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Abstract: Fast-front transients play an important role in the insulation design of any power system.
When a stroke hits the shield wire or the tower of high-voltage overhead power lines, flashover
may occur either along the span or across tower insulators, depending on the relevant voltages and
insulation strength. As a result, backflashover may take place from the tower structure to the phase
conductor whenever a huge impulse current flows along the tower towards considerably high footing
impedances. For these reasons, tower modeling for transients studies is an important step in the
insulation design, and also for lower voltage applications, where indirect lightning effects may play a
predominant role. However, after decades of research on tower modeling, starting from the 1930s
with the first model proposed by Jordan, no consensus has been reached neither on a widely accepted
tower model nor on the quantitative effect of the tower models on insulation design. Moreover, the
fundamental mechanisms at the base of the transient response of towers and the definition of some
fundamental parameters have not been totally clarified yet. The aim of this review is to present the
available tower models developed through the years in the power community, focussing mainly on
lumped/distributed circuit models, and to help the reader to obtain a deeper understanding of them.

Keywords: power system transients; tower model; tower surge impedance; transmission lines

1. Introduction

Insulation coordination has been a cornerstone of power engineering [1] since the first
power systems were developed at the beginning of the twentieth century. Proper insulation
coordination in power systems is essential for the quality of the service, long-term durability
of operating devices, and reduction in operating costs. IEC [2] and ANSI/IEEE [3,4]
standards establish, on a solid theoretical and practical ground, definitions, principles,
and rules, providing application guidelines and computational examples. Power systems
insulation is exposed not only to normal stresses associated with steady-state conditions
(e.g., due to corona effect [5,6]), but also to external and internal overvoltages. External
overvoltages occur under lightning discharges, while internal overvoltages are caused by
faults and switching operations. For high-voltage (HV) transmission systems, direct strikes
to ground wires, towers, or power conductors play a dominant role [7–10], while, at lower
voltages, induced lightning overvoltages may also become a threat [11,12].

In this context, accurate modeling of transmission line towers is crucial for insulation
design. When the lightning discharge hits the earth wires or towers, the backflashover
phenomenon may take place, along with the associated short-circuit fault. Back flashover
consists of arcs occurring along the insulator strings of one or multiple phase conductors
due to the fast rise of the tower voltage with respect to the phase conductor voltages.
In fact, backflashover events may be caused by the transient ground potential rise [13]
associated with the lightning current flowing along the tower. Actually, a relevant per-
centage of outages occurring along HV power lines is due to backflashover [14–17]. As a
consequence, tower modeling has been the subject of fervent research, started almost one
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century ago [18–21], which is still active [22,23]. However, despite all progress, physical
phenomena related to towers may be explained only partially by theoretical approaches,
several issues still being deeply debated nowadays.

A large number of models has been developed to analyze the transient behavior of
towers subjected to steep-fronted waves due to lightning strikes [24,25]. These models are
widely used to assess the basic lightning impulse insulation levels (BIL), relevant to the
design of power equipment [26]. Indeed, since typical towers (and sometimes crossarms)
cannot be approximated as electrically short lines due to their dimensions, these models
require procedures to determine the fundamental distributed parameters [27]. Since the
earliest approach by Jordan in the 1930s [21], researchers have proposed new models
through the years. What is really significant is that these models differ from each other not
only in the proposed equivalent representation of the tower and in the adopted numerical or
analytical techniques, but also in the main theoretical assumptions concerning propagation
mechanisms along the tower and in the definition of the fundamental parameters. In
this regard, for example, the concept of surge impedance is used to describe different
quantities in tower analysis, although it is well-defined in electromagnetic textbooks [28].
As confirmed in [29,30], researchers proposed four definitions of surge impedance: three
are specified in the time domain (TD) (two are function of time, whereas one is constant),
and are tied to the shape of the injected current; the fourth is defined as the Inverse Fourier
Transform of the harmonic impedance computed in the frequency domain (FD) [28], and it
is dependent on the geometry and on electromagnetic properties of the media.

Numerous approaches have been used to determine these equivalent models. Perhaps
all the approaches known in electromagnetics have been used to estimate the impact of
voltage and current waves propagation along towers: the time-domain finite-difference
method [31,32], the frequency-domain method of moments [33], the partial element equiv-
alent circuit method [34], hybrid electromagnetic codes [35,36], black-box approaches [37],
and the frequency-domain finite element method [38]. Additionally, there is a huge number
of simple and practical models based on analytical approaches—usually based on magne-
tostatics [39] or transverse electromagnetic (TEM) transmission line assumptions [31]—that
are not as computational heavy as full-wave approaches. This is the reason why these
methods are preferred and often employed in network studies, although less accurate.
What has been observed is that different models result in different transient responses to
transient events [23]. Depending on the tower geometrical characteristics and conductors
arrangement, and on the specific choice of its equivalent circuit, different voltages of the
tower arms are computed [29], leading to different voltages across the insulators, affecting
the probability of occurrence of backflashover and the lightning performance of the line,
which also depends on the statistical distribution of lightning current characteristics [40],
shielding failure, ground flash density, etc.

The first tower model was proposed by Jordan [21], who modeled the tower as an
equivalent single-conductor, uniform, lossless Transmission Line (TL). He assessed the
propagation of voltage and current waves by means of the TL characteristic impedance
(depending on the geometrical features of the tower), and assumed the propagation ve-
locity to be equal to the speed of light. Despite some works claiming the accuracy of the
results obtained with Jordan’s expression of the characteristic impedance [35], an error
was detected in its derivation, and a revised formula was proposed ([39,41]). Successively,
others have proposed equivalent lossless TL models, deriving different expressions for the
characteristic impedance. While Wagner and Hileman [42] approximated the tower to a
cylindrical structure, Sargent and Darveniza [43] proposed an expression for the characteris-
tic impedance of towers approximated by a conical structure. Later, Chisholm et al. [44,45],
with reference to conical, cylindrical, and waisted towers, considered the current to be
injected horizontally at the tower top. All these models assume that the tower supports a
propagating TEM mode, i.e., the electromagnetic field to be a spherical wave, or that this
mode represents the major contribution to the tower response. Other researchers presented
non-uniform TL models: Randon et al. [46], Saied et al. [47] and Oufi et al. [48] proposed
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modeling the tower as a non-uniform, lossless, exponential TL to be studied in the Laplace
domain, with the characteristic impedance varying continuously along the tower. Correia
de Barros and Almeida [49,50] investigated the propagation along a non-uniform lossy
TL equivalent of the tower in the TD through FDTD methods. The tower is discretised in
short sections, allowing to approximate the continuous variation (with an arbitrary expres-
sion) of the equivalent characteristic impedance. As for truss towers, De Conti et al. [39],
Hara and Yamamoto [51], Ametani et al. [52], and Gutierrez et al. [53,54] modeled the
tower as an equivalent uniform, lossless, multiconductor TL (MTL), accounting for the
self-characteristic impedance of each leg of the tower and for their mutual coupling (or
adopting a fictitious conductor accounting for the four legs). Finally, more recent models
divide the tower into multiple sections: each section is represented by the series of an
equivalent lossless TL, and a lumped resistive-inductive impedance is introduced to ac-
count for attenuation. This models, known as multistory models, have been developed by
Ishii et al. [55], Baba et al. [56], and Hashimoto et al. [57]. Other authors proposed further
modifications or improvements to reproduce simulated or experimental results [58,59].

A final issue to be highlighted is the importance of the footing tower termination in
any transient analysis for insulation purposes. Often, a perfectly conducting ground is
considered in order to simplify the analysis considering the tower image. However, the
authors considered more realistic, yet complex, terminations considering a dissipative
earth [60], a grounding grid at the tower foot [61,62], a grounding grid embedded in a
frequency-dependent soil [63,64], and accounting also for the soil ionization effect [65].

This review aims at presenting the state of the art in tower modeling and highlighting
that the available models for HV towers conduct large differences in the predicted values
of the input impedance and peak voltages at the tower top. Section 2 is devoted to the
description of the main typologies of towers for power transmission at high voltages.
The different definitions of surge impedance or characteristic impedance are clarified in
Section 3. Approaches available in the literature to model the electrical behavior of towers
by means of an equivalent circuit are reviewed in Section 4, and classified in models adopt-
ing single-conductor TL approximation of the tower, MTL approximation, non-uniform
TLs equivalents, or multistory models. The influence of the tower grounding system is
assessed in Section 5, along with the most common grounding configurations. Numerical
results, comparing the impact of the chosen tower model on the input impedance seen at
the tower top, are presented in Section 5. Finally, in Section 6, conclusive considerations
and remarks are drawn.

2. Towers for HV Applications and Common Conductors Arrangements

Tower design has been developed throughout the years along with the spread of power
lines. Their shape and size have been initially influenced by mechanical and electrical
requirements. However, due to the more recent attention devoted to the impact of human
activities on the environment, towers with new, more compact designs have been put in
operation as well.

HV towers may be primarily classified into pole and lattice towers, the former type
being rarely used at the highest voltage levels (namely, above 700 kV) [66]. In Figure 1,
the most used tower structures and conductor configurations are sketched (not to scale).
Lattice towers consist of a main vertical structure, which can be in the shape of a pyramid,
or made of two sections, namely, the tower cage and lower body. In the derivation of
equivalent circuits to simulate the electrical behavior of such towers, these are frequently
approximated to cylinders or cones sharing approximately the same dimension of the
actual tower base.

Lateral crossarms are included to support the phase conductors. For single-circuit
lines, depending on the path of the line, environmental restrictions, and reduction in the
emitted magnetic field at power frequency, crossarms may be located on both sides of the
main body (Figure 1a), or on a single side (Figure 1b) (this arrangement being employed
where harsher changes in the main direction of the line path want to be achieved).
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(a) (c) (d) (e)(b)

Figure 1. Typical towers for HV overhead transmission lines. (a) Single-circuit tower; (b) single-circuit
tower with phase conductors located at the right-side; (c) tubular tower with insulating cross-arms;
(d) cup-type tower with horizontal arrangement of the phase conductors; (e) double-circuit tower.

Double-circuit lines may be realised by means of six crossarms to support the insu-
lator strings and the corresponding six phase conductors (three at each side of the tower,
Figure 1e) [67]. Additional upper crossarms may support two shield wires to protect the line
from direct strikes and mitigate the stress on insulators due to induced overvoltages; instead,
for single-shield wire configurations, the protecting conductor is installed at the tower peak.
Crossarms are steel trussed structures for the majority of the applications; however, more recent
designs are spreading with insulating cross-arms, which represent the structural elements sup-
porting the high-voltage conductors and provide the electrical insulation required by the BIL
associated to the line. The advantage of the latter configuration consists of a partial reduction
in the visual impact of the line and of the right of way, due to the reduced cross-section of the
arrangement (in Figure 1c, a tubular tower with insulating cross-arms is represented).

Eventually, cup-type towers (Figure 1d) are employed when the phase conductors
need to be located at approximately the same height above the ground. This arrangement is
commonly adopted in the proximity of substations, to favor connection of phase conductors
to bus-bars, and in areas with strict limitations on the maximum height of neighbouring
structures (e.g., in proximity to military areas, airports, etc.).

3. Definitions of Surge Impedance and Propagation Constant

Equivalent circuits of transmission line towers proposed in the literature rely on TL
models to account for propagation along suitable sections of the tower or along the whole
structure. For this purpose, surge impedances and propagation constants are introduced in
order to characterize the aforementioned TLs. However, different definitions have been
ascribed to the surge impedance [13,28].

Several researchers (e.g., [42,43]) employed the transient surge impedance z(t), defined
in the time domain as the ratio

z(t) =
v(t)
i(t)

, (1)

to derive the surge (or characteristic) impedance for TL models, equivalent to the tower
under study. In (1), v(t) is the time-dependent voltage, and i(t) is the injected current at the
tower top. The resulting quantity, with the dimension of an impedance, is a function of time,
of the geometrical features of the tower under analysis, and of the excitation current [68]; a
step or ramp current is often employed, although different waveforms have been proposed
later in the literature ([69,70]) to reproduce realistic lightning currents [71]. Hence, (1) is not
suitable to obtain a characterization of the tower, which, being independent of the injected
current, should allow to predict the tower response to different excitations.
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The value attained by (1) at time t∗ = 2hT/cT is adopted as the sought value of
characteristic impedance, where hT is the height of the tower and cT is the surge propagation
velocity along the tower.

The reasons underlying this choice are linked to the time necessary for voltage waves
reflected at the tower base to reach the tower top; at times t < t∗, the input impedance
seen at the tower top should equal the characteristic impedance (i.e., the inverse Fourier or
Laplace transform of the frequency-dependent standard impedance); however, derivation
of this value as a voltage-to-current ratio would be possible only in the case of a lossless and
uniform TL, i.e., for a constant-valued (resistive), progressive- and frequency-independent
characteristic impedance. Indeed, if these simplifying hypotheses do not hold, a time
convolution would link the current with the time-domain tower impedance; furthermore,
reflections are expected at the tower top at time t < t∗ due to the non-uniformity of the line.

Other approaches rely on the concept of harmonic impedance, which is computed in the
frequency domain as the ratio

z(ω) =
v(ω)

i(ω)
, (2)

where v(ω) and i(ω) denote voltage and current at the tower top at angular frequency ω.
The resulting ratio may be alternatively interpreted as the input impedance of the structure,
only depending on intrinsic features of the tower [48]. This approach allows us to derive the
response, seen at the tower top, to any current excitation, by computing the time domain
convolution of the inverse Fourier transform of (2) (i.e., the tower impulse response) with
the injected current.

Propagation Constant

When referring to lossless TL models, the propagation constant is accounted for only
by the phase constant β = ω/cT , defined as the ratio of the angular frequency ω and cT .

Attempts have been made to attribute a suitable value to cT, based on experimental
activities (Table 1), recognizing that the complexity of measuring methods and arrangements
may affect the accuracy of results [72]. A common procedure consists of measuring elapsed
time from t = 0 (when a current source is applied at the tower top), and t = t∗ necessary for
voltage waves reflected at the tower base to travel upwards and reach the tower peak; hence,
surge propagation velocity is computed as cT = 2hT/t∗. Actually, cT corresponds to a mean
velocity, and it is subsequently employed in numerical simulations assuming that the surges
travel along the tower at a constant speed cT ≤ c0 (c0 denotes the speed of light).

Table 1. Common values of surge velocity deduced from experimental activities to assess propagation
along transmission line towers.

Authors Ref. Experimental
Arrangement

Height
[m]

cT /c0
[p.u.]

Breuer et al. [73] HV tower,
vertical conductors

51
44

0.95–0.96

Ishii et al. [55] HV tower 62.8 '1

Kawai et al. [72] HV tower 26–214 0.7–0.88

Motoyama et al. [74]
Reduced-scale model

HV tower
UHV tower

3
48.2
120

0.8–0.87

Chisholm et al. [45] Reduced-scale
smooth cone

0.4 '1

Chisholm et al. [75] HV towers 25.5–57.0 0.96–1

Motoyama et al. [76] HV tower 89.5–94.5 0.85–0.9

Noda [60] HV tower 77 0.92
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4. Tower Models

Approaches and expressions proposed in the literature to simulate the electrical
response of transmission towers (in Tables 2 and 3) have been classified into four categories:
lossless uniform TLs, MTLs, multistory models, and non-uniform TLs. These models mainly
adopt a distributed parameter equivalent circuit for the tower, defining the fundamental
quantities of an equivalent TL, i.e., propagation constant and characteristic impedance.
However, the categorization proposed here should not be intended to be strict. Indeed, this
accounts for the fundamental aspects of each reviewed model; nevertheless, some of the
approaches may belong to several groups of the following classification. Figure 2 displays
a syntectic diagram, which accounts for the classification introduced in the present review,
and the main reviewed models.

Table 2. Relevant tower models proposed in the literature (I).

Model Type Main Features Equivalent Soil Effect

Jordan [21,39,41] Lossless uniform TL Based on magnetostatics principles and
low-frequency approximations. Cylindrical ×

Wagner and
Hileman [42] Lossless uniform TL

Derived in the time domain by loop-voltage
method and Kirchhoff’s current law. The

characteristic impedance is assumed equal to
the value attained by the transient surge

impedance at t = 2hT/c0.

Cylindrical ×

Sargent and
Darveniza [43] Lossless uniform TL

Analysis developed in the time domain.
Characteristic impedance computed as the

value attained at t = 2hT/c0 by the ratio of the
tower top voltage (integral of the electric field,

neglecting the effect of the scalar electric
potential) over the injected current.

Cylindrical Conical ×

Chisholm et al. [44,45] Lossless uniform TL
Accounting for horizontal direction of current

injection at the tower top. Derived by
application of theory of biconical TLs.

Cylindrical Conical ×

De Conti et al. [39] Lossless MTL MTL model based on magnetostatics principles
and per unit length inductances computation. Cylindrical ×

Hara and
Yamamoto [51] Lossless TL

Cascade of parallel lossless TLs (with empirical
characteristic impedances) accounting for the

legs and bracing. The four main legs of the
tower are reduced to a simple TL through an

equivalent radius. Additional lossless,
horizontal TLs account for the arms.

Cylindrical ×

Ametani et al. [52] MTL

Computation of a potential coefficient matrix
for each tower section accounting for current

images with respect to a reference plane at
complex depth. The tower is modeled by a

cascade of multiconductor (or single-conductor
with an equivalent radius) TLs.

Cylindrical X

Ishii et al. [55]
Baba et al. [56] Multistory model

Cascade of lossless TLs and damping
resistive-inductive elements. Values of the

characteristic impedances are
derived empirically.

- ×

Hashimoto et al. [57] Multistory model

Cascade of TLs and damping
resistive-inductive elements, with an additional
capacitance-to-ground at the tower top. Values
of the characteristic impedances and lumped
elements are derived to reproduce available

experimental data for the system consisting in a
tower equipped with power-line conductors.

- ×
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Table 3. Relevant tower models proposed in the literature (II).

Model Type Main Features Equivalent Soil Effect

Motoyama et al. [58] Multistory model
Cascade of TLs and damping resistive-inductive
elements. Values of the characteristic impedances

are derived empirically.
- ×

Gutierrez et al. [53] Non-uniform TL

Non-uniform MTL (or single conductor equivalent)
with characteristic impedances given by the ratio of
the voltage (computed as the integral of the electric
field in the polar direction produced by a bipolar
antenna with vertex lying on a reference plane at

complex depth) and the source current.

Cylindrical X

Saied et al. [47] Lossless non-uniform TL
Cylindrical exponential TL model, with

progressive-dependent characteristic impedance
(starting from assumed values at relevant heights).

Cylindrical ×

Almeida and Correia de
Barros [49] Non-uniform TL

Progressive-dependent characteristic impedance
(starting from assumed values at the tower top and

base). Propagation assessed by means of FDTD
methods and possible inclusion of

frequency-independent per unit length losses.

Cylindrical ×

Lossless uniform TL Multistory
models

MTL
models

models

Non-uniform TL
models

Jordan

Wagner and Hileman

Sargent and Darveniza

Chisholm et al.

De Conti et al.

Ishii et al.

Baba et al.

Hashimoto et al.

Motoyama et al.

Saied et al.

Almeida and
C. de Barros

TOWER  MODELS

Hara et al.

Ametani et al.

Gutierrez et al.

Figure 2. Classification of the reviewed circuit models for transmission line towers [21,39,42,43,45,47,
49,51–53,55–58].

4.1. Lossless Uniform Transmission Line Models

The tower is typically represented by a cascade of equivalent lossless TLs (sharing
the same characteristic impedance), each corresponding to a tower section, as in Figure 3;
indeed, the tower is suitably divided into sections to ease the computation of arms voltages,
and, eventually, of voltages across the insulators. Expressions for the tower characteristic
impedance are often derived considering towers located over a perfectly conducting plane
(PEC), after being reduced to an equivalent cylinder or cone.

These models assume that the electromagnetic field associated with sources at the top
of the tower propagates with the characteristic pattern of spherical waves; hence, the tower
is assumed to support a propagating TEM mode, studied by means of an equivalent TL
with constant characteristic impedance and propagation velocity.
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Figure 3. Cascade of uniform and lossless transmission lines modeling the corresponding sections in
which the tower is subdivided.

4.1.1. Jordan Model

One of the first tower models was proposed by Jordan [21]. The travelling surges are
assumed to propagate along the tower structure at the speed of light, the tower being rep-
resented by a uniform, lossless TL with propagation constant β0 ' ω/c0 and characteristic
impedance given by

ZT = 60 ln
(

hT
re

)
+ 90

re

hT
− 60 . (3)

In (3), hT denotes the height of the tower. However, several authors (e.g., [39,41]) have
revised expression (3), claiming that an error was committed by Jordan in the first place, in
favor of the following:

ZT = 60 ln
(

4hT
re

)
− 60 . (4)

In particular, expressions (3) and (4) only depend on the tower height and equivalent
radius, denoted by re. As for the choice of the tower equivalent radius re, it is often
considered equal to the radius at the tower base, or computed as a weighted average of the
radii of cross-sections of the tower located at different heights from the ground [77].

The expression of the characteristic impedance is derived as follows: the magnetic
vector potential at an observation point P, located on the surface of the equivalent cylinder,
is due to a current I, which flows in a vertical channel corresponding to the cylinder axis and
extending from h = 0 to h = hT over a PEC plane; the influence of the PEC plane is taken
into account by application of the theory of perfect images, considering the contribution
of the image current extending from h = −hT to h = 0; accordingly, the flux ΦT of the
magnetic induction field through the surface S in Figure 4 is derived as

ΦT = LT I =
µ0 I
4π

∫ hT

0

∫ hT

0

 1√
(x− x′)2 + r2

e

+
1√

(x + x′)2 + r2
e

dx′dx . (5)

In (5), LT denotes the tower inductance. The vertical component Ax of the magnetic
vector potential is obtained by means of the inner integral, superimposing the contributions
from the vertical current dipoles located from 0 to hT (and their corresponding images).
Subsequently, the circulation of Ax(x, y) (i.e., the sought flux) is computed by means of
the external integral with reference to the integration path in Figure 4; indeed, with Ax
being the only component of the magnetic vector potential, integration along the horizontal
sections of the path does not contribute to the circulation; the same holds for the vertical
path at infinite distance, where Ax is considered to vanish.
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2r
e

x

h
T

Sy

y    ∞

Figure 4. Reference vertical cylinder over a PEC plane for the computation of the characteristic
impedance according to the revised Jordan model.

If the tower in Figure 4 is modeled as a uniform lossless TL with short-circuited
termination (corresponding to the PEC plane configuration), the following can be written:

Zin = ZT tanh
(

j
ω

c0
hT

)
' j

ω

c0
hTZT = jωLT . (6)

In (6), an approximation of the input impedance Zin seen at the tower top at low-
frequency and/or for small hT is displayed as a function of the tower characteristic
impedance ZT ; this approximated quantity should correspond to the reactance associ-
ated to LT in (5). Hence, the adopted low-frequency approximation allows to obtain easily
ZT = c0LT/hT .

The previous derivation deserves some relevant clarifications. The complex tower
structure, even if only the four main legs are considered, is reduced to an equivalent vertical
cylinder; the current is assumed to flow orthogonally to the PEC plane. Hence, the com-
puted magnetic induction field neglects the contribution deriving from the actual incline
of the tower structural elements. A second remark regards (5); indeed, this expression is
derived assuming the vertical dipoles to carry the same current I, neglecting any phase vari-
ation in the current due to the propagation along the cylinder. This last aspect reveals that
the proposed model is based on a low-frequency assumption and magnetostatics principles.

4.1.2. Wagner and Hileman Model

According to this approach, the tower is approximated by a cylinder of radius re = r1
equal to the one at the tower base in Figure 5b; the influence of the soil with finite conduc-
tivity is neglected.

Wagner and Hileman originally proposed an expression for the transient surge impedance,
i.e., a time-dependent quantity:

zT(t) = 60 ln
(√

2
c0t
re

)
. (7)

The derivation of (7) (which can be found in Appendix I of [42]) is based on the loop-
voltage method, with reference to the injected rectangular current wave being split into the
current flowing through the tower IT(t), and the currents flowing along the shield wire
in two opposite directions Is(t). The retardation effect due to the finite propagation speed
of traveling waves along the tower and shield wire was accounted for in the computation
of the electric field (hence, of the voltage drops of interest). An approximation is made,
computing the tower transient impedance as the ratio of the voltage at the tower peak over
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the current IT . With reference to a lightning current with rectangular waveshape, the tower
characteristic impedance is approximated to the value assumed by (7) at time t = 2hT/c0:

ZT = 60 ln
(√

2
2hT
re

)
. (8)

The traveling waves propagation speed is set equal to the speed of light c0.

h
T

2r
2

2r
1

2r
e

q

2r
e

(a) (b) (c)

Figure 5. Different equivalent structures considered for the tower under study; (a) Tower under
study; (b) Approximated cylindrical equivalent tower; (c) Approximated conical equivalent tower.

The derivation of the electric field and transient surge impedance follows the approach
presented in [78], based on field theory. However, several assumptions are made: the
current along the tower is assumed to flow along the axis of an equivalent vertical cylinder;
the effect of static charges is neglected, i.e., only the contribution of the magnetic vector
potential caused by the current flowing along the tower is considered when evaluating
the electric field; although the procedure to consider multiple current reflections at the
ground plane (namely, a PEC plane) and at the tower top is given in the time domain, the
chosen value for the characteristic impedance in (8) is computed at time t = 2hT/c0, i.e., it
does not account for these reflected waves. Furthermore, the expression was first derived
assuming for the current components flowing along the tower and the shield wire to keep
the same shape of the injected step current (which cannot be considered an assumption of
general validity).

4.1.3. Sargent and Darveniza Model

An expression for the transient surge impedance was proposed for a ramp current
being injected at the top of a tower (cylindrical equivalent) [43].

ZT(t) = 60

[
ln
(√

2
c0t
re

)
− 1 +

re

2c0t
+

(
re

2c0t

)2
]

(9)

The transient surge impedance (9) was derived in the time domain, adopting c0 as
the propagation speed of voltage and current waves; the top-to-base voltage drop on the
surface of the cylinder is evaluated by integration of the electric field, which is derived as
the time derivative of the vector magnetic potential.

As for towers presenting an upper cylindrical body and lower truncated conical shape,
the equivalent radius re of the cylinder approximating the whole body is computed by
means of an empirical expression [79]:
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ln(re) =
1

r1 − r2
{r1[ln(r1)− 1]− r2[ln(r2)− 1]} , (10)

where r1 and r2 in Figure 5 are the radii at the tower base and at the tower top, respectively.
The characteristic impedance ZT is computed as the value attained by (9) at t = 2hT/c0:

ZT = 60

[
ln
(√

2
2hT
re

)
− 1 +

re

4hT
+

(
re

4hT

)2
]

(11)

which, for hT � re, reduces to

ZT ' 60 ln
(√

2
2hT
re

)
− 60 . (12)

In [43], it is shown that (11) is consistent with expression (8) proposed by Wagner and
Hileman. In fact, (11) can be retrieved by application of the Duhamel’s integral to compute
the response of the tower to a ramp current, assuming its known indicial response to be
expressed by (7).

When the tower is approximated by a conical structure, the radius re is chosen in the
range of the radii of the inscribed and circumscribed circumferences at the tower base. The
same derivation, based on the computation of the voltage drop along the tower as the line
integral of the electric field on the surface of the cone (derived from the computed magnetic
vector potential), leads to the following expression for the characteristic impedance (with
reference to a step current injected at its top):

ZT = 60 ln

(√
2

S

)
, (13)

where S = sin(θ); θ is the half-angle of the cone in Figure 5c. In [43], it is observed that
the characteristic impedance of a cone does not depend on the waveshape of the injected
current, since (13) is constant-valued and time-independent.

The same approach presented by Lundholm et al. in [78] is exploited to compute the
electric field. The approximations discussed in Section 4.1.2 for the computation of the
electric field and the approach by Lundholm et al. are adopted also in the derivation of (12)
and (13). The expressions proposed for the characteristic impedance neither accounts for
the soil nor for a PEC plane at the tower base.

4.1.4. Chisholm et al. Model

Several authors have observed discrepancies in the responses of towers for different
directions of current injection at the top. Chisholm et al. [44,45] proposed expressions for
the characteristic impedance associated with towers with cylindrical, conical, or waisted
shape when the lightning current is injected horizontally into the tower top, i.e., in the
direction parallel to the ground plane. The tower is approximated by a conical equivalent,
and the corresponding characteristic impedance is derived from the theory of biconical
TLs with perfectly conducting walls [80], fed horizontally at the cone vertex. Indeed, to
account for horizontally injected currents, the tower is modeled as a cone with the vertex
lying on a PEC plane; its characteristic impedance ZT is derived from the constant valued
characteristic impedance ZB of the biconical TL in Figure 6 when θ2 = π/2 (angles θ1 and
(π − θ2) determining the aperture of the upper and lower cone in Figure 6a, respectively):

ZB =
η0

2π
ln
[

cot(θ1/2)
cot(θ2/2)

]
−−−−→
θ2=π/2

ZT = 60 ln
[

cot
(

tan−1(re/h)
2

)]
(14)

where η0 =
√

µ0/ε0 is the characteristic impedance in vacuum and re is the radius at the
tower base. It is evident that (14) does not depend on the distance from the cone vertex;
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indeed, the structure presents a constant characteristic impedance and can be modeled as a
uniform lossless TL.

x

y

θ
1

θ
2

h
T

θ
1

PEC plane

(a) (b)

h
T

PEC plane

Figure 6. Biconical transmission line, used to approximate a conical tower with horizontal direction
of current injection at its apex. (a) Generic biconical transmission line; (b) Biconical transmission line
for tower application, with θ2 = π/2.

For cylindrical towers and horizontally injected current, the following expression is
proposed for ZT [45]:

ZT = 60 ln
[

cot
(

tan−1(r/h)
2

)]
− 60 . (15)

As for waisted towers, the characteristic impedance proposed is (for horizontal direc-
tion of current injection)

ZT = 60 ln
[

cot
(

tan−1(T)
2

)]
(16)

with

T =
rtht + rw(hl + ht) + rbhl

(hl + ht)
2 , (17)

where the quantities ht, hl , rt, rw, and rb correspond to the heights and radii of the main
tower sections as depicted in Figure 3.

Expressions (14)–(16) were proposed to account for lightning currents hitting the
shield wire along the span, and resulting in an approximate horizontal direction of the
portion of the lightning current reaching the grounded towers. Expression (16) is also
adopted in [81], along with a reduced value of the propagation speed cT = 0.8c0 accounting
for the longer path to the ground caused by the tower bracings and crossarms.

4.1.5. Remarks

Baba and Rakov addressed the assumption of constant characteristic impedance for the
tower, whenever approximated by a conical structure over a PEC plane (Figure 7a) [82]. The
authors state that this approximation may be used only as long as reflected waves at the base
do not reach the tower top. The application of an FDTD method to solve the electromagnetic
field in the proximity of a simulated scaled cone showed that propagating waves are
attenuated when traveling from the base towards the apex, and that the approximation of
spherical field is not accurate after reflection. Hence, the uniform, lossless TL approach
only holds for waves traveling towards the tower base, and a non-uniform TL should be
exploited to address reflected waves traveling towards the apex (as shown in Figure 7b).
Indeed, the incongruence had been already detected, and it was accounted for through
an apparent grounding impedance Zga (Figure 7c), simulating a partial attenuation of
reflected waves through a lumped element, and fictitiously altering the reflection coefficient
at the tower base (although conflicting with the unitary reflection coefficient expected
at the PEC plane interface). Bermudez et al., from reduced-scale experiments on two
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copper horizontal planes tangent to apex and base of a copper cone, proposed an apparent
grounding resistance equal to the constant value of 60 Ω [83]; Chisholm et al. introduced
an apparent footing inductance [45].

PEC plane

PEC plane

h
T

Non-uniform 
TL

Uniform TL 
Z

T
, b

0

Uniform TL 
Z

T
, b

0

Z
ga

(a) (b) (c)

Figure 7. Cone approximation of a transmission tower with current injected horizontally at the top.
(a) Simplified model; (b) Equivalent transmission line model, as proposed by Baba and Rakov [82]
including a non-uniform transmission line to account for reflected waves and non-spherical reflected
field; (c) equivalent uniform transmission line model proposed in [75,83] including a fictitious ground
plane impedance Zga.

4.2. Multiconductor Transmission Line Models
4.2.1. De Conti et al. Model

De Conti et al. [39] proposed an extension to Jordan’s approach, in order to model
truss towers as MTLs, consisting of four conductors (namely, the tower legs). In particular,
the self characteristic impedance of each leg is computed as illustrated in Section 4.1.1, i.e.,
through the revised Jordan formula (4), where re is replaced by rc (denoting the radius of
the tower legs).

The mutual characteristic impedance ZM,ij between legs i and j (i, j = 1, . . . , 4) is
computed by the evaluation of the vertical component of the magnetic vector potential
Ax produced on the axis of leg i by the current flowing along leg (and image) j (under the
assumption rc � dij), and by the subsequent integration of Ax between x = 0 and x = hT :

ZM,ij = 60 ln

2hT +
√

4h2
T + d2

ij

dij

+ 30
dij

hT
− 60

√√√√1 +
d2

ij

4h2
T

. (18)

In (18), dij is the distance between the axis of conductors i and j (as shown in Figure 8).
The same low-frequency assumptions discussed in Section 4.1.1 are made. Characteristic
impedances are derived with a PEC surface and application of the perfect image theory; c0
is adopted as the propagation speed of travelling waves.

1 2

34

d
12

d
13

2r
c

Figure 8. System of four parallel vertical conductors approximating the main legs of the truss tower
under study.
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4.2.2. Hara and Yamamoto Model

Hara and Yamamoto ([51], in Japanese) proposed an empirical expression for the
characteristic impedance of a generic vertical conductor with radius r and height hT over a
PEC plane:

ZS = 60

[
ln

(
2
√

2hT
r

)
− 2

]
, (19)

Expression (19) was derived from experimental activity. A steep-front current was
injected at the top of vertical conductors (with different radii and heights) over a PEC
surface, and the characteristic impedance was computed as the ratio of the measured
voltage over current at the injection point for t = 2hT/cT (with cT ' c0).

If r is replaced by an equivalent radius re accounting for a system of n vertical conduc-
tors, the n tower legs are reduced to an equivalent single-conductor.

In [84], the originally developed model was extended to account for the effect of the
tower bracing and crossarms; the tower body is divided into Ns segments. The reference
tower in Figure 9 is divided into four sections (Ns = 4); each section is represented by the
equivalent circuit depicted in Figure 9, consisting of two parallel TLs. The TLs correspond-
ing to characteristic impedances ZTi should simulate propagation along an equivalent
single conductor accounting for the four legs; the TLs represented by characteristic imped-
ances ZBi account for propagation along the tower bracings. However, the length of the
former TLs is set to `i in Figure 9, while the length `Bi of the latter ones, corresponding
to the bracings, is increased by a factor 1.5, i.e., `Bi = 1.5`i, to simulate the longer path of
currents towards ground. The characteristic impedances are computed as follows:

ZTi = 60

[
ln

(
2
√

2hi
rei

)
− 2

]
(20a)

ZBi = 9ZTi , (20b)

while β0 = ω/c0 is considered as the propagation constant for both TLs and arms. In (20),
i = 1, . . . , Ns, and the quantity rei is the equivalent radius of the ith section of the tower.
For the tower with square cross section in Figure 9, rei is computed as:

rei =
4
√

rid3
i

√
2 = 2(1/8)

(
r(1/3)

Ti
r(2/3)

B

)1/4(
d1/3

Ti
d2/3

B

)3/4
(21)

with

ri = r1/3
Ti

r2/3
B (22a)

di = d1/3
Ti

d2/3
B . (22b)

rB and dB correspond, respectively, to the radius of each leg and to the distance between
adjacent legs at the tower base, and rTi and dTi are the corresponding quantities measured at
h = hi in Figure 9. Expression (21) corresponds to a geometrical mean of mutual distances
between the tower legs belonging to the ith section.

The kth tower arm is modeled by means of a horizontal TL (connected to the TL
equivalent of the tower body) with length equal to the arm length, characteristic impedance
ZAk and propagation constant β0:

ZAk = 60 ln
(

2hk
rAk

)
; (23)

k ranges from 1 to the total number of arm pairs, hk and rAk are, respectively, the arm height
and equivalent radius (to be approximated as 1/4 of the width of the arm at the tower side).
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Figure 9. Equivalent circuit proposed by Hara and Yamamoto [84], partitioning the tower in
Ns = 4 sections; suitable transmission lines account for the tower main body (ZTi , β0), bracings
(ZBi , β0), and crossarms (ZAi , β0).

It should be noted that the approach by Hara et al. might be classified as a non-uniform
TL model as well, due to the assumed dependence of ZTi on the height of section i over the
reference ground.

4.2.3. Ametani et al. Model

Ametani et al. [52] proposed to model the tower as a cascade of MTLs, each of them
consisting of four parallel vertical conductors above the ground plane. An approach based
on Neumann’s integral, similar to the one presented in Section 4.1.1 for the derivation of
the characteristic impedance by Jordan, is adopted. However, the contribution of the image
conductors accounts for the finite conductivity of the ground by moving the reference plane

at zero potential at a complex depth hc =
√

ρg/
(

jωµg
)

(where ρg and µg are the ground
electric resistivity and magnetic permeability, respectively) [85]. The reference configuration
for two conductors above the ground with resistivity ρg is depicted in Figure 10.

The matrices of per unit length (p.u.l.) inductances and capacitances for the multicon-
ductor system in Figure 11b (namely, a tower section) are given by:
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C = 2πε0P−1
0 (24a)

L =
µ0

2π
P , (24b)

where P/(2πε0) is the potential coefficient matrix; the notation P0 is adopted to refer to
P when it is computed in the case of PEC ground (i.e., for hc → 0). Expressions of the
elements Pij of the matrix P may be found in [52], and are computed as

Pij =
Mij + M′ij

2`
(25)

with ` = ht − hb, i, j = 1, . . . , 4, and

Mij =
∫ ht

hb

∫ ht

hb

dxi dxj√
d2

ij +
(
xi − xj

)2
(26a)

M′ij =
∫ ht

hb

∫ −h′t

−h′b

dxi dx′j√
d2

ij +
(

xi − x′j
)2

. (26b)

h
c

x h
b

h
t

h'
b

h'
t

i j

dx

dx'

Figure 10. Two vertical conductors (approximating two legs of the tower) extending from h = hb
to h = ht over the soil; the finite conductivity of the soil is accounted for through an equivalent
configuration, which includes the conductors’ images with respect to an auxiliary plane at reference
potential, placed at complex depth hc below the soil-air interface.

The element Pij may be expressed as follows:

Pij = log


[√

d2
ij + `2 + `

][√
d2

ij + (H − 2`)2 + H − 2`
]

dij

[√
d2

ij + (H − `)2 + H − `
]

+

+

(
H
2`

)
log


[√

d2
ij + (H − `)2 + (H − `)

]2

[√
d2

ij + H2 + H
][√

d2
ij + (H − 2`)2 + H − 2`

]
+

+

(
1
2`

){
2dij +

√
d2

ij + H2 +
√

d2
ij + (H − 2`)2 − 2

√
d2

ij + `2 − 2
√

d2
ij + (H − `)2

}
. (27)
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where H = 2(ht + hc) and dij is the distance between the axis of conductor i and j in
Figure 11. In (26) and (27), dij = rc should be adopted when computing self-terms of the
matrix P (i.e., Pij for i = j).

d
ij

r
c

r
eh

2

h
1

h
2

h
1

h
3

h
4

section 2

h
2

h
1

section 2

(a) (b) (c)

ℓ ℓ

i j

Figure 11. Set of four parallel vertical conductors to be modeled as an equivalent single conductor
transmission line according to Ametani et al. [52]; (a) Transmission tower partitioned into sections;
equivalent four-conductors system (b) and equivalent single-conductor model (c) of the considered
section (section 2 in the figure).

The matrices of p.u.l. inductances and capacitances, computed above, are employed to
derive the matrices of propagation constants Γ and characteristic impedances ZT through
standard MTL analysis. For the PEC plane case the following expressions hold:

Γ2 = −ω2L0C0 (28)

ZT = 60P0 . (29)

However, propagation along the system of four conductors can be assessed also by
means of an equivalent single-conductor TL with characteristic impedance

ZT = (ZT11 + 2ZT12 + ZT13)/4 (30)

or computing the characteristic impedance of the TL associated with an equivalent conduc-
tor of radius re:

re =
(

rc
√

2d3
ij

) 1
4 . (31)

Relevant geometrical quantities referred to in this section are shown in Figure 11; rc is
the radius of each tower leg, and dij is the mutual distance between the axis of leg i and j.

The three proposed solutions (i.e., MTL equivalent, single-conductor TL reduction,
and TL associated to a single conductor with an equivalent radius) may be exploited to
characterize different sections of the tower (e.g., section i extending from hbi

= hi−1 to
hti = hi). The tower is modeled by a cascade of TLs with different characteristic impedances
(i.e., as a non-uniform MTL), depending on the height and on the mutual distance between
the tower legs of the section (an exact definition of the latter quantity is not given to reduce
the four leaning legs to a system of four parallel conductor).

For hb = 0 and the PEC plane, the expression of the characteristic impedance coincides
with the one originally proposed by Jordan; hence, the orientation of the current images
in [52] may have been incorrectly chosen in the opposite direction with respect to the real
current flowing along the conductor above the ground plane [39].

Results presented in Section 5 refer to the implementation of the approach as originally
proposed by Ametani et al.; the tower is approximated by a single-conductor TL with
equivalent radius given by (31); the following relations are implemented to derive the
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propagation constant Γ(ω) and characteristic impedance ZT(ω) when the lossy ground
is considered:

C = 2πε0P−1
0,ii (32a)

L =
µ0

2π
Pii (32b)

Γ(ω) =
√
−ω2LC (32c)

ZT(ω) =
√

L/C . (32d)

Expression (32) depends on the height above the ground and equivalent radius of
the considered tower section (indeed, it is derived from (27) for i = j); hence, (32) may be
used to derive the p.u.l. parameters, propagation constant, and characteristic impedance
associated to the chosen tower sections by considering their equivalent radius, length, and
height above the ground. In (32a), the PEC plane approximation is adopted in the derivation
of the p.u.l. capacitance to ground. The same limitations highlighted in Section 4.1.1 apply
to the Ametani et al. model, since it shares common theoretical basis and assumptions.

4.3. Multistory Models

Multistory approaches divide the tower into multiple sections (stories), which are mod-
eled by the cascade of a lossless TL and a lumped circuit (its resistive component accounting
for attenuation of traveling waves). The tower partitioning is usually meant to provide
suitable breaking points along the tower in order to derive voltages at the crossarms.

A feature, common to multistory models, consists of adopting electrical quantities
(employed for the tower equivalent circuit), which depend on the story length, but not on
the cross-sectional dimensions of the tower under analysis. Depending on their values,
a mismatch between adjacent segments may occur, resulting in multiple reflections of
travelling waves.

4.3.1. Ishii et al. Model

The tower is divided into Ns sections (Ns = 4 in Figure 12); the lower section extends
from the tower base to the lower arm, and the other sections are terminated by the tower
arms, which are not included in the equivalent circuit of the tower. In Figure 12b, the
corresponding electrical circuit is displayed. Each section is represented by the series of a
uniform lossless TL and a lumped impedance. The characteristic impedance ZTi of section
i = 1, . . . , (Ns − 1) is set equal to 220 Ω, while ZTNs = 150 Ω. Interpretation of experimental
results performed on a 62.8 m double-circuit tower for a power line with 500 kV rated
voltage [55] showed that the propagation velocity of surges along the tower is very close to
c0. As a result, the model proposed by Ishii et al. adopts a propagation velocity cT = c0.

The damping impedance consists of the parallel of a resistor Ri (modeling attenuation
along the tower), and an inductor Li (influencing the shape of the traveling surges tail and
not representing the value of the tower physical inductance). At low frequencies, i.e., at
late times, the attenuation provided by the damping resistance is progressively reduced by
the shunting function of the parallel inductor. These are computed as follows [59]:

Ri =
−2ZTi ln

(√
γ
)

∑Ns−1
m=1 hm

hi for i = 1, . . . , (Ns − 1) (33a)

RNs = −2ZTNs ln(
√

γ) (33b)

Li = Ri
2hT
cT

for i = 1, . . . , Ns . (33c)

In (33c), cT = c0 is the surge propagation velocity, and γ = 0.8 is the attenuation
coefficient. Although the choice of the model parameters is related to experimental activity
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on a specific HV double-circuit tower, the authors claim that they might be still used for
other tall HV towers with similar structure.

Z
T1

Z
T2

Z
T3

Z
T4

ℓ
1

ℓ
2

ℓ
3

ℓ
4

R
2

R
1

R
3

R
4

L
2

L
1

L
3

L
4

R
f

ℓ
1

ℓ
2

ℓ
3

ℓ
4

Z
T1

Z
T2

Z
T3

Z
T4

L
2

L
3

L
4

R
f

R
2

R
3

R
4

L
5

R
5

Z
T1

Z
T2

Z
T3

Z
T4

R
2

R
1

R
3

R
4

L
2

L
1

L
3

L
4

R
f

C
1

h
T

(a) (b) (c) (d)

s
to

ry
 1

s
to

ry
 2

s
to

ry
 3

s
to

ry
 4

Figure 12. Sketch of a generic double-circuit tower taken as a reference (a), and three equivalent
circuits according to different multistory models; (b) Ishii et al. model [55], (c) Baba et al. model [56],
(d) Hashimoto et al. model [57].

The multistory model, as proposed in [55], and the simple TL approach (with surge
propagation speed cT ' 0.7c0, and characteristic impedance ZT = 100 Ω) were imple-
mented in [86] to compare computed results against experimental data from backflashover
events for a 77 kV line with height equal to 37.7 m. Since the results obtained by the
multistory model were not satisfactory, the authors suggest not to include the lumped
R− L circuits (originally derived for a 500 kV tower) when implementing this approach to
simulate sensibly shorter towers for networks at lower rated voltage.

4.3.2. Baba et al. Model

Later studies on TL-type circuits for tower modeling have been performed by
Baba et al. [56], who initially investigated the influence of the different elements of the
tower on its overall surge impedance [87] (intended as the ratio of the voltage peak mea-
sured at the tower top over the current at the same time instant). The corresponding surge
impedances are computed for a reference four-leg structure over a PEC surface, with height
equal to 120 m; each leg is connected to the plane by a 40 Ω resistor (corresponding to an
overall footing resistance R f = 10 Ω, if no interaction is assumed). Results are obtained by
the electromagnetic code NEC, implementing the method of moments.

While the bracings horizontal elements result in negligible differences in the voltage
responses evaluated at the tower top (for a step current excitation), the diagonal elements
and arms reduce the voltage peak value, the arms contribution being represented by
additional capacitances from the arms towards the ground. Furthermore, the total traveling
time of surges from the tower top to the base is increased if the bracings are included in
the numerical simulation. Larger radii of the tower main legs are found to reduce the
surge impedance.

For the aforementioned configuration under test, values of the characteristic imped-
ances, damping resistors and inductors are given to represent the tower by means of a
multistory model [88,89]. However, to more satisfactorily reproduce the decaying trend of
the reference voltages computed at the insulator strings through the electromagnetic code,
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an additional R− L circuit is added in series to the lower story (depicted in Figure 12c); no
lumped circuit is included in the modeling of the tower’s uppermost section.

The proposed ZTi (which is claimed to be suitable for simulation of double-circuit
towers) was initially employed to derive the values of resistors R2 and R3 so as to minimize
reflections at the nodes of the tower equivalent circuit (i.e., Ri = ZTi − ZTi+1 with i = 2, 3).
The values of R4 and R5 derive from a trial-and-error process. Time constants of the
parallel circuits R4 − L4 and R5 − L5 are chosen to reproduce the observed trends of the
voltage tails across the insulators, and the transient impedance of the grounding system,
respectively [56]. Indeed, the series of the footing impedance R f and R5 − L5 results, in the
time domain, in an increased transient grounding resistance at early-time.

4.3.3. Hashimoto et al. Model

Noda ([60], in Japanese) proposed a modified multistory model for a 77 m-tall tower;
a single R− L circuit is connected at the tower TL equivalent, namely, to the lowest story.
An additional capacitance CT connects the tower top to the ground, and controlled voltage
sources are introduced at the phases for correction of the insulator voltages. Time domain
waveforms computed by Noda were used by Hashimoto et al. [57] to propose the modified
multistory model in Figure 12d for the same 77 m tower.

In particular, the self and mutual characteristic impedances of the shield wires and
phase conductors are computed with the EMTP program, and an approximation for their
coupling coefficients is obtained. From known current distribution between tower and
shield wire [60], the characteristic impedance associated to the first story ZT1 in Figure 12d
is derived by means of a current divider, referring to currents at t∗ = 2hT/cT (in this model,
the value cT = 276 m/µs—first derived by Noda from recorded voltage waveforms—is
adopted for the surge propagation speed):

ZG It∗ ,G = ZT1 It∗ ,T , (34)

where It∗ ,T is the known current flowing along the tower at t∗; It∗ ,G accounts for the sum
of currents flowing along the shield wire at t∗, split into opposite directions at the tower
top; ZG denotes the halved characteristic impedance of the ground wire. ZTi for i > 1 is
derived from the known values of the insulator peak voltages [60]. In particular, if Vins,i
denotes the voltage across the insulator of phase i (i = 1, 2, 3 for the uppermost, central,
and lower phase, respectively) and κi is the coupling coefficient between the shield wire
and phase conductor i, ZTi is found as follows

ZTi+1 =
Vins,i + κi

(
ZT1 IT

)
IT

. (35)

The values of Ri (i = 3, . . . , 1) in Figure 12d are chosen to avoid reflections between
adjacent stories (considering the TL representative of the fourth story to be infinite, or to be
closed on a matched load); the values of Li are computed in order for the time constant of
the Ri − Li circuit to match the double of the tower traveling time τ = hT/cT :

Ri = ZTi − ZTi+1 (36a)

Li = 2τRi . (36b)

The known steady-state currents flowing along the tower and the shield wire (towards
the right and left sides of the tower) allow to size the current divider consisting of ZG and
RF (hence, to derive a suitable value of the steady-state impedance of the tower RF). Values
of R4 and L4 are associated with the estimated reflection coefficient at the tower base and
fitting of available current data in the time domain.

The value of CT is chosen in order for the model to reproduce the known time necessary
for the upper-phase insulator voltage to reduce to the 63% of its peak value.
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Although results computed by Hashimoto et al. for the tower under study were in
accordance with the ones simulated by Noda by an FDTD method, some remarks on the
adopted assumptions of the method are needed. The choice of t∗ to derive ZTi by a current
divider is arbitrary. Approximations are introduced in the evaluation of phase conductors’
voltages and coupling coefficient that might affect the accuracy of the results. Indeed,
the availability of data for currents and insulator voltages is required to adjust the model
parameters and derive the needed impedances; hence, the model cannot be implemented
unless experimental (or FDTD simulated in the time domain) data are available.

4.3.4. Motoyama et al. Model

Initial experimental investigations by Motoyama et al. [58] involved 59.4 m-high
towers of a 2.15 km double-circuit line with 245 kV rated voltage and a single shield wire
connected at the tower peak. One of the towers was provided with sensors and optical fiber
connections in order to measure natural and triggered lightning currents, splitting of the
current between the tower and the shield wire, and voltages across the insulator strings. A
multistory model like the one displayed in Figure 12b was adopted with values in Table 4;
however, new constant-valued characteristic impedances ZTi = 120 Ω (for i = 1, . . . , 4,
found empirically, and different from the ones originally proposed by Ishii et al.) were
observed to better reproduce measured currents and voltages with γ = 0.8.

Table 4. Parameters required by the main multistory models presented in Section 4.3.

Model Story 1 Story 2 Story 3 Story 4

Ishii et al. [55] ZT1 = 220 Ω
γ = 0.8

ZT2 = 220 Ω
γ = 0.8

ZT3 = 220 Ω
γ = 0.8

ZT4 = 150 Ω
γ = 0.8

Baba et al. [56]
ZT1 = 200 Ω ZT2 = 200 Ω

R2 = 20 Ω, τ2 = 2hT
c0

a
ZT3 = 180 Ω

R3 = 30 Ω, τ3 = 2hT
c0

ZT4 = 150 Ω
R4 = 25 Ω, τ4 = 4hT

c0

R5 = 25 Ω, τ5 = 0.4hT
c0

Motoyama et al. [58] ZT1 = 120 Ω
γ = 0.8

ZT2 = 120 Ω
γ = 0.8

ZT3 = 120 Ω
γ = 0.8

ZT4 = 120 Ω
γ = 0.8

Yamada et al. [59] ZT1 = 120 Ω
γ = 0.7

ZT2 = 120 Ω
γ = 0.7

ZT3 = 120 Ω
γ = 0.7

ZT4 = 120 Ω
γ = 0.7

a where the value of the lumped inductance is found as Li = Riτi .

In [74], further research was devoted to develop a general approach and prove that
the direction of the injected current at the tower top holds an influence on the tower surge
impedance (defined as the ratio of the time dependent voltage at the tower top and the
value of the injected step current). In particular, two currents start propagating at time t = 0
from the tower top: one flows vertically along the tower (due to the migration of negative
charges), while a return-stroke current (produced by the migration of positive charges)
flows upward in the lightning channel, with incline ϕ with respect to the horizontal plane.
Indeed, the derived expression of the electric field in the time domain accounts for the
contributions of the magnetic vector potential and of the scalar electric potential, which are
produced by the return-stroke current in the injection channel and by the current flowing
along the tower.

The tower is reduced to an equivalent cylinder with radius re equal to an algebraic
mean of the tower arms lengths (including possible arms supporting shield conductors of
the specific tower design).

The PEC plane approximation is adopted for the tower base, uniform currents are
assumed for the injection channel and the tower path, and constant propagation velocity cr
and −cT are adopted for the charges flowing along the return-stroke and the tower axis,
respectively. These latter quantities are deduced from experimental activity on reduced
and full-scale towers with heights ranging between 3 m and 120.5 m (relation cT < cr holds
for all the investigated cases, cr ' 300 m/µs).
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Denoting with Er,z and Et,z the component of the electric field in the z direction on the
external surface of the equivalent cylinder, due to the return-stroke current and the current
along the tower, and adopting the following definition for the tower top voltage

VT(t) = −
∫ hT

0
Ez(t)dz = −

∫ hT

0
(Et,z(t) + Er,z(t))dz , (37)

the transient surge impedance ZTV when the step current is injected in a vertical direction
(ϕ = π/2 in Figure 13) is given by:

ZTV =
30
ĉr

ln

[
d +

√
d2 + r2

e
re

]
−
(

1− ĉ2
r

)
ln

 crt + d +
√
(crt + d)2 + (1− ĉ2

r )r2
e

crt +
√
(crt)2 + (1− ĉ2

r )r2
e

+

+
30
ĉT

ln

[
d +

√
d2 + r2

e
re

]
+
(

1− ĉ2
T

)
ln

 cTt− d +
√
(cTt− d)2 +

(
1− ĉ2

T
)
r2

e

cTt +
√
(cTt)2 +

(
1− ĉ2

T
)
r2

e


for

re

c0
≤ t < t∗ (38)

with

ĉT = cT/c0, ĉr = cr/c0 (39a)

t∗ =
√
(2hT)

2 + r2
e /c0 (39b)

d =

√
(c0t)2 − r2

e . (39c)

r
e

c
r

t=0

h
T

PEC

X

y

z

-c
T

f

Figure 13. Reference configuration for the derivation of the tower surge impedance adopted by
Motoyama et al. [74], considering the influence of the direction of the return-stroke current, and of
different velocities of charges in the return-stroke channel and along the tower (represented by an
equivalent cylinder).

The expression of ZTH for horizontal injection (ϕ = 0 in Figure 13) is
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ZTH =
30
ĉr

ln
[

c0t
re

]
+ ln

 crt +
√
(crt)2 + (1− ĉ2

r )r2
e

crt +
√
(crt)2 + (1− ĉ2

r )(c0t)2

+

+
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ĉT

ln

[
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√
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]
+
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ln
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)
r2

e

cTt +
√
(cTt)2 +

(
1− ĉ2

T
)
r2

e


for

re

c0
≤ t < t∗ (40)

In the time interval 0 ≤ t < re/c0, a null impedance is assumed to account for the
time required for the field to propagate from the cylinder axis to its external surface. At
times t > t∗, ZTH and ZTV are approximated by the value attained at t = t∗, neglecting
subsequent reflections. Furthermore, expressions (38) and (40) are limited to the case of
step current excitation; the tower surge impedance under different excitations should be
derived through integral relations. However, the application of this approach led to a good
agreement with measured voltages on a test UHV tower.

Experimental activity was performed over a double-circuit tower (rated voltage 500 kV,
height 89.5 m), without shield wires and phase conductors. A step current was injected at
the tower top through a suitable injection wire, to investigate the influence of its incline
with respect to the ground on the computed value of the tower surge impedance (ratio of
the maximum voltage at the tower peak over the current injected at the same time instant)
and surge response (voltage at the top as a function of time over the peak of the injected
current) [90]. A significant influence of the direction of current injection was observed;
in particular, the voltage at the tower top is larger as the angle of the current injection
wire is increased from 0◦ (horizontal position) up to 30◦. The propagation velocity along
the line has been estimated as approximately equal to cT ' 0.9c0, not depending on the
direction of current injection. FDTD simulations were performed to account for larger
injection angles (namely, 30◦ < ϕ < 90◦ in Figure 13), and reproduce the approximate
vertical direction of impinging lightning currents. An average increasing trend of the
voltages’ peak value was found (approximately 30% larger than computed peak values for
the horizontal injection case).

4.4. Non-Uniform Transmission Lines

Models presented in Sections 4.2.3 and 4.3, which were classified as multiconductor or
multistory models, could also be intended as non-uniform TL models. In fact, by application
of these approaches, the tower is partitioned into a limited number of sections, represented
by equivalent TLs with potentially different (but constant) characteristic impedances.

Tower models here classified as actual non-uniform TL models (reviewed in the
following section) define the characteristic impedance as a continuous function of the
height above the ground.

4.4.1. Gutierrez et al. Model

Gutierrez et al. developed a multiconductor model for the tower [53,54], account-
ing for the finite conductivity of the earth; indeed, a reference plane at zero potential is
introduced at a complex depth hc (defined in Section 4.2.3).

In particular, the value of the characteristic impedance at height h of the equivalent
non-uniform TL is found from the known expression of the electric field in the polar
direction θ produced by a biconical antenna with the vertex O lying on the plane at complex
depth. In the frequency domain, the characteristic impedance is computed as the ratio of
the voltage at height h above the ground and the current flowing along the tower.

With reference to the configuration in Figure 14, the parallel vertical conductors are
intended to approximate two legs of the tower. Parameters ri and dij denote the leg radius
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and the mutual distance between the axis of leg i and j, respectively. The expression of the
progressive-dependent mutual characteristic impedance is given by:

ZT,ij =

√
µ0

ε0

e−jβ(Rij−R)

2π
ln
[

cot
(

θij

2

)]
(41)

with

cot
(

θij

2

)
=


√

h2 + d2
ij + h

dij


√
(h + hc)

2 + d2
ij + h + hc√

h2 + d2
ij + h

 . (42)

In (41) and (42), θij is the complex angle with vertex O—due to the reference plane
at complex depth hc—between the axis of the vertical conductor i and the observation
point on the axis of conductor j; Rij and R denote the distance between the vertex O
and the observation point on conductor j axis and on the external surface of conductor i,
respectively, at height h above the ground. Equation (41) allows to compute mutual terms
of the matrix of characteristic impedances of the multiconductor system consisting of the
four tower legs; the self-term may be obtained with i = j, dij = ri, and Rij = R (θii denoting
the half-angle of aperture of the cone displayed in Figure 14).

Algebraic manipulation of (41) and (42) allows to identify the two following contribu-
tions, ZG

ij and ZE
ij

ZT,ij = ZG
ij + ZE

ij (43)

with

ZG
T,ij =

√
µ0

ε0

e−jβ(Rij−R)

2π
ln


√

h2 + d2
ij + h

dij

 (44a)

ZE
T,ij =

√
µ0

ε0

e−jβ(Rij−R)

2π
ln


√
(h + hc)

2 + d2
ij + h + hc√

h2 + d2
ij + h

 . (44b)

In (44), ZG
ij and ZE

ij may be identified with the mutual (characteristic) geometric
impedance and earth impedance between vertical conductors i and j, respectively. As for
tower crossarms, each tower arm can be decomposed into a vertical and a horizontal TL
with different lengths, depending on the arm incline with respect to the ground plane [53].

h
c

x

θ
ij

h

i j

d
ij

dh
θ
ii

R
ij

r
i

R

O

Figure 14. Reference quantities required by Gutierrez et al. approach to derive self and mutual
characteristic impedances of the tower legs.
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As for p.u.l. impedance Z and admittance Y matrices (for four conductors, i.e., the
four legs of the tower), these are computed as follows:

Z = j
ω

c0
ZG + j

ω

c0
ZE + ZC (45a)

Y = j
ω

c0

(
ZG
)−1

. (45b)

In (45b), elements of the matrices ZG and ZE correspond to (44a) and (44b), respec-
tively; ZC is a diagonal matrix accounting for the conductor p.u.l. internal impedance, with
diagonal elements given by:

ZC
ii = RC

ii + jωLC
ii =

√
jωµρ/(2πri) , (46)

where µ and ρ denote the magnetic permeability and electrical resistivity of the leg conduc-
tor material, and the second equivalence is derived assuming ρ−1 � ωε0 and ri > 2δ (δ
being the skin depth in the conductor at angular frequency ω) [91]. Satisfactory accuracy is
reached when reproducing the voltage response of a HV tower (62.8 m high) to an injected
current measured by Ishii et al. [55]; only around 2% difference is obtained for the peak
value of the computed voltage at the tower top with respect to measurements.

The proposed formulation is based on the validity of two relevant assumptions. The
excited range of frequency should be such that the finite conductivity of the ground may
be still accounted for by the complex depth approach [85]; in other words, the ground can
be considered as a good conductor σg � ωεg (where εg is the ground electric permittivity).
If the truss shows a large aspect ratio (i.e., for h � ri), the field produced by the current
flowing along the tower can be treated as a spherical wave; as a result, the known expression
of the TEM field emitted by a biconical antenna (with height-dependent half-angle, and
accounting for hc) is used to approximate the electric field and is integrated to derive
the voltage along the conductors. The matrix of p.u.l. capacitances does not account for
the lossy ground; furthermore, a reversed, approximated procedure is implemented to
compute the p.u.l. impedance associated with the geometrical inductance and ground.
Indeed, these are not derived by electromagnetic field theory and employed to compute the
tower characteristic impedance; vice versa, they are derived starting from the characteristic
impedance, assuming the propagation constant to be equal to that of vacuum as a first
approximation.

Variations of the same approach have been recently proposed in the literature by
Guo et al. [92].

4.4.2. Saied et al. Model

The tower is modeled as a non-uniform lossless TL; indeed, its surge impedance is
expressed as a function of x.

Initially, the characteristic impedance was expressed by a function of the distance of
the observation point from the tower base [47]. In particular, at distance x from the ground,
the characteristic impedance is computed as a power function of x (The right-hand sides of
(47)–(50) are expressed in Ohm, when x is expressed in meters):

ZT(x) = Z0xα , (47)

where Z0 is a constant to be determined. The choice of this specific function was aimed
at obtaining an analytical, closed-form expression of the travelling voltage waves by
substitution of (47) in the second-order differential equation written in the line voltages
for TL applications in the Laplace domain. Hence, the expression of the height-dependent
characteristic impedance ZTM (x) in (48) proposed by Menemenlis et al. [68] (originally
developed to simulate the electrical behavior of a tower with height equal to 75 m)

ZTM (x) = 50 + 35
√

x (48)
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is approximated by a power law expression of the type (47) with Z0 = 64.04 and α = 0.39.
It should be noted that expression (48) does not depend on the tower geometrical

features. Z0 and α can be chosen to approximate (e.g., by the least squares method) other
given expressions for ZT(x) (as the one in (48)), or to match finite values of characteristic
impedances of the sections under analysis (assumed arbitrarily, or derived empirically).

An alternative approach (introduced in [47], and implemented in [48]) was used
to simulate non-uniform lines, starting from a given characteristic impedance (e.g., the
one expressed by (48)), and deriving the corresponding tower model in the form of an
exponential TL. The generic expression of the characteristic impedance ZT(x′) of the
equivalent TL is:

ZT
(
x′
)
= Z0ekx′ . (49)

The tower is modeled as the cascade of a finite number of TLs with characteristic
impedance ZTi (x′). With reference to Figure 15, if (48) is adopted and section i extends
from x′ = x′i−1 to x′i > x′i−1 (with `i = x′i − x′i−1), Z0i and ki are computed as:

Z0i = ZTM

(
hT − x′i−1

)
(50a)

ki =
1
`i

ln

 ZTM

(
hT − x′i

)
ZTM

(
hT − x′i−1

)
 . (50b)

In (50), x = hT − x′ has been considered to account for the different coordinate system
adopted by the equivalent exponential TL model (in Figure 15). Hence, for the progressive-
dependent characteristic impedance of section i the following holds:

ZTi

(
x′
)
= Z0i e

ki(x′−x′i−1) for x′i−1 ≤ x′ ≤ x′i (51)

Surge propagation velocity is set equal to c0.
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Figure 15. Non-uniform transmission line model of the tower according to Saied, Oufi et al. [47,48].

Although the tower is still divided into sections, each section is represented by an
exponential TL with a characteristic impedance, which varies continuously with the pro-
gressive x′; the following closed-form expression of the input impedance Zin seen at the
tower top is found in the s domain [48]:

Zin(s) =
V(s)
I(s)

= sL0
D1(s)eλ2hT − D2(s)eλ1hT

λ2D2(s)eλ1hT − λ1D1(s)eλ2hT
(52)
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where V(s) and I(s) are the voltage and the injected current at the tower top, and functions
D1(s), D2(s) are given by:

D1(s) = sL0ekhT + λ2Z f (s) , D2(s) = sL0ekhT + λ1Z f (s) (53)

with

λ1 =
k
2
+

√
k2

4
+

s2

c2
0

, λ2 =
k
2
−
√

k2

4
+

s2

c2
0

. (54)

In (53), Z f (s) denotes the tower footing impedance, i.e., the load connected at the
termination of the equivalent TL; in (53) and (54), k is computed by (50b) when the tower is
considered as a single section

k =
1

hT
ln
[

ZTM (0)
ZTM (hT)

]
, (55)

and L0 = ZT(0)/c0 ' ZTM (hT)/c0 (the second equivalence being valid only when (48) is
adopted to approximate the characteristic impedance).

Results for a 75 m tower are presented in [48]; the exponential line approach is
implemented starting from the expression of the characteristic impedance given by Men-
emenlis et al. (48). It is shown that a small number of TLs (the case of three cascaded
TLs is presented) leads to acceptable results, and there is no significant discrepancy in
computed voltages and transient surge impedances when modeling the tower through
a larger number of cascaded TLs. Nevertheless, the exponential line model represents a
methodology to assess the propagation along the tower; indeed, the function of x chosen to
approximate the line characteristic impedance is expected to affect results predominantly.

4.4.3. Almeida and Correia De Barros Model

Almeida and Correia de Barros proposed a non-uniform TL model of the tower.
The line is discretized in segments (results are presented for 314 sections in [49]) to be
represented by uniform TLs; the characteristic impedance ZTi of the ith TL is computed
from ZTi−1 of the adjacent one:

ZTi = κZTi−1 . (56)

The value of the adimensional constant κ is computed according to the degree of
discretization adopted for the model. If the tower is divided into Ns sections and values
are assigned to the TLs characteristic impedances associated to the uppermost and base
sections (ZT1 and ZTNs

, respectively), the value of κ is found as κ = Ns−1
√

ZTNs
/ZT1 .

A second, more general, approach is presented in [50], addressing the problem in
the time domain, solving the equations for the propagation of voltage and current waves
by means of an FDTD method. The finite-difference approximation of the tower, i.e., its
discretization into small ∆x, allows to take into account the variation in the characteristic
impedance with the x direction. If the space discretization is sufficiently fine, an additional
resistance may be added in the Pi-equivalent circuit of the TL to account for longitudinal
losses in the space step ∆x; however, the approach incorporates only an x-dependent
resistance R(x), neglecting any frequency dependency of the p.u.l. losses along the tower:

R(x) = −2
log
√

γ

hT
ZT(x) ; (57)

expression (57) is of the same type as (33a), with γ = 0.8. In a similar fashion as the ap-
proach presented in Section 4.4.2, this model represents a tool to be implemented for known
(or assumed) values of the characteristic impedances associated with the uppermost and
the lowest sections of the tower. Hence, the reliability of the computed results depends on
the approach itself, along with the choice of ZT1 and ZTNs

. Furthermore, results computed
by means of the proposed approach, when simulating Ishii et al. experiment [55], are not in
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complete agreement with the measured data (e.g., when identifying the insulator which
undergoes the largest electrical stress).

4.4.4. Other Models

Different HV towers were simulated by means of equivalent multistory models derived
from Ishii et al. Variations in the values of the characteristic impedances of the tower
sections and attenuation constants were found to be more suitable to reproduce results
from experimental activities performed on different structures.

Yamada et al. [59] performed experimental tests (similar to those conducted by
Ishii et al. [55]) on an UHV double-circuit line of height approximately equal to 140 m. A
multistory model, of the same type as that proposed by Ishii et al., is used to reproduce the
electrical behavior of the tower. However, new values for the attenuation coefficient and
characteristic impedances of the tower sections were proposed in order for the simulated
results to be in satisfactory agreement with data measured across the insulators with a
ramp current injected at the tower top (rise time v 1 µs). In particular, with reference to
the tower displayed in Figure 12 and the equivalent circuit in Figure 12b, ZTi = 120 Ω for
i = 1, . . . , 4, while γ = 0.7 was assumed. The surge propagation velocity is equal to c0.

The same value for the characteristic impedances of the multistory model of a double-
circuit tower (of height 59.4 m, rated voltage 245 kV) was employed by Motoyama et al. [58];
however, the attenuation coefficient γ was set to 0.8, in accordance with Ishii et al. The
experimental results were obtained by measurement of relevant voltages across the tower
insulators for 10 lightning events, i.e., for lightning currents (natural or rocket-triggered)
striking a rod installed on the top of the observed tower of the line under test. The simulated
results differ from the measured ones in the peak values of the predicted voltages. Table 5
displays values of characteristic impedances, resistors and inductors computed for tower (a)
in Figure 16 by the most common multistory models (according to expressions in Table 4).
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Figure 16. Typical towers for HV overhead transmission lines. (a) Rated voltage 132 kV; (b) Rated
voltage 380 kV.

Yamanaka et al. [31] recently compared results obtained by an FDTD code and those
computed through a lossless TL approximation for a 500 kV double-circuit tower (76 m
high) over a PEC plane. The lossless TL approach underestimated rise times and decay
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times of the insulator voltages when a step current was injected at the top. Furthermore,
FDTD simulations resulted in larger voltages across the upper insulators; on the contrary,
these were found to occur at the lowest insulators by computations through the equivalent
TL circuit (similar results were found in [50]). These differences are likely ascribed to the
non-TEM modes, which are not accounted for by the lossless TL model adopted for the
tower [31], and to the time required for the formation of the TEM mode itself. An alter-
native approach was proposed in the s domain [31], allowing to predict a logarithmically
increasing voltage at the tower top under a step-current excitation; this is achieved by
dividing the TL equivalent to the tower into multiple sections, with the same characteristic
impedance, defined in the Laplace domain as:

ZT(s) = Z0
1

1 + τTs
, (58)

with τT = hT/c0. The new characteristic impedance (58) converges to the value associated
to the TEM mode propagation with a first-order delay under a step current excitation.
Additionally, the model defines step-current responses of traveling voltage waves, ac-
counting for their distortion and attenuation. However, these quantities depend on time
constants and parameters derived so as to reproduce voltages across the insulators from
available FDTD simulations. The peak values of the voltages across the insulators, with
tower heights ranging between 39.5 m and 86 m, obtained by the developed approach
result in satisfactory agreement with those given by the FDTD code [31]. Further features
and applications of the model may be found in [93,94].

Table 5. Typical values of characteristic impedances and lumped elements for the reference tower (a)
in Figure 16 according to multistory models presented in Section 4.3.

Model Story 1
`1 = 3.25 m

Story 2
`2 = 2 m

Story 3
`3 = 2 m

Story 4
`4 = 22.95 m

Ishii et al. [55] ZT1 = 220 Ω
R1 = 22.0 Ω
L1 = 4.4 µH

ZT2 = 220 Ω
R2 = 13.5 Ω
L2 = 2.7 µH

ZT3 = 220 Ω
R3 = 13.5 Ω
L3 = 2.7 µH

ZT4 = 150 Ω
R4 = 33.5 Ω
L4 = 6.7 µH

Baba et al. [56]
ZT1 = 200 Ω ZT2 = 200 Ω

R2 = 20 Ω
L2 = 4.0 µH

ZT3 = 180 Ω
R3 = 30 Ω

L3 = 6.0 µH

ZT4 = 150 Ω
R4 = 25 Ω

L4 = 10.1 µH
R5 = 25 Ω

L5 = 0.8 µH

Motoyama et al. [58]

ZT1 = 120 Ω
R1 = 12.0 Ω
L1 = 2.4 µH

ZT2 = 120 Ω
R2 = 7.4 Ω
L2 = 1.5 µH

ZT3 = 120 Ω
R3 = 7.4 Ω
L3 = 1.5 µH

ZT4 = 120 Ω
R4 = 26.8 Ω
L4 = 5.4 µH

Yamada et al. [59] ZT1 = 120 Ω
R1 = 19.2 Ω
L1 = 3.9 µH

ZT2 = 120 Ω
R2 = 11.8 Ω
L2 = 2.4 µH

ZT3 = 120 Ω
R3 = 11.8 Ω
L3 = 2.4 µH

ZT4 = 120 Ω
R4 = 42.8 Ω
L4 = 8.6 µH

5. Evaluation of the Tower Model Influence on Transients Studies

In the following, the reviewed models are compared in terms of the input impedance
seen at the tower top with different grounding conditions; additional voltages at the
tower top v(t) in the time domain, computed when a first stroke or a subsequent stroke
current [69] is injected, are discussed.

The two towers represented in Figure 16 are taken as a reference; in particular, towers
in Figure 16a,b are referred to as to tower (a) and (b), respectively. The corresponding
geometrical features are listed in Table 6. Quantities rb, rw, and rt denote the radius of the
circumferences that are inscribed in sections at the tower base, waist and top, respectively;
ra is the assumed equivalent radius of the tower crossarms; rc is the radius adopted for
the cylindrical conductors accounting for the tower legs (determined from dimensions of
symmetrical L-shaped conductors with sides in the range of 12–18 cm, commonly used for
the tower legs). Tower (a) (with height hT = 30.2 m) is representative of typical truss towers
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for systems with 132–150 kV rated voltage, whereas tower (b) (with height hT = 47.4 m)
is characteristic of double-circuit lines with 380–400 kV rated voltage. As for models that
approximate the tower to a cylinder, the equivalent radius re has been computed as:

re =
rtht + rwhT + rbhb

2hT
, (59)

with ht = `1 + `2 + `3 and hb = `4. Indeed, the equivalent radius is not distinctively
defined in the literature, although re noticeably affects the value of the characteristic
impedance; as an example, Figure 17 shows ZT , derived for tower (a) by the revised Jordan
approach in Section 4.1.1, as a function of the adopted re. If re is chosen between the radius
at the uppermost section and the one at the base of the tower, a wide range of variability is
expected for the corresponding ZT .

Table 6. Geometrical characteristics of the towers under analysis.

Tower (a) Tower (b)

hT [m] 30.2 47.4
rb [m] 2.0 3.95
rw [m] 0.55 1.4
rt [m] 0.4 2.0
`1 [m] 3.25 5.3
`2 [m] 2.0 9.2
`3 [m] 2.0 8
`4 [m] 22.95 24.9
ra [m] 0.25 0.5
rc [cm] 6.0 9.0
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Figure 17. Variability in the characteristic impedance, computed for tower (a) in Figure 16
(hT = 30.2 m, rated voltage 132 kV) according to the revised Jordan formula in Section 4.1.1, with the
choice of the tower equivalent radius re.

Two grounding systems, installed along Italian transmission lines, are considered.
They are referred to as grounding types MT2 and MT4, their structure being sketched in
Figure 18. Common practice in Italy consists of adopting the grounding system, which
allows to obtain a grounding resistance Rgr ≤ 20 Ω (in the following, the symbol Rgr
denotes the value attained by the grounding impedance Zgr( f ) at 50 Hz), when accounting
for the specific soil properties. In Table 7, dimensions of the considered grounding sys-
tems, properties of the soil in which they are assumed to be buried, and corresponding
values of Rgr are displayed. ρg and εrgr denote the soil electrical resistivity and relative
permittivity; rb is related to the dimensions of the towers at the base in Figure 16. The
grounding structure, which is actually made of steel conductors with rectangular sections
with dimensions 4× 40 mm, is modeled by means of equivalent cylindrical conductors
with radius rw; the value of rw (consistent with the one adopted in [95]) has been derived
in order for the external surface of the adopted equivalent conductor to be equivalent to
the actual one. Magnitude and argument of the input impedance offered by the MT2 and
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MT4 grounding systems (computed by means of a hybrid code [13,96]) are displayed in
Figure 19 as functions of frequency. It can be deduced that the DC value of the grounding
impedance may be considered also for switching overvoltage studies (unless fast transients
such as those ensuing from gas insulated substations have to be analysed); indeed, negli-
gible differences are computed for the absolute value of the grounding impedances up to
10–100 kHz with respect to their low-frequency value (less than 1% at 100 kHz).

d
b

d
1

d
2

d
2

2r
b

2r
b

2r
b

Figure 18. Structure of grounding system MT2 and MT4, commonly adopted along Italian transmis-
sion lines (not in scale).
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Figure 19. Grounding system impedance (magnitude and argument). (a) Magnitude. (b) Argument.

Table 7. Geometrical parameters and soil properties required for the characterization of the grounding
systems under study.

Type d1 d2 db rb rw ρg εrg Rgr
[m] [m] [m] [m] [mm] [Ωm] - [Ω]

MT2 1.0 1.0 0.8 2.0 14.0 150 20 15.3
MT4 12.0 1.0 1.0 3.95 14.0 600 20 18.7

The median negative first [97] and subsequent [98] stroke currents, depicted in
Figure 20a, are injected at the tower top. Figure 21 is included to provide the reader
with an example of the impact of higher frequency components of the injected currents (e.g.,
above 50 kHz); Figure 21a,b display the first and subsequent stroke currents used for results,
and those obtained by means of the Inverse Fourier Transform (IFT) of their corresponding
frequency spectrum, when it is truncated to its 50 kHz, 100 kHz, and 500 kHz component.
Indeed, components at higher frequencies, despite their reduced magnitude, noticeably
affect the front and peak values of the waveform in the time domain. If the spectra are to be
truncated at 500 kHz, the computed time-to-peak value corresponds to 0.9 p.u. (per unit)
and 0.7 p.u. of the one related to the actual first or subsequent stroke current, respectively;
up to 100 kHz, the same quantities increase to 1.3 p.u. and 1.9 p.u.; if the cutoff frequency is
chosen at 50 kHz, they increase to 1.7 p.u. and 3.1 p.u., respectively. A non-negligible effect
might be observed also on the waveform peak values. The upper portion of the current
spectrum should not be neglected, especially when the tower voltage is to be computed as
the IFT of the product of the current with the tower input impedance (which may show
resonances in the frequency range 1–10 MHz).
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Figure 20. First and subsequent stroke currents injected at the top of the studied towers. (a) First [97]
and subsequent [98] stroke currents in the time domain. (b) Frequency spectrum (magnitude) of the
lightning currents in (a).
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Figure 21. First and subsequent stroke currents obtained as the Inverse Fourier Transform of the
frequency spectrum in Figure 20a, truncated at 500 kHz, 100 kHz, and 50 kHz. (a) First stroke current.
(b) Subsequent stroke current.

Voltage v(t) for tower (a) over a PEC plane, computed by means of the reviewed
models, are shown in Figures 22a and 23b, respectively (Gutierrez et al. model: tower
partitioned in four sections. Almeida et al. model: tower partitioned in twenty sections).
In Figure 23, the corresponding input impedances as seen at the tower top Zin( f ) are
displayed. Multiple resonances may be observed in the Zin by Hara et al. due to the
additional modeling of the tower trussing and crossarms (i.e., horizontal TLs with open
terminations). The wide range of variability in input impedances results in computed
peak voltages ranging approximately between 0.3 and 0.8 MV, and from 0.8 to 1.8 MV,
for the first and the subsequent stroke current, respectively. In Figure 23b, only Zin by
Gutierrez et al. shows a resistive-inductive behavior at low frequency; this is caused by the
additional term associated with the legs’ internal impedance.

Similar observations are valid for results computed for tower (b) over a PEC plane. The
larger inductive impedance offered by Zin of tower (b) in the range of 1–105 Hz (Figure 24)
results in enhanced peak voltages at the tower top with the first stroke current. Peak
voltages range between 0.5 MV and 1.3 MV with the first stroke current (Figure 25a), and
between 0.8 MV and 1.8 MV with the subsequent stroke current (Figure 25b). As expected,
periodical reflections from the tower base occur after longer time intervals (approximately
equal to 0.32 µs), due to the increased height of tower (b). In Figure 25b, it should be noticed
that voltages obtained by non-uniform TL models (listed in diagram Figure 2) display a
different waveform; indeed, smaller reflections are caused by the mismatch between TL
associated with adjacent sections of the tower.

Higher voltages are observed with the subsequent stroke current for both towers
(Figures 22b and 25b) compared to the first stroke case (Figures 22a and 25a). This is due
to the larger absolute value of the input impedances in the range 1–10 MHz, and to the
non-negligible frequency components of the excitation in the same frequency range.
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The influence of the soil resistivity ρg (considered by Ametani et al. model in
Section 4.2.3, and Gutierrez et al. model in Section 4.4.1), and of the grounding systems is
addressed in Figures 26–29. It can be observed that the inclusion of the grounding system
limits the values of Zin in the high-frequency range; up to 10 kHz, Zin practically coincides
with Rgr (Figures 26–28) and Zgr (Figures 27–29). It is very important to highlight that the
adoption of different models results in very different input impedances. Moreover, the
tower geometry is of paramount importance and any generalization of drawn conclusions
requires a careful check. The argument of the input impedance also deserves a word of
caution: it may contribute to enhancing the differences between voltages ensuing from
different models. An accurate analysis of Figures 26–30 clarifies the very large differences
on the tower voltages appearing when different models are adopted. At 100 kHz, the
absolute value of the computed input impedances is approximately in the range 17–29 Ω
for tower (a), and 21–44 Ω for tower (b). Relevant differences are to be observed in the
argument of Zin too.

Eventually, Figure 30 provides the difference ∆Z of the absolute values of Zin com-
puted considering the frequency behavior of the grounding system (Zgr( f )), or just its
grounding resistance at 50 Hz (Rgr) for tower (b) (normalized with respect to the former
impedance); as expected from Figure 19a, negligible effects are observed up to 100 kHz,
while differences reaching 0.8 p.u. in the MHz range highlight the importance of the
grounding system frequency behavior in transients studies.
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Figure 22. Voltage at the top of tower (a) over a PEC plane when the first and subsequent stroke
currents in Figure 20 are injected. (a) Response to the first stroke current. (b) Response to the
subsequent stroke current.
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Figure 23. Input impedance Zin( f ) seen at the top of tower (a) in Figure 16 over a PEC plane.
(a) Magnitude of Zin( f ). (b) Argument of Zin( f ).
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Figure 24. Input impedance Zin( f ) seen at the top of tower (b) in Figure 16 over a PEC plane.
(a) Magnitude of Zin( f ). (b) Argument of Zin( f ).
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Figure 25. Voltage at the top of tower (b) over a PEC plane when the first and subsequent stroke
currents in Figure 20 are injected. (a) Response to the first stroke current. (b) Response to the
subsequent stroke current.
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Figure 26. Input impedance Zin( f ) seen at the top of tower (a) in Figure 16 over the soil with
ρg = 150 Ωm, εrg = 20, and Rgr in Table 7. (a) Magnitude of Zin( f ). (b) Argument of Zin( f ).
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Figure 27. Input impedance Zin( f ) seen at the top of tower (a) in Figure 16 over the soil with
ρg = 150 Ωm, εrg = 20, and Zgr( f ) in Figure 19. (a) Magnitude of Zin( f ). (b) Argument of Zin( f ).
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Figure 28. Input impedance Zin( f ) seen at the top of tower (b) in Figure 16 over the soil with
ρg = 600 Ωm, εrg = 20, and Rgr in Table 7. (a) Magnitude of Zin( f ). (b) Argument of Zin( f ).
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Figure 29. Input impedance Zin( f ) seen at the top of tower (b) in Figure 16 over the soil with
ρg = 600 Ωm, εrg = 20, and Zgr( f ) in Figure 19. (a) Magnitude of Zin( f ). (b) Argument of Zin( f ).
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Figure 30. Difference ∆Z in the absolute values of Zin computed considering the grounding system
modeled by Zgr( f ) or Rgr, normalized to the former Zin with Zgr( f ) for tower (b) case (soil resistivity
ρg = 600 Ωm).

6. Conclusions and Final Remarks

This work critically reviewed equivalent circuit models for high-voltage transmission
line (TL) towers. Since Jordan proposed the first model in the early 1930s, authors have
presented many models to analyze the transient behavior of towers subjected to fast tran-
sient waves due to lightning strokes. Despite the availability of complex full-wave models,
insulation coordination studies often resort to simple models, which adopt equivalent
circuits based on distributed parameters. Indeed, they may be easily implemented into
ATP/EMTP-like simulators. Usually, these models derive from magnetostatics or quasi-
transverse electromagnetic propagation assumptions that authors claimed to be accurate
enough for practical purposes. In this review, tower models have been classified into four
main categories: lossless uniform TL models, non-uniform TL models, multiconductor
TL models, and multistory models. The review examines the adopted assumptions and
their impact on transient studies. Evidence was provided that the available models lead to
significant differences in the predicted values of the input impedance seen at the tower top
in the frequency domain. Consequently, discrepancies arise in computed voltages in the
time domain, affecting insulation studies (which rely on these computations to assess if an
apparatus is able to withstand test voltages up to the basic lightning impulse insulation
level). Simulations indicated that a crucial parameter in tower modeling is the characteristic
impedance of the equivalent TL introduced to represent the tower.

Approaches deriving the tower characteristic impedance from the transient surge
impedance in the time domain introduce standard approximations and assumptions. The
value of the surge impedance at time t = 2hT/cT is arbitrarily adopted for the constant-
valued characteristic impedance ZT of the equivalent TL; this hypothesis might be ac-
ceptable just for lossless uniform TL models. Indeed, only up to this instant, no effect of
reflection from the first discontinuity (namely, the ground interface) will be seen at the
tower top, and the line would be represented by ZT (real-valued, in the frequency domain).
However, no sufficient justification can be provided for the specific choice of the upper
limit of the interval 0 ≤ t ≤ 2hT/c0. The most relevant approximation is to define the
surge impedance as the ratio of the voltage over the current in the time domain (and not
through a convolution procedure); in fact, this quantity (along with the derived ZT) would
be dependent on the specific adopted current source.

It was demonstrated that the differences ensuing from using different models are sig-
nificant. In general, models based on approximate parameters tuned on specific tower con-
figurations cannot be adopted in different configurations with an adequate confidence level.

Moreover, it was assessed that the tower model must include an adequate termination
accounting for the grounding elements embedded in a dissipative soil: the termination with
a perfectly conducting plane yields significant differences concerning the actual system.

Critical points worthy of further investigation are:

• differences between downward and upward waves traveling along the tower;
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• possible nonlinearities excited by the corona effect along the tower or by soil ionization;
• frequency-dependent behavior of the grounding grid at the tower base;
• non-TEM nature of the electromagnetic field along the tower.
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