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Abstract: Unmanned Aerial Systems (UAS) are becoming more attractive in diverse applications
due to their efficiency in performing tasks with a reduced time execution, covering a larger area,
and lowering human risks at harmful tasks. In the context of Oil & Gas (O&G), the scenario is even
more attractive for the application of UAS for inspection activities due to the large extension of these
facilities and the operational risks involved in the processes. Many authors proposed solutions to
detect gas leaks regarding the onshore unburied pipeline structures. However, only a few addressed
the navigation and tracking problem for the autonomous navigation of UAS over these structures.
Most proposed solutions rely on traditional computer vision strategies for tracking. As a drawback,
depending on lighting conditions, the obtained path line may be inaccurate, making a strategy to
force the UAS to continue on the path necessary. Therefore, this research describes the potential
of an autonomous UAS based on image processing technique and Convolutional Neural Network
(CNN) strategy to navigate appropriately in complex unburied pipeline networks contributing to
the monitoring procedure of the Oil & Gas Industry structures. A CNN is used to detect the pipe,
while image processing techniques such as Canny edge detection and Hough Transform are used to
detect the pipe line reference, which is used by a line following algorithm to guide the UAS along the
pipe. The framework is assessed by a PX4 flight controller Software-in-The-Loop (SITL) simulations
performed with the Robot Operating System (ROS) along with the Gazebo platform to simulate the
proposed operational environment and verify the approach’s functionality as a proof of concept.
Real tests were also conducted. The results showed that the solution is robust and feasible to deploy
in this proposed task, achieving 72% of mean average precision on detecting different types of pipes
and 0.0111 m of mean squared error on the path following with a drone 2 m away from a tube.

Keywords: automatic inspection; pipe inspection; unmanned aerial system; computer vision

1. Introduction

Unmanned Aerial Systems (UAS) are becoming more attractive in diverse applica-
tions in society, being applied in security areas [1,2], small deliveries [3], military combat,
photogrammetric applications [4], remote inspections [5,6], agriculture, among others.
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In general, the application of this resource aims to increase the efficiency of the task per-
formed and reduce human risks at dangerous missions [7]. The UAS controlling process
can be performed remotely (e.g., radio-controlled, via satellite) or autonomously. In ad-
dition, UAS typically performs GPS-based navigation. However, due to the constant
changing in the environments, as well as the unmapped obstacles, by using only the GPS,
the trajectory the UAS performs can be inaccurate and inefficient [8]. Thus, an intelligent
strategy for autonomous movement is using image processing along with other sensors [9].
Computer Vision plays a vital role in increasing the autonomous functionalities of robotic
systems [10]. By using cameras and image processing, it is possible to interpret situa-
tions/scenes and detect objects [11], being one of the main tools for controlling autonomous
vehicles, performing tasks, or navigating.

In the literature, several researchers applied computer vision techniques to increase
the automaticity level of robotic systems [12–14]. For instance, Khaloo et al. [15] presented
a study on the application of UAS for inspecting dams and looking for breakpoints in
these structures. Another application of autonomous inspection with UAS is presented in
Vam et al. [16]. The authors proposed an autonomous inspection of an electrical substation,
in which the UAS must be able to navigate the installation autonomously, carry out video
inspections, and indicate the location that contains signs of degradation, serving as a basis
for infrastructure inspection work as a whole.

UAS are being used in the most different missions that can be risky for humans or in
tedious tasks that demand an outstanding level of attention [17]. In the context of large
industrial parks, refineries, Gas & Oil processing units, the scenario is even more attractive
for the application of UAS inspection activities [18]. As the dimension and extensions of
these facilities are very large and with different human risks among the areas, the operator
will be able to remain stationary in a safe area while monitoring the flight parameters
during the inspection process with the UAS [19]. Note that the Oil & Gas industry has used
Remotely Operated Vehicles (ROVs) since the 1970s to inspect and maintain underwater
structures [20]. When the UAS is deployed for inspection in large structures, the inspection
process can be sped up and is cost-efficient due to the reduction of engineering labor
fees and risk minimization due to human errors [21]. For instance, the inspection of the
pipeline corridors is still monitored by foot patrol, crewed vehicles, and air patrols with
inspection personnel. The main objective is to prevent possible risk events. Therefore,
these inspections must be carried out regularly. The work of Kus and Srinivasan [18]
applied UAS to inspect external corrosion in refinery units visually. In both works of
Ramos et al. [14] and [22], the authors presented the use and technical feasibility of the
application of an autonomous vision-based UAS for messenger cable transfer in mooring
tasks. Another UAS application in the Oil & Gas environment is presented [23]. They
applied a multirotor UAS for small cargo transport between naval structures in their work.

As can be seen, novel robotic systems have been applied to O&G industry sector to
move the traditional processes toward more autonomous operations [24]. As a result of this
process, operational and human costs and effort can be reduced. Besides that, the safety of
the operation can be enhanced [21].

Several works proposed solutions to inspect pipeline corridors. For instance, the au-
thors of Wang et al. [25] used an Autonomous Underwater Vehicle (AUV) equipped with
image-processing technology to detect the pipeline’s corners. Concerning onshore pipelines,
there are different types of robots, and the locomotion style reflects directly in the robot’s
performance for the pipeline inner inspection. A simple device called PIG was used to
collect the data of the pipeline, which was proposed by Mazreah et al. [26]. Their robot was
driven by oil or gas flow through the pipeline to perform the inspection. A wheel-type
robot was proposed by Kakogawa et al. [27]. The wheel of their robot was used to touch
the pipe wall. In Kwon et al. [28], the authors used a track type as an alternative solution to
the wheeled robot.

This field of pipeline inspection has many challenges such as difficult areas to ac-
cess and with significant human risk, classified areas, work at heights, among others.
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Regarding the use of UAS for this field of inspection, many authors proposed solu-
tions to detect a gas leak in onshore pipelines [29,30]. For instance, in the work of
Bretschneider et al. [31], the authors described a payload solution to detect gas leaks in
unburied onshore pipelines. Their solution presented a combination of lasers and an electro-
optical sensor. However, few works described solutions to the autonomous navigation
solution to support pipeline corridors inspection and monitoring in the Oil & Gas industry.

The authors of Shukla et al. [32] developed an autonomous tracking and navigation
controller for UAS to inspect straight oil and gas pipelines. Their work cannot handle
curves in the pipeline corridors as a drawback. In [33], the authors showed an optimization
strategy for UAS inspection of an oil and gas pipeline network. Their process used a
mixed-integer nonlinear programming model to consider the constraints of the mission
scenario and the safety performance. As can be seen, there is still space for improvements
in inspection and monitoring solutions of unburied onshore pipeline corridors, especially
regarding the autonomous navigation solutions for UAS.

Computer vision is one of the fastest-growing areas in the field of computing. The in-
terpretation and transformation of data into useful information are complex tasks. In the
area of pipelines inspection, image processing is often used to identify and detect parts
inside the pipe [34]. There are a plenty of methods for corrosion and cracks region seg-
menting, such as morphological operations [35–37] and geometrical operations [38,39],
segmentation methods [40,41], thresholding [42], and active contour [43]. For instance,
morphological operations along with thresholding and labeling were used for corrosion
inspection in [35]. Similarly, in the work of [37], the authors applied morphological-based
edge detection in order to detect cracks in the pipeline. Recently, to overcome the necessity
of a lot of steps of traditional image processing, deep learning arose as a prominent solution
for the field of computer vision [44,45].

However, to the best of the authors’ knowledge, no works in the literature applied
deep learning strategies as a tool to the navigation and control problem in the unburied
pipeline networks. In the work of Xiaqian et al. [46], the authors proposed an autonomous
navigation control strategy for tracking and inspecting linear horizontal structures of
pipelines networks with UAS. They used traditional methods, such as Canny Edge Detector
(CED) and the Probabilistic Hough Transformation (PHT) to identify the structures to the
control input. They did not consider more complex scenarios with the pipeline networks
and only considered the control problem.

Finally, the authors of Gomez et al. [30] performed an extended review of the re-
quirements for small unmanned airborne systems applied to pipeline inspections and
monitoring. Their paper concluded that UAS are reliable and can substitute traditional
monitoring procedures such as foot patrolling and aerial surveys. Therefore, this research
work describes the potential of an autonomous UAS along with a deep learning strategy
to navigate appropriately to complex unburied pipelines networks, contributing to the
monitoring and mapping procedure of these structures of the Oil & Gas Industry.

The related works summary is presented in Table 1.
In order to fill the presented gaps in autonomous onshore O&G unburied pipeline

inspection with UAS, this study presents and evaluates a tracking strategy guided through
computer vision. Machine Learning models combined with traditional pre-processing
computer vision techniques are used to detect and classify the pipes, as well as finding
the pipe line reference. A path following solution is then used to guide the UAS along the
pipes. The main contributions of this research can be summarized as follows:

• An object detection solution, with image processing and Convolution Neural Net-
works to detect different types of unburied pipes in onshore O&G installations;

• A path-following solution to navigate the UAS over the extensive structures of un-
buried pipelines;

• Implementation of the full solution using Robot Operating System and the PX4 flight
control unit;
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• Software-In-The-Loop simulation environment to test similar solutions in a virtual
O&G installation using Gazebo;

• Test and evaluation of the proposed solution with a real drone to prove its functionality
in a real application.

Table 1. Related works summary.

Path Planning
Work Robot Segmentation IR Sensor Identification of

Curves and Pipeline
O & G

Wang et al. [25] AUV Yes No No Yes

Mazreah et al. [26] Pipeline Inner Robot No No No Yes

Kakogawa et al. [27] Wheeled Robot No No No Yes

Basso et al. [47] UAS Yes No No No

Okoli et al. [48] Wheeled Robot No Yes No Yes

Santa et al. [49] UAS Yes No No No

Proposed System UAS Yes No Yes Yes

2. Materials and Methods

In this section, the problem formulation and the solution setup, as well as the object
detection and path following solutions, will be presented.

2.1. Problem Formulation

This work intends to provide an automatic solution to track unburied pipelines in the
O&G industry facilities with Unmanned Aerial Systems (UAS).

Figure 1 illustrates a detailed research flowchart and the general idea of the pro-
posed solution. First, the framework ROS, hardware, and algorithms are initialized.
Then, communication with the Flight Control Unit (FCU) PX4 is established to start the
line-follower strategy. Note that the UAS uses a Convolutional Neural Network (CNN)
model to detect and classify the unburied pipeline structure. After detecting a pipe, image
processing techniques, such as Canny Edge Detection [50] and Hough transform [51], are
used to find the line through the pipe that the UAS should follow. Through the use of ROS
and Python scripts, it is possible to read the camera topic messages from the UAS, convert
them to an OpenCV array with CvBrigde (i.e., ROS library), and process the information
to define the robot positions setpoint. The detected line is used as a reference by the line
following algorithm. These steps are repeated, including the CNN detection, which is
called to assist the system as a tracking solution to make the application robust against
light variations, for example. The hardware and algorithms are initialized along with ROS
and the PX4 Flight Control Unit (FCU). Note that the position commands are parsed to the
FCU through the MavROS package via MAVlink protocol.

2.2. Solution Setup

In the simulation, the camera images are made available by Gazebo through ROS
topics and messages. A Python script converts these messages to an OpenCV array with
CvBrigde (i.e., ROS library), see Figure 2, and sends it to PX4 with the MavROS package
via MAVlink protocol. Therefore, the PX4 can stream the video, which is then processed by
the solution presented in this work.

In the real implementation, the camera is already connected to the PX4, which trans-
mits the camera images to the ground station. The ground station is responsible for
processing the images and sending the path following commands to the UAS. The tasks
carried out by the Ground Station could be easily implemented in a companion computer
if on-board processing is desired.
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In both applications, ROS and Python work in the ground station and FCU PX4.
In the ground station, the edge/line detection runs as long as the CNN identifies a pipe
to make the UAS go forward and indicates which side of the image is a curve to activate
the Canny and Hough algorithms. The CNN feature is also used to approach the pipe
once it is detected. With all these features, the UAS becomes capable of performing not
only the proposed tracking pipeline task but other assignments such as surveillance and
structure inspections.

Figure 1. (a) General Idea: I. Initializing the ROS environment, algorithms, and communication with
PX4 FCU. II. UAS approaching the pipe structure. III. Image processing algorithms and CNN models.
IV. Path Follower Strategy. (b) Research flowchart.

Figure 2. CvBridge/OpenCV communication overall flowchart.

The developed robotic system in ROS is presented in Figure 3. The solution presented
in this work is implemented in the Off-board Controller, which processes the camera images
and sends the desired commands to the flight controller through MavROS.

The controller was developed in Python language and using ROS packages [52], such
as the MavROS. Note that the controller was designed for a PixHawk Px4 FCU [53].
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Figure 3. ROS active nodes and messages.

2.3. Yolov4 Neural Network

This work proposes using a You Only Look Once (YOLO) Neural Network to as-
sist the UAS during the tracking strategy. According to [54], YOLO is a state-of-the-art
real-time object detection system that is extremely fast and accurate. This network is a
single-stage detector, which divides the image into regions, predictions bounding boxes,
and probabilities, as illustrated in Figure 4.

Figure 4. YOLO Object Detection Process applied in the Proposed Scenario. (a) input pipeline image;
(b) YOLO S x S image division; (c) merge boxes that contain the pipe; (d) generated bounding box.

YOLO architecture comprises 24 convolution layers responsible for extracting the
image features and two fully connected layers that perform the output prediction of the
bounding boxes’ coordinates and probability. The first 20 convolutional layers are pre-
trained by the ImageNet 1000-class classification data set, which makes YOLO fast to train
once just the four last layers are trained to detect the desired object [54].

The authors created a dataset [55] to train the YOLO model for recognizing industrial
pipe since other well-known images datasets such as Microsoft Common Objects in Context
(MS COCO) [56], ImageNet [57], and even open images v4 [58], do not have a specific
O&G pipe class object. The authors’ dataset has 644 labeled pipe images, divided into real
scenes and synthetic ones. The real images come from Google Images and videos search.
The keywords used were O&G pipelines, pipeline images from drones, refinery, unburied
pipes, and O&G company names, among others). The synthetic images were created in
Blender [59] and Gazebo software. In this case, the UAS took almost all synthetic images
using a Radio Control to fly above the pipes. Figure 5 gives a few image examples that
compose the dataset. All the images are annotated using the open-source software [60].
After that, the data are augmented using crop, rotate, and resize techniques. Finally,
the dataset is composed of 1243 labeled pipe images split into 1000 for training, 129 for
validation, and 64 for testing.
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Figure 5. A few annotated images that compose the developed dataset of the authors, which is
available at [55].

The hyperparameters different from the YOLO default structure and other options of
the model’s train are shown in Table 2. These hyperparameters are applied using rules of
thumb discussed by Hinton et al. [61].

Table 2. Hyperparameter use in YOLO’s train .

Optimizer SGD (learning rate = 0.01)

Epochs 2000

Batch size 16

Patience 100

Image Size 448 × 448

Weight Decay 0.0004

During the training, the image input with ground truth marks is resized to 448 × 448
(Figure 6a). Then, it is followed by convolutional and full connected layers (Figure 6b),
which pass through a pooling process to generate a matrix with relevant data (Figure 6c).
This matrix with the detection information is flattened (Figure 6d), and then the weight
files are generated with good samples and ready to use for object detection (Figure 6e).

The CNNs can transform an original input layer by layer using convolutional and
downsampling techniques to produce class scores for classification and regression pur-
poses. In this sense, the CNN with YOLO layers and resizing takes the image and generates
a vector (after the pooling) with the bounding box coordinates that might have the ob-
ject and the network class with the probability of the object being in this bounding box.
This detection runs in three layers 13 × 13, 26 × 26, and 52 × 52 (width and height).
With all these features and the grid technique, YOLO can detect many objects in the same
image with high efficiency, even more, when used with a non-max suppression algorithm
which guarantees a clean detection based on each class. The reason is that all repeated
detection of the same image is suppressed. Thus, YOLO is perfect to achieve the recognition
task for online implementations [62].
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Figure 6. YOLO overall idea. (a) input image; (b) resizing; (b) convolutional and full connected
layers; (c) polling; (d) flattening; (e) object detection phase.

2.4. Quadrotor Model

The quadrotor model used in this work is based on that proposed by Brandão et al. [63].
The quadrotor rotation on its axis is given by the motor speed variation, and the generated
inclination results in the vehicle displacement in any direction of space.

In this work, the altitude is kept constant and the commands sent to the flight control
unit are the local forward and lateral velocities, as well as the angular speed around the
z-axis (ub = [vx, vy, r]). Figure 7 illustrates the UAS local frame and the ROS messages
used. The relationship between the commands (ub) and the position derivative of the UAS
in the world frame (Ṗw) is given by the following equation:

Ṗw = Rw
b ub, (1)

where Ṗw = [ẋ, ẏ, ψ̇], x is the east position, y is north position, and ψ is the heading of the
UAS. Rw

b is the rotation matrix from body to world frame, given by:cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

. (2)

Figure 7. Quadrotor model (colored) and movement ROS topic (black).

2.5. Pipe Follower

The image is first processed by the Canny edge detection algorithm [64]. This first
stage performs the filtering of the image, i.e., giving the image locating and corners.
This outcome goes to the Hough transform algorithm to be analyzed during the parame-
terization, as demonstrated in [65]. This image processing is a mechanism for extracting
features from an image using a voting policy. Note that a single pixel can have an infinite
number of lines passing through it. The authors refer to the work of [66] for more detailed
information about this process.
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This procedure specifies a narrow line represented by the angle θ from the normal
and delimited by the distance ρ from the origin, as shown in Equation (5). In this equation,
the distance corresponds to the geometry when applied in a way to consolidate a space of
n points (Equation (6)). Note that the Hough space and the Cartesian coordinate can be
transformed into each other. This process is illustrated in Figure 8.

Figure 8. Hough points.

The main objective of the Hough transform is to convert the image points into a line,
a simple equation of a straight line (Equation (3)), and a polar equation (Equation (4)).
Thus, it is possible to transform and curve or straight in points, Figure 8, and build an
accumulator matrix A(N). Thus, this feature is based on mapping the digital image pixel
into the parameter space. With an N-dimensional accumulator, pixel organization can be
quantized and added into an accumulator matrix A(N). Inside this matrix, the highest peaks
detected are the higher potential equation of straight line detection, like a voting system:

Y = aX + b (3)

σ = Xcos(θ) + Ysin(θ) (4)

Note that it is possible to identify a line by the number of intersections, that is, in case
the number of intersections is greater, the more accurate is the probability to have a
line in the analyzed image area. For this work, we set up a threshold with a minimum
amount of intersections:

y = (−cos θ

sin θ
)x + (

ρ

sin θ
) (5)

ρθ = Xn · cos θ + Yn · sin θ (6)

Note that the polar coordinate (ρθ, θ) represents a line passing through a point (X1, Y1).
From Figure 8, it is possible to obtain Equation (7). Thus, by making the Hough Transform
into a single line, the path (parameters ρ and θ) can be obtained:

X1 = ρ · cos θ, and Y1 = ρ · sin θ (7)

The controller is responsible for regulating speed, direction, and orientation. It receives
the parameters ρ and θ and calculates the necessary control inputs to assure that the UAS
flies with the line between the desired limits. Note that, through the line readings as a
basis and delimiting a threshold to contain the continuous correction of the UAS direction,
the angle α of Equation (8) is obtained by correlating the line generated by the code, being
an angular fault prioritization. Note that the points (X1, Y1) and (X2, Y2) are drawn by the
problem to concatenate them. The proposed strategy marks the image processed by the
camera in order to optimize the values obtained, overwriting the line with one generated
directly by the algorithm:

α = −1 · (arctan (
(Y2 − Y1)

(X2 − X1)
) (8)

Basically, the controller first rotates the UAS around its z-axis to have the detected line
normal to the image horizontal plane. Then, the drone moves on its lateral axis to position
the line within the predefined limits. Finally, it moves the drone forward along the pipe
line. This process is repeated on every algorithm loop.
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3. Results and Discussion

In this section, the CNN model training results are presented, as well as the tests
evaluated in the simulation environment and in real flights.

3.1. YOLO Training and Results

In order to train YOLO’s model, the authors used Google Colab, a web-hosted Jupyter
notebook service, and [67] as a guideline for the task. The amount of RAM disposable was
12 GB and 16 GB TPU Tesla T4 was also provided by the application. After the training,
the weights are locally stored and used in the ground control station.

In Figure 9, the learning curve of the YOLO’s training results for the bounding boxes
detection and the object classification, respectively, are presented. The YOLO model was
trained with a dataset containing both the simulated and real images. It is possible to
observe that the training took around 280 epochs. The training took approximately 4 h in
the computer with configuration described in the previous paragraph.

(a)

(b)

Figure 9. Box and object loss through the 282 epochs of training. (a) bounding box regression loss
(Mean Squared Error); (b) confidence of object (Binary Cross Entropy).

Figure 10 displays the Precision–Recall curve, which presents the tradeoff between precision
and recall for different threshold levels, and the mean average precision (inside the legend box).
In this application, the threshold should be selected based on the mission objective. For example,
if the objective is to inspect every pipe in the plant, it seems wise to choose a lower threshold
and risk inspecting objects that are not pipes but being sure that every pipe is inspected. If a
quick and general inspection is needed, a high threshold may be chosen.

Figure 11 shows some results of the trained model when facing the testing images
from the dataset. It is possible to see that the confidence of the object classification is very
high (i.e., close to 90%). This result is even in the third image (i.e., the widest one), where
a wall can easily be misunderstood as a pipe from above. The trained model identifies
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just the two tubes. In addition, note that this image is angled, which makes it harder to
precisely mark the bounding box.

Figure 10. Precision vs. Recall curve.

Figure 11. Trained model pipe recognition with some testing dataset images. The YOLOv4 algorithm
performs the automatic label and the confidence level for object classification. The bounding box did not
describe the object’s spatial location well in the bottom image, but the algorithm was able to classify it.

Table 3 presents the confusion matrix results from the trained model facing the test-
ing dataset for the threshold chosen for the simulated and real flight tests. During the
application, the model input is taken from the UAS /camera node simulated by ROS.

Table 3. Confusion matrix.

Pipe FP

Pipe 0.64 1

FN 0.36 0
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3.2. Simulation Tests

In order to first evaluate the proposed strategy safely, the Gazebo software was used
to simulate an Oil & Gas pipeline inspection environment (Figure 12).

Figure 12. World created in the Gazebo Software.

The Ground Station (GCS) receives the information from a telemetry module available
on both the computer and the UAS, using the MAVLink communication protocol. The PX4
software, which runs on the PixHawk flight controller hardware, is responsible for acquiring
information from the peripheral sensors and modifying these values in the actuators to
which it has access. The GCS runs the operating system Ubuntu 18.04.4 LTS 64 bits, and it
has an Intel® Core™ i7-5500U CPU @ 2.40GHz × 4, Intel® HD Graphics 5500 (Broadwell
GT2) with 15.6 Gb RAM.

The takeoff height was around 3 m for safety reasons. The UAS uses the predetermined
height as a checkpoint to start the path follower script, maintaining its altitude during the
inspection. Figure 13 presents the UAS approaching the pipeline and starting to follow the
unburied pipeline using the line follower methodology.

This figure gives the outcomes from the steps of the path following algorithm, which
uses the difference between the red line and the blue line limits as the error. The red line
on the output shows the middle term between the two lines detected, corresponding to
the sides of the pipe isolated by using a grayscale technique, filtering and smoothing the
original image.

Figure 13. UAS performing pipe tracking in the simulated environment. Note all stages from the
proposed path follower strategy in the left-up part of this image.



Drones 2022, 6, 410 13 of 19

The next set of test (Figure 14) in the Gazebo simulation was to perform straight-
line and curves in order to verify the performance of the image processing and Yolov4
algorithms. Note that the path follower was able to satisfactory perform the tasks.

A video of the proposed strategy working in the simulation environment is available
online (https://github.com/LucasSousaENG/Pipeline-Inspection/, accessed on
3 November 2022).

Figure 14. Path follower methodology performing straight-line tracking and curves: (a) straight line.
(b) curves.

3.3. Real Flight Tests

After testing the system in a simulated world, the authors also decided to test the
model in a real-world constrained scenario to show the robustness of the proposed method-
ology. The constraints are just to preserve the safety of the UAS. A safe flight distance from
the pipes was set to 10 m high, and the experiments were outdoors but not affected by
strong winds.

Another simplification was on the curve observed on the pipelines. The authors de-
cided to first test the proposed methodology just with slight curved pipelines or completely
straight ones. Note that 90º degree curves are dismissed in these tests.

For the test, the Bebop Parrot quadrotor was used (Figure 15) with the FCU from
PixHawk PX4, due to the MavROS ready-to-use offboard controller. This is the same setup
as the simulation presented in the previous section.

The test was performed on a water pipe shown in Figure 16, used to supply an
artificial lake at UNIFEI (Federal University of Itajubá), located in Minas Gerais state, Brazil.
The pipe has a diameter of 6 inches and a straight part of around 15 m length. During the
test, the weather was sunny and without winds.

The results of the image processing are presented in Figure 17. Note that the red
line inside the blue line limits shows that the UAS is able to keep the detected line (red)
very close to the reference line (yellow). Figure 17a presents the first image processing
step, which transforms the original image in a binary image. The second step is the

https://github.com/LucasSousaENG/Pipeline-Inspection/
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application of the Canny Detection algorithm, whose image output can be seen in Figure 17b.
Finally, the pipe line is calculated and can be observed in Figure 17c in red. In Figure 17d,
the output of the CNN model, which detects the pipes, is shown.

Figure 15. Bebop Parrot used in the experiment.

Figure 16. Pipe used in the experiment to test the proposed path follower methodology.

Figure 17. Path follower algorithm, Canny and Hough transform, applied to a pipe in a real
scenario. (a) binary image; (b) Canny detection; (c) image processing and angle prioritization;
(d) Yolov4 detection.

Figure 18a presents the path follower behavior in the practical experiment. It is
possible to observe satisfactory performance in terms of a very small error deviation from
the guideline of around 0.0111 m. In Figure 18b, it is also possible to analyze the error
between the pipe location and the agent path during the tests.

It is important to highlight that the tests in this real environment were performed
in a controlled scenario, where lighting conditions and winds did not harm the process.
As a quality comparison, Table 4 presents a few differences between the simulation and
real environment tests. The obtained results demonstrated the technical feasibility of the
proposed approach to be applied for autonomous inspection of the unburied pipeline
structures in O&G facilities. Note that the CNN performance is better in the real-world
test. This can be explained due to the low simulation world image definition that is the
consequence of the pipe size and Gazebo image rendering power. On the other side, in the
simulated environment, the tracking error is smaller because of the perfection of the line
and other element absence, such as a wall.
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(a)

(b)

Figure 18. UAV positioning about the line on real tests. (a) UAV path and actual pipe position;
(b) difference between UAV and pipe position.

Table 4. Quality comparison between the simulation and real environment tests.

Parameter Simulation Real Environment

Error Deviation (m) 0.0074 0.0111

Mean CNN Confidence 0.8774 0.9765

4. Conclusions

This work proposed a solution composed by a computer vision method based on
CNN along with classical image pre-processing techniques to autonomously guide a UAS
through unburied pipelines of onshore O&G facilities during inspection tasks. The CNN is
used to detect the pipes, while classical image processing techniques are used to extract
the pipe reference line. The line follower strategy is based on Hough transform to perform
the line tracking during the straight parts, reaching 0.0111 m of mean squared error in real
flight tests. Tests were also performed in the Gazebo virtual environment, and the outcomes
showed that the proposed approach succeeded in accomplishing the mission. The robot
used in the simulation flew over all the pipelines safely and thoroughly autonomously.
Regarding the CNN results, the trained model was able to reach a mean average precision of
72% for the test dataset. The model can possibly achieve a better performer by fine-tuning
hyperparameters or investigating other training techniques, such as transfer learning.
The authors chose to not fine-tune the model as the CNN was not the focus of the work
and that this simple implementation resulted in satisfactory performance in both simulated



Drones 2022, 6, 410 16 of 19

and real flight tests. As future work, the solution should be embedded in a companion
computer, allowing the complete onboard processing. In addition, some improvements,
such as only making the line detection inside the detected pipe bounding box, should be
considered. Finally, more advanced control strategies, such as trajectory tracking with
Model Predictive Control for constant speed along the pipe can be investigated.
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