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Abstract. In this paper the focus is on “class clustering” in a continuous-
time queueing model with two classes and dedicated servers. “Class clustering”

means that customers of any given type may (or may not) have a tendency

to “arrive back-to-back”. We believe this is a concept that is often neglected
in literature and we want to show that it can have a considerable impact

on multiclass queueing systems, especially on the system considered in this

paper. This system adopts a “global FCFS” service discipline, i.e., all arriving
customers are accommodated in one single FCFS queue, regardless of their

types. The major aim of our paper is to quantify the intuitively expected

(due to the service discipline) negative impact of “class clustering” on the
performance measures of our system. The motivation of our work are systems

where this kind of inherent blocking is encountered, such as input-queueing

network switches, road splits or security checks at airports.

1. Introduction. In general, queueing phenomena occur when some kind of cus-
tomers, desiring to receive some kind of service, compete for the use of a service
facility (containing one or multiple servers) able to deliver the required service.
Most queueing models assume that a service facility delivers exactly one type of
service and that all customers requiring this type of service are accommodated in
one common queue. If more than one service is needed, multiple different service
facilities can be provided, i.e., one service facility for each type of service, and in-
dividual separate queues are formed in front of these service facilities. In all such
models, customers are only hindered by customers that require exactly the same
kind of service, i.e., that compete for the same resources.

In some applications, it may not be physically feasible or desirable to provide
separate queues for each type of service that customers may require, and it may be
necessary or desirable to accommodate different types of customers (i.e., customers
requiring different types of service) in the same queue. In such cases, customers of
one type (i.e., requiring a given type of service) may also be hindered by customers
of other types. For instance, if a road or a highway is split in two or more subroads
leading to different destinations, cars on that road heading for destination A may
be hindered or even blocked by cars heading for destination B, even when the
subroad leading to destination A is free, simply because cars that go to B are in
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front of them. In other words, there is a first-come-first-served (FCFS) order on
the main road. This blocking also takes place in weaving sections on highways
albeit to a lesser extent [14, 15]. We refer to [17, 18] for a general overview and
validation of modelling traffic flows with queueing models. Similarly, in switching
nodes of telecommunication networks, information packets with a given destination
of node A may have to wait for the transmission of packets destined to node B
that arrived earlier, even when the link to node A is free, if the arriving packets are
accommodated in so-called input queues according to the source from which they
originate (the well-known HOL-blocking effect, see [9, 11, 10, 16, 3]). Analogously,
at a security checkpoint (e.g., at an international airport or train station) people
are usually body-searched by someone of the same gender. As a result, when a
group of friends of the same gender arrive, the people of the opposite gender behind
them may have to wait until the whole group has been checked, even when the
other security person is available, at least when it is not allowed to overtake at the
security checkpoint (which is often the case for security reasons). In general, these
applications can be modelled by a queueing system with different types of traffic,
servers which are dedicated to these different classes, and a FCFS scheduling in the
shared queue. Therefore, customers of one type can be blocked by customers of the
other type that are waiting in front of them, even when their server is available.
We will refer to this scheduling as “global FCFS” in the remainder.

In [12], we already got some insight in the impact of this kind of phenomenon on
the performance of the involved systems. In this paper, we shift focus to the effect
of class clustering, i.e., to the way customers of any given type have a tendency
to “arrive back-to-back”. Class clustering is a concept that often is neglected in
literature to keep the model as simple as possible, but in this paper we want to
demonstrate that it is not always possible to treat this concept negligently. It may
be already intuitively clear that the tendency of customers to arrive back-to-back
will have some impact. Especially when looking at the extremes. When customers
have a great tendency to arrive back-to-back, we will have long periods with only
one type of customer and thus long periods when only one of the two servers is
working. On the other hand, when customers have a tendency to not arrive back-
to-back and the customers thus arrive with alternating types, a lot of the time both
servers will be able to work. In the first case there will be more blocking than in
the second. It is this effect that we quantify in this paper. We model the basic
elements of the problems at hand to be able to determine the combined impact of
class clustering and global FCFS. We therefore propose a continuous-time queueing
model that is still rich enough to capture the essential aspects of the problem at
hand but simple enough to determine explicit closed-form formulas for not only the
distribution of the system occupancy, but also for the distribution of the system
delay and for the stability condition.

The structure of the rest of the paper is as follows: in section 2, we start by
giving a brief description of the mathematical model. In section 3, we first dis-
cuss the stability condition of our system. It is clear that only when the stability
condition is met, our analysis is justified. In section 4, we start with focus on the
system occupancy, i.e., the number of customers in the system. The distribution
of the system occupancy is determined and some related performance measures are
calculated. Next in section 5, the focus is shifted to the system delay. Its distribu-
tion is determined and some related performance measures are calculated. Section
6 is devoted to a discussion of the results derived in previous sections and some
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numerical examples are provided. Some conclusions and directions for future work
are given in section 7.

2. Mathematical model. We consider a continuous-time queueing model with
infinite waiting room. There are two servers working at rate µ (exponential service
times) and two types (classes) of customers. Each of the two servers is dedicated to
a given class of customers. In this case, server A always serves customers of type 1
and server B always serves customers of type 2. The customers are served in their
order of arrival, regardless of the class they belong to (global FCFS).

The customers enter the system according to a Poisson arrival process with mean
arrival rate λ. In this paper, the major aim is to estimate the impact of the degree
of class clustering in the arrival process on this two-class two-server system. To
explicitly model this, we assume a first-order Markovian type of correlation between
the types of two consecutively arriving customers, which basically means that the
probability that the next customer belongs to a given class depends on the class
of the previous customer. We denote by α the probability that the next customer
has the same type as the previous one, and by 1 − α the probability that the next
customer belongs to the opposite type as the previous one. The parameter α can then
be considered as a measure of the degree of class clustering in the arrival process,
and will therefore be referred to as the “cluster parameter” in the sequel. It is
easily seen that the size of a cluster of customers of the same type, i.e., the number
of consecutive customers of any given type between two customers of the opposite
type, is geometrically distributed with parameter α and mean value 1/(1−α). From
a conceptual point of view, the only price we pay with this choice is that we can only
study cases where both classes of customers are equiprobable and thus both types
of customers account for half of the total load of the system. This is for instance
an accurate modelling for (i) uniform input-queueing switches, (ii) road splits with
equally balanced traffic in both directions and (iii) security checks at airports in
periods when there are a lot of travellers with leisure as purpose of travelling [4],
leading to about a 50%− 50% ratio of males and females.

3. Stability condition. We start the section with introducing the average amount
of work that enters the system per unit time:

γ ,
λ

µ
.

The stability condition can then be expressed as

γ < tS + 2tD, (1)

where tS represents the fraction of time when one server is working and tD is the
fraction of time when both servers are working. Indeed, the system is stable when
the average amount of work per unit time that enters the system (γ) is smaller
than the average amount of work the system can execute per unit time, i.e., the
average amount of work the system would execute per unit time when it would be
constantly provided with new customers. When only one server is able to work,
only one time unit work per unit time can be executed. However when both servers
can work, two time units work per unit time can be executed, thus explaining (1).
We can also rewrite (1) as

γ < 1 + tD, (2)
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Figure 1. Two-state Markov chain to determine the stability condition

which we can interpret as follows: there will always be at least one server working
when the system is constantly provided with new customers and only a fraction of
time a second server is working. To determine the fractions of time tS and tD, we
conceive that the number of working servers forms a simple two-state Markov chain
(see Fig. 1). When looking at the stability condition, we assume that the system
is constantly provided with new customers and thus independent of the number of
customers in our system. The first state in our Markov chain is when only one
server is working or, in other words, when the first two customers in our system are
of the same type (state 0). The second state is when both servers are working, i.e.
when the first two customers in our system are not of the same type (state 1). The
rate to go from state 0 to state 1 is (1− α)µ; namely a rate µ to finish the ongoing
service multiplied with the probability 1 − α that the next two first customers of
our system are of opposite types (or the probability that both servers will be able
to work). The rate to go from state 1 to state 0 equals µ; namely a rate 2µ to finish
one of the services multiplied with the probability 1

2 that the next customer to be
served is of a different type of the departed customer (or the probability that only
one server is able to work). The time tS is then the fraction of time the Markov
chain sojourns in state 0 and is given by

tS =
1

2− α
. (3)

Similarly, the time tD is the fraction of time the Markov chain sojourns in state 1
and is given by

tD =
1− α
2− α

. (4)

Equations (1) and (2) lead to

γ <
3− 2α

2− α
. (5)

We assume this stability condition to be fulfilled in the remainder of the paper.
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Figure 2. The state diagram of our system

4. System occupancy.

4.1. State diagram, balance and boundary equations. This system can be
described by a continuous-time Markov process. We describe the state of the system
by the pair (n,m) where n represents the number of customers in the system and
m indicates whether the two customers at the front of the system are of the same
type (m = 0) or not (m = 1). For example, the state (n, 0) means that the types of
the first two customers are of the same type and a total of n customers resides in
the system. This is thus a Quasi-birth-and-Death (QBD) process with two phases
(m) and where the levels represent the number of customers in the system. Note,
we are only interested in the (difference of) types of the first two customers. We
stress that the exact type of the first two customers is of no importance, only
whether they are different. The first reason for this is that the cluster parameter α
denotes the probability that the next customer is of the same type as the previous
customer, regardless of the type of this customer. Secondly, the service times of
both types of customers have the same distribution, namely an exponential one
with mean 1

µ . When we have only one customer in the system (n = 1) we interpret

the state differently. When the system is in the state (1, 0), the customer left in the
system has the same type as the last customer that arrived in the system. Similarly,
(1, 1) means that the customer left in the system has a different type than the last
customer that arrived in the system. Indeed, the last customer may have already
left the system because customers are able to overtake each other in the service units
(by having a shorter service time). Notice also that it is not necessary to split state
(0) in a (0, 0) and a (0, 1) state because we always enter state (1, 0) from both states.
Thus, due to our choice for modelling the system as a symmetric one (the arrival
process is only determined by the total arrival rate λ and the cluster parameter α
and the service times are equally distributed as well), the state diagram of Fig. 2
emerges.

Define p(n,m) as the steady-state probability to be in state (n,m). Then from
Fig. 2 (see transitions to and from states (6) and (7)), we find the following balance
equations for p(n,m), for the repeating portion of our Markov chain (n > 2),

(λ+ µ)p(n, 0) = αµp(n+ 1, 0) + µp(n+ 1, 1) + λp(n− 1, 0), (6)

(λ+ 2µ)p(n, 1) = (1− α)µp(n+ 1, 0) + µp(n+ 1, 1) + λp(n− 1, 1). (7)
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The following boundary equations can be obtained similarly (observe transitions to
and from states (1)− (5) in Fig. 2, resp.)

λp(0) = µp(1, 0) + µp(1, 1) (8)

(λ+ µ)p(1, 0) = µp(2, 0) + µp(2, 1) + λp(0) (9)

(λ+ µ)p(1, 1) = µp(2, 1) (10)

(λ+ µ)p(2, 0) = αµp(3, 0) + µp(3, 1) + αλp(1, 0) + (1− α)λp(1, 1) (11)

(λ+ 2µ)p(2, 1) = (1− α)µp(3, 0) + µp(3, 1) + (1− α)λp(1, 0) + αλp(1, 1). (12)

with p(0) the steady-state probability to be in state (0).

4.2. Analysis of the distribution and moments of the system occupancy.
The approach to solve the balance equations is inspired on ideas from [1, 2, 5, 6]
and proceeds as follows. We start by searching for basic solutions (with n > 2) of
the balance equations (6) and (7), assuming the form

y(m)xn. (13)

With the solutions in this set we then construct a linear combination which also
satisfies the boundary equations and the normalization equation. This is a valid
assumption because Quasi-birth-and-death processes have a well known matrix-
geometric relation. See also Section 1.6. in Neuts [13] for a discussion on results
of the form above and their relationship with matrix-geometric results. Our as-
sumption is thus equal to assuming that the associated rate matrix of the QBD is
diagonalizable (what can be proved using theorems in [8]) and is given by

R =

[
y0(0) y0(1)
y1(0) y1(1)

]−1 [
x0 0
0 x1

] [
y0(0) y0(1)
y1(0) y1(1)

]
. (14)

Substituting (13) in (6) and (7), and dividing by xn−1 yields

(αµx2 − (λ+ µ)x+ λ)y(0) + µx2y(1) = 0, (15)

(1− α)µx2y(0) + (µx2 − (λ+ 2µ)x+ λ)y(1) = 0. (16)

Equations (15) and (16) form a linear homogeneous system of equations for a given
x. Since the system is homogeneous, x must be chosen such that the determinant
of the system is zero. This determinant is given by

D(x) = (αµx2 − (λ+ µ)x+ λ)(µx2 − (λ+ 2µ)x+ λ)− (1− α)µ2x4. (17)

It is easy to see that x = 1 is a zero of this determinant and equation (17) can thus
be rewritten as

D(x) = (x− 1)(µ2(2α− 1)x3 − µ(λ(α+ 1) + 2µ)x2 + (λ2 + 3λµ)x− λ2). (18)

We can thus find the zeroes of the determinant in closed form since we have to
determine the zeroes of a polynomial of degree 3. It is also possible to prove that
the determinant D(x) has two solutions x0 and x1 in the interval (-1,1) and two
outside this interval (of which one is x = 1). After determination of these xj in
the interval (-1,1), we can determine the yj(m) corresponding with each given xj ,
i.e. determine the nontrivial solution of the homogeneous system given in (15) and
(16). To find a particular solution we use the initial values yj(1) = 1. Having found
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basic solutions (13) of the balance equations (6) and (7), we can express the general
solution as a linear combination of these basic solutions (for n > 1 and m = 0, 1),

p(n,m) =

1∑
j=0

Cjyj(m)xnj . (19)

To have a fully specified distribution we still need to specify five unknowns (C0,
C1, p(0), p(1, 0) and p(0, 1)). To determine these unknowns, we use the boundary
equations (8) to (12) and the normalizing condition,

p(0) + p(1, 0) + p(1, 1) +

∞∑
n=2

1∑
m=0

p(n,m) = 1. (20)

Notice that we can drop one of the boundary equations since the boundary equations
are dependent (the normalization condition replaces this boundary equation).

Knowing the probability mass function (pmf), we can derive some performance
measures of practical importance using (8)-(12) and (19). For example, the mean
system occupancy can be found as

N = p(1, 0) + p(1, 1) +

∞∑
n=2

1∑
m=0

np(n,m)

=

1∑
j=0

1∑
m=0

Cjyj(m)x2
j ((m+ 1)µ(1− xj)2 + λ(2− xj))

(1− xj)2λ
. (21)

Using Little’s Law, the mean system delay equals

T =
N

λ

=

1∑
j=0

1∑
m=0

Cjyj(m)x2
j ((m+ 1)µ(1− xj)2 + λ(2− xj))

(1− xj)2λ2
. (22)

Finally the tail probability is given by

E[u > i] =


∑1
j=0

∑1
m=0

Cjyj(m)x2
j ((m+1)µ(1−xj)+λ)

(1−xj)λ , i = 0∑1
j=0

∑1
m=0 Cjyj(m)

xi+1
j

1−xj
, i > 0

(23)

5. System delay.

5.1. Analysis of the distribution and moments of the system delay. Define
sn,m(t) as the probability density function of the system delay of a customer given
that the customer sees the state (n,m) on arrival. Using the PASTA property and
(19) we get for the probability density function of the system delay

s(t) =
Prob[t < S < t+ dt]

dt
=
∑
n,m

p(n,m)sn,m(t)

= p(0)s0(t) + p(1, 0)s1,0(t) + p(1, 1)s1,1(t)

+

1∑
j=0

1∑
m=0

Cjyj(m)

∞∑
n=2

sn,m(t)xnj . (24)
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Some reasoning in the Laplace domain yields the following recursive relations

s∗n,0(θ) =
µ

µ+ θ

(
αs∗n−1,0(θ) + (1− α)s∗n−1,1(θ)

)
, (25)

s∗n,1(θ) =
2µ

2µ+ θ

(
1

2
s∗n−1,0(θ) +

1

2
s∗n−1,1(θ)

)
(26)

where s∗n,m(θ) are the Laplace transformation of the above defined sn,m(t). Equa-
tion (25) can be understood as follows: the delay of a customer arriving when the
system is in state (n, 0) equals the sum of an exponentially distributed service time
with rate µ and the delay of a (virtual) customer arriving in a state with one less
customer, i.e. state (n − 1,m), where m = 0 with probability α and m = 1 with
probability 1− α. A similar reasoning leads to equation (26). After introducing

Gj,m(θ) =

∞∑
n=2

s∗n,m(θ)xnj (27)

and

Hj(θ) =

1∑
m=0

yj(m)Gj,m(θ), (28)

we get by multiplying (25) and (26) with xnj and summing for all n > 2

(µ+ θ)(Gj,0(θ)− x2
js
∗
2,0) = αµxjGj,0(θ) + (1− α)µxjGj,1(θ), (29)

(2µ+ θ)(Gj,1(θ)− x2
js
∗
2,1) = µxjGj,0(θ) + µxjGj,1(θ), (30)

Multiplying (29) with yj(0), (30) with yj(1) and adding both yields

θHj(θ)− (µ+ θ)x2
jyj(0)s∗2,0 − (2µ+ θ)x2

jyj(1)s∗2,1 =

Gj,0(θ)((αµxj − µ)yj(0) + µxjyj(1))

+Gj,1(θ)((1− α)µxjyj(0) + (µxj − 2µ)yj(1)). (31)

After using (15) and (16) we get

θHj(θ)− (µ+ θ)x2
jyj(0)s∗2,0 − (2µ+ θ)x2

jyj(1)s∗2,1 =

Gj,0(θ)λ(1− 1

xj
)yj(0) +Gj,1(θ)λ(1− 1

xj
)yj(1). (32)

Using (28) yields

Hj(θ) =
1

θ − λ(1− 1
xj

)

1∑
m=0

((m+ 1)µ+ θ)yj(m)x2
js
∗
2,m(θ) (33)

And finally, by (24),

s∗(θ) = p(0)s∗0 + p(1, 0)s∗1,0 + p(1, 1)s∗1,1 +

1∑
j=0

CjHj(θ). (34)
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To fully determine s∗(θ), we need the following

s∗0 =
µ

µ+ θ
(35)

s∗1,0 = (1− α)
µ

µ+ θ
+ α(

µ

µ+ θ
)2 (36)

s∗1,1 = α
µ

µ+ θ
+ (1− α)(

µ

µ+ θ
)2 (37)

s∗2,0 = α(
µ

µ+ θ
)3 + (1− α)(

µ

µ+ θ
)2 (38)

s∗2,1 =
1

2

2µ

2µ+ θ

µ

µ+ θ
+

1

2

2µ

2µ+ θ
(

µ

µ+ θ
)2 (39)

which are easily deduced. Note that the tagged customer is able to start his service
when he is the second customer in the system if the first customer is of a different
type. Otherwise, the customer has to wait until he is the first customer in the
system. After inserting (35)-(39) into (34) and after some simplifications, we get

s∗(θ) =

1∑
j=0

1∑
m=0

Cjµ
2x2
jyj(m)((m+ 1)µ+ (1− α+mα)λ(1− 1

xj
))

(µ− λ(1− 1
xj

))2

1

θ − λ(1− 1
xj

)

(40)

and by taking the inverse Laplace transform, we find

s(t) =

1∑
j=0

1∑
m=0

Cjµ
2x2
jyj(m)((m+ 1)µ+ (1− α+mα)λ(1− 1

xj
))

(µ− λ(1− 1
xj

))2
e
λ(1− 1

xj
)t
. (41)

Thus, the probability density function s(t) is a hyperexponential distribution.
Knowing the probability density function (pdf), we can again derive some per-

formance measures of practical importance. For example, the mean system delay
can be found as

T =

∫ ∞
0

ts(t)dt

=

1∑
j=0

1∑
m=0

Cjµ
2x2
jyj(m)((m+ 1)µ+ (1− α+mα)λ(1− 1

xj
))

(µ− λ(1− 1
xj

))2

1

(λ(1− 1
xj

))2
.

(42)

While (42) looks a bit different than (22), it can be proven that both are identical by
inserting the explicit values for the variables (Cj , yj(m) and xj where j = 0, 1 and
m = 0, 1) in function of the parameters (α, µ and λ). The cumulative distribution
function (cdf) equals

S(t) =

∫ t

0

s(u)du

=

1∑
j=0

1∑
m=0

Cjµ
2x2
jyj(m)((m+ 1)µ+ (1− α+mα)λ(1− 1

xj
))

(µ− λ(1− 1
xj

))2

1− eλ(1− 1
xj

)t

λ(1− 1
xj

)
.

(43)
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And the tail probability is given by

E[s > t] = 1− S(t)

= 1−
1∑
j=0

1∑
m=0

Cjµ
2x2
jyj(m)((m+ 1)µ+ (1− α+mα)λ(1− 1

xj
))

(µ− λ(1− 1
xj

))2

1− eλ(1− 1
xj

)t

λ(1− 1
xj

)
. (44)

6. Discussion of results and numerical examples. In this section, we discuss
the results obtained in the previous sections, from a quantitative and a qualitative
perspective, by means of some numerical examples.

In some of the results we compare our system with two “extreme” queueing
systems which we call “worst” and “best”. These are two boundaries for our system
(lower and upper). Worst is a well-known queueing system (M | M | 1) with an
infinite waiting room, one type of customer and one server with a mean service
time of µ. It is clear that this is a lower boundary for the system, since there is
always at least one server working in the system, when there are customers in the
system. Best is another well-known queueing system (M | M | 2) with an infinite
waiting room, one type of customer and two servers with a mean service time of µ.
This is an upper boundary for the system, since at most two servers are working in
the system. The solution of both these queueing systems are standard and can be
found in many books about queueing theory e.g. [7].

The first interesting result obtained is the stability condition (5) which shows that
the maximum achievable throughput of this system, expressed in average amount
of work per unit time, is very directly determined by the degree of class clustering
in the arrival process, as described by the cluster parameter α. From the stability
condition, we can already deduce that the achievable throughput decreases with
the cluster parameter α. It is also interesting to look at the extrema. For the first
extremum, α = 1, only one type of customers arrives and only one of the servers
is being used. The system behaves as the system M | M | 1 and the throughput
never exceeds 1 time unit of work per unit time. For the second extremum, α = 0,
the types of customers arrive alternating. Note that the throughput cannot exceed
3
2 time units of work per unit time instead of the (possibly expected) 2 time units
of work per unit time, which is the maximum throughput of the system M |M | 2.
Thus even in the optimal case of α = 0, both servers are not working all the
time when the system would be constantly provided with new customers. In other
words, the system is also in this case non-workconserving. The reason for this is as
follows: even when the customers arrive with alternating types, it is possible that
the second customer (at the front of the system) has completed his service before the
first customer has, since the second customer can have a shorter service time (the
second customer overtakes the first customer). The third customer (now becoming
the second) then still has to wait for service because the first customer occupies his
server. The third customer then blocks the fourth customer that otherwise could
have been served because his server is idle, ... So, the randomness of the service
times is the culprit here.

We now move to the system delay and system occupancy in stable systems. Fig.
3 shows the mean system delay versus parameter γ for different values of the cluster
parameter α. The figure illustrates the (negative) impact of global FCFS, even in
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Figure 3. Mean system delay versus parameter γ for a given ar-
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the best case (the types of customers arrive alternating or α = 0), the system
performs much “worse” than the case where the system would be workconserving
(M | M | 2). The figure also confirms some previously made observations. Our
system behaves identical to the system M |M | 1 for α = 1. When α increases, the
stability region shrinks. When α = 0.5, the type of the next customer is independent
of the previous customer, and we can clearly see that neglecting the clustering in
the arrival stream causes a considerable underestimation or overestimation of the
performance of the system.

In Fig. 4, the mean system delay is shown versus cluster parameter α for different
values of the parameter γ. Here, we notice that the impact of the cluster parameter
is negligible for small values of γ. This is not surprising. For small values of γ, it is
of lesser importance whether only one or both servers work since one server suffices
to handle the incoming work. For bigger γ, it is a different story. Here the cluster
parameter has a big impact and can even lead to unstable systems. This illustrates
that the cluster parameter should not be neglected.
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Figure 6. Mean system occupancy versus parameter γ

Fig. 5 represents the tail probability of the system delay for a given arrival
and service rate of 1. The tail probability gives us the percentage of customers
with a system delay greater than t units of time which can for example be of great
importance for applications where the delay plays an important role. For example,
given an arrival and service rate of 1 and cluster parameter of 0.75, circa 0.01% of
the customers has a system delay greater than 51 units of time. This can be used
for instance for dimensioning security checks at airports. Since excessive queueing
delays cause missing of airplanes by passengers, which should be avoided as much
as possible. Alternatively, this can be used for estimation of waiting times, so that
passengers can be given the time they have to arrive beforehand. Note that the
cluster parameter α should be measured, as this parameter has a crucial impact on
performance. Notice also in Fig. 5 that the system is unstable for a given cluster
parameter of 1.

In Fig. 6, the mean system occupancy versus parameter γ for different values of
the cluster parameter α, is plotted. Here, similar conclusions are drawn as for the
mean system delay (Fig. 3).
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Finally, Fig. 7 shows the tail probability of the system occupancy for a given
arrival and service rate of 1. The tail probability can be considered as an approx-
imate value for the loss probability in a system with finite storage capacity equal
to i places which can be used for dimensioning purposes. For example, given an
arrival and service rate of 1 and cluster parameter of 0.75, the required buffer size
is 56 for a loss ratio of 10−4. Notice in Fig. 7 that the system is unstable for a
given cluster parameter of 1 and the loss ratio of 10−4 is not achievable.

7. Conclusions and future work. In this paper, we have studied a two-class,
two-server queue with class-dedicated servers in continuous time assuming a Poisson
arrival process where the types of customers are correlated in time according to a
cluster parameter α. Due to the introduction of symmetry in the system we were
able to propose a conceptual model that was still rich enough to capture the essential
aspects of the problem at hand. This model allowed us to derive an explicit closed-
form formula for the distributions of the system occupancy and the system delay.
This allowed us to uncover the (negative) impact of the combination of global FCFS
and class clustering. Class clustering is a concept that often is neglected, but we
showed that it can have a considerable impact on a system and ignoring it can cause
a considerable overestimation (or underestimation) of the performance.

The model examined in this paper can be generalized in various directions. First
of all, more general models could be envisaged to describe the presence of class
clustering in the arrival process of the system. A second direction to follow is to
let the service times in both servers be different. This would have an effect on the
overtaking of customers of different types and this affects blocking. Note that any
change in modelling that destroys the current symmetry in the system will lead to
a more complex Markov chain. Finally, letting the servers be able to serve one of
the m first customers at the front of the queue and thus relaxing the global FCFS
restriction is an interesting path to follow as well. We plan to tackle several of these
generalizations in future work.
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