithm are available as an example to help 
beginners. The template robot is inspired by competition, 

with DC motors and encoders for odometry, distance sen-
sors for wall detection, and a library that provides trans-
parent and compatible access for development on the 
Arduino platform.

The simulator was developed for the Windows platform 
and is open-source. It is available at the repository [7]. The 
repository contains the source code, a built scene and the 
Arduino library that interfaces with the microcontroller.

This work is an extended version of the paper “A Micro-
mouse Scanning and Planning Algorithm based on Modi-
fied Floodfill Methodology with Optimization” [8]. The 
previous work proposed a modification to the floodfill 
algorithm tested only in a 2D simulator comparing the 
path efficiency with the original algorithm applied in the 
competition. In this work, the algorithm proposed in [8] 
was tested in the 3D simulation environment presented in 
this paper in hardware-in-the-loop mode, therefore con-
sidering robot dynamics and scenario friction.

This paper is organized as follows. After an introduc-
tion in Sect. 1, the state of the art is presented in Sect. 2 
with a review about micromouse simulators. In Sect. 3, the 
software Unity and its tools are described. Next, in Sect. 4, 
the details about fundamental parameters are specified, 
and Sect. 5 demonstrates a run with the robot model avail-
able to beginners, guided by the exploration algorithm 
proposed in Sect. 6. The obtained results are presented 
in Sect. 7. Finally, Sect. 8 concludes the paper and points 
some future work direction.

2 � State of the art: review of micromouse 
simulators

Over time, simulation has been playing an increasingly 
important role in robotics. With the use of simulators, more 
development and testing can be explored without increas-
ing the costs, giving the possibility to identify the optimal 
procedures [10].

Regarding the micromouse, there are two types of 
simulators: 2D simulators and 3D simulators. 2D simula-
tors are used to test search algorithms and path planning 
procedures. These simulators are not concerned with the 
sensors or with the control of the robots. Typically, the 
simulators show the labyrinth in 2D, with the walls and 
the robot path performed. Algorithm verification works 
are more suitable for simulators rather than an actual 
maze, thus a lot of time could be saved [11]. They have 
great advantages; faster and easier to set up, allowing 
to quickly use multiple mazes. How the effectiveness of 
the search algorithms varies between different types of 
mazes simulators should be studied. As an example of 
these simulators, there is mms [12] that has the possibil-
ity of being used with any coding language. Micromouse 



Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7	 Research Article

Maze Simulator [13] acts as a server, so any client can 
connect to it and send requests to read walls and log the 
current exploration state.

3D simulators are already able to offer other advan-
tages, such as robot control, dynamics, the inclusion of 
sensors and images more similar to the real ones. The 
simulators can handle all the electrical and physical 
characteristics, for example, the skidding of the wheels, 
something that is very important in this competition. 
Within these categories, the Virtual 3D micromouse [14] 
has real mechanical and electrical characteristics similar 
to the real micromouse, and users can modify the size of 
3D micromouse, infrared properties, and motor speed. 
In other words, it is possible to configure the properties 
of the infrared sensor and also to change engine charac-
teristics. In [15], a Hardware-in-the-loop simulator tool is 
presented where the simulated robot is controlled by the 
same microcontroller used by the robot. In this way, the 
developed algorithms are tested and validated with the 
limitations and constraints presented in the real hard-
ware, such as memory and processing capabilities. The 
robot dynamics, the slippage of the wheels, the friction, 
and the 3D visualization are present in the simulator.

The simulators have reached a level of maturity that 
is almost not necessary to have a real maze to prepare a 
team.

3 � Unity overview

The Unity is a framework for generating applications with 
3D scenarios with dynamics, that are supported by several 
platforms such as WebGL, Windows, Mac and Linux dis-
tributions [16]. Beyond its dynamics, this framework was 
chosen since it provides an interactive editor with scripts, 
control and editing sections as presented in Fig. 1. It also 
generates standalone applications that can be executed 
without any development tools and allow access to hard-
ware, as a main requirement for the proposed scenario.

3.1 � Physics engine

Unity utilizes NVIDIA’s open-source PhysX engine for 
physics simulation [17]. Amongst other functionality, the 
engine allows for 3D rigid body simulation. There are two 
essential components for a physics simulation: colliders 
and rigid bodies.

Fig. 1   The Unity Editor where the highlighted and labeled win-
dows have the following role: 1  The hierarchy window shows all 
GameObjects present in the Scene. They may be independent or 
exist as a child object, which indicates that their position and rota-
tion are linked to their parent’s; 2  The Scene View allows for view-
ing and editing of the scene; 3  The project view contains all assets 

present in the projects. Amongst other things, game assets consist 
of all scripts, materials, audio files, configuration files and prefabs, 
which are pre-built GameObjects; 4  The inspector window 
shows the properties of a selected GameObject. It can be used to 
see and modify its parameters [9]
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Colliders specify the object shape for the purposes 
of the physics simulation that handle the collisions with 
other objects or with themselves. Rigid Body compo-
nent defines physical aspects of the game object, such 
as its mass and drag. The physics engine will only move 
objects that have a rigid body component attached.

It is possible to query the physics engine for infor-
mation using the Unity physics scripting Application 
Programming Interface (API) [18]. For the micromouse 
simulator, the most relevant information that the phys-
ics engine provides is the position and speed of any 
GameObject and the result of performing a ray cast 
operation that determines with which objects a ray, 
with a given origin and direction, collides. These pieces 
of information are what makes the implementation of 
the encoders and time-of-flight (ToF) sensors possible.

The physics engine also responds to force and torque 
inputs. This is essential for implementing motor actua-
tors. A joint system allows for connections between 
rigid bodies. There are many kinds of joints available, 
but the one used in this simulation is the Hinge Joints, 
which constrain movement in all degrees of freedom, 
except for one rotational axis. These are used to attach 
the wheels to the robot’s body [19]. The model of the 
robot was built on the simulation environment with 
the same dimensions, parts and mass as the real one. A 
comparison focused on the dynamics between the real 
robot and the simulated one will be addressed further.

4 � Simulation software: features

As mentioned before, the simulator includes represen-
tation of a real micromouse robot to help beginners. Its 
physical properties, sensor and actuator characteristics 
have predefined values, which may be edited in the Unity 
Simulator’s Inspector window. Figure 2 presents the Uni-
fied Modeling Language (UML) class diagram for the sen-
sors and actuators. All attributes represent specification 
parameters that can be customized by the users.

4.1 � Hardware in the loop system

The Simulator has the ability to communicate with a 
microcontroller through the serial port. Figure 3 presents 
the hardware-in-the-loop architecture, in which the devel-
oped simulator is prepared to support. The microcontroller 
can be the same that will be embedded in the real robot. 
It is responsible for analyzing the data from the distance 
sensors and encoder, updating the location, and making 
decisions according to each team’s path planning algo-
rithm. Consequently, the microcontroller will assign a volt-
age level that will be applied to the robot’s DC motors, 
resulting in the direction and speed applied to the robot, 
that is, the movement.

The simulator abstracts and represents the robot’s 
model, the characteristics of the motor DC, the distance 
values obtained by each sensor embedded in the simu-
lated robot, and the information from the encoders to 
contribute to the location system. Besides, it also has 
several mazes to test the algorithms implemented in the 

Fig. 2   The UML class diagram for the for the sensors and actuators. The concrete component definitions derive from abstract classes that 
define common properties and behaviours
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microcontroller for different scenarios. This feature that the 
developed simulator presents can accelerate prototypes 
for the micromouse competition, being a good method-
ology to develop and validate the strategies due to the 

speed of development and cost before migrating the tests 
to the real robot.

4.2 � Real and simulation robot characteristics

The robot model provided has two DC motors, wheel 
encoders and three ToF distance sensors. The simulated 
robot dimensions is approximate to the real robot, shown 
in Table 1. The real robot (show in Fig. 4a), developed by 
Eckert [20] weighs approximately 157 g , with batteries 
included. In the simulated model, the body weighs 127 g , 
and both side wheels and the caster weigh 10 geach.

In the simulation, the robot body has a box shape, with 
dimensions 96 cm × 120 cm × 2 cm . All three distance sen-
sors are placed at the frontal side: one of them is centered, 
facing forward, and the other two are placed in at the left 

Fig. 3   System architecture of the hardware in the loop system

Table 1   Physical dimensions of the real robot (from [20]) and its 
simulated model

Parameter Real robot Simulation 
model (m)

Width 0.096 m 0.096
Length 0.120 m 0.120
Height Unspecified 0.02
Wheel diameter 0.032 m 0.032
Wheel thickness 0.008 m 0.008

Fig. 4   Visual comparison between the real robot and the simulated robot applied to the micromouse competition
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and right corners, facing the diagonals at 45◦ . Therefore, 
the simulated robot is displayed in Fig. 4b.

4.3 � Sensors and actuators

The simulator has implementations of incremental encod-
ers, ToF sensors and DC motors. Each sensor and actua-
tor is implemented as a MonoBehaviour script and 
should be attached to the rigid body that they depend on 
(respecting the hierarchy).

4.3.1 � DC motor

The developed robot is equipped with two DC motors 
coupled with gear motor. The modelled DC Motor can be 
described in next equations, where i is the armature cur-
rent, R is the armature resistance, L is the inductance and 
Vb is the counter-electromotive force [21].

The motor applies torque (T) to the robot wheel’s, dictated 
by the relation expressed in Eq. 2. It depends on the motor 
constant Kt and the armature current. To calculate the 
current (it) flowing through the motor armature at each 
discrete time-step, defined by �t , a first-order backward 
difference model is used, resulting in Eq. 3. The current 
depends on the torque constant Kt , resistance R, applied 
voltage V wheel angular speed � and the current at the 
previous time-step it−1 . The motor constant and resistance 
are calculated with Eqs. 4 and 5, using the values for the 
motor rated voltage Vrated , stall torque Tstall and stall current 
istall , which can be provided in the component’s datasheet 
or measured empirically. The wheel speed is reported by 
the physics engine and the applied voltage depends on 
the user’s input.

The simulation model in the simulator takes 11-bit signed 
integer as a control parameter. The sign bit indicates the 
movement direction and the other 10 bits represent how 

(1)V = Ri + L
di

dt
+ Vb

(2)T =Kti

(3)it =
V − Kt� +

L

�t
it−1

R +
L

�t

(4)Kt =
Tstall

istall

(5)R =
Vrated

istall

much voltage from the battery should be applied to the 
armature (such as a PWM).

4.3.2 � Incremental encoder

The incremental encoder measures the pulses according 
to the wheels’ change in angle. The number of pulses in 
one wheel revolution is set through the Pulses Per Revo-
lution (PPR) parameter. The change in angle at each time-
step is given by Eq. 6. The pulses are calculated by Eq. 7, 
which takes into account the change in angle and the 
encoders’ characteristics [22].

4.3.3 � Time‑of‑flight distance sensors

The ToF distance sensors measures how much time a beam 
takes to bounce off of an obstacle and goes back to the 
sensor [23]. If an object is too far away, or the reflected 
beam doesn’t go back to the sensor, the sensor will time-
out, and the reported reading value will be invalid. The 
sensor model has the following configurable parameters: 
minimum distance, which indicates the sensor’s blind spot; 
range, which means the maximum measurement range; 
and coefficient of variance, which sets the intensity of the 
Gaussian noise added to the measurement.

The distance sensors query the physics engine for a 
ray cast operation, starting at their current position and 
towards their heading direction. The returned value is 
equivalent to an ideal measurement. The measurement is 
processed before it is sent to the microcontroller. Firstly, 
it is clamped between the minimum operation distance 
and the measurement itself. Then, Gaussian noise is added, 
according to the coefficient of variance parameter. And 
lastly, the result is clamped between 0 and the sensor 
range.

4.4 � Supported maze files

Maze files are generated from a human-readable maze 
description text file, located in ./StreamingAssets/Mazes/
maze.txt, relative to the simulator folder. The accepted file 
format uses the “o” character to represent posts, which are 
required at the corners of every maze cell. Horizontal and 
vertical walls are represented by the “– -” and “|” character 
strings, respectively. A database of such files is maintained 
on micromouseonline’s repository [24].

(6)�� =��t

(7)�Pulses =
��

2�
× PPR
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4.5 � Serial communication protocol

The communication between the microcontroller and 
simulator is established via the serial port, using the 8N1 (8 
data bits, no parity bit, one stop bit) configuration setting 
[25]. Figure 5 shows a packet of data transmitted with the 
8N1 setting. The actual data bits have labels “2” through 
“9”, while the start and stop bits are labeled “1” and “10” 
respectively.

In this setting, there are 2 bits of overhead for every 8 
bits of data. Effectively 10 bits are transmitted for every 
byte of data. The simulator listens for actuator commands 
through the serial port. It expects one byte for the actua-
tor ID, followed by however many data bytes that actuator 
is configured to receive. Besides the actuator ID, the DC 
motors support 11-bit commands, which are transmitted 
over two bytes. Therefore, sending a voltage command to 
a DC motor takes 3 bytes.

Every new measurement performed by a sensor will be 
transmitted through the serial port. The simulator sends 
one byte with the sensor ID, followed by the sensor meas-
urement data. The encoders send 4 bytes of data, while 
the distance sensors send 2 bytes of data. The time it takes 
to transmit one byte of data is summarized in Table 2, for 
some standard baud rates.

As the robot consists of the integration of several 
devices, Table 3 lists the number of bytes needed for each 
of these devices to send data and time transmission.

5 � Using the simulator

There are three elements to the user interface, demon-
strated by Figure 6. There is the “Toggle post” button, at 
the lower-right corner of the screen. It toggles whether the 
maze has a post at its center. In micromouse competitions, 
it is usually up to the competitor to have placed or not.

In the upper-left corner, there are two timers. The first 
one is the global timer, which tracks how much time has 
passed since the robot left the starting area for the first 
time. The second is the “lap timer”, which tracks how 
much time has passed since the robot started the cur-
rent run towards the maze. The “lap timer” stops when 
the robot reaches the goal, and resets when the robot 
returns to the starting position. After the 10-min mark, 
the timers will turn red, indicating that the allocated 
time for the competitor has run out.

Two text fields and a “Connect” button are placed in 
the upper-right corner of the screen. The text fields are 
used to set the configuration parameters of the serial 
communication. One text field sets the port name and 
the other sets the baud rate. Once they are set, confirm 
by pressing the “Connect” button. Once the connection 
has been established, the simulator will listen to com-
mands sent through the serial port. The first command 
should be requestEnableSensors, which enables 
serial output containing sensor readings. The referred 
command is defined in the provided Arduino libraries, 
along with the DC motor commands and sensor reading 
commands.

The user may also change the camera position, to 
observe the robot from different perspectives. Three cam-
eras are available, static birdview (Fig. 6), following the 
robot, as Fig. 7, and close-up view, as Fig. 8.

Fig. 5   Timing diagram for the 8N1 serial communication setting

Table 2   The time it takes to 
transmit a byte of data with 
the 8N1 protocol (8 bits of 
data, 2 bits of overhead)

Baud rate Time per 
byte of data 
( μs)

9600 1042
115,200 86.81
12,000,000 0.8333

Table 3   The time it takes to transmit data for every robot compo-
nent (baud rate set to 115,200 bps)

Component No. of bytes Transmis-
sion time 
( μs)

DC motor 3 260.4
Distance sensor 3 260.4
Encoder 5 434.0

Fig. 6    1  Global (top) and current lap (bottom) timers; 2  Serial 
port configuration; 3  Center- maze post toggling
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An Arduino-compatible library provides a set of 
classes to interact with the simulator. Two classes, 
namely the sensor manager and the actuator manager, 
that handle receiving and sending serial data, respec-
tively. There is also one class specifically for each robot 
component that is, motors, encoders and distance sen-
sors, which control all interactions with the robot and 
the environment. There are example sketches provided 
with the simulator, explained with comments in the 
code. A UML diagram shows the public API of the library 
on Fig. 9. Usage examples and documentation are pro-
vided as Arduino sketches.

The motors designed as GameObject , accepts 
voltage commands via the setVoltage parameters. 
It expects an 11-bit, signed integer value. The accu-
mulated encoder pulses are accessible by the .get-
Counts method, and accumulated total noise can be 
reset to zero with the .reset method. Besides, dis-
tance sensors (also based on GameObject) provide 
two pieces of information, through the .getReading 
method: the measured distance and whether a timeout 
has happened.

The simulator will only transmit sensors data after the 
sensors have been enabled. To do so, the user must call 
the requestEnableSensors method on the Sen-
sorManager object, after the serial port connection 
has been established.

Fig. 7   Camera 2 view (robot’s perspective). Emphasizes how 
smooth the robot trajectory is

Fig. 8   Camera 3 (top view). It makes it easier to see how distant the 
robot is from the walls

Fig. 9   The UML class diagram for the Arduino library that provides the interface between the hardware and the simulator
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6 � The floodfill algorithm

In any given moment, the robot’s position is defined by a 
its configuration c. In the traditional Floodfill algorithm, 
the configuration is given by the (x, y) position of the cell 
it is currently in.

For every configuration, it is considered that the robot 
can reach another set of configurations. The set of con-
figurations that (x, y) can reach is (x ± 1, y) or (x, y ± 1) , as 
long as there are no walls blocking. That means the robot 
can only move north, south, east or west.

The algorithm assigns a given cost to each configura-
tion. The cost represents the lowest cost of all sequence 
of actions that will take the robot from that particular 
configuration to a goal configuration. For instance, If the 
robot has to move north, east, then move north again, 
the cost will be 3.

After reaching the goal cells at the center of the maze, 
the cost assigned to configuration (0, 0) will indicate the 
shortest path the robot has found, according to a metric 
in which moving to any adjacent cell has the same cost. 
It doesn’t take into account the robot’s rotation time, a 
feature added to the new modified algorithm.

6.1 � The modified algorithm

In the modified Floodfill algorithm, the configuration is 
defined to also include the rotation of the robot: besides 
the cell position (x, y), it also has a rotation state, which 
may be north, south, east or west. This representation 
is closely related to the movement of the robot we 
will develop. The algorithm 1 presents the developed 
approach that takes into account the rotations to find 
the best way to solve the micromouse mazes.

There is a set of configurations that the robot may 
reach from it’s current configuration. It may rotate clock-
wise, counter clockwise and, if there isn’t a wall it may 
also move forward. This is the set S1(c).

For example, assuming that the robot is in configura-
tion c = (1, 1, East) and there isn’t a wall in front of it. In 
this case, set S1(c) contains three other configurations: 
two of them are reached by rotating 90◦ clockwise or 
counterclockwise, namely (1, 1, North) and (1, 1, South). 
The other one is (1, 2, East), reached by moving forward.

Similarly, there is a set of configurations that may 
reach the current configuration. This is set S2(c) . Consid-
ering the previous example, the set S2(c) would contain 
(1, 1, North) and (1, 1, South). They may reach (1, 1, East) 
by rotating clockwise and counterclockwise, respec-
tively. S2(c) would also contain (0, 1, East), except if there 
is a wall blocking this path.

Consider the set of all goal configurations G. This will 
be the starting point of the algorithm. Configurations in 
G will be assigned cost 0 and will be used as a baseline for 
the cost assigned to all other configurations.

There is a First-in First-out queue Q, which stores con-
figurations. Every configuration added to this queue will 
be processed in the same order they were added.

The set P of configurations have already been added 
to Q. This exists in order to assure that each configuration 
is added to the queue Q only once, and thus only once 
processed.

At each iteration, the algorithm processes a configura-
tion c from the queue Q. This means that c will have a cost 
assigned, which is equal to the lowest cost of the configu-
rations in S1(c) plus one. Also, every configuration in S2(c) 
that hasn’t been already added to P will be added to Q, so 
it will be processed later on. This ensures that all accessi-
ble configurations will be processed at some point during 
execution.

The drawback of this modification is that there are four 
times more possible configurations and thus, more mem-
ory requirements.

7 � Results

After the development of the simulation scenario based 
on the Unity platform, it is necessary to test the proposed 
models. In this way, the experiment intends to observe 
the micromouse simulator’s performance as a whole, that 
is, to analyze the algorithm and robot templates, as well 
as the communication for HIL’s execution. Thus, mazes 
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from previous competitions can serve as an alternative to 
compare the proposed simulator’s results. In this sense, 
Tables 4 and 5 show the performance of the simulated 
micromouse for the mazes used in All Japan’s micromouse 
event held in 2018 and 2019, using the described modified 
floodfill algorithm for exploration. Each lap starts when 
the robot leaves the starting position, and ends when it 
reaches one of the central positions.

A video [26] shows the robot performing the first run on 
All Japan’s 2018 maze. Firstly, it sets the central maze cells 
as its goal. As the robot makes it to the center, it assigns 
the maze’s starting position as the goal. By returning to the 
starting point, the robot may start it’s next run.

After each run, the robot explores more parts of the 
maze until, eventually, the algorithm will have found 
what it considers to be the best path. At this point, the run 
time won’t be significant changed, as it will always move 
through the same maze cells.

8 � Conclusions and future work

The presented paper addressed a simulator environ-
ment with dynamics, based on Unity, to apply on the 
micromouse competition. The sensors and actuators are 
modelled and embedded in the simulator. Although, it is 
possible to change and modify the environment since it 
is available for free. Users can try it developing and test-
ing their own algorithms or adjust the floodfill suggested 
one. The proposed simulator allows using the hardware-
in-the-loop methodology to detect limitations of the real 
microcontroller and hardware capabilities. The presented 
results show that the developed and available simulator is 

an interesting solution to implement and test algorithms 
without the maze. As future work, it can be pointed out 
some points that could be addressed further, such as 
the model of sensors and motors accuracy as well as the 
dynamics of the simulated robot improvement, other algo-
rithms and its comparison.
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