Carbon degassing through karst hydrosystems of Greece

Lorenza Li Vigni¹, Kyriaki Daskalopoulou^{2,3}, Sergio Calabrese^{1,4}, Francesco Parello¹, Carlo Cardellini^{5,6}, Stefano Caliro⁷, Giovanni Chiodini⁶, Walter D'Alessandro⁴

Keywords: CO₂ degassing; Karst spring geochemistry; Greece

Estimation of CO₂ degassing from active tectonic structures and regional hydrothermal systems is essential for the quantification of present-day Earth degassing [Frondini et al., 2019 and references therein]. Due to the high solubility of CO₂ in water, great amounts of deep inorganic carbon can be dissolved, transported, and released from regional aquifers. By applying a massbalance approach [Chiodini et al., 2000], different sources of the dissolved CO₂ can be discriminated. The main source of degassing in Greece is concentrated in hydrothermal and volcanic areas. However, deep CO₂ from active tectonic areas has not yet been quantified. A key point of this research is to investigate the possible deep CO₂ degassing through the big karst aquifers of Greece. From May 2016, 156 karst springs were sampled along the greatest part of the Hellenic region. To discriminate the different carbon sources, we analyzed the chemical and isotopic composition of total dissolved inorganic carbon (TDIC). Results yield TDIC values from 1.89 to 21.7 mmol/l and $\delta^{13}C_{TDIC}$ from -16.61 to -0.91 ‰. On this basis, karst springs are clustered into two groups: (a) low TDIC and $\delta^{13}C_{TDIC}$ values and (b) intermediate TDIC and $\delta^{13}C_{TDIC}$ values. The carbon of the first group derives from organic source and dissolution of carbonates; whilst the second group shows a possible carbon input from deep source. This geogenic carbon is mostly related to high heat flux areas, often near active or recent (Quaternary) volcanic systems.

References

Chiodini G. et al., (2000). Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy. J. Geophys. Res. 105, 8423-8434.

Frondini F. et al., (2019). Measuring and interpreting CO_2 fluxes at regional scale: the case of the Apennines, Italy. J. Geol. Soc. 176, 408-416.

¹Università degli Studi di Palermo, Dipartimento delle Scienze della Terra e del Mare, Palermo, Italia

²University of Potsdam, Institute of Geosciences, Potsdam Golm, Deutschland

³GFZ German Research Centre for Geosciences, Potsdam, Deutschland

⁴Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italia

⁵Università degli Studi di Perugia, Dipartimento di Fisica e Geologia, Perugia, Italia

⁶Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italia

⁷Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli - Osservatorio Vesuviano, Napoli, Italia