
Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7

Research Article

Micromouse 3D simulator with dynamics capability: a Unity
environment approach

Pedro V. F. Zawadniak1,3  · Luis Piardi1 · Thadeu Brito1 · José Lima1,2 · Pedro Costa2 · André L. R. Monteiro3  ·
Paulo Costa2 · Ana I. Pereira1 

Received: 2 August 2020 / Accepted: 18 January 2021 / Published online: 2 February 2021
© The Author(s) 2021   OPEN

Abstract
The micromouse competition has been gaining prominence in the robotic atmosphere, due to the challenging and
multidisciplinary characteristics provided by the teams’ duels, being a gateway for those who intend to deepen their
studies in autonomous robotics. In this context, this paper presents a realistic micromouse simulator developed with
Unity software, a widely game engine with dynamics and 3D development platform used. The developed simulator
has hardware-in-the-loop capabilities, aims to be simple to use, it can be customizable, and designed to be as similar
as possible to the real robot configurations. In this way, the proposed simulator requires few modifications to port the
microcontroller code to a real robot. Therefore, the framework presented in this work allows the user to simulate the
development of new algorithm strategies dedicated to competition and also hardware updates. The simulation supports
several mazes, from previous competitions and has the possibility to add different mazes elaborated by the user. Thus,
the features and functionality of the simulator can serve to accelerate the project’s development of the beginning and
advanced competitors, using real models to reduce the gap between the mouse robot behavior in the simulation and
the reality. The developed simulation environment is available to the community.

Keywords  Micromouse · Robotics competition · Mobile robot · Simulation · Unity

1  Introduction

Robotics competitions are an excellent way to encourage
research and to attract students to technological areas.
The robotics competitions present problems that can be
used as a benchmark to evaluate and to compare the per-
formances of different approaches [1].

Adopting autonomous robots to explore unknown
mazes can be fun and challenging, representing a unique
tool to multidisciplinary and cognitive activity [2]. Simula-
tions with faithful models of robots, actuators and sensors
are highly recommended to solve problems with mazes,

reducing software or firmware development and debug-
ging time. A robust simulator for a micromouse can reduce
the difficulty of the transition between simulation and real
contest.

By this way, the micromouse challenge addresses
a problem in mobile robots area. The competition is
straightforward: to place the robot in the start square in
the bottom left corner of the maze and let it find the cen-
tral goal square [3]. The mouse must be able to navigate,
self-localize and map an unknown maze or environment.
When the mapping is done, the robot must calculate and
go through the best path to the goal in the lowest time

 *  Pedro V. F. Zawadniak, fzpedro@outlook.com; Luis Piardi, piardi@ipb.pt; Thadeu Brito, brito@ipb.pt; José Lima, jllima@ipb.pt;
Pedro Costa, pedrogc@fe.up.pt; André L. R. Monteiro, almonteiro@utfpr.edu.br; Paulo Costa, paco@fe.up.pt; Ana I. Pereira, apereira@ipb.pt
| 1Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Bragança, Portugal. 2Centre
for Robotics in Industry and Intelligent Systems ‑ INESC TEC, Faculty of Engineering of University of Porto (FEUP), Porto, Portugal. 3Federal
University of Technology - Paraná, Campo Mourão, Brazil.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-021-04239-7&domain=pdf
http://orcid.org/0000-0002-2685-4712
http://orcid.org/0000-0003-3476-2831
http://orcid.org/0000-0003-3803-2043

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7

possible [4]. Each robot gets a total of 10 min for the com-
petition (exploration and find the best route), and when-
ever it returns to the start square a new run timer is started
only its shortest run counts.

The micromouse competition begins in New York City
[5] and, since then, competitors have developed their
approaches and adapted the new rules. Initially, purely
electromechanical systems were used, without any digi-
tized data or microprocessor. Over the years, technologi-
cal improvements and the mastery of advanced sensors
and actuators combined with the use of microprocessors
are essential requirements for a micromouse team, show-
ing a high level in these competitions. In this sense, 3D
simulation environments with faithful models are gaining
prominence.

Bearing in mind the competitors’ demand for a simu-
lator that brings together all the challenges and func-
tionality of a real robot, in a Hardware-in-the-loop (HIL)
approach, the Unity platform was used to develop the
3D micromouse simulator presented in this work. Unity
is a real-time 3D development platform that consists of a
rendering and physics engine as well as a graphical user
interface called the Unity Editor [6]. The platform’s focus on
the development of general-purpose mechanisms, with
mechanisms that enable the creation and representation
of complex 3D models. That is helpful to simulate robot
applications with sensors and actuators, dynamic and
physical characteristics, with easy distribution and flex-
ible control and communication systems. The framework
can run on different platforms such as Windows, Linux, or
macOS. Regarding all aspects, the software Unity may be
ideal for the development of micromouse 3D simulator.

Despite being widespread worldwide, micromouse
competition presents some obstacles for new competi-
tors and enthusiasts, not having a official simulator that
represents 3D components, representations of dynamic
models, and sensors for localization besides the possibility
of applying these features in different mazes. In this sense,
it becomes complex to implement codes and strategies
that can be reproduced in real environments, resulting in
a delay in real implementation due to errors that cannot
be detected only in 2D simulators.

This work aims to develop a micromouse simulator in
Unity, to enhance the experience of competing teams in
the micromouse. The simulator has all the requirements
and features necessary for a quick transition to the real
robot. The proposed simulator is based on HIL approach
through serial communication with a real microcontroller.
Thus, the simulation shows the strategy performance
inserted by the competitors respecting the microcontroller
constraints used. Besides, a typical robot model and the
floodfill algorithm are available as an example to help
beginners. The template robot is inspired by competition,

with DC motors and encoders for odometry, distance sen-
sors for wall detection, and a library that provides trans-
parent and compatible access for development on the
Arduino platform.

The simulator was developed for the Windows platform
and is open-source. It is available at the repository [7]. The
repository contains the source code, a built scene and the
Arduino library that interfaces with the microcontroller.

This work is an extended version of the paper “A Micro-
mouse Scanning and Planning Algorithm based on Modi-
fied Floodfill Methodology with Optimization” [8]. The
previous work proposed a modification to the floodfill
algorithm tested only in a 2D simulator comparing the
path efficiency with the original algorithm applied in the
competition. In this work, the algorithm proposed in [8]
was tested in the 3D simulation environment presented in
this paper in hardware-in-the-loop mode, therefore con-
sidering robot dynamics and scenario friction.

This paper is organized as follows. After an introduc-
tion in Sect. 1, the state of the art is presented in Sect. 2
with a review about micromouse simulators. In Sect. 3, the
software Unity and its tools are described. Next, in Sect. 4,
the details about fundamental parameters are specified,
and Sect. 5 demonstrates a run with the robot model avail-
able to beginners, guided by the exploration algorithm
proposed in Sect. 6. The obtained results are presented
in Sect. 7. Finally, Sect. 8 concludes the paper and points
some future work direction.

2 � State of the art: review of micromouse
simulators

Over time, simulation has been playing an increasingly
important role in robotics. With the use of simulators, more
development and testing can be explored without increas-
ing the costs, giving the possibility to identify the optimal
procedures [10].

Regarding the micromouse, there are two types of
simulators: 2D simulators and 3D simulators. 2D simula-
tors are used to test search algorithms and path planning
procedures. These simulators are not concerned with the
sensors or with the control of the robots. Typically, the
simulators show the labyrinth in 2D, with the walls and
the robot path performed. Algorithm verification works
are more suitable for simulators rather than an actual
maze, thus a lot of time could be saved [11]. They have
great advantages; faster and easier to set up, allowing
to quickly use multiple mazes. How the effectiveness of
the search algorithms varies between different types of
mazes simulators should be studied. As an example of
these simulators, there is mms [12] that has the possibil-
ity of being used with any coding language. Micromouse

Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7	 Research Article

Maze Simulator [13] acts as a server, so any client can
connect to it and send requests to read walls and log the
current exploration state.

3D simulators are already able to offer other advan-
tages, such as robot control, dynamics, the inclusion of
sensors and images more similar to the real ones. The
simulators can handle all the electrical and physical
characteristics, for example, the skidding of the wheels,
something that is very important in this competition.
Within these categories, the Virtual 3D micromouse [14]
has real mechanical and electrical characteristics similar
to the real micromouse, and users can modify the size of
3D micromouse, infrared properties, and motor speed.
In other words, it is possible to configure the properties
of the infrared sensor and also to change engine charac-
teristics. In [15], a Hardware-in-the-loop simulator tool is
presented where the simulated robot is controlled by the
same microcontroller used by the robot. In this way, the
developed algorithms are tested and validated with the
limitations and constraints presented in the real hard-
ware, such as memory and processing capabilities. The
robot dynamics, the slippage of the wheels, the friction,
and the 3D visualization are present in the simulator.

The simulators have reached a level of maturity that
is almost not necessary to have a real maze to prepare a
team.

3 � Unity overview

The Unity is a framework for generating applications with
3D scenarios with dynamics, that are supported by several
platforms such as WebGL, Windows, Mac and Linux dis-
tributions [16]. Beyond its dynamics, this framework was
chosen since it provides an interactive editor with scripts,
control and editing sections as presented in Fig. 1. It also
generates standalone applications that can be executed
without any development tools and allow access to hard-
ware, as a main requirement for the proposed scenario.

3.1 � Physics engine

Unity utilizes NVIDIA’s open-source PhysX engine for
physics simulation [17]. Amongst other functionality, the
engine allows for 3D rigid body simulation. There are two
essential components for a physics simulation: colliders
and rigid bodies.

Fig. 1   The Unity Editor where the highlighted and labeled win-
dows have the following role: 1 The hierarchy window shows all
GameObjects present in the Scene. They may be independent or
exist as a child object, which indicates that their position and rota-
tion are linked to their parent’s; 2 The Scene View allows for view-
ing and editing of the scene; 3 The project view contains all assets

present in the projects. Amongst other things, game assets consist
of all scripts, materials, audio files, configuration files and prefabs,
which are pre-built GameObjects; 4 The inspector window
shows the properties of a selected GameObject. It can be used to
see and modify its parameters [9]

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7

Colliders specify the object shape for the purposes
of the physics simulation that handle the collisions with
other objects or with themselves. Rigid Body compo-
nent defines physical aspects of the game object, such
as its mass and drag. The physics engine will only move
objects that have a rigid body component attached.

It is possible to query the physics engine for infor-
mation using the Unity physics scripting Application
Programming Interface (API) [18]. For the micromouse
simulator, the most relevant information that the phys-
ics engine provides is the position and speed of any
GameObject and the result of performing a ray cast
operation that determines with which objects a ray,
with a given origin and direction, collides. These pieces
of information are what makes the implementation of
the encoders and time-of-flight (ToF) sensors possible.

The physics engine also responds to force and torque
inputs. This is essential for implementing motor actua-
tors. A joint system allows for connections between
rigid bodies. There are many kinds of joints available,
but the one used in this simulation is the Hinge Joints,
which constrain movement in all degrees of freedom,
except for one rotational axis. These are used to attach
the wheels to the robot’s body [19]. The model of the
robot was built on the simulation environment with
the same dimensions, parts and mass as the real one. A
comparison focused on the dynamics between the real
robot and the simulated one will be addressed further.

4 � Simulation software: features

As mentioned before, the simulator includes represen-
tation of a real micromouse robot to help beginners. Its
physical properties, sensor and actuator characteristics
have predefined values, which may be edited in the Unity
Simulator’s Inspector window. Figure 2 presents the Uni-
fied Modeling Language (UML) class diagram for the sen-
sors and actuators. All attributes represent specification
parameters that can be customized by the users.

4.1 � Hardware in the loop system

The Simulator has the ability to communicate with a
microcontroller through the serial port. Figure 3 presents
the hardware-in-the-loop architecture, in which the devel-
oped simulator is prepared to support. The microcontroller
can be the same that will be embedded in the real robot.
It is responsible for analyzing the data from the distance
sensors and encoder, updating the location, and making
decisions according to each team’s path planning algo-
rithm. Consequently, the microcontroller will assign a volt-
age level that will be applied to the robot’s DC motors,
resulting in the direction and speed applied to the robot,
that is, the movement.

The simulator abstracts and represents the robot’s
model, the characteristics of the motor DC, the distance
values obtained by each sensor embedded in the simu-
lated robot, and the information from the encoders to
contribute to the location system. Besides, it also has
several mazes to test the algorithms implemented in the

Fig. 2   The UML class diagram for the for the sensors and actuators. The concrete component definitions derive from abstract classes that
define common properties and behaviours

Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7	 Research Article

microcontroller for different scenarios. This feature that the
developed simulator presents can accelerate prototypes
for the micromouse competition, being a good method-
ology to develop and validate the strategies due to the

speed of development and cost before migrating the tests
to the real robot.

4.2 � Real and simulation robot characteristics

The robot model provided has two DC motors, wheel
encoders and three ToF distance sensors. The simulated
robot dimensions is approximate to the real robot, shown
in Table 1. The real robot (show in Fig. 4a), developed by
Eckert [20] weighs approximately 157 g , with batteries
included. In the simulated model, the body weighs 127 g ,
and both side wheels and the caster weigh 10 geach.

In the simulation, the robot body has a box shape, with
dimensions 96 cm × 120 cm × 2 cm . All three distance sen-
sors are placed at the frontal side: one of them is centered,
facing forward, and the other two are placed in at the left

Fig. 3   System architecture of the hardware in the loop system

Table 1   Physical dimensions of the real robot (from [20]) and its
simulated model

Parameter Real robot Simulation
model (m)

Width 0.096 m 0.096
Length 0.120 m 0.120
Height Unspecified 0.02
Wheel diameter 0.032 m 0.032
Wheel thickness 0.008 m 0.008

Fig. 4   Visual comparison between the real robot and the simulated robot applied to the micromouse competition

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7

and right corners, facing the diagonals at 45◦ . Therefore,
the simulated robot is displayed in Fig. 4b.

4.3 � Sensors and actuators

The simulator has implementations of incremental encod-
ers, ToF sensors and DC motors. Each sensor and actua-
tor is implemented as a MonoBehaviour script and
should be attached to the rigid body that they depend on
(respecting the hierarchy).

4.3.1 � DC motor

The developed robot is equipped with two DC motors
coupled with gear motor. The modelled DC Motor can be
described in next equations, where i is the armature cur-
rent, R is the armature resistance, L is the inductance and
Vb is the counter-electromotive force [21].

The motor applies torque (T) to the robot wheel’s, dictated
by the relation expressed in Eq. 2. It depends on the motor
constant Kt and the armature current. To calculate the
current (it) flowing through the motor armature at each
discrete time-step, defined by �t , a first-order backward
difference model is used, resulting in Eq. 3. The current
depends on the torque constant Kt , resistance R, applied
voltage V wheel angular speed � and the current at the
previous time-step it−1 . The motor constant and resistance
are calculated with Eqs. 4 and 5, using the values for the
motor rated voltage Vrated , stall torque Tstall and stall current
istall , which can be provided in the component’s datasheet
or measured empirically. The wheel speed is reported by
the physics engine and the applied voltage depends on
the user’s input.

The simulation model in the simulator takes 11-bit signed
integer as a control parameter. The sign bit indicates the
movement direction and the other 10 bits represent how

(1)V = Ri + L
di

dt
+ Vb

(2)T =Kti

(3)it =
V − Kt� +

L

�t
it−1

R +
L

�t

(4)Kt =
Tstall

istall

(5)R =
Vrated

istall

much voltage from the battery should be applied to the
armature (such as a PWM).

4.3.2 � Incremental encoder

The incremental encoder measures the pulses according
to the wheels’ change in angle. The number of pulses in
one wheel revolution is set through the Pulses Per Revo-
lution (PPR) parameter. The change in angle at each time-
step is given by Eq. 6. The pulses are calculated by Eq. 7,
which takes into account the change in angle and the
encoders’ characteristics [22].

4.3.3 � Time‑of‑flight distance sensors

The ToF distance sensors measures how much time a beam
takes to bounce off of an obstacle and goes back to the
sensor [23]. If an object is too far away, or the reflected
beam doesn’t go back to the sensor, the sensor will time-
out, and the reported reading value will be invalid. The
sensor model has the following configurable parameters:
minimum distance, which indicates the sensor’s blind spot;
range, which means the maximum measurement range;
and coefficient of variance, which sets the intensity of the
Gaussian noise added to the measurement.

The distance sensors query the physics engine for a
ray cast operation, starting at their current position and
towards their heading direction. The returned value is
equivalent to an ideal measurement. The measurement is
processed before it is sent to the microcontroller. Firstly,
it is clamped between the minimum operation distance
and the measurement itself. Then, Gaussian noise is added,
according to the coefficient of variance parameter. And
lastly, the result is clamped between 0 and the sensor
range.

4.4 � Supported maze files

Maze files are generated from a human-readable maze
description text file, located in ./StreamingAssets/Mazes/
maze.txt, relative to the simulator folder. The accepted file
format uses the “o” character to represent posts, which are
required at the corners of every maze cell. Horizontal and
vertical walls are represented by the “– -” and “|” character
strings, respectively. A database of such files is maintained
on micromouseonline’s repository [24].

(6)�� =��t

(7)�Pulses =
��

2�
× PPR

Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7	 Research Article

4.5 � Serial communication protocol

The communication between the microcontroller and
simulator is established via the serial port, using the 8N1 (8
data bits, no parity bit, one stop bit) configuration setting
[25]. Figure 5 shows a packet of data transmitted with the
8N1 setting. The actual data bits have labels “2” through
“9”, while the start and stop bits are labeled “1” and “10”
respectively.

In this setting, there are 2 bits of overhead for every 8
bits of data. Effectively 10 bits are transmitted for every
byte of data. The simulator listens for actuator commands
through the serial port. It expects one byte for the actua-
tor ID, followed by however many data bytes that actuator
is configured to receive. Besides the actuator ID, the DC
motors support 11-bit commands, which are transmitted
over two bytes. Therefore, sending a voltage command to
a DC motor takes 3 bytes.

Every new measurement performed by a sensor will be
transmitted through the serial port. The simulator sends
one byte with the sensor ID, followed by the sensor meas-
urement data. The encoders send 4 bytes of data, while
the distance sensors send 2 bytes of data. The time it takes
to transmit one byte of data is summarized in Table 2, for
some standard baud rates.

As the robot consists of the integration of several
devices, Table 3 lists the number of bytes needed for each
of these devices to send data and time transmission.

5 � Using the simulator

There are three elements to the user interface, demon-
strated by Figure 6. There is the “Toggle post” button, at
the lower-right corner of the screen. It toggles whether the
maze has a post at its center. In micromouse competitions,
it is usually up to the competitor to have placed or not.

In the upper-left corner, there are two timers. The first
one is the global timer, which tracks how much time has
passed since the robot left the starting area for the first
time. The second is the “lap timer”, which tracks how
much time has passed since the robot started the cur-
rent run towards the maze. The “lap timer” stops when
the robot reaches the goal, and resets when the robot
returns to the starting position. After the 10-min mark,
the timers will turn red, indicating that the allocated
time for the competitor has run out.

Two text fields and a “Connect” button are placed in
the upper-right corner of the screen. The text fields are
used to set the configuration parameters of the serial
communication. One text field sets the port name and
the other sets the baud rate. Once they are set, confirm
by pressing the “Connect” button. Once the connection
has been established, the simulator will listen to com-
mands sent through the serial port. The first command
should be requestEnableSensors, which enables
serial output containing sensor readings. The referred
command is defined in the provided Arduino libraries,
along with the DC motor commands and sensor reading
commands.

The user may also change the camera position, to
observe the robot from different perspectives. Three cam-
eras are available, static birdview (Fig. 6), following the
robot, as Fig. 7, and close-up view, as Fig. 8.

Fig. 5   Timing diagram for the 8N1 serial communication setting

Table 2   The time it takes to
transmit a byte of data with
the 8N1 protocol (8 bits of
data, 2 bits of overhead)

Baud rate Time per
byte of data
( μs)

9600 1042
115,200 86.81
12,000,000 0.8333

Table 3   The time it takes to transmit data for every robot compo-
nent (baud rate set to 115,200 bps)

Component No. of bytes Transmis-
sion time
( μs)

DC motor 3 260.4
Distance sensor 3 260.4
Encoder 5 434.0

Fig. 6   1 Global (top) and current lap (bottom) timers; 2 Serial
port configuration; 3 Center- maze post toggling

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7

An Arduino-compatible library provides a set of
classes to interact with the simulator. Two classes,
namely the sensor manager and the actuator manager,
that handle receiving and sending serial data, respec-
tively. There is also one class specifically for each robot
component that is, motors, encoders and distance sen-
sors, which control all interactions with the robot and
the environment. There are example sketches provided
with the simulator, explained with comments in the
code. A UML diagram shows the public API of the library
on Fig. 9. Usage examples and documentation are pro-
vided as Arduino sketches.

The motors designed as GameObject , accepts
voltage commands via the setVoltage parameters.
It expects an 11-bit, signed integer value. The accu-
mulated encoder pulses are accessible by the .get-
Counts method, and accumulated total noise can be
reset to zero with the .reset method. Besides, dis-
tance sensors (also based on GameObject) provide
two pieces of information, through the .getReading
method: the measured distance and whether a timeout
has happened.

The simulator will only transmit sensors data after the
sensors have been enabled. To do so, the user must call
the requestEnableSensors method on the Sen-
sorManager object, after the serial port connection
has been established.

Fig. 7   Camera 2 view (robot’s perspective). Emphasizes how
smooth the robot trajectory is

Fig. 8   Camera 3 (top view). It makes it easier to see how distant the
robot is from the walls

Fig. 9   The UML class diagram for the Arduino library that provides the interface between the hardware and the simulator

Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7	 Research Article

6 � The floodfill algorithm

In any given moment, the robot’s position is defined by a
its configuration c. In the traditional Floodfill algorithm,
the configuration is given by the (x, y) position of the cell
it is currently in.

For every configuration, it is considered that the robot
can reach another set of configurations. The set of con-
figurations that (x, y) can reach is (x ± 1, y) or (x, y ± 1) , as
long as there are no walls blocking. That means the robot
can only move north, south, east or west.

The algorithm assigns a given cost to each configura-
tion. The cost represents the lowest cost of all sequence
of actions that will take the robot from that particular
configuration to a goal configuration. For instance, If the
robot has to move north, east, then move north again,
the cost will be 3.

After reaching the goal cells at the center of the maze,
the cost assigned to configuration (0, 0) will indicate the
shortest path the robot has found, according to a metric
in which moving to any adjacent cell has the same cost.
It doesn’t take into account the robot’s rotation time, a
feature added to the new modified algorithm.

6.1 � The modified algorithm

In the modified Floodfill algorithm, the configuration is
defined to also include the rotation of the robot: besides
the cell position (x, y), it also has a rotation state, which
may be north, south, east or west. This representation
is closely related to the movement of the robot we
will develop. The algorithm 1 presents the developed
approach that takes into account the rotations to find
the best way to solve the micromouse mazes.

There is a set of configurations that the robot may
reach from it’s current configuration. It may rotate clock-
wise, counter clockwise and, if there isn’t a wall it may
also move forward. This is the set S1(c).

For example, assuming that the robot is in configura-
tion c = (1, 1, East) and there isn’t a wall in front of it. In
this case, set S1(c) contains three other configurations:
two of them are reached by rotating 90◦ clockwise or
counterclockwise, namely (1, 1, North) and (1, 1, South).
The other one is (1, 2, East), reached by moving forward.

Similarly, there is a set of configurations that may
reach the current configuration. This is set S2(c) . Consid-
ering the previous example, the set S2(c) would contain
(1, 1, North) and (1, 1, South). They may reach (1, 1, East)
by rotating clockwise and counterclockwise, respec-
tively. S2(c) would also contain (0, 1, East), except if there
is a wall blocking this path.

Consider the set of all goal configurations G. This will
be the starting point of the algorithm. Configurations in
G will be assigned cost 0 and will be used as a baseline for
the cost assigned to all other configurations.

There is a First-in First-out queue Q, which stores con-
figurations. Every configuration added to this queue will
be processed in the same order they were added.

The set P of configurations have already been added
to Q. This exists in order to assure that each configuration
is added to the queue Q only once, and thus only once
processed.

At each iteration, the algorithm processes a configura-
tion c from the queue Q. This means that c will have a cost
assigned, which is equal to the lowest cost of the configu-
rations in S1(c) plus one. Also, every configuration in S2(c)
that hasn’t been already added to P will be added to Q, so
it will be processed later on. This ensures that all accessi-
ble configurations will be processed at some point during
execution.

The drawback of this modification is that there are four
times more possible configurations and thus, more mem-
ory requirements.

7 � Results

After the development of the simulation scenario based
on the Unity platform, it is necessary to test the proposed
models. In this way, the experiment intends to observe
the micromouse simulator’s performance as a whole, that
is, to analyze the algorithm and robot templates, as well
as the communication for HIL’s execution. Thus, mazes

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7

from previous competitions can serve as an alternative to
compare the proposed simulator’s results. In this sense,
Tables 4 and 5 show the performance of the simulated
micromouse for the mazes used in All Japan’s micromouse
event held in 2018 and 2019, using the described modified
floodfill algorithm for exploration. Each lap starts when
the robot leaves the starting position, and ends when it
reaches one of the central positions.

A video [26] shows the robot performing the first run on
All Japan’s 2018 maze. Firstly, it sets the central maze cells
as its goal. As the robot makes it to the center, it assigns
the maze’s starting position as the goal. By returning to the
starting point, the robot may start it’s next run.

After each run, the robot explores more parts of the
maze until, eventually, the algorithm will have found
what it considers to be the best path. At this point, the run
time won’t be significant changed, as it will always move
through the same maze cells.

8 � Conclusions and future work

The presented paper addressed a simulator environ-
ment with dynamics, based on Unity, to apply on the
micromouse competition. The sensors and actuators are
modelled and embedded in the simulator. Although, it is
possible to change and modify the environment since it
is available for free. Users can try it developing and test-
ing their own algorithms or adjust the floodfill suggested
one. The proposed simulator allows using the hardware-
in-the-loop methodology to detect limitations of the real
microcontroller and hardware capabilities. The presented
results show that the developed and available simulator is

an interesting solution to implement and test algorithms
without the maze. As future work, it can be pointed out
some points that could be addressed further, such as
the model of sensors and motors accuracy as well as the
dynamics of the simulated robot improvement, other algo-
rithms and its comparison.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distri-
bution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Funding Information  This work has been supported by FCT - Fundaçã
para a Ciência e Tecnologia within the Projects UIDB/05757/2020 and
UIDB/50014/2020.

Availability of data and materials  Not applicable.

Compliance with ethical standards 

Conflict of interest  The authors have no relevant financial or non-
financial interests to disclose.

Code availability  The project files for the simulator and correspond-
ing Arduino library are available at the repository [7].

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creat​iveco​mmons​
.org/licen​ses/by/4.0/.

References

	 1.	 Oppliger D (2002) Using first lego league to enhance engineer-
ing education and to increase the pool of future engineering
students (work in progress). In: 32nd Annual frontiers in educa-
tion, vol 3. IEEE, pp S4D–S4D

	 2.	 Ferrada C, Carrillo-Rosúa FJ, Díaz-Levicoy D, Silva-Díaz F (2020)
La robótica desde las áreas stem en educación primaria: una
revisión sistemática. In: Education in the knowledge society
(EKS), vol 21, p 18

	 3.	 Bräunl T (2020) Robot adventures in Python and C. Springer,
Berlin

	 4.	 Eckert L, Piardi L, Lima J, Costa P, Valente A, Nakano A (2019)
3d simulator based on simtwo to evaluate algorithms in micro-
mouse competition. In: World conference on information sys-
tems and technologies. Springer, pp 896–903

Table 4   Time taken for each run to be complete in All Japan’s 2018
maze

Lap Start time End time Run time

1 00:00 01:39 01:39
2 02:44 03:44 01:00
3 04:42 05:37 00:55
4 06:35 07:30 00:55

Table 5   Time taken for each run to be complete in All Japan’s 2019
maze

Lap Start time End time Run time

1 00:00 01:15 01:15
2 02:20 03:26 01:06
3 04:47 05:43 00:56
4 06:45 07:41 00:56

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

SN Applied Sciences (2021) 3:259 | https://doi.org/10.1007/s42452-021-04239-7	 Research Article

	 5.	 Allan R (1979) Microprocessors: the amazing micromice: see
how they won: probing the innards of the smartest and fastest
entries in the amazing micro-mouse maze contest. IEEE Spectr
16(9):62–65

	 6.	 Juliani A, Berges V-P, Vckay E, Gao Y, Henry H, Mattar M, Lange
D (2018) Unity: a general platform for intelligent agents. arXiv
preprint arXiv:1809.02627,

	 7.	 Zawadniak PVF et al (2020) Unity micromouse simulator reposi-
tory. https​://cloud​.ipb.pt/d/4050c​982b3​ee4cf​09a2f​/

	 8.	 Zawadniak P, Piardi L, Brito T, Lima J, Costa P, Monteiro AL Regis,
Pereira A (2020) A micromouse scanning and planning algo-
rithm based on modified floodfill methodology with optimiza-
tion, 04 pp 245–250

	 9.	 Unity Technologies (2020) Unity manual, unity’s interface. https​
://docs.unity​3d.com/Manua​l/Using​TheEd​itor.html. Accessed 27
July 2020

	10.	 Ivaldi S, Padois V, Nori F (2014) Tools for dynamics simulation of
robots: a survey based on user feedback

	11.	 Cai MHJ, Wu J, Huang J (2010) A micromouse maze sovling simu-
lator. In: 2010 2nd International conference on future computer
and communication, pp V3 683–689

	12.	 Mack Mackorone (2020) GitHub: a micromouse simulator. https​
://githu​b.com/macko​rone/mms. Accessed 27 July 2019

	13.	 Miguel Peque (2020) GitHub: micromouse maze simulator
server. https​://githu​b.com/Buleb​ots/mmsim​/. Accessed 27 July
2018

	14.	 Huo JCM, Wu J, Song B (2010) Micromouse competition training
method based on 3d simulation platform. In: 2010 10th IEEE
international conference on computer and information technol-
ogy. IEEE, pp 2174–2179

	15.	 Piardi L, Eckert L, Lima J, Costat P, Valente A, Nakano A (2019) 3d
simulator with hardware-in-the-loop capability for the micro-
mouse competition. In: 2019 IEEE international conference on
autonomous robot systems and competitions (ICARSC). IEEE, pp
1–6

	16.	 Unity Technologies (2020) Unity manual, Gamebjects. https​://
docs.unity​3d.com/Manua​l/GameO​bject​s.html. Accessed 27 July
2020

	17.	 Unity Technologies (2020) Unity manual, physics. https​://docs.
unity​3d.com/Manua​l/Physi​csSec​tion.html. Accessed 27 July
2020

	18.	 Unity Technologies (2020) Unity scripting api, physics. https​://
docs.unity​3d.com/Scrip​tRefe​rence​/Physi​cs.html. Accessed 27
July 2020

	19.	 Unity Technologies (2020) Unity manual, joints. https​://docs.
unity​3d.com/Manua​l/Joint​s.html. Accessed 27 July 2020

	20.	 Eckert LT (2019) Development of an autonomous mobile robot
with planning and location in a structured environment. Mas-
ter’s thesis, Polytechnic Institute of Bragança, Portugal

	21.	 Scuiller F, Semail E (2014) Inductances and back-emf harmon-
ics influence on the torque, speed characteristic of five-phase
SPM machine. In: IEEE vehicle power and propulsion conference
(VPPC). IEEE, pp 1–6

	22.	 Petrella R, Tursini M, Peretti L, Zigliotto M (2007) Speed meas-
urement algorithms for low-resolution incremental encoder
equipped drives: a comparative analysis. In: International
Aegean conference on electrical machines and power electron-
ics. IEEE, pp 780–787

	23.	 Wang D, Yu X, Wan W, Xu H (2008) A new method of infrared
sensor measurement for micromouse control. In: International
conference on audio, language and image processing. IEEE, pp
784–787

	24.	 micromouseonline “mazefiles” (2020). https​://githu​b.com/micro​
mouse​onlin​e/mazef​iles/tree/maste​r/class​ic. Accessed 27 July
2020

	25.	 Brown GM, Pike L (2006) Easy parameterized verification of
biphase mark and 8n1 protocols. In: International conference
on tools and algorithms for the construction and analysis of
systems. Springer, pp 58–72

	26.	 Zawadniak PVF (2020) 3d micromouse simulator in unity-all
Japan 2018 maze. https​://youtu​.be/6HuG_72jt6​M. Accessed 31
July 2020

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://cloud.ipb.pt/d/4050c982b3ee4cf09a2f/
https://docs.unity3d.com/Manual/UsingTheEditor.html
https://docs.unity3d.com/Manual/UsingTheEditor.html
https://github.com/mackorone/mms
https://github.com/mackorone/mms
https://github.com/Bulebots/mmsim/
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/PhysicsSection.html
https://docs.unity3d.com/Manual/PhysicsSection.html
https://docs.unity3d.com/ScriptReference/Physics.html
https://docs.unity3d.com/ScriptReference/Physics.html
https://docs.unity3d.com/Manual/Joints.html
https://docs.unity3d.com/Manual/Joints.html
https://github.com/micromouseonline/mazefiles/tree/master/classic
https://github.com/micromouseonline/mazefiles/tree/master/classic
https://youtu.be/6HuG_72jt6M

	Micromouse 3D simulator with dynamics capability: a Unity environment approach
	Abstract
	1 Introduction
	2 State of the art: review of micromouse simulators
	3 Unity overview
	3.1 Physics engine

	4 Simulation software: features
	4.1 Hardware in the loop system
	4.2 Real and simulation robot characteristics
	4.3 Sensors and actuators
	4.3.1 DC motor
	4.3.2 Incremental encoder
	4.3.3 Time-of-flight distance sensors

	4.4 Supported maze files
	4.5 Serial communication protocol

	5 Using the simulator
	6 The floodfill algorithm
	6.1 The modified algorithm

	7 Results
	8 Conclusions and future work
	References

