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Abstract. Many compiler optimization techniques depend on the abil-
ity to calculate the number of integer values that satisfy a given set
of linear constraints. This count (the enumerator of a parametric poly-
tope) is a function of the symbolic parameters that may appear in the
constraints. In an extended problem (the “integer projection” of a para-
metric polytope), some of the variables that appear in the constraints
may be existentially quantified and then the enumerated set corresponds
to the projection of the integer points in a parametric polytope.
This paper shows how to reduce the enumeration of the integer projection
of parametric polytopes to the enumeration of parametric polytopes. Two
approaches are described and experimentally compared. Both can solve
problems that were considered very difficult to solve analytically.

1 Introduction

Many compiler optimization techniques require the enumeration of objects of a
certain class. Examples include counting the number of calculations, accessed
memory locations or statement executions in a loop nest or parts thereof [6, 21,
23, 28, 29, 38]; calculating the number of cache misses in a loop [12, 16, 24];
computing the number of dynamically allocated bytes [11]; enumerating the
number of live array elements at a given iteration (i, j) [27, 42]; counting how
many parallel processing elements can be used when executing a loop on an
FPGA [5, 22, 25] and computing the amount of communication for a given
schedule of parallel tasks on a distributed computing system [9, 26, 37].

These counts are used to drive optimizations such as increasing parallelism
[38], minimizing memory size [1, 2, 27, 38, 42], estimating worst case execu-
tion time [28], increasing cache effectiveness [6, 16], high-level transformations
for DSP applications [23], converting software loops into parallel hardware im-
plementations [5, 18, 22, 25, 38] and minimizing communication overhead in
distributed applications [9, 26, 37]. In many of these optimizations, the objects
or events to be counted are modeled as the integer solutions to systems of linear
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inequalities, i.e., as the elements of a set S = {x ∈ Zd | Ax + c ≥ 0 }, with
A ∈ Zn×d and c ∈ Zn. Furthermore, they often need the count in terms of a
vector of parameters p (e.g., in the presence of symbolic loop bounds):

Sp = {x ∈ Zd | Ax + Bp + c ≥ 0}. (1)

A recent efficient algorithm that computes the function from specific values of
p to the number of elements in Sp is presented in [40]. This paper considers the
more general counting problem, where some of the variables can be existentially
quantified. We propose a general solution for counting the number of elements
(in terms of parameters p) for sets that can be expressed in the form

{

x ∈ Zd | ∃y ∈ Zd′

: Ax + Dy + Bp + c ≥ 0
}

. (2)

Computing the number of elements in such a set is, amongst others, needed in
the program analyses described in [1, 2, 5, 6, 9, 12, 16, 25, 26, 37, 42]. Practical
examples are discussed in an extended version of this paper, see [39].

Example 1. Consider an example adapted from [14] (Figure 1(a)). Assume we
want to know the total number of array elements accessed by the statement
in the inner loop as a function of the symbolic parameter p. This problem is
equivalent to counting the number of elements in the set

Sp = { l ∈ Z | ∃i, j ∈ Z : l = 6i + 9j − 7 ∧ 1 ≤ j ≤ p ∧ 1 ≤ i ≤ 8 }, (3)

which can be written in the same form as (2):
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Figure 1(b) shows the array elements that are accessed for p = 3. These
elements do not correspond to the integer points in a polytope. Even after scal-
ing by 3 it still contains two “holes” (marked by × on the figure). These holes
complicate the enumeration. For p = 3, the set Sp contains 19 points, see Fig-
ure 1(b). In general, the number of points in Sp can be described by the function
Different polynomials represent the count in different regions of the parameter
space. Following [36], we call these regions chambers. In general, the count in
each chamber is described by a step-polynomial, as defined in Section 2.

The solution to a counting problem is called the enumerator of the set of con-
straints. Without parametric variables in the counting problem, the enumerator
is an integer; otherwise the enumerator is a function that maps the values of the
parametric variables to an integer. Different applications for different types of
constraints has led to different proposals. Below, when we refer to the complex-
ity of algorithms, we always mean for a fixed number of variables. Note that the
enumeration of even parametric polytopes is NP-hard.



for j:=1 to p do

for i:=1 to 8 do

a(6i+9j-7)=a(6i+9j-7)+5

(a) Example Program
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j

i

× ×

(b) Array elements accessed for p = 3

Fig. 1. Example adapted from [14].

Linear inequalities. Barvinok[3] was first to propose an algorithm for enu-
merating sets defined by linear inequalities that is polynomial-time.

Parametric linear inequalities. Ehrhart [19] showed that the general form
of the enumerator for a certain form of parametric linear inequalities with a
single parameter is a quasi-polynomial. Clauss et al. [15] extended this theory
to handle the more general form shown in Equation (1), albeit in exponential
time complexity. De Loera et al. [17] implemented Barvinok’s [3] polynomial-
time algorithm for enumerating sets defined by linear inequalities and its
extension to compute the Ehrhart series corresponding to the dilation nP
of a polytope P . Finally, Verdoolaege et al. [40] implemented a polynomial
time algorithm for the counting problem of Equation (1).

Linear inequalities with existential variables. Barvinok and Woods [4]
propose a polynomial time algorithm. No implementation has been reported,
and the extension to parameters is not obvious.

Parametric linear inequalities with existential variables. Boulet [9] pro-
poses to compute the enumerator of a set of parametric linear inequalities
with existential variables in two steps. First, parametric integer program-
ming (PIP) [20] is used to eliminate the existential variables, after which
Clauss’s [15] method is used to enumerate the resulting set of linear inequal-
ities. However, no extensive evaluation has been reported and the appendix
in [10] indicates that the method cannot compute the enumerator fully au-
tomatically. Meister [30] proposes a similar technique using his more general
periodic polyhedra instead of PIP. No implementation has been reported.
Clauss [13] proposed a method (recently implemented [35]) based on “thick
facets” that works for a single existential variable.

Non-parametric Presburger formula. Presburger formulas consist of lin-
ear inequalities of integer variables, combined by existential and universal
quantifiers, disjunction, conjunction and negation. (∃,∀,∨,∧,¬). Two re-
cent methods [8, 31] represent the formula as a finite automaton to count
the number of its integer solutions in exponential time.

Parametric Presburger formula. In [33], a number of rewrite rules are pro-
posed to compute the enumerator of a parametric Presburger formula. How-
ever, the rules seem ad-hoc and no implementation has been reported, mak-



ing it hard to evaluate their usefulness in practice. In [41], a polynomial-time
algorithm for enumerating sets as in (2) is proposed without implementation.

This paper investigates the combination of PIP with our method for para-
metric polytopes [40]. This combination can handle the parametric counting
problems with existential variables reported in [2, 6, 9, 12] that were previ-
ously considered difficult or even unsolvable. Since PIP is worst-case exponen-
tial, we also investigate an alternative method that uses a number of simple
polynomial rewriting rules to eliminate existential quantifiers. While all existen-
tial quantifiers are eliminated in our experiments on a wide range of practical
applications, some could remain. In that case, PIP can be used as a back-up to
solve the reduced problem. Theoretically, parametric Presburger formulas can
be transformed into a disjoint union of sets of the form (2). For the majority of
the parametric Presburger formulas we considered, this transformation could be
performed efficiently and automatically by the Omega library.

Section 2 introduces background on parametric polytopes and enumerators
and Section 3 two extensions for handling existential variables. An experimental
evaluation is performed in Section 4, and concluding remarks follow in Section 5.

2 Parametric Polytopes

Before tackling integer projections of parametric polytopes, we review the results
on enumeration of parametric polytopes. We refer to [40] for the details.

Definition 1. A rational polyhedron P ∈ Qd is a set of rational d-dimensional
vectors x defined by linear inequalities

P =
{

x ∈ Qd | Ax + c ≥ 0
}

, with A ∈ Zm×d and c ∈ Zm. (4)

A rational polytope is a bounded rational polyhedron.

Definition 2. A rational parametric polytope Pp with n parameters p is a set
of rational d-dimensional vectors x defined by linear inequalities on x and p

Pp =
{

x ∈ Qd | Ax + Bp + c ≥ 0
}

(5)

with A ∈ Zm×d, B ∈ Zm×n and c ∈ Zm, and such that for each fixed value p0

of p, Pp0
defines a (possibly empty) rational polytope in Qd.

All the polyhedra in this paper are rational. If the parametrization of a
polytope is clear from the context, subscript p is omitted. Note that the same
equations that define a parametric polytope also define a potentially unbounded
(d + n)-dimensional polyhedron in the combined data and parameter space.

P ′ =
{

(x,p) ∈ Qd+n | Ax + Bp + c ≥ 0
}



Definition 3. The enumerator cP (p) of a parametric polytope Pp is a function
from the set of n-dimensional integer vectors Zn to the set of natural numbers N.4

The function value at p0, denoted cP (p0), is the number of integer points in the
polytope Pp0

.

cP : Zn → N

p0 7→ cP (p0) = #
(

Zd ∩
{

x ∈ Qd | Ax + Bp0 + c ≥ 0
})

Definition 4. A step-polynomial g : Zn → Q of degree d is a function written
in the form

g(p) =
m

∑

j=1

αj

dj
∏

k=1

⌊〈ajk,p〉 + bjk⌋ ,

with αj ∈ Q, ajk ∈ Qn, bjk ∈ Q, 〈·, ·〉 the inproduct, and ⌊·⌋ is the floor (greatest
integer) function. A piecewise step-polynomial f : Zn → Q consists of a subdi-
vision of Zn, called the chambers,5 each with an associated step-polynomial.

Proposition 1 ([40]). For fixed dimensions d and n, the enumerator of a para-
metric polytope can be computed as a piecewise step-polynomial in a time poly-
nomial in the input size (the number of bits needed to represent the input [34]).

Example 2. Consider the parametric polytope Pp

{ (x, y) ∈ Q2 | x + 3y ≤ 8 ∧ x + 2y + 1 ≤ 0 ∧ x + 2y + p ≥ 0 ∧ x + 3p + 11 ≤ 0 }.

Figure 2 shows Pp for different values of p. The number of integer points is given
by

cP (p) =

{

5 if p ≥ 3

− 3
4p2 + 15

4 p + 1
2⌊

1
2p⌋ if 1 ≤ p ≤ 2

.

This enumerator has two chambers: { p | p ≥ 3 } and { p | 1 ≤ p ≤ 2 }. The
step-polynomial associated with the first chamber is a constant. For the second
chamber, we obtain a polynomial in the floors of p and 1

2p. Note that this is
only one of the possible representations of cP (p). For this particular example,
a much simpler representation exists with chambers { p | p ≥ 2 } and { 1 }, and
the constants 5 and 3 for the corresponding functions.

3 Existential Variables

This section considers the extension with existential variables. The general form
of these counting problems, given in Equation 2, is equivalent to

#πd

(

Z(d+d′) ∩
{

(x,y) ∈ Q(d+d′) | Ax + Dy + Bp + c ≥ 0
})

4 In [40], the symbol E is used instead of c.
5 Chambers are also called validity domains in some publications.
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Fig. 2. Different instantiations of the parametric polytope from Example 2.

where πd is the projection onto the first d dimensions. This parametric count
corresponds to the number of points in the projection of the integer points in a
parametric polytope, or integer projection of a parametric polytope for short.

Note that we cannot simply ignore the existential quantifier and count the
number of points as if the set were a parametric polytope, since for any particular
value of x there may be several values of y that satisfy the constraints. We also
cannot simply project out the existential variables since there may exist values
of x in this projection for which there is no integer value of y satisfying the
constraints. E.g., if we project P5 in Figure 2 onto the x-axis, then this projection
will contain the value −30, while there is no integer y such that (−30, y) ∈ P5.

We consider three techniques for eliminating existential variables; they are
polynomial in the input size (for fixed dimensions) but not always applicable. In
the latter case, one can fall back upon parametric integer programming to count
the set. However, this is worst-case exponential, even for fixed dimensions.

3.1 Elimination

Unique Existential Variables The existential quantifiers introduced by tools
that automatically extract counting problems from source code can sometimes
be redundant. This occurs when for each x in the set, there is at most one integer
value for yi that satisfies the constraints. In such a case, the existential quantifier
for yi can be omitted without affecting the cardinality of the set.

Many cases can be detected when there is a constraint that involves yi but
none of the other existential variables y. Without loss of generality, we assume
the constraint establishes a lower bound on the variable yi, i.e., it is of the form

nlyi + 〈al,x〉 + 〈bl,p〉 + cl ≥ 0 (6)

with nl ∈ N. Combining this constraint with an upper bound

−nuyi + 〈au,x〉 + 〈du,y〉 + 〈bu,p〉 + cu ≥ 0 (7)

we obtain

−nu(〈al,x〉 + 〈bl,p〉 + cl) ≤ nunlyi ≤ nl(〈au,x〉 + 〈du,y〉 + 〈bu,p〉 + cu). (8)



The number of distinct integer values for nunlyi is given by the upper bound
minus the lower bound plus one. If this number is smaller than nunl, then the
two constraints admit at most one integer value for yi. That is, if

nl(〈au,x〉 + 〈du,y〉 + 〈bu,p〉 + cu) + nu(〈al,x〉 + 〈bl,p〉 + cl) + 1 ≤ nlnu (9)

for all integer values that satisfy the constraints, then yi is uniquely determined
by x and p and can therefore be treated as a regular variable, without existential
quantification. It is independent of the other existential variables because of our
assumption that one of the constraints does not involve these other variables.
Condition (9) can easily be checked by adding the negation to the existing set
of constraints and testing for satisfiability. Note that it is sufficient to find one
such pair to be able to drop the existential quantification of the variable.

Example 3. Consider the set S

{x ∈ Z | ∃y ∈ Z : x+3y ≤ 8∧x+2y +1 ≤ 0∧x+2y +p ≥ 0∧x+3p+11 ≤ 0 }.

This is the same set that appeared in Example 2, except that y is now an
existential variable. Since there is only a single existential variable, all constraints
are independent of the “other existential variables”. Using x + 2y + p ≥ 0 and
−x − 3y + 8 ≥ 0 as constraints, condition (9) yields

x + 3p + 17 ≤ 6. (10)

All elements of the set satisfy this constraint so we can remove the existential
quantification and the set S is then Pp ∩ Z, with Pp the set from Example 2.

Even if there is no single existential variable that is unique, some linear
combination of existential variables may still be unique. To avoid enumerating all
possible combinations, we only consider this case if we have two constraints that
are “parallel in the existential space”, i.e., such that dl = nld and du = −nud for
some positive integers nl and nu and an integer vector d with greatest common
divisor (gcd) 1. We compute condition (9) from (6) and (7) with yi replaced by
〈d,y〉 (du is 0 in this case). If this condition holds, we perform a change of basis
such that y′

1 = 〈d,y〉, which we now know to be unique. Such a change of basis
can be obtained through transformation by the unimodular extension of d [7].

Example 4. Consider the set S (3) from Section 1. This set satisfies the equality
l = 6i + 9j − 7, which means that 2i + 3j is unique. Transforming this set using
the unimodular extension of d = (2, 3)

(

x
y

)

=

(

2 3
−1 −1

) (

i
j

)

we obtain

S = { l ∈ Z | ∃x, y ∈ Z : l = 3x−7∧−x−p ≤ 2y ≤ −x−1∧−x+1 ≤ 3y ≤ −x+8 }.



Equation l = 3x− 7 provides an upper and a lower bound on x, hence Equation
(9) is trivially satisfied, ∃x can be removed and also l as it is now redundant.

S′ = {x ∈ Z | ∃y ∈ Z : −x − p ≤ 2y ≤ −x − 1 ∧ −x + 1 ≤ 3y ≤ −x + 8 }. (11)

Redundant Existential Variables Consider again a lower bound on the ex-
istential variable yi: nlyi + 〈cl,w〉 ≥ 0, where we used cl := (al,dl,bl, cl) and
w := (x,y,p, 1) for brevity. Since we are only interested in integer values of yi,
this is equivalent to nu(nlyi + 〈cl,w〉) + nu − 1 ≥ 0, for any positive integer nu.
Similarly, for an upper bound we obtain nl(−nuyi + 〈cu,w〉) + nl − 1 ≥ 0. The
range in (8) can therefore be expanded to

−nu〈cl,w〉 − nu + 1 ≤ nunlyi ≤ nl〈cu,w〉 + nl − 1.

If this range is larger than nunl, i.e., if

nl〈cu,w〉 + nu〈cl,w〉 + nl − 1 + nu − 1 + 1 ≥ nlnu, (12)

then there is at least one integer value for each given value of the other variables.
If this holds for all pairs of constraints, then variable yi does not restrict the
solutions in any way and can be eliminated (known as the Omega test [32]).
Note that the constraints need not be independent of the other variables.

Example 5. Consider the set

S = {x ∈ Z | ∃y ∈ Z : −x − p ≤ 2y ≤ −x − 1 ∧ x ≤ −11 ∧

− x + 1 ≤ 3y ≤ −x + 8 ∧ x + 3p + 10 ≤ 0 ∧ p ≥ 3 }.

This set is shown ( ) in Figure 3. Pairwise combining the two upper and two
lower bounds to form condition (12), we obtain 2p + 1 ≥ 4, 26 ≥ 9, −x − 1 ≥ 6
and x+20+3p ≥ 6. All of these are true in S. (In practice we would use the least
common multiple of nl and nu instead of their product.) Variable y can therefore
be eliminated and we obtain S = {x ∈ Z | x ≤ −11∧ p ≥ 3∧ x + 3p + 10 ≥ 0 }.

Independent Splits If neither of the two heuristics above apply, we can split
the set into two or more parts by cutting the polyhedron in the combined space
along a hyperplane. By considering hyperplanes that are independent of the
existential variables, we ensure that the enumerator of the original set is the
sum of the enumerators of the parts; otherwise we would obtain sets that may
intersect, requiring the computation of a disjoint union.

In particular, we consider all pairs of a lower and an upper bound on an
existential variable that do not depend on other existential variables, i.e., they
are of the form (6). If neither condition (9) nor condition (12) is satisfied over the
whole set, then we cut off that part of the set where condition (9) does hold. In
the remaining part, condition (12) holds for this particular pair of constraints.



Since the number of pairs of constraints is polynomial in the input size, the
number of sets we split off is also polynomial and so the whole technique, if it
applies, is polynomial in the input size (for fixed dimension). As a special case,
this technique always applies if there is only a single existential variable.

Example 6. Consider once more the set S′ (11) from Example 4. The bottom of
Figure 3 shows the projection of the corresponding polyhedron in the combined
data-parameter space onto the xp-plane and the top shows the xy-slice at p =
4. The two constraints we considered in Example 3 also appear in this set.
Condition (10) does not hold for the whole set, but instead is used to cut off
the part that we considered in Example 3. This is the leftmost part ( ) in
Figure 3. Using the other constraints, we further split off p ≤ 2 and x ≥ −10.
The remaining part is the set discussed in Example 5.

p = 4

x

y

• • • • •• • • • • • • • • • • • • • • • •

•
◦••

•••
•••

••
••

••
••

••
••

◦•

cP (p) =

{

5 if p ≥ 3

− 3

4
p2 + 15

4
p + 1

2
⌊ 1

2
p⌋ if 1 ≤ p ≤ 2

cP (p) = 5 if p ≥ 3

cP (p) = 3p if p ≥ 3

−5−10−15−20−25−30
p = 4

x
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p
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+
1
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1 2
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1 2
p
⌋

if
1
≤

p
≤

2

Fig. 3. Decomposition of the set from Example 6.

3.2 Parametric Integer Programming

Parametric integer programming (PIP) [20] is a technique for computing the lex-
icographical minimum of a parametric polytope as a function of the parameters.
The solution is defined by rational linear expressions in both the original param-
eters and possibly some extra parameters, defined as the floors of rational linear
expressions of other parameters. Different solutions may exist in different parts
of the parameter space, each defined by linear inequalities in the parameters
(both original and extra).

PIP can help in the enumeration of integer projections of parametric poly-
topes. Consider a set S (2) with d regular variables, d′ existential variables and n



parameters. Compute the lexicographical minimum of the d′ existential variables
with the regular variables and the original parameters as parameters, i.e.,

ym
(x,p) = lexmin

{

y ∈ Zd′

| Ax + Dy + Bp + c ≥ 0
}

.

Replacing y by ym
(x,p) in the definition of S does not change the number of

solutions. However, ym
(x,p) is unique (it satisfies Equation (9)) and the quantifier

can be dropped. The extra parameters that may appear in the solution can be
handled by considering them as extra (unique) existential variables in the set S.

PIP always applies but is worst-case exponential, even for fixed dimension.
It may decrease or increase the total dimension of the problem depending on the
difference between the number of extra variables and the number of existential
variables in the original problem. The dimension decreases by 1 for each such
variable since PIP introduces an equality for each of them. The total dimension
is important since the enumeration technique for parametric polytopes is only
polynomial for fixed dimension.

Example 7. Consider again the set S′ (11) from Example 4. We have:

ym
(x,p) = lexmin { y ∈ Z | −x − p ≤ 2y ≤ −x − 1 ∧ −x + 1 ≤ 3y ≤ −x + 8 }

=

{

1 − x −
⌊

2−2x
3

⌋

if x + 3p + 2 ≥ 0

−x −
⌊

p−x

2

⌋

otherwise
.

Hence S′ is the (disjoint) union of two sets S1 ⊔ S2. E.g., S1 is defined as

S1 = {x ∈ Z | ∃y, q ∈ Z : y = 1 − x − q ∧ 2 − 2x ≤ 3q ≤ 4 − 2x ∧

x + 3p + 2 ≥ 0 ∧ −x − p ≤ 2y ≤ −x − 1 ∧ −x + 1 ≤ 3y ≤ −x + 8 },

where q is the new “parameter” q = ⌊(2− 2x)/3⌋. Each new set has exactly one
extra (unique) existential variable, hence the total dimension remains constant.

4 Experiments

We count the number of integer points in formulas resulting from reuse distance
equations [6], cache miss analysis [12], memory size estimation [2] and commu-
nication volume computation [9]. An overview of these problems and details on
the specific versions of the PolyLib and Barvinok libraries we used are in [39].

4.1 Reuse Distances

We performed extensive experiments calculating reuse distances of a set of rel-
atively small but representative test programs including matrix-matrix multi-
plication and Cholesky factorization. The second column of Table 1(a) shows
the number of times a particular rule from Section 3.1 was used. The remaining
columns are explained in Section 4.2. The row “Fixed” refers to the special case



type RD Chatterjee Balasa Boulet

Sets 19177 8+13 4 1

Fixed 3470 0+2 14 5
Change+Fixed 0 0+0 0 2
Unique 4890 8+9 0 0
Change+Unique 18 0+0 0 0
Redundant 684 0+0 2 1
Split 286 0+0 0 0
PIP 0 0+0 0 0

(a) Rule application distribution for polytopes
originating from reuse distance equations (RD),
cache miss analysis (Chatterjee), memory size
estimation (Balasa) and communication vol-
ume computation (Boulet).

#EV Dimension Decrease

? -1 0 1 2 3 4

1 6186 527 25
2 6 779 102 41 10
3 2 2 122 66 11 6
4 6 38 5 7
5 3 1 5 1
6 2 3

(b) Dimension decrease
induced by PIP in terms
of the number of existen-
tial variables (#EV ).

Table 1. Tables with experimental results

of a unique existential variable determined by an equality; “Change” refers to a
change of basis. In most of the tests we assume a cache line size of four words.
Frequently, the matrix size is a multiple of the cache line size. The resulting
enumerators for such cases were experimentally verified through a cache simula-
tion. PIP was never needed in these experiments. Simply ignoring the existential
quantifiers would have produced the wrong result, however, since we had to split
some sets. Curiously, some sets contained redundant existential variables, even
though they were created by Omega which should have removed them.

We also investigated the impact of the input size. For reuse distance calcula-
tion for matrix-matrix multiplication varying the sizes of the matrices, ranging
from 20 × 20 to 640 × 640, produced no measurable increase in computation
time. However, on tests where matrix sizes are not multiples of the cache line
size, Omega fails to simplify the resulting Presburger formulas, and produces in-
exact formulas containing Unknowns. We were forced to devise a way that avoids
Omega as much as possible. This modification increases the number of sets to
enumerate. For matrices of size 19 × 19 and 41 × 41, some of the resulting sets
proved too difficult to handle. For both sizes, we found at least one set where we
had to abort PolyLib after one hour while it was calculating step-polynomials.
Directly applying PIP also did not produce a result; moreover, PIP failed also
on two other sets that were handled by our reduction rules.

Next, we compared the relative performance of PIP and our rules when com-
bined with our polytope enumeration technique. A priori, we would expect that
the method with PIP would perform worse since PIP itself is worst-case ex-
ponential and the use of PIP may significantly increase the dimension of the
problem. Table 1(b) shows that this increase did not occur for our set of exam-
ples. Ignoring the 4 sets that failed to produce an answer (column “?”) as well as
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Fig. 4. Comparison between PIP and our rules

the 11355 sets without existential variables (not shown in the table), of the 7952
resulting polytopes, almost 90% have the same dimension as the original set.
Furthermore, except for 8 polytopes which experience an increase in dimension,
all others have a dimension that is smaller than that of the original set. There are
even 35 polytopes with a decrease in dimension that is larger than the number
of existential variables. The explanation for this phenomenon is that some of the
sets allow a range of rational values in one of the dimension, but only a single
integer value, e.g., 4 ≤ 5i ≤ 7. Again, this is surprising since Omega should have
discovered the corresponding equality. For the sets that PIP was able to handle,
Figure 4 shows the relative execution time on the left, for sets with an execution
time larger than 0.1s, and the relative size of the resulting enumerator on the
right, for sets where this relative size is not exactly one. We conclude that for
our set of examples, neither method has a clear performance gain over the other.

We previously reported [40] that our method for enumerating parametric
polytopes is faster, sometimes significantly, than Clauss’s method. Figure 5 pro-
vides further evidence of this improvement. The inputs are the parametric poly-
topes generated by PIP on the reuse distance sets. From a total of 18951 poly-
topes, 907 had a computation time of more than 0.1s. The implementation of
Clauss’s method failed to produce a complete result for 190 of these polytopes,
due to “degenerate domains”. The ratio of the execution times for the remain-
ing polytopes is shown for the “raw” polytopes on the left and for the polytopes
with redundant equalities removed on the right. For 17 polytopes on the left
and 8 polytopes on the right, the computation with Clauss’s method exceeds 10
minutes. The “ratio” for these polytopes is fixed to 100000 on the figures.

4.2 Other Applications

In this section, we mainly compare the combination of PIP with either Clauss’s
method or our method [40]. Applying Clauss’s method on a problem for an 8×8
processor array presented in [10] leads to a computation time of 713s. The same
problem for a 64×64 array, requires 6855s. Apparently, Clauss’s method does not
exploit equalities; first removing them reduces times to 0.04s and 1.43s. Using
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Fig. 5. Execution time ratio for Clauss’s method compared to ours for the original
polytopes on the left and preprocessed polytopes on the right.

our own method, which removes equalities automatically, we obtain both results
in 0.01s. The applied rules are shown in column 5 of Table 1(a).

An example in [2] counts the number of array elements accessed by 4 ref-
erences in a motion estimation loop kernel, for a number of different values of
the symbolic loop bounds. We handled the symbolic loop bounds parametrically,
thereby obtaining a single solution for all possible values of the symbolic loop
bounds. Using Clauss’s method (after removing equalities), counting takes re-
spectively 1.38s, 0.01s, 1.41s and 1.41s. With our method, times are 0.06s, 0.01s,
0.07s and 0.04s. The applied rules are shown in column 4 of Table 1(a).

Finally, we considered a large formula from [12]. Computation times for the
8 disjuncts range from a couple of seconds to 1.5 minutes while Clauss’s method
for one of the parametric polytopes did not finish in 15 hours. To enumerate the
whole formula, a disjoint union consisting of 13 sets was computed in less than
a second using Omega. Their enumeration times are in the same range as those
of the original disjuncts. The applied rules are shown in column 3 of Table 1(a),
with the original disjuncts on the left and the disjoint sets on the right.

5 Conclusions

Many compiler analyses and optimizations require the enumeration of the inte-
ger projection of a parametric polytope. As shown, this problem can be reduced
to a problem of enumerating parametric polytopes, either by using PIP or by
applying a number of rewriting rules. This reduction, together with our polyno-
mial method for enumerating parametric polytopes [40], yields a method that
works well in practice and can solve many problems that were previously con-
sidered very difficult or even unsolvable. Although both approaches usually have
comparable performance, there are some examples where PIP runs out of time.
Since the applicability of the rules is easy to check, it seems appropriate to apply
the rules first and to use PIP only when no complete reduction is achieved.
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