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Abstract. There is an increasing need for autonomous mobile robots
(AMRs) in industrial environments. The capability of autonomous move-
ment and transportation of items in industrial environments provides a
significant increase in productivity and efficiency. This need, coupled
with the possibility of controlling groups of heterogeneous robots, simul-
taneously addresses a wide range of tasks with different characteristics
in the same environment, further increasing productivity and efficiency.
This paper will present an implementation of a system capable of coordi-
nating a fleet of heterogeneous robots with robustness. The implemented
system must be able to plan a safe and efficient path for these different
robots. To achieve this task, the TEA* (Time Enhanced A*) graph search
algorithm will be used to coordinate the paths of the robots, along with a
graph decomposition module that will be used to improve the efficiency
and safety of this system. The project was implemented using the ROS
framework and the Stage simulator. Results validate the proposed ap-
proach since the system was able to coordinate a fleet of robots in various
different tests efficiently and safely, given the heterogeneity of the robots.

1 Introduction

With the advances in the characteristics of autonomous vehicles, such as their
autonomy or weight, along with the reduction in their cost, there has been an
increase in their usage in industrial environments for a wide range of tasks.
Furthermore, using systems made up of a group of vehicles with differences in
their brands or morphological structures is becoming more common. The ability
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to coordinate a multi-robot system (MRS) with heterogeneous robots improves
the efficiency of these vehicles in tasks where different robots are needed to
perform them. An MRS is composed of multiple robots capable of executing tasks
that require movement from one place to another. The coordination between
various robots with the same morphology is a complex task that is still being
improved today. However, a system capable of controlling a fleet of robots that
are not homogeneous adds another layer of complexity to the problem and is
increasingly a necessity for today’s industry, whether it is controlling robots of
different brands or controlling robots that perform entirely different roles in the
same system. Path planning is a crucial aspect required for achieving coordinated
and safe navigation in a system composed of multiple vehicles. With this, it is
necessary to develop algorithms that can resolve the need for a vehicle/robot
to reach a specific location without human interaction and without causing any
collisions with obstacles or other robots in the MRS or deadlocks. In addition,
reaching the destination is not the only goal. Finding an efficient solution is an
essential aspect of these algorithms with crucial factors such as distance traveled,
energy spent, or time spent. Because of this, many of the path planning methods
are based on various algorithms that, on the one hand, aim to find the set of safe
paths to the goal and, on the other hand, aim to link which of these possibilities
lead to the most efficient solution [3]. The main goal of this work is to implement
a system capable of coordinating heterogeneous robots based on the TEA* graph
search algorithm. This goal is achieved by implementing a graph decomposition
algorithm that will decompose the graph used by the TEA* algorithm before
planning the paths and make the system more stable and robust when using a
fleet of heterogeneous robots. The implemented path planning is applied to a
real-time system that already exists, developed by [4] and [6] which already has
the tools needed for graph based path coordination systems, such as position
detection and controllers to move the robots along specific lines. Additionally,
the ROS framework will be used to implement the entirety of the system. Finally,
a real-time supervisor will also be implemented. This supervisor will be used to
verify that all robots in the system are following the path that was planned and
ensure that they do not pose safety concerns.

2 Related Works

Various heterogeneous MRS coordination methods have already been explored
in the field of MRS coordination. The methods may vary a lot in terms of ap-
proaches. However, the decision-making process, or rather, whether a centralized
or a decentralized group architecture is used, seems to be the most significant
point of contention. For example, [2] uses a fully distributed method to coordi-
nate the various robots in the system which communicate with each other and
use a coordination protocol to coordinate with each other and a monitor con-
nected to the communication network to supervise the behavior of the robots. A
typical MRS that uses a centralized architecture is the GOFER [1] which uses a
central task planning and scheduling system by viewing all the tasks that need
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to be resolved and what robots are available to perform those tasks. Further-
more, a hybrid approach is also possible, but the solutions they reach are often
sub-optimal, as seen in the following study about MRS coordination [8]. The
algorithm used in this paper’s project will focus on a more centralized approach
due to the nature of the TEA* algorithm.

3 Path Planning

Path planning is one of the most crucial aspects of autonomous movement sys-
tems. Path planning algorithms aim to establish paths between start and end
points allowing mobile robots to navigate autonomously and safely in a working
environment. They generate an efficient solution for a system to change from
an initial state to a final state by avoiding static and dynamic obstacles in the
environment [3]. As such, a big focus of this paper will be on the implementation
of a robust path planning system capable of coordinating heterogeneous robots.
To plan the paths for the robots in the system, a graph was used to define within
the environment where the robots could travel or not. Using this distinction, it
is possible to use graph search algorithms to plan paths for the robots. This
paper will use the TEA* algorithm to plan paths within that graph and use
it to coordinate paths between the robots. The main advantage of the TEA*
algorithm comes from introducing a third temporal layer capable of planning a
path that does not collide with any other robot in time or reach other block-
ing problems such as deadlocks. This feature, coupled with the capabilities of
obtaining optimal paths from the A* algorithm, the TEA* accomplishes all the
necessary requisites for a robust path planning algorithm.

3.1 Time Enhanced A* (TEA*)

Taking the A* graph search algorithm and adding a third temporal layer enables
the neighbor node that will be explored to belong to the next temporal layer,
as seen in Figure 1. With this, it is possible to associate each link to the instant
of time it will be occupied, preventing collision between robots or paths being
blocked by other robots through deadlocks and creating far more efficient routes.
Furthermore, in addition to exploring the neighbor nodes in the next temporal
layer, the node itself is also ”explored” and re-added to the list with a small
increment to the cost. This addition is helpful for cases where the robot staying
in place is more efficient than taking a longer route, such as having a robot wait
for another robot to pass through instead of immediately attempting to take a
longer route that would take longer. The run-through of the TEA* algorithm is
pretty similar to the A* algorithm. Firstly, instead of a single graph and states
for each node, there is an array of graphs, and each node has a specific state
and stored cost at a specific time K which is known as ”step”. The algorithm
runs for as many times as many robots that exist in the system, and, following
a priority order, each robot plans its path through time and blocks that path
to the lower priority robots by setting the nodes that belong to its path to
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Fig. 1. Input map over the various temporal layers (a) and the analyzed neighbor cells
focused on the AGV position (b) [7].

the state OBSTACLE. The next robots plan their path, considering the new
OBSTACLE nodes in time. It is essential to note that this algorithm is hard
to scale. This problem comes from the necessity of storing a lot of memory
regarding the array of graphs used to plan the path in time [5]. On top of that,
the algorithm also requires a lot of computational resources, namely read/write
speed to and from memory, as the algorithm has to look for the next neighbor
node to be explored constantly and update the values of the costs/states. One
of the steps to reduce this potential read/write speed problem was utilizing a
low-time complexity algorithm to store the graph’s data. As such, in a graph, the
nodes and links were stored in a C++ map container from the C++ standard
library, where the keys of that map were the ID of the node/link, and the graph
itself was stored in a vector of graphs. The map container was helpful because
the time complexity, in Big-O notation, of searching for a member given the key
is log(n). Using such a container is better than using more usual containers such
as C++ vectors or double-ended queues (deque), which would have at least O(n)
temporal complexity. Regarding using a vector to store the temporal layers of the
graph, since the steps go from 0 to Kmax sequentially, the temporal complexity
of accessing a specific temporal graph in that vector is O(1).

To further ensure safety, it is also common to give robots a bigger space gap
between them. For example, instead of setting only the current node that the
robot is, in time, as OBSTACLE, the neighbor nodes around that node are also
set as OBSTACLE. Additionally, it is also common to set as OBSTACLE a few
previous nodes in time as OBSTACLE. For example, if it is defined that three
nodes in time are to be set as OBSTACLE then if a robot has a path PA = {1 →
2 → 3 → 4 → 5}, when planning the path for that robot, in the step K that the
node (4) is expected to be OBSTACLE, both the previous nodes (3) and (2) are
also set as OBSTACLE to ensure further safety. These gaps are implemented in a
way to depend on a safety parameter called SAFETY GAP, which sets both the
number of previous path nodes that are set to OBSTACLE but also the depth of
the neighbors of the current path node to be set as OBSTACLE. For example, if
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SAFETY GAP is 4 and path is PA = {1 → 2 → 3 → 4 → 5}, in the step where
node (4) is going to expected to have the robot, the nodes (4), (3), (2) and (1)
are set to OBSTACLE and the neighbor nodes of the node (4) and the neighbors
or those neighbors are also set to OBSTACLE. Additional examples can be seen
in Figure 2. A relevant note is that the smaller the SAFETY GAP value, the
more efficient the planned path is, but it also becomes less safe. With this, the
TEA* algorithm can plan efficient and collision-free paths for the various robots
in the system.

Fig. 2. Additional examples of the path planning OBSTACLE setup

3.2 Robot Priority Swapping

Even though the base TEA* algorithm can plan paths for all the robots in the
system, extra tweaks exist to optimize it further. One of these can be the addition
of a priority swap for the robots. This swap is an essential feature as sometimes
the base algorithm cannot find a path for the current setup of robot priorities.
For example, if there is a robot priority setup where the higher priority robot,
after planning its path, blocks any possible path for the lower priority robot that
means it is impossible to complete that order. But, if the priorities are switched,
there is still a possibility of paths being found for all robots. Thus, having a list
of possible priority setups can help eliminate this problem and find paths that
the base algorithm would be unable to.

3.3 Moving idle robots

Another relevant feature to incorporate into the base algorithm is moving other
robots when idle and in the way of another robot. This happens, for example,
when there is a robot idle in a position that another robot needs to complete
its path. By creating an extra order to that idle robot, if available to move, it is
possible to move that robot and enable the passage of the robot that was being
blocked. This solution can be achieved by first detecting if a path is not found
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because another lower priority robot blocks the destination by being stationary
and plans the path ignoring that stationary robot. Then, by looking into the
nearby stations of the stationary robot, it is possible to attempt to move the
idle robot to the closest unused station, thus unblocking the way. This feature
should only be applied to robots of lower priority, so combining this method with
the previous process of priority swapping helps achieve more possible paths.

4 System Implementation

In order to implement and test a system capable of coordinating a group of
robots, it was necessary to recreate an industrial-like environment where the
conditions are similar to a real one. Furthermore, this system needs to work
with the ROS framework, which is a requirement imposed. Using the Stage
simulator, various environments were set up to host the robots that were going to
be coordinated by the implemented system. With this simulation, it was possible
to simulate a nearly real industrial environment by creating walls, corridors and
even objects that could collide with the robots. Furthermore, these objects could
be moved to create obstacles for the robot’s paths and test safety features. The
robots themselves were also simulated in this simulator. The robots could localize
themselves using simulated LIDAR sensors on their front and back, along with
collision detectors that could detect if the robots had collided with anything,
forcing them to stop.

Fig. 3. An undecomposed small map and its graph used in simulations.

To view all the data being circulated, such as the current robot’s estimated
location and the graph points, the RVIZ visualization tool from the ROS frame-
work is used. With this tool, it is possible to visualize the robots running through
the graph and have the option to send orders directed through the RVIZ tool for
robots to move from one point to another. This tool can also be used to edit and
save graphs instead of manually inserting coordinates and values in the manual
definition. In Figure 3 an example of a RVIZ visualization is presented where it
is possible to see the various graph links as red lines, the nodes as blue circles
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and the robot’s position as the big blue arrow. In figure 4 a block diagram of
the implemented system is presented.

Fig. 4. Diagram of the system architecture implemented

In sum, a short description of the modules of the system implementation can
be given as such:

– Firstly, a graph is created. In this project a graph is created using a list of
nodes and links that describe the various characteristics of these (curves,
length, ID, etc.) and storing them into a YAML file.

– Given a parameter server that holds various characteristics (size and traction
type), an ideal link dimension is calculated for the decomposed graph.

– Before the system starts, these graphs can be optionally decomposed. This
decomposition means that the graph links are subsequently divided so that
all links have a similar length.

– Once the system is started and given an order for a robot to move, both the
robot’s current position and the order’s destination position are associated
with their position relative to a node in the graph.

– Finally, a path can be calculated by knowing the node to which the robot
belongs and its destination node. This path planning also considers notable
exceptions in an exception table. Once a path is calculated, it is sent to each
corresponding robot.

– On top of all, a supervisor also exists to ensure that the robots are follow-
ing the paths planned without the risk of problems such as collisions and
deadlocks.

4.1 Graph

The graphs are defined using the YAML serialization language and specifying
various fields that describe the characteristics of various nodes and links that
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create the graph. For nodes the fields are: ID, angle and position. For links the
fields are: ID, origin and destination IDs, velocity forward/backward and other
parameters for the description of a Bézier curve.

4.2 Graph Decomposition

Due to how the TEA* algorithm works, the path planning returns a sequence of
edges or vertices that define a path. Therefore, if the various edges’ sizes are very
different, the time it takes for a robot to travel an edge may be substantially
different from another robot traveling to another edge, which is even more sub-
stantial when the fact that different edges can have different velocities is taken
into account. This difference can be dangerous as TEA* assumes that the time
it takes to go through an edge is the same for all edges, and if that is not true,
the path planned cannot ensure that there is no collision between robots or that
potential deadlocks can occur. In Figure 5 presents an example of this problem.

Fig. 5. Example of collision due to lack of graph decomposition

Because of these problems, to ensure that the robots are proceed safely
through their path, it is necessary to decompose longer links into smaller links
to minimize the differences of time that it takes to travel between the different
edges. Furthermore, this decomposition also optimizes the routes for the robots,
as decomposing a lengthier edge into smaller ones allows for more than one robot
to travel that edge sequentially. To implement this, firstly, a decomposition al-
gorithm was created. This algorithm’s goal was to, given a specific step length,
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divide all links in a graph in a way that minimizes the error of the new division
of the links when comparing to the specific step. The errors of this division are
all taken and the average of this error is calculated. Using this error, and cycling
between an interval of values, it is possible to use this algorithm to obtain the
value of specific step length that minimizes the average of the error when de-
composing the links. After obtaining that value the graph is decomposed using
the initial algorithm.

4.3 Supervision

Because in an industrial environment, many variables exist at all times, a super-
visor for such a system as a path planner is crucial to ensure safety and efficiency.
As such, a supervisor was created to observe the planned path by the system
and ensure that all robots within the system are following that path.

Assuming a worst-case scenario that all links are the same size as the robots
(and never smaller than the robots), and two robots are following each other in
a path, as long as they are not over one step ahead of the other robot regarding
the route planned, they will not collide. If such a thing happens, the supervisor
acts and triggers a new path planning. In Figure 6 this is presented.

Fig. 6. Supervisor interventions in the implemented system

Because of how the system works, in the path planner, a robot belongs to
a node until it reaches another. Looking at Figure 6 when the replanning is
triggered, the robot (a) that is still detected as being in node (2) will have a
path that will make the robot (a) go back to node (2) and stays there for one
step. In contrast, the other robot is detected as being in node (3) and plans a
new path from that node, which means the robot (b) keeps advancing as he was,
thus eliminating possibilities for collisions.
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5 Results and discussion

To ensure that the other tests could be done safely, the basic features of the TEA*
were tested along with the extra features added to complement it6. Once all these
tests were completed and working as intended, the supervisor was tested. To test
the supervisor four robots were set on a path to follow each other in a straight
line to verify the system’s response when subjected to a supervisor re-planning
of the paths7. The robots were set in a specific order where the blue robot was
at the front, followed by the red, yellow and orange robots in this order. When
in movement, one of the robots was manually blocked from moving so it could
trigger a new path planning and verify its effects. The test results are shown in
the table 1.

Line Test Blocking Yellow Robot
Distance traveled by: Blue Robot (m) Red Robot (m) Yellow Robot (m) Orange Robot (m)

Decomposed 22,27 22,34 23,85 24,53
Undecomposed 22,41 22,39 24,01 26,16

Line Test Blocking Red Robot
Distance traveled by: Blue Robot (m) Red Robot (m) Yellow Robot (m) Orange Robot (m)

Decomposed 22,29 22,91 24,22 25,09
Undecomposed 22,56 23,13 27,54 31,00

Table 1. Effects of supervisor interventions in decomposed vs undecomposed graphs

Looking at these results, it is possible to conclude that the decomposition
of the graph not only makes the system safer but also faster since the distance
traveled by the robots affected by the supervisor’s re-planning of the paths is
lower when the graph is decomposed. This is because the robots affected have
to take much longer routes if their paths are re-planned when the graph is not
decomposed and, as such, the orders take quite a bit longer to complete.

Some tests were also made to test the graph decomposition when attempt-
ing to coordinate a fleet of heterogeneous robots. These tests are composed of
generating orders to send four heterogeneous robots simultaneously to different
places in the map making them follow approximate equivalent paths with the
same number of nodes8.

In sum, the heterogeneity of the robots affects the system in two major as-
pects. On one hand, the size of the robots and their morphologies affect the
decomposition parameters, which affects the whole decomposition. On the other
hand, the traction type affects the irregularity of the velocity parameters, making
them have different behaviors when moving, such as slippage or different behav-
iors when turning. While the first problem can be solved by re-decomposing the

6 Video of basic robot coordination tests: https://youtu.be/EEKb_r0efJY
7 Video of supervisor tests: https://youtu.be/8qBK5eCUi4o
8 Video of heterogeneous robot coordination tests: https://youtu.be/RDjN2HEko40
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graph with the different parameters, the second one cannot be directly solved
the same way and must depend on the supervisor to act when needed to ensure
that everything is kept safe.

In the tests, the supervisor only seemed to act about 1-2 times when the
system was coordinating four robots at the same time with long paths composed
of about 50 nodes. These tests were an overall success as the amount of times the
supervisor had to act was pretty low. Furthermore, the supervisor was acting in
a strict mode where no matter where the robots were in the map, the difference
limit for it to act was always 1.0 steps. This, in a more real scenario, would have
reduced the number of interventions by the supervisor substantially, potentially
to zero. Comparing to some tests done with using homogeneous robots, as seen
in table 2, the amount of times the supervisor had to act with the heterogeneous
robots was a bit higher.

Homogeneous Robots Heterogeneous Robots
Undecomposed Decomposed Undecomposed Decomposed

Avg. Actuation of Supervisor 4.4 1 5.2 1.8
Table 2. The average number of actuations by the supervisor when attempting to
coordinate a fleet of heterogeneous vs homogeneous robots.

This is expected, not only due to the different traction type explained earlier
but also because of the difference in sizes of the robots. The bigger the robots,
the worse the decomposition of the graph. This is because the decomposition
algorithm aims to have a link sizes always higher than the largest robot in
the system so that the supervisor works as expected. With this, the higher the
minimum size of the links, the higher the error of decomposition will be, and, as
such, results are expected to be worse.

6 Conclusions and future work

Looking at the results obtained during the project’s test phase, it is possible
to conclude various aspects regarding the accomplishment of various goals. The
first one is the implementation of the TEA* algorithm was done successfully
allowing for the other modules to be tested without problems arising. Regarding
the implemented supervisor, it was able to keep the robots from deviating too
much from the expected temporal planned path by the TEA* algorithm by
triggering a path re-planning for all the robots in the system to prevent extreme
deviations that could lead to collisions or deadlocks. Even though the supervisor
sometimes had to act four or five times to complete a full order, in no case the
supervisor failed to plan new paths and complete all orders. Regarding the graph
decomposition algorithm, the results proved to be quite favorable. The algorithm
was able to decompose the graph’s links leading to the robot movement deviating
way less from the expected path generated by the path planning system. The
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supervisor had to act a considerably low amount of times when the graph used
to plan the paths of the robots was decomposed. Considering the extreme case
the supervisor was subjected to act by removing the feature that only has the
supervisor work on a tight step difference when the paths of two robots intercept,
these results were pretty good.

These results together make the system quite robust to the heterogeneity of
the group of robots. Although the system proved quite effective in a simulation
environment, it was impossible to test it in a real scenario due to time constraints.
As such, it is hard to verify that the system would be able to work as expected
using real robots. Furthermore, although considerably efficient and safe, the
paths obtained by the implemented system are still not fully optimal. Finally, the
system also suffered from some common vulnerabilities of a centralized system,
such as having a single point of failure.
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