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Abstract: Dynamic substructuring methods are initially developed for time-invariant systems to
evaluate the dynamic behavior of a complex structure by coupling the component substructures.
Sometimes, the component substructures change their position over time, affecting the dynamics
of the entire structure. This family of problems can be tackled using substructuring techniques by
isolating the time dependency in the coupling conditions among the time-invariant substructures.
Mechanical systems, composed of subsystems in relative motion with a sliding interface, can be
analyzed using this approach. In previous work, the authors proposed a solution method in the time
and frequency domain using this approach under the assumption that the relative sliding motion
at the contact interfaces is a-priori known, at least approximately. This assumption implies that the
perturbation generated by the friction-induced vibration is neglected. In subsequent work, a more
realistic contact assumption was considered to account also for the local vibration of the contact
point and the geometric nonlinearity due to the elastic deformation. In this paper, a simplification
with respect to the realistic contact assumption is introduced, which neglects the angular variation
of the direction normal to the contact interface. The simplified approach is advantageous because
it is equally able to highlight the occurrence of friction-induced instabilities, and it reduces the
computational burden. The results of the substructuring methods using different contact assumptions
are compared with those of a reference numerical method to show how the choice of the contact
algorithm allows for tackling a wide range of operating conditions, from simple position-dependent
problems up to complex friction-induced vibration phenomena.

Keywords: dynamic substructuring; time-variant interface; sliding contact; friction-induced
vibrations; dynamic instabilities

1. Introduction

In complex mechanical systems, contact and friction forces arise at the contact inter-
faces among components in relative motion. These forces can cause the so-called friction-
induced vibrations (FIV) [1,2]: a vibrational response of the system that can affect the
structural integrity and comfort [3].

Contact problems could be tackled using the dynamic substructuring approach [4–6],
considering each body in contact as a single substructure. In fact, the dynamic substructur-
ing allows for predicting the dynamic behavior of a complex mechanical system, knowing
the dynamic behavior of its component subsystems [7,8].
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Although the classical substructuring approach assumes that the system is time-
invariant, time-variant systems composed of time-invariant substructures subjected to time-
variant coupling conditions have been tackled with this approach [9–11]. Configuration-
dependent problems can be numerically analyzed in the framework of dynamic substruc-
turing providing interesting results and reducing the computational effort. For sliding
contact problems with friction, equilibrium conditions apply in the tangential directions
at the contact interface that are not considered in the compatibility conditions because of
sliding. This discrepancy represents a non-collocated interface as defined in [6,12].

The approach presented in [11] assumed that the time-variant compatibility and
equilibrium conditions arising from sliding contact are a-priori known. The basic contact
assumption made in [11] accounts for relative sliding due to the kinematic boundary
condition. Still, it is not able to consider the relative displacement caused by the system
deformation on the contact interface. System deformation and local vibrations at the contact
are relevant for dynamic contact problems [13] and are the main cause of friction-induced
vibrations phenomena such as dynamic instabilities [14–16], stick-slip [17,18] or sprag-
slip [19,20]. These phenomena can produce adverse effects, such as the squeal noise [21,22],
or positive effects, for example, in harvesting applications [23] and health monitoring
applications [24].

For this reason, the authors proposed an enhanced substructuring method based on a
realistic contact assumption that provides a more reliable definition of compatibility and
equilibrium conditions [25]. In this case, the deformation of the bodies in contact is consid-
ered, including geometric nonlinearities, to define the time-variant coupling conditions.

In this paper, a simplification with respect to the realistic contact assumption is intro-
duced that neglects the angular variation of the direction normal to the contact interface.
Generally, the variation of the direction normal to the contact interface is not relevant for
vibrating systems with sliding contact interfaces. It can be neglected, thus simplifying
the mathematical formulation of the time-variant coupling conditions. The variation of
the direction normal to the contact could become more significant during friction-induced
instabilities. However, one may be more interested in determining the conditions for the
onset of the instabilities, much more than accurately describing the limit cycle.

Substructuring methods using different contact assumptions are applied to evaluate
the response of a beam on beam system [26]. In particular, the results are compared with
those of a numerical reference method [27] to show how the choice of the contact algorithm
allows for tackling a wide range of operating conditions, from simple position-dependent
problems up to complex friction-induced vibration phenomena.

2. Numerical Methods for Contact Dynamic Analysis

This section presents two different approaches to investigate the dynamic response of
systems composed of different bodies in frictional contact. The mutual interaction can give
rise to friction-induced vibrations. A well-known numerical approach [27] is described and
used as a reference. Results are compared with those of the substructuring-based methods
developed by the authors and detailed in [11].

2.1. Forward Increment Lagrange Multiplier Method

The method proposed by Carpenter et al. in [27] is a very efficient numerical method
to simulate the dynamic response of a mechanical system with a frictional contact inter-
action among different parts. It employs the explicit β2 integration scheme proposed by
Newmark [28] to evaluate a predictor of displacements at a given step without accounting
for contact. When predicted nodal positions show a compenetration, Lagrange multipliers
are introduced on contact nodes to correct the nodal displacement. The first correction
is computed, supposing a sticking contact. Still, if the calculated friction forces exceed
the sticking limit, relative sliding between parts is allowed, and friction forces are those
due to sliding. Hence, the correct displacement is evaluated by using a Gauss-Seidel
iterative procedure.
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2.2. Substructuring with Time-Variant Coupling Conditions

Contact problems are intrinsically suitable to be investigated using dynamic substruc-
turing. In fact, the system is generally composed of different subsystems, as shown in
Figure 1 and their contact interaction could be defined in the substructuring framework.

1
1

2 2

Figure 1. Schematic of contact problem in the substructuring framework. Left: Substructures 1 and 2.
Right: Substructures 1 and 2 in relative sliding.

A contact problem can be represented as a system formed of n interacting subsystems.
For the single linear subsystem r, the equation of motion can be expressed as:

M(r)ü(t)(r) + C(r)u̇(t)(r) + K(r)u(t)(r) = f(t)(r) + g(t)(r) (1)

where:

M(r), C(r), K(r) are the mass, damping and stiffness matrices of subsystem r;

u(t)(r) is the vector of displacements of subsystem r;

f(t)(r) is the vector of external forces on subsystem r;

g(t)(r) is the vector of connecting forces with other subsystems (internal constraint forces).

Before considering the contact interaction, the equation of motion of the n independent
subsystems can be written as:

Mü(t) + Cu̇(t) + Ku(t) = f(t) + g(t) (2)

where M, C and K are block diagonal matrices.
For contact problems, compatibility and equilibrium do not necessarily apply to the

same set of DoFs. In fact, if sliding with friction occurs, the compatibility applies only in the
direction normal to the contact interface (no penetration), while equilibrium of tangential
and normal forces must be imposed. Moreover, due to the relative displacement between
subsystems, compatibility and equilibrium conditions change over time.

A given pair of matching DoFs at time t must share the same displacement to ensure
compatibility [11]. This condition can be expressed as:

BC(t)u(t) = 0 (3)

where each row of BC(t) enforces compatibility between a pair of matching DoFs at time t.
Internal constraint forces apply only to connecting DoFs. The sum of internal constraint

forces must be zero at any pair of matching DoFs at time t to ensure the equilibrium [11].
The resulting set of equilibrium conditions can be written as:

LE(t)Tg(t) = 0 (4)

Using the set of the three previous equations (the so called three field formulation):
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Mü(t) + Cu̇(t) + Ku(t) = f(t) + g(t)

BC(t)u(t) = 0

LE(t)Tg(t) = 0

(5)

it is possible to include contact problems in the substructuring framework. Note that, when
sliding occurs at the contact interface, BC and LE become time-dependent.

The substructuring problem can be solved by automatically satisfying the equilib-
rium condition; this can be obtained by defining a unique set of Lagrange multipliers λ
corresponding to connecting force intensities:

g(t) = −BE(t)Tλ(t) (6)

Note that, when friction forces are present at the interface, the matrix BE(t) is different
from the matrix BC(t) previously defined to enforce the compatibility condition [25].

In this approach, known as dual assembly, each interface DoF is considered as many
times as there are substructures connected through that DoF.

The interface equilibrium condition (4) is thus written:

LE(t)Tg(t) = −LE(t)TBE(t)Tλ(t) = 0 ∀λ (7)

Since Equation (7) is always satisfied by any set of connecting force intensities λ,
the system of Equation (5) becomes:{

Mü(t) + Cu̇(t) + Ku(t) + BE(t)Tλ(t) = f(t)

BC(t)u(t) = 0
(8)

Equation (8) can be explicitly solved in the time domain using an approach similar
to the one presented in [27], i.e., by relating compatibility at time tn+1 = tn + h with the
dynamic equilibrium at time tn, where h is the integration time step. If both compatibility
and dynamic equilibrium were considered at the same time instant, the problem would be
singular. The equation of motion becomes:{

Mün + Cu̇n + Kun + BE
T
n+1λn = fn

BCn+1un+1 = 0
(9)

where the subscripts n and n + 1 refer to values at times tn and tn+1, respectively. The first
equation of (9) can be recast as:

ün = M−1
[
fn −Cu̇n −Kun − BE

T
n+1λn

]
(10)

The previous equation can be explicitly integrated using the Newmark β2 method [28],
which reduces to the central difference scheme if β2 = 0.5.

ün =
1
h2 (un+1 − 2un + un−1) (11)

The displacement un+1 can be obtained after introducing the central difference expression
of ün into Equation (10) and by estimating u̇n as (un − un−1)/h. un+1 can be split into
a predictor u?

n+1, that can be immediately computed because it depends on the known
displacements at times tn and tn−1, plus a corrector uc

n+1 that accounts for the effects of the
contact forces λ:

un+1 = u?
n+1 + uc

n+1 (12)

where

u?
n+1 = h2M−1

[
fn −

1
h

C(un − un−1)−Kun

]
+ 2un − un−1 (13)
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and
uc

n+1 = −h2M−1BE
T
n+1λn (14)

The corrector is unknown because contact forces λn must be estimated, and constraints
BEn+1 must be defined. The amplitude of contact forces can be obtained by combining
Equations (12) and (14) with the second line of Equation (9):

λn =
(

h2BCn+1M−1BE
T
n+1

)−1
BCn+1u?

n+1 (15)

Contact forces depend on matrices BE and BC at time tn+1. In the following, the ma-
trices BE and BC are expressed for the 2D contact problem between a point C (slave node)
and a line segment T1T2 (master element) belonging to two different bodies, as shown in
Figure 2.

C
T2

T1

uT1y

uT1x

uCy

uCx

uT2y

uT2x

y

x

uT1x uCx uT2x

uT1y

uCy

uT2y

γ

Figure 2. Master element and slave node.

They can be evaluated through different assumptions:

(a) A basic contact assumption, introduced in [11], based on the a-priori defined rigid
motion between the component subsystems described by the kinematic boundary
conditions (Subs-a). It is assumed that the body to which the slave node belongs
moves with respect to the other body with a velocity ~vC. Hence, by using a master
element-slave node approach, the position ~UC of the slave node C at time t can be
expressed as:

~UC(t) = ~XC +~vCt (16)

where ~XC is the initial position of the slave node.
(b) A realistic contact assumption, introduced in [25], considers the deformation of the

contacting bodies (Subs-b) to account for friction-induced vibrations. To estimate the
position ~UC of the contact point, the system position U? at time tn+1 is evaluated using
the predictor of displacements u?

n+1 defined in (13), i.e.:

U?
n+1 = X + u?

n+1 (17)

where X represents the undeformed position.
(c) A simplification with respect to the realistic contact assumption is considered that

disregards the direction change of the contact force due to the deformation (Subs-c).

The position ~UC identifies the master element T1T2 (see Figure 2) involved in the
contact and the relative position of the slave node can be obtained as:

α =
T1C
T1T2

(18)

Note that α depends only on the boundary conditions in case (a), while it accounts
for system deformation in cases (b) and (c). In the latter cases, the coupling conditions
depend on the system deformation and are able to describe the geometric nonlinearity of
the coupled system.Moreover, the effect of vibrations on the tangential displacement of the
contact point is included, thus allowing to deal with friction-induced vibrations.
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In order to correctly define the friction forces direction, the sign χ of the relative
velocity vr of the slave node C with respect to the oriented line segment

−→
T1T2 is introduced:

χ = sign(vr) =
~vC ·
−→
T1T2

|~vC ·
−→
T1T2|

(19)

The nonzero elements of matrices BC and BE can be generally expressed as [25]:

BC〈1, j〉 =



− cos(γ), if uj = uCy

(1− α) cos(γ), if uj = uT1y

α cos(γ), if uj = uT2y

sin(γ), if uj = uCx

−(1− α) sin(γ), if uj = uT1x

−α sin(γ), if uj = uT2x

(20)

BE〈1, j〉 =



− cos(γ)− χµ sin(γ), if uj = uCy

(1− α)(cos(γ) + χµ sin(γ)), if uj = uT1y

α(cos(γ) + χµ sin(γ)), if uj = uT2y

sin(γ)− χµ cos(γ), if uj = uCx

(1− α)(− sin(γ) + χµ cos(γ)), if uj = uT1x

α(− sin(γ) + χµ cos(γ)), if uj = uT2x

(21)

where µ is the friction coefficient. Here, it is supposed to be constant, but it can be
considered dependent on the state of the system. Note that the angle γ between the
x direction and

−→
T1T2 (see Figure 2) is considered to be assigned in cases (a) and (b), while

it is computed at each time step accounting for system deformation in case (c). In cases
(a) and (b) if γ = 0 (i.e., T1T2 aligned with the x axis), Equations (50) and (53) in [11]
are re-obtained.

3. Results

In this section, the results of the transient simulations performed with the substructur-
ing method, using the three different approaches listed above (Subs-a, Subs-b, and Subs-c),
are compared with the results of the forward increment Lagrange multiplier method (intro-
duced in Section 2.1 and referred as FiLm in the following) to highlight and discuss the
pros and cons of each one.

3.1. Numerical Model

The mechanical system considered in this work is composed of two subsystems
connected through a sliding interface with a constant friction coefficient µ. As shown in
Figure 3, the subsystem 1 is an oblique beam that slides along the upper horizontal edge of
a cantilever beam (subsystem 2). The oblique beam, of length l1 and section a1 × b1, forms
an angle ϑ1 with the horizontal beam, of length l2 and section a2 × b2. The horizontal beam
is fixed at its end B, while time-variant boundary conditions (vertical force Fy and velocity
vx) are applied at the upper end A of the oblique beam. The contact point C, initially distant
s0 from the fixed end, moves to the right during the simulation. Geometrical characteristics,
mechanical properties, and boundary conditions are reported in Tables 1 and 2. Note that
viscous proportional damping is considered in the model. The vertical load Fy, the velocity
vx, and the friction coefficient µ are applied smoothly during the first 0.1 s and then remain
constant up to the end of the simulation. Moreover, to damp the transient vibrations
generated by the horizontal acceleration and by the application of the vertical load, high
damping coefficients (α0 = 40 s−1 and β0 = 4.0 · 10−8 s) are used during the first 0.2 s and
gradually reduced to the desired values α and β in the next 0.05 s.
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Fy

vx
A

C

B

1k
2kl1, b1, a1, ϑ1

l2, b2, a2s0

T

Figure 3. Mechanical system used in the simulations.

Table 1. Geometrical characteristics of the model.

Dimensions Beam 1 Beam 2 Unit

Length l 75 100 mm
Thickness b 1.5 2 mm

Width a 10 20 mm
Angle ϑ 30 0 degree

Table 2. Mechanical properties and boundary conditions of the model.

Quantity Beam 1 Beam 2 Unit

Young mod E 71 2.38 GPa
Poisson ratio ν 0.33 0.40

Density ρ 2770 1200 kg/m3

M prop. damping α 0.2 40 s−1

K prop. damping β 4.0·10−8 4.0·10−8 s

Friction coefficient µ 0.30
Force Fy −0.20 N

Velocity vx 30 mm/s

Each beam is modeled in ANSYS using plane-stress elements. To reduce the computa-
tional burden, a Craig Bampton reduction of each substructure is performed, retaining 20
fixed interface modes and a set of physical DoFs, including those on which the boundary
conditions are applied and the ones involved in the contact (3 DoFs for the oblique beam
and 200 DoFs for the horizontal cantilever beam).

The value of the friction coefficient µ used in the simulation is chosen so that some
instabilities due to modal coupling arise when the tip of the oblique beam moves along the
upper side of the horizontal one. Figure 4 shows the locus plot of complex eigenvalues [11]
of the coupled system when the oblique beam, starting from position s0, slides toward
the free end of the horizontal cantilever beam. The locus plot is obtained by coupling
the two substructures at every position using primal assembly, as proposed in [11]. Note
that the real part of some eigenvalues becomes positive, giving rise to possible dynamic
instabilities around 7 kHz and 10.5 kHz. When the system passes through an instability
region, the vibration amplitude is expected to increase with an exponential law, while it is
expected to decrease when the instability region is overcome.



Machines 2022, 10, 384 8 of 12

−40 −30 −20 −10 0 10
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15
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Figure 4. Locus plot of the 20 lowest eigenvalues for a friction coefficient µ = 0.3.

3.2. Subs-a and FiLm Comparison

In this section, the results of transient simulation performed with the basic contact
assumption Subs-a are compared with the results of the reference method FiLm. Figure 5
shows the vertical acceleration of the free end T of the horizontal beam evaluated using
the two methods. Figure 6 shows the spectrograms of the vertical accelerations in Figure 5.
The computational time required to obtain the solution using the Subs-a method is 68% of
the time required by the reference method (2 h 53 min 54 s vs. 4 h 15 min 51 s on a Desktop
PC with a 3.50 GHz quad-core CPU).

0 0.5 1 1.5 2 2.5 3

−4

−2

0

2

4

Time [s]

A
c
c
e
le
ra

ti
o
n

[m
/
s2
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Figure 5. Vertical acceleration of point T: comparison between Subs-a and FiLm method.
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(a)
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e
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]
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H
z
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(b)

Figure 6. Spectrograms of the vertical acceleration of point T obtained using the Subs-a (a) and FiLm
(b) methods.

The FiLm method results show typical vibration bursts occurring when an unstable
system configuration is crossed. On the other hand, the results obtained with the Subs-a
method highlight that the method is not reliable in case of contact dynamic instabilities.
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However, it is capable of detecting the changes in the global dynamics of a time-variant
coupled system. The authors already mentioned this limitation in [11]. It is due to the
a priori definition of coupling conditions that do not account for sliding associated with
static and dynamic body deformation. This is in fact a crucial aspect in order to reproduce
unstable friction-induced vibrations since the energy absorption of the structural system
depends on the phase shift between the oscillations of contact forces and relative displace-
ment [29]. Therefore, a lack of precision in estimating these quantities can heavily affect the
correctness of results. Thus, the realistic time-variant substructuring method Subs-b will be
used in the following section.

3.3. Subs-b and FiLm Comparison

In this section, the results of transient simulation performed with the realistic contact
assumption Subs-b are compared with the results of the reference method FiLm. Figure 7
shows the vertical acceleration of the free end T of the horizontal beam evaluated using
the two methods. A substantial superposition of the two responses is observed, thus
confirming the effectiveness of the Subs-b method also in retracing the friction-induced
vibrations due to contact-induced instabilities. Figure 8 shows the horizontal velocity of
point C and the normal contact force λ during the simulation with the Subs-b method.
Results confirm the sliding contact assumption for all the simulation time. Note that the
normal contact force decreases due to the deflection of the horizontal beam.
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Figure 7. Vertical acceleration of point T: comparison between Subs-b and FiLm method.
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Figure 8. Relative velocity (a) and normal contact force (b) for the Subs-b method.

In this case, the proposed method is computationally more efficient than the classical
FiLm method: the computational time required by Subs-b is 74% of that required by FiLm.
In fact, although the two subsystems are always in sliding contact, the FiLm method for each
time step supposes that the bodies are in sticking contact, and, if the sticking condition is not
verified, it relaxes the constraint along the tangential direction and approximates the correct
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position with an iterative procedure. On the contrary, the Subs-b method directly provides
the correct solution at the subsequent time step, thus reducing the computational burden.

3.4. Subs-c and FiLm Comparison

In this section, the results of transient simulation performed with the simplified contact
assumption Subs-c are compared with the results of the reference method FiLm. This
simplification can be considered when the static deformation does not significantly change
the normal and tangential contact force direction. Figure 9 shows the vertical acceleration
of the free end T of the horizontal beam evaluated using the two methods. Results show
that, also in this simplified form, the contact assumption shows qualitatively good response
and detects the presence of friction-induced instabilities. However, the amplitude of
vibration bursts is overestimated because it is sensitive to the value of the normal contact
force in Figure 10, which in this case does not decrease because of the simplified contact
assumption. In fact, the simplified contact assumption does not consider the effect of the
system deformation on the normal force direction (and amplitude). The computational
time required to obtain the solution using the Subs-c method is 69% of the time required by
the reference method.
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Figure 9. Vertical acceleration of point T: comparison between Subs-c and FiLm method.
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Figure 10. Relative velocity (a) and normal contact force (b) for the Subs-c method.

4. Conclusions

In this paper, the transient response of a mechanical system, composed of two subsys-
tems connected through a frictional contact interface, is evaluated using a substructuring
method. Results are validated by comparing them to those provided by a reference numeri-
cal method [27]. Different contact assumptions made in the formulation of time-dependent
compatibility and equilibrium conditions of the substructuring method are considered.
The basic contact assumption is that the time-dependent compatibility and equilibrium
conditions, deriving from sliding contact, are a-priori known. The comparison of the results
with the reference method highlighted that this approach correctly estimates the effects
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of configuration changes due to relative sliding on the global dynamics of the system.
However, it is not able to reproduce friction-induced vibrations since it does not properly
account for the relative displacement at the contact interface due to the body deformation.
The realistic contact assumption fully accounts for the deformation of the mechanical
system in establishing the compatibility and equilibrium conditions. The comparison of
the results with the reference method highlighted that this approach is able to retrace
the system’s dynamic response, also in case of unstable friction-induced vibration due
to mode coupling. A simplified approach, relying on a simplified contact assumption, is
proposed in this paper. It accounts for the relative displacement at the contact interface
due to the body deformation but disregards the direction change of the normal to the
contact surface. The simplified approach provides a qualitatively good response, and it
is equally able to detect the onset of friction-induced instabilities. The comparison of the
computational time highlights a significant reduction of the computational burden of the
three substructuring methods with respect to the reference method. In particular, using
the realistic contact assumption, the computational time required is 26% lower than that
required by the reference method. In turn, using the simplified contact assumption is about
7% faster than the realistic contact assumption.

The results show how the choice of the contact algorithm allows for tackling a wide
range of operating conditions, from simple position-dependent problems up to complex
friction-induced vibration problems, with a significant saving of computational time. Specif-
ically, the approach proposed in this paper is able to detect the onset of friction-induced
instabilities with the lowest computational effort.
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