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Recent research has shown that models induced by machine learning, and in particular by deep learning,
can be easily fooled by an adversary who carefully crafts imperceptible, at least from the human perspec-
tive, or physically plausible modifications of the input data. This discovery gave birth to a new field of
research, the adversarial machine learning, where new methods of attacks and defense are developed
continuously, mimicking what is happening from a long time in cybersecurity. In this paper we will show
that the drawbacks of inducing models from data less prone to be misled can actually provide some ben-
efits when it comes to assessing their generalization abilities. We will show these benefits both from a
theoretical perspective, using state-of-the-art statistical learning theory, and both with practical
examples.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In the last decades, Artificial Intelligence, and in particular
Machine Learning, has become pervasive in all aspects of our lives
experiencing a fast process of commodification and reaching the
society at large. From self-driving cars to smart IoT devices, almost
every consumer application now leverages such technologies to
make sense and get insights from the vast amount of data collected
and stored by these devices. In some tasks (e.g., medicine, vision,
and games) recent deep-learning algorithms have shown super-
human performance [1–4] or are expected to do so in the near
future [5]. For this reason, it has been extremely surprising to dis-
cover that such algorithms can be easily fooled by an adversary
who carefully crafts imperceptible, at least from the human per-
spective, or physically plausible modifications of the input data
forcing models to perceiving things that are not there [6–9]. Intri-
gued by this discovery, and worried about its potential impact on
the field, a large number of researchers and stakeholders started
to study, understand, and address this problem developing proper
mitigation strategies. Despite such large interest, this challenging
problem is still far from being solved. In fact new methods of
attacks (i.e., adversarial attacks) and mitigation strategies (i.e.,
adversarial defense) are developed continuously [7,10–14], mim-
icking what is happening from a long time in cybersecurity, giving
birth to an entire new field of research: the adversarial machine
learning.

In this setting, one of the main issues, similar to the classical
learning setting, is how to estimate the generalization ability of
the defense strategies, i.e., how robust will be the protected model
on data that have not been observed during the learning phase.
Some recent works [15–17] have focused on this problem using
the Rademacher Complexity based bounds but without concentrat-
ing on the benefits of adversarial defense in generalization.

For this reason, in this work, we propose a change of perspec-
tive. Instead of focusing on the challenges posed by the tension
between adversarial attackers and defenders we focus our atten-
tion on its potential benefits. In particular, we will study what hap-
pens when we try to estimate the generalization capabilities of a
model learned in the classical setting, where no adversary is pre-
sent (Non-Adversarial Setting), against the ones of a model
designed to be less prone to attacks and then less exposed to
adversaries (Adversarial Setting). Exploiting the two well know pil-
lars of statistical learning theory, i.e., the (Local) Vapnik–Chervo-
nenkis [18,19] and the (Local) Rademacher Complexity [20–24],
we will show that the introduction of a mechanism of defense in
the learning phase of a model can actually improve our ability to
accurately estimate its generalization performance (i.e., the tight-
ness of the generalization bound). Moreover, we will show that
these theoretical results can be also observed in practical cases.
Note that, the proposed generalization bounds for the Adversarial
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Setting based on the (Local) Vapnik–Chervonenkis and on the Local
Rademacher Complexity are novel while the ones based on the
Rademacher Complexity have already been studied in [17]. We will
also perform a study on the connection between the (Local) Vap-
nik–Chervonenkis and on the (Local) Rademacher Complexity in
the Adversarial Setting which is again new. Finally, the theoretical
and practical analysis of the behaviour of the (Local) Vapnik–Cher-
vonenkis and the (Local) Rademacher Complexity based bound in
the Adversarial Setting when the perturbation domain changes in
size is new and shed new light on a previously unknown phe-
nomenon: increasing the size of the perturbation domain can
increase the tightness of the generalization error bounds.

The rest of the paper is organized as follows. Section 2 recall
some background notions. The theoretical and practical analysis
will be performed respectively in Sections 3 and 4. Finally, Section 5
concludes the paper.

2. Preliminaries

Let us consider the binary classification problem1 [18] under
evasion attach [6]. Based on a random observation of X 2 X one
has to estimate Y 2 Y# �1f g by choosing a suitable hypothesis
(function) h : X ! Ŷ, with Ŷ 2 R, in a set of possible ones H. Note
that, in the forward phase, in order to take a decision, we assume
to apply sgn h Xð Þð Þ where

sgn x½ � ¼
�1 if x < 0
0 if x ¼ 0
þ1 if x > 0

8><>: : ð1Þ

Note that choosing the right H is the so-called model selection
problem [25] which is out of the scope of this paper. The hypoth-
esis h is subject to an adversary which tries to fool the model into
mistakes by modifying the observation X according to a set of pos-
sible modifications B Xð Þ#X such that X 2 B Xð Þ, namely

X�
B : arg supeX2B Xð Þ

sgn h eX� �h i
– sgn h Xð Þ½ �

h i
; ð2Þ

where the Iverson bracket notation is exploited. A learning algo-
rithm selects h 2 H by exploiting a set of n labeled samples

D ¼ Z1; � � � ; Znf g ¼ X1;Y1ð Þ; � � � ; Xn; Ynð Þf g; ð3Þ
where Z 2 Z ¼ X�Y and D consists of a sequence of independent
samples distributed according to l over Z (i.e., i.i.d. samples). The
generalization error (i.e., the risk)

LY
‘ hð Þ ¼ EZ‘ h; Zð Þ; ð4Þ

associated to an hypothesis h 2 H, is defined through a loss func-
tion ‘ : H�Z ! 0;1½ �. As l is unknown, LY

‘ hð Þ cannot be explicitly
computed, but we can compute the empirical error (i.e., the empir-
ical risk) namely the empirical estimator of the generalization error

L̂Y
‘ hð Þ ¼ 1

n

X
Z2D

‘ h; Zð Þ: ð5Þ

The purpose of any learning procedure is to find the minimizer
h� of the generalization error LY

‘ hð Þ
h�
‘ ¼ arg inf

h2H
LY
‘ hð Þ; ð6Þ
1 Everything we will present can be generalized with some technical steps to the
whole supervised learning framework but, for simplicity and clarity of the notation
and since this extension does not add much to the content of the paper, we will
restrict the presentation to the binary classification framework.
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but since LY
‘ hð Þ is unknown we have to estimate h�

‘ exploiting an

empirical estimator ĥ‘ which is the empirical risk minimizer

ĥ‘ ¼ arg inf
h2H

L̂Y
‘ hð Þ: ð7Þ

ĥ‘ is effective whenH is carefully tuned [25] (e.g., via Structural
Risk Minimization [18] or Invariant Risk Minimization [26]). Nev-
ertheless, in our case, we have a further level of complexity
because of the adversary which tries to fool the learned model.
For this reason, we have to make the learned model robust to
adversarial perturbation using the now-classical approach of
Adversarial Defense (also called Adversarial Training) [6,27]. The
idea is that the attack of Eq. (2) can be reformulated as

X�
B ¼ X�

~‘B
¼ arg supeX2B Xð Þ

‘ h; eX ;Y� �� �
; ð8Þ

and then we can consider the now-classical problem of Adversarial
Defense [6]

h�
~‘B

¼ arg inf
h2H

LY
~‘B

hð Þ; ð9Þ

where

LY
~‘B

hð Þ ¼ EZ supeX2B Xð Þ
‘ h; eX ;Y� �� �

¼ EZ
~‘B h; Zð Þ; ð10Þ

is the generalization error in the Adversarial Setting and its empir-
ical estimator is

ĥ~‘B
: arg inf

h2F
L̂Y
~‘B

hð Þ; ð11Þ

where

L̂Y
~‘B

hð Þ ¼ 1
n

X
Z2D

~‘B h; Zð Þ: ð12Þ

Note that when B Xð Þ ¼ X (i.e., B is the identity I) we have that

LY
~‘B

hð Þ ¼ LY
~‘I

hð Þ ¼ LY
‘ hð Þ; h�

~‘B
¼ h�

~‘I
¼ h�

‘ ;

L̂Y
~‘B

hð Þ ¼ L̂Y
~‘I

hð Þ ¼ L̂Y
‘ hð Þ; ĥ~‘B

¼ ĥ~‘I
¼ ĥ‘:

ð13Þ
3. Theoretical analysis of generalization

In this section we will study the problem of estimating the gen-

eralization ability of ĥ~‘B
using two different powerful theories

inside the statistical learning theory, the (Local) Vapnik–Chervo-
nenkis [18,19] and the (Local) Rademacher Complexity [20,24],
showing the possible benefits related to the Adversarial Setting

with respect to dealing with the classical model ĥ‘ in the Non-
Adversarial Setting.

3.1. (Local) Vapnik–Chervonenkis Theory

In this section we will first study the classical Non-Adversarial
Setting (Section 3.1.1), then the Adversarial Setting (Section 3.1.2),
and finally we will compare the two settings (Section 3.1.3) using
and extending the (Local) Vapnik–Chervonenkis Theory.

In particular, in this section, we will consider the case in which
a 0;1f g values loss is used ‘ h; Zð Þ 2 0;1f g, (i.e., the Hard loss func-
tion ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ � in the Non-Adversarial Setting) [18].
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3.1.1. Non-adversarial setting
Let us consider the Non-Adversarial setting in which one has

learned ĥ‘ and has to bound its performance, namely estimate

value of LY
‘ ĥ‘

� �
just based on empirical quantities.

In this setting we can define the following set

L‘;D ¼ ‘ h; Z1ð Þ; � � � ; ‘ h; Znð Þ½ � : h 2 Hf g;

which is the set of possible distinct vectors of configuration of the
0;1f g-errors distinguishable within H with respect to the dataset
D. Finding all these vectors can be computational expensive to com-
putebutwecan resort to anestimation [19], viaMonte Carlomethods.

Then the empirical Vapnik–Chervonenkis Entropy (VCE) can be
defined as follows2 [18]

V̂‘ Hð Þ ¼ ln max 1; L‘;D

�� ��� �� �
; ð15Þ

namely, the VCE is the number of possible distinct vectors of config-
uration of the 0;1f g-errors distinguishable within H with respect
to the dataset D.

In general it is possible to prove that [18,19]

P LY
‘ ĥ‘

� �
6 L̂Y

‘ ĥ‘

� �
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂‘ Hð Þ

n

s
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 4

d

� �
n

s8<:
9=; P 1� d; ð16Þ

with d 2 0;1ð Þ. The bound of Eq. (16) is a fully empirical bound,
namely all the quantities can be estimated from the data [19].

Note that the bound of Eq. (16) can be summarized as follows:

the generalization error LY
‘ ĥ‘

� �
of the empirical minimizer3 ĥ‘ is

bounded, with probability at least 1� dð Þ, by its empirical error

L̂Y
‘ ĥ‘

� �
, plus a complexity term Ĉ‘ Hð Þ which measures the risk due

to the size ofH (i.e., the larger isH the larger is the risk), plus a con-
fidence term / dð Þ which measures the risk associated to the sample
(i.e., we have a risk due to inferring something about the population
with a finite number of samples). In other words

LY
‘ ĥ‘

� �
6
1�dð Þ

L̂Y
‘ ĥ‘

� �
þ Ĉ‘ Hð Þ þ / dð Þ; ð17Þ

where we did not explicitly specify the dependency from n since it
was kept constant in the work. For the bound of Eq. (16) obviously

Ĉ‘ Hð Þ ¼ 3
ffiffiffiffiffiffiffiffiffiffi
V̂‘ Hð Þ

n

q
and / dð Þ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 4

dð Þ
n

q
.

Note also that the bound of Eq. (16) can be improved both in the
constants (e.g., using stronger concentration results [19]) and both
in the rate of convergence (e.g., we can obtain fast rates for

L̂Y
‘ ĥ‘

� �
¼ 0 [18]) but for the purpose of this paper and for simplicity

we prefer not to further weigh down the presentation.
In fact, as we will discuss from now on, the discussion is cen-

tered on the empirical risk and on the complexity term. In fact,
for the purpose of our discussion, / dð Þ is constant (see later) and
it can be also disregarded assuming that the sample D well repre-
sents the population.

The complexity of Eq. (15) and the bound of Eq. (16) are also
called Global VCE (GVCE) and GVCE based bound respectively since
all the functions in H contribute to Ĉ‘ Hð Þ, even the ones that will
be never chosen by the algorithm, namely the one characterized by
high error. For this reason a Local VCE (LVCE), and the correspond-
ing LVCE based bound have been proposed [19]. The latter are able
to not take into account functions with high error resulting in tigh-
ter bounds.
2 The operator max 1; �½ � is needed to deal with empty set namely the case ln 0ð Þ.
3 Actually the bound holds for any hypothesis chosen in H according to D if H is

chosen before observing D.
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Let us then present the LVCE and the LVCE based bounds. Let us
first localize the set of functions defined in Eq. (14) by introducing
a constraint on the error, controlled by a parameter r 2 0;1½ �
L‘;D;r ¼ ‘ h; Z1ð Þ; � � � ; ‘ h; Znð Þ½ � : h 2 H; L̂Y

‘ hð Þ 6 r
n o

¼ ‘ h; Z1ð Þ; � � � ; ‘ h; Znð Þ½ � : h 2 H;
Xn
i¼1

‘ h; Zið Þ 6 nr

( )
;
ð18Þ

which is the L‘;D limited at the vectors of configuration of the
0;1f g-errors such that the number of ones in this vector is small.
Then, the empirical LVCE can be defined as

V̂‘ H; rð Þ ¼ ln max 1; L‘;D;r

�� ��� �� �
; ð19Þ

which is the GVCE, limited to the vectors of configuration of the
0;1f g-errors with a small number of ones.
Note that V̂‘ Hð Þ ¼ V̂‘ H;1ð Þ namely the LVCE degenerates in the

GVCE. Moreover V̂‘ H; rð Þ is obviously monotonically increasing in
r, namely if 0 6 r1 6 r2 6 1 then V̂‘ H; r1ð Þ 6 V̂‘ H; r2ð Þ.

In this setting it is possible to prove that [19]

P LY
‘ ĥ‘

� �
6 min

K2 1;1ð Þ
K

K�1 L̂
Y
‘ ĥ‘

� �
þ r

K


 �
P 1� d;

s:t:

sup
a2 0;1ð �

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra T r;að Þþ2 ln 9

dð Þ½ �
n

q
6 r

K

r > 0

T r;að Þ 6 V̂‘ H; raþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T r;að Þþ2 ln 9

dð Þ
n

q� 

T r;að Þ ¼ V̂‘ h : h 2 H; LY

‘ hð Þ 6 r
a

� �� �

8>>>>>>>><>>>>>>>>:
:

ð20Þ

This bound is then able to discard functions with high error
thanks to the fact that the functions with high error are not con-
templated in the complexity term.

The same comments made for GVCE based bound of Eq. (16)
holds also for the LVCE based bound of Eq. (20) (namely its local-
ized version). In fact the latter is fully empirical, can be improved
in both constants and rate of convergence, actually holds for any
hypothesis chosen in H according to D if H is chosen before
observing D, and can be simplified as follows

LY
‘ ĥ‘

� �
6
1�dð Þ

c1L̂Y
‘ ĥ‘

� �
þ Ĉ‘ H; c2ð Þ þ / dð Þ; ð21Þ

where c1 2 0;1ð Þ and c2 2 0;1ð Þ are quantities that can be com-
puted from the data and Ĉ‘ H; c2ð Þ is a complexity term which mea-
sures the risk due to the size of H taking into account just the
functions with empirical error smaller then c3. This simplification
can be made apparent by noting in the LVCE based bound of Eq.
(20) that V̂‘ h : h 2 H; LY

‘ hð Þ 6 r
a

� �� �
6 V̂‘ Hð Þ and then with proba-

bility at least 1� dð Þ we have that

LY
‘ ĥ‘

� �
6 min

K2 1;1ð Þ
K

K�1 L̂
Y
‘ ĥ‘

� �
þ r

K ;

s:t: sup
a2 0;1ð �; r>0

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
raV̂‘ H;raþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂‘ Hð Þþ2 ln 9

dð Þ
n

q� 

n

vuut
þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra2 ln 9

dð Þ
n

q
6 r

K :

ð22Þ

Assuming then that we have solved the problem of Eq. (22)
(which counts just quantities that can be computed from the data)
and then found K�;a�, and r� we have that

c1 ¼ K�
K��1 ; Ĉ‘ H; c2ð Þ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�a�V̂‘ H;c2ð Þ

n

q
; c2 ¼ r�

a� þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂‘ Hð Þþ2 ln 9

dð Þ
n

q
, and

/ dð Þ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�a�2 ln 9

dð Þ
n

q
.



Fig. 1. Qualitative analysis of the properties of the (A) GVCE and the (A) LVCE.
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3.1.2. Adversarial Setting
Let us consider the Adversarial Setting in which one has learned

ĥ~‘B
and has to bound its performance, namely estimate value of

LY
~‘B

ĥ~‘B

� �
just based on empirical quantities. Our adversary on

h 2 H is modeled according to Eq. (2) or, equivalently, according
to Eq. (8) using the loss function. In other words, a model needs
to label a point X and all the points insideB Xð Þwith the same (pos-
sibly correct) label in order to be robust to attacks and not to make
mistakes.

In order the extend the notion of GVCE to the Adversarial Set-
ting, defining the Adversarial GVCE (AGVCE), we need to note that
the bounds of the previous sections hold for every loss such that
‘ h; Zð Þ 2 0;1f g [18]. In the Adversarial Setting our loss becomes
128
~‘B h; Zð Þ ¼ supeX2B Xð Þ
‘ h; eX ;Y� �� �

2 0;1f g; ð23Þ

and consequently all the bounds presented in the previous section
still hold with a simple series of substitutions and redefinitions. In
fact, using the Hard Loss function of the Non-Adversarial setting
we have that

~‘B h; Zð Þ ¼ supeX2B Xð Þ
Yh eX� �

6 0
h i

2 0;1f g: ð24Þ

Consequently, at least formally, the switch is painless. Never-
theless, as we will see deeper in Section 3.1.3 but that we start
to discuss here, these substitutions and redefinitions imply rather
counterintuitive results.

Let us start with the definition of AGVCE. For this purpose let us
define the counterpart of the set of Eq. (14) in the Adversarial Set-
ting as

L~‘B ;D ¼ ~‘B h; Z1ð Þ; � � � ; ~‘B h; Znð Þ� �
: h 2 H

� �
; ð25Þ

and then the empirical AGVCE can be defined as follows

V̂~‘B
Hð Þ ¼ ln max 1; L~‘B ;D

�� ��h i� �
; ð26Þ

Thanks to this definition we can state the counterpart of the
bound of Eq. (17) for the Adversarial Setting substituting

LY
~‘B

ĥ~‘B

� �
to LY

‘ ĥ‘

� �
; L̂Y

~‘B
ĥ~‘B

� �
to L̂Y

‘ ĥ‘

� �
; Ĉ~‘B

Hð Þ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
V̂~‘B

Hð Þ
n

q
to

Ĉ‘ Hð Þ and with the same / dð Þ of Eq. (17)

LY
~‘B

ĥ~‘B

� �
6
1�dð Þ

L̂Y
~‘B

ĥ~‘B

� �
þ Ĉ~‘B

Hð Þ þ / dð Þ: ð27Þ

Analogously it is possible to define a ALVCE by first localize the
set of functions defined in Eq. (25), analogously to what has been
done for Eq. (14) in Eq. (18), by introducing a constraint on the
error, controlled by a parameter r 2 0;1½ �

L~‘B ;D;r ¼ ~‘B h; Z1ð Þ; � � � ; ~‘B h; Znð Þ� �
: h 2 H; L̂Y

~‘B
hð Þ 6 r

n o
; ð28Þ

then, the empirical ALVCE can be defined as

V̂~‘B
H; rð Þ ¼ ln max 1; L~‘B ;D;r

�� ��h i� �
: ð29Þ

Thanks to this definition we can state the counterpart of the
bound of Eq. (21) for the Adversarial Setting substituting

LY
~‘B

ĥ~‘B

� �
to LY

‘ ĥ‘

� �
; L̂Y

~‘B
ĥ~‘B

� �
to L̂Y

‘ ĥ‘

� �
; c1 ¼ K�

K��1 ; Ĉ~‘B
H; c2ð Þ ¼

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�a�V̂~‘B

H;c2ð Þ
n

q
; c2 ¼ r�

a� þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂~‘B

Hð Þþ2 ln 9
dð Þ

n

r
, and / dð Þ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�a�2 ln 9

dð Þ
n

q
LY
~‘B

ĥ~‘B

� �
6
1�dð Þ

c1L̂Y
~‘B

ĥ~‘B

� �
þ Ĉ~‘B

H; c2ð Þ þ / dð Þ; ð30Þ

where K�;a�, and r� are found by solving Eq. (22) substituting

LY
~‘B

ĥ~‘B

� �
to LY

‘ ĥ‘

� �
; L̂Y

~‘B
ĥ~‘B

� �
to L̂Y

‘ ĥ‘

� �
; V̂~‘B

Hð Þ to V̂‘ Hð Þ, and

V̂~‘B
H; �ð Þ to V̂‘ H; �ð Þ. In fact the proof of the LVCE based bound is

based on the results one the GVCE plus some technical steps that
hold also for any 0;1f g-valued loss like the one we are using in
the Adversarial Setting [19] and by simply redefining the concept
of GVCE and LVCE in the AGVCE and ALVCE respectively as we did
before.

3.1.3. Non-adversarial and adversarial settings: a comparison
Let us now consider the two settings described in Sections 3.1.1

and 3.1.2 and let us observe the (A) GVCE based bounds of Eqns.
(17) and (27) and the (A) LVCE based bounds of Eqns. (21) and
(30). By considering these bounds we can immediately observe,
by definition, a series of properties.
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First, let us define some quantities. Let us consider a perturba-
tion domain B such that I � B � X. Let us also consider two per-
turbations domains B1 and B2 such that I � B1 � B2 � X. Note
that, by definition of perturbation domain, X 2 I Xð Þ;B Xð Þ;B1 Xð Þ;
B2 Xð Þ;X Xð Þ. Finally let us consider three variables r; r1, and r2 such
that 0 6 r 6 1 and 0 < r1 < r2 < 1.

Then let us consider the behavior of the generalization error and
the empirical error in both the Non-Adversarial and Adversarial
Settings

LY
‘ hð Þ ¼ LY

~‘I
hð Þ 6 LY

~‘B1
hð Þ 6 LY

~‘B2
hð Þ 6 LY

~‘X
hð Þ ¼ 1;

L̂Y
‘ hð Þ ¼ L̂Y

~‘I
hð Þ 6 L̂Y

~‘B1
hð Þ 6 L̂Y

~‘B2
hð Þ 6 L̂Y

~‘X
hð Þ ¼ 1; 8h 2 H

ð31Þ

which follows directly by the definition of LY
‘ ; L̂

Y
‘ ; L

Y
~‘B
, and L̂Y

~‘B
. In fact,

the larger the perturbation that we can apply to the samples in the
dataset the higher is the probability to find a perturbation that
induces a hypothesis h 2 H into a mistake. Note that, there can
be a set of perturbation B (in some cases also large) that does not
change the actual meaning of X and so, if H is carefully tuned, we
should be still able to keep LY

~‘B
and L̂Y

~‘B
small [6,28–31,10].

Then let us consider the complexity term. Also in this case there
are many properties that we can state that follows directly from
their definitions. In particular, we start by analyzing the (A) GVCE
and (A) LVCE. In this case we can state that

0 ¼ V̂‘ H;0ð Þ 6 V̂‘ H; r1ð Þ 6 V̂‘ H; r2ð Þ 6 V̂‘ H;1ð Þ ¼ V̂‘ Hð Þ 6 n ln 2ð Þ;
0 ¼ V̂~‘B

H;0ð Þ 6 V̂~‘B
H; r1ð Þ 6 V̂~‘B

H; r2ð Þ 6 V̂~‘B
H;1ð Þ ¼ V̂~‘B

Hð Þ 6 n ln 2ð Þ;
ð32Þ

which means that the (A) LVCE is always smaller than its Global
counterpart (A) GVCE, that the (A) LVCE degenerates in the (A)
GVCE respectively, and that for r ¼ 0 the (A) LVCE leave just one
possibility namely the functions with all zero errors4.

Moreover we can state some relations between the GVCE and
LVCE and the AGVCE and the ALVCE respectively that follow again
from their definitions. In fact

lim
B!X

V̂~‘B
Hð Þ 6 ln 3ð Þ;

V̂~‘X
Hð Þ 6 V̂~‘B

Hð Þ; V̂~‘X
Hð Þ 6 V̂~‘I

Hð Þ ¼ V̂‘ Hð Þ;
lim
B!X

V̂~‘B
H; �ð Þ 6 ln 3ð Þ;

V̂~‘X
H; rð Þ 6 V̂~‘B

H; rð Þ; V̂~‘X
H; rð Þ 6 V̂~‘I

H; rð Þ ¼ V̂‘ H; rð Þ;

ð33Þ

namely no matter whatD andH there are only three possible ways
of configuring the vectors 0;1f g-errors distinguishable within H

with respect to the dataset D: correctly label all the Yi ¼ þ1 with
h Xð Þ ¼ þ1, correctly label all the Yi ¼ �1 with h Xð Þ ¼ �1, and make
mistakes on all points with any other h 2 H.

These properties then tell us different things. For B ¼ I the
AGVCE degenerates in the GVCE and the ALVCE degenerates in
the LVCE. Moreover for B ¼ X we have the smallest possible
AGVCE and ALVCE.

The properties of Eqns. (32) and (33) are graphically repre-
sented in Fig. 1(a).

What is not easy to prove is which operator 	 2 6;P;¼f g can
be inserted in the following relations
4 Note that this function may not exist so, in practice, there is a minimum value for
r, which is L̂Y‘ ĥ‘

� �
for the LVCE and L̂Y~‘B

ĥ~‘B

� �
for the ALVCE, below which LVCE and

ALVCE are zero.
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V̂~‘X
Hð Þ 	 V̂~‘B2

Hð Þ 	 V̂~‘B1
Hð Þ 	 V̂~‘I

Hð Þ;
V̂~‘X

H; rð Þ 	 V̂~‘B2
H; rð Þ 	 V̂~‘B1

H; rð Þ 	 V̂~‘I
H; rð Þ:

ð34Þ

The first idea would be to put 	 !6because of the properties of
Eq. (33) (see Fig. 1(b)).

As we will show in a toy example (see Fig. 2(a)), this intuition is
wrong. Let us consider the following toy example: X ¼
�3;3½ � � �2;2½ � � R�R;D ¼ Z1; Z2; Z3f g ¼ �1;0½ �;þ1ð Þ;f 0; 0½ �;ð
þ1Þ; þ1;0½ �;�1ð Þg;B1 Xð Þ ¼ keX : keX � eXk2 6 :2k;B2 Xð Þ ¼ keX :

keX � eXk2 6 1:1k, and H are all the linear separators in H. In this
setting we can study the (A) GVCE and the (A) LVCE varying
B 2 I;B1;B2;Xf g and r 2 0; 13 ;

2
3 ;1

� �
(all the possible values since

the empirical error can assume only these four values). For this
purpose let us observe Table 1 where we report all the quantities
related to the (A) GVCE and the (A) LVCE and we also visualize
the same quantities in Fig. 2.

Thanks to the toy sample represented and studied in Fig. 2 and
Table 1, we can now state that the intuition to put 	 !6in the
properties of Eq. (34)see Fig. 1(b)) is wrong since we found a coun-
terexample (our toy example) that contradicts this intuition.

A more realistic intuition, that comes from the behavior
observed in our toy example, is the one of Fig. 1(c), namely for
small B Xð Þ the (A) GVCE and the (A) LVCE may increase but as
B Xð Þ increases they should then start to decrease. We will test this
realistic intuition in the experimental section later (see Section 4).

Thanks to the properties that we observed in this section we
argue that there could be a benefit when estimating the generaliza-
tion ability of a model in the Adversarial Setting with respect to the
Non-Adversarial Setting. In fact, as we said before, for reasonably
large perturbation the empirical error can still be small (i.e., the
best model in the hypothesis space is still able to perform well
on the true labels) while the complexity can remarkably decrease
(i.e., the models in the hypothesis are not able to generate too
many possible distinct vectors of configuration of the 0;1f g-
errors) creating an optimal perturbation size that is able to keep
the empirical error small while decreasing the complexity result-
ing in tighter generalization bound. We will challenge this argu-
ment in the experimental section later (see Section 4).

Note also another important fact. From Eq. (31) we can state
that the generalization error of a model in the Non-Adversarial Set-
ting is bounded by the generalization error of the same model in
the Adversarial Setting with any possible perturbation B. This
means that if we can find a perturbation B such that the estimated
generalization error for a particular model in the Adversarial Set-
ting is smaller than the one estimated in the Non-Adversarial Set-
ting we can use the estimated generalization in the Adversarial
Setting to get a tighter bound also for the error in the Non-
Adversarial Setting. This can open a new field of research: find per-
turbations B able to minimize the estimated generalization error.
Note that this is not a trivial task since the perturbation needs to
be designed before seeing the data.

3.2. (Local) Rademacher complexity theory

In this section, as we did for the (A) GVCE and for the (A) LVCE
in Section 3.1, we will first study the classical Non-Adversarial Set-
ting (Section 3.2.1), then the Adversarial Setting (Section 3.2.1),
and finally we will compare the two settings (Section 3.2.3) using
and extending the (Local) Rademacher Complexity theory.

In particular, in this section, we will consider the case in which
‘ h; Zð Þ 2 0;1½ �, namely whatever 0;1½ �-bounded loss (of course it is
reasonable to assume that ‘ h; Zð Þ ¼ 0 if h Xð Þ ¼ Y and that
‘ h; Zð Þ ¼ 1 if h Xð Þ ¼ �Y).



Fig. 2. Toy example for studying (A) GVCE and the (A) LVCE. Dotted lines are the functions h numbered in Table 1 were the red triangle points to the semi space with label þ1
and the semi-transparent circles represent the .B Xð Þ.

5 Note that this property is satisfied, for example, by the Hard loss function [18]
‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ � and the truncated Hinge (or Ramp or Soft) loss function [32]
‘ h; Zð Þ ¼ 1

2min 2;max 0;1� Yh Xð Þ½ �½ �.
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3.2.1. Non-adversarial setting
Let us consider, again, the Non-Adversarial Setting in which one

has learned ĥ‘ and has to bound its performance, namely estimate

value of LY
‘ ĥ‘

� �
just based on empirical quantities.

Let us define n random variables S ¼ r1; � � � ;rnf g with
ri 2 �1f g such that P ri ¼ þ1f g ¼ P ri ¼ �1f g ¼ 1

2 ;8i 2 1; � � � ;nf g.
Then we can define the empirical Rademacher Complexity (RC)
as [20,21]

R̂‘ Hð Þ ¼ ESsup
h2H

2
n

Xn
i¼1

ri‘ h; Zið Þ: ð35Þ
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The RC measures the ability of the space of functions to fit noise
(i.e., the less is the ability of the space of functions to fit the noise,
the smaller is RC). This interpretation of RC can be made apparent
by reformulating RC assuming the loss function to be symmetric5,
namely ‘ h; X;�Yð Þð Þ ¼ 1� ‘ h; X;Yð Þð Þ, and defining Sþ Sð Þ ¼
i : i 2 1; � � � ;nf g;ri ¼ þ1f g and S� Sð Þ ¼ i : i 2 1; � � � ;nf g;ri ¼ �1f g.
In this setting we can note that



Table 1
Studying the (A) GVCE and the (A) LVCE varying B 2 I;B1 ;B2 ;Xf g and r 2 0; 13 ;

2
3 ;1

� �
for the toy example of Fig. 2(a). Please refer to Fig. 2 to observe the visualization of this

table.

h 1 2 3 4 5 6 7 8

‘ h; Z1ð Þ, ~‘B h; Z1ð Þ 0 0 0 0 1 1 1 1

‘ h; Z2ð Þ, ~‘B h; Z2ð Þ 0 0 1 1 0 0 1 1

‘ h; Z3ð Þ, ~‘B h; Z3ð Þ 0 1 0 1 0 1 0 1

L̂Y‘ hð Þ, L̂Y~‘B hð Þ 0 1
3

1
3

2
3

1
3

2
3

2
3

1

L~‘I ;D;1 ¼ L‘;D;1 U U U U U U ! V̂~‘I
H;1ð Þ ¼ V̂‘ H;1ð Þ

¼ L~‘I ;D
¼ L‘;D ¼ V̂~‘I

Hð Þ ¼ V̂‘ Hð Þ ¼ ln 6ð Þ
L~‘B1 ;D;1 ¼ L~‘B1 ;D

U U U U U U U ! V̂~‘B1
H;1ð Þ ¼ V̂~‘B1

Hð Þ ¼ ln 7ð Þ
L~‘B2 ;D;1 ¼ L~‘B2 ;D

U U U U U ! V̂~‘B2
H;1ð Þ ¼ V̂~‘B2

Hð Þ ¼ ln 5ð Þ
L~‘X ;D;1 ¼ L~‘X ;D

U U U ! V̂~‘X
H;1ð Þ ¼ V̂~‘X

Hð Þ ¼ ln 3ð Þ
L~‘I ;D;23

¼ L‘;D;23
U U U U U ! V̂~‘I

H; 23
� � ¼ V̂‘ H; 23

� � ¼ ln 5ð Þ
L~‘B1 ;D;23

U U U U U U ! V̂~‘B1
H; 23
� � ¼ ln 6ð Þ

L~‘B2 ;D;23
U U U U ! V̂~‘B2

H; 23
� � ¼ ln 4ð Þ

L~‘X ;D;23
U U ! V̂~‘X

H; 23
� � ¼ ln 2ð Þ

L~‘I ;D;13
¼ L‘;D;13

U U U ! V̂~‘I
H; 13
� � ¼ V̂‘ H; 13

� � ¼ ln 3ð Þ
L~‘B1 ;D;13

U U U ! V̂~‘B1
H; 13
� � ¼ ln 3ð Þ

L~‘B2 ;D;13
U ! V̂~‘B2

H; 13
� � ¼ ln 1ð Þ

L~‘X ;D;13
U ! V̂~‘X

H; 13
� � ¼ ln 1ð Þ

L~‘I ;D;0 ¼ L‘;D;0 U ! V̂~‘I
H;0ð Þ ¼ V̂‘ H;0ð Þ ¼ ln 1ð Þ

L~‘B1 ;D;0 U ! V̂~‘B1
H;0ð Þ ¼ ln 1ð Þ

L~‘B2 ;D;0 ! V̂~‘B2
H;0ð Þ ¼ ln 1ð Þ

L~‘X ;D;0 ! V̂~‘X
H;0ð Þ ¼ ln 1ð Þ
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R̂‘ Hð Þ ¼ ESsup
h2H

2
n

Xn

i¼1

ri‘ h; Zið Þ

¼ 1þ ESsup
h2H

2
n

X
i2Sþ Sð Þ

‘ h; Zið Þ � 1½ � þ
X

i2S� Sð Þ
� ‘ h; Zið Þ

8<:
9=;

¼ 1� ES inf
h2H

2
n

X
i2Sþ Sð Þ

‘ h; Xi;�Yið Þð Þ þ
X

i2S� Sð Þ
‘ h; Xi; Yið Þð Þ

24 35
¼ 1� 2ES inf

h2H
1
n

Xn

i¼1

‘ h; Xi;rið Þð Þ

¼ 1� 2ES inf
h2H

L̂r‘ hð Þ 2 0;1½ �;

ð36Þ

which allows us to state that the RC is the average maximum accu-
racy on random labels [33].

Note that the RC has a strong connection with the VCE [33]
when we use the Hard loss function ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ �. In fact,
in this case, we can observe by definition that [18,33]

R̂‘ Hð Þ ¼ ESsup
h2H

2
n

Xn
i¼1

ri‘ h; Zið Þ ¼ ES sup
‘1 ;���;‘n½ �2L‘;D

2
n

Xn
i¼1

ri‘i; ð37Þ

which means that the RC is the ability of the distinct vectors of con-
figuration of the 0;1f g-errors distinguishable within H with
respect to the dataset D (the VCE) to be aligned with the 2n possible
configurations of the S.

In the general setting of a 0;1½ �-bounded loss it is possible to
prove a bound in the form of Eq. (17) by setting Ĉ‘ Hð Þ ¼ R̂‘ Hð Þ
and / dð Þ ¼ 3

ffiffiffiffiffiffiffiffiffi
ln 2

dð Þ
2n

q
[20,21].

The bound of Eq. (17) is, also in this case, a fully empirical
bound, namely all the quantities can be estimated from the data,
131
the bound actually holds for any hypothesis chosen inH according
to D if H is chosen before observing D, and can be improved both
in the constants and both in the rate of convergence [34,20,21].

Computing ES can be computational expensive but we can
resort to an estimation [19], via Monte Carlo methods, or we can
formulate a bound where only one realization of the sigmas need
to be employed [19,35]. Nevertheless, in order to obtain reliable
and sharp bounds (avoiding unlucky realization of the sigmas) it
is common to resort to a Monte Carlo estimation [19,24].

The RC of Eq. (35) and its associated bound of Eq. (17) are called
Global RC (GRC) and GRC based bound respectively since, as the
GVCE, all the functions inH contribute to Ĉ‘ Hð Þ even the ones that
will be never chosen by the algorithm, namely the one character-
ized by high error.

It is then possible to define a localized version of the GRC,
namely the Local RC (LRC) [22,24], for a general 0;1½ �-bounded loss
controlled by a parameter r 2 0;1½ � � R

R̂‘ H; rð Þ ¼ ES sup
a2 0;1½ �;h2 h:h2H;1n

Pn

i¼1
a2‘2 h;Zið Þ6r

� �2nXn
i¼1

ria‘ h; Zið Þ: ð38Þ

R̂‘ H; rð Þ is monotonically increasing in r, namely if
0 6 r1 6 r2 6 1 then R̂‘ H; r1ð Þ 6 R̂‘ H; r2ð Þ.

Note that in the same setting of the VCE, namely using the Hard
Loss function ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ �, we can reformulate Eq. (38) as
[22,19]

R̂‘ H; rð Þ ¼ ES sup
a2 0;1½ �

sup
h2 h:h2H;L̂Y

‘
hð Þ6 r

a2

n o 2
n

Xn
i¼1

ria‘ h; Zið Þ

¼ ES sup
a2 0;1½ �

sup
‘1 ;���;‘n½ �2L‘;D; r

a2

2
n

Xn
i¼1

ria‘i:

ð39Þ
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In this case there is a strong connection between the LRC and
the LVCE since LRC is the ability of the vectors of the possible con-
figuration of the 0;1f g-errors distinguishable within H with
respect to the dataset D with small error (the LVCE) to be aligned
with the 2n possible configurations of the S.

Note also that LRC does not degenerate in the GRC. In fact for
r ¼ 1, based on Eq. (38), we have that

R̂‘ H;1ð Þ ¼ ES sup
a2 0;1½ �;h2 h:h2H;1n

Pn

i¼1
a2‘2 h;Zið Þ61

� � 2
n

Xn
i¼1

ria‘ h; Zið Þ

¼ ES sup
a2 0;1½ �;h2H

a 2
n

Xn
i¼1

ri‘ h; Zið Þ

P ESsup
h2H

2
n

Xn
i¼1

ri‘ h; Zið Þ

¼ R̂‘ Hð Þ;

ð40Þ

since suph2H
2
n

Pn
i¼1ri‘ h; Zið Þ can be negative.

In the general setting of a 0;1½ �-bounded loss it is possible to
prove that [24]

P LY
‘ ĥ‘

� �
6 min

K2 1;1ð Þ
K

K�1 L̂
Y
‘ ĥ‘

� �
þ Kr þ 2

ffiffiffiffiffiffiffiffiffi
ln 3

dð Þ
2n

q
 �
P 1� d;

s:t:
r ¼ R̂‘ H;3r þ

ffiffiffiffiffiffiffiffiffi
ln 3

dð Þ
2n

q� 

þ

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 3

dð Þ
n

q
r > 0

8<: :

ð41Þ

This bound, the LRC based bound, is then able to discard func-
tions with high error thanks to the fact that the functions with high
error are not contemplated in the complexity term.

The same comments made for the GRC based bound of Eq. (17)
holds also for the LRC based bound just stated in Eq. (41) (namely
its localized version). In fact LRC based bound is fully empirical, can
be improved in both constants and rate of convergence, and actu-
ally holds for any hypothesis chosen in H according to D if H is
chosen before observing D [22,24]. Moreover Eq. (41) can be sim-
plified in the form of the bound of Eq. (21) by setting

c1 ¼ K�
K��1 ; Ĉ‘ H; c2ð Þ ¼ K�R̂‘ H; c2ð Þ; c2 ¼ 3r� þ

ffiffiffiffiffiffiffiffiffi
ln 3

dð Þ
2n

q
, and / dð Þ ¼ffiffiffiffiffiffiffiffiffiffiffi

2 ln 3
dð Þ

n

q
þ 2

ffiffiffiffiffiffiffiffiffi
ln 3

dð Þ
2n

q
where K� and r� are the values of K and r that

solves the problem of the bound of Eq. (41).

3.2.2. Adversarial Setting
Let us consider now the Adversarial Setting in which one has

learned ĥ~‘B
and has to bound its performance, namely estimate

value of LY
~‘B

ĥ~‘B

� �
just based on empirical quantities. Our adversary

on h 2 H is modeled according to Eq. (8) using the loss function.
The extension of the notion of GRC to the Adversarial Setting,

namely the Adversarial GRC (AGRC), can be easily performed, anal-
ogously to what has been done for the GVCE and AVCE, by nothing
that ~‘B h; Zð Þ 2 0;1½ � and so the bounds presented in the previous
section simply holds also in this case with some simple redefini-
tions and substitutions. What changes is the definition and the
properties of the AGRC.

In fact the definition of the empirical AGRC is the following one
[17]

R̂~‘B
Hð Þ ¼ ESsup

h2H
2
n

Xn
i¼1

ri
~‘B h; Zið Þ

¼ ESsup
h2H

2
n

Xn
i¼1

ri supeX2B Xið Þ
‘ h; eX ;Yi

� �� �
:

ð42Þ
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In the same setting of the AGVCE, namely ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ �,
we can reformulate Eq. (42) as

R̂~‘B
Hð Þ ¼ ESsup

h2H
2
n

Xn
i¼1

ri supeX2B Xið Þ
‘ h; eX ;Yi

� �� �

¼ ES sup
‘1 ;���;‘n½ �2L~‘B ;D

2
n

Xn
i¼1

ri‘i;

ð43Þ

where one can immediately see that there is a strong connection
between the AGRC and the AVCE.

Assuming, instead, again, as in the previous section, ‘ to be sym-
metric, the AGRC can be reformulated as follows

R̂~‘B
Hð Þ ¼ESsup

h2H
2
n

Xn
i¼1

ri supeX2B Xið Þ
‘ h; eX ;Yi

� �� �

¼1þESsup
f2F

2
n

X
i2Sþ Sð Þ

supeX2B Xið Þ
‘ h; eX ;Yi

� �� �24
�

X
i2S� Sð Þ

supeX2B Xið Þ
‘ h; eX ;Yi

� �� �
�

X
i2Sþ Sð Þ

1

35
¼1þESsup

h2H
2
n

X
i2Sþ Sð Þ

supeX2B Xið Þ
�‘ h; eX ;�Yi

� �� �24
�

X
i2S� Sð Þ

supeX2B Xið Þ
‘ h; eX ;Yi

� �� �35
¼1�2ES inf

h2H
1
n

Xn
i¼1

ri supeX2B Xið Þ
ri‘ h; eX ;riYi

� �� �

¼1�2ES inf
h2H

1
n

X
i2Sþ Sð Þ

supeX2B Xið Þ
‘ h; eX ;Yi

� �� �24
þ

X
i2S� Sð Þ

infeX2B Xið Þ
‘ h; eX ;�Yi

� �� �#

¼1�2ES inf
h2H

1
n

Xn
i¼1

~~‘B;ri
h Xið Þ;Yið Þ

¼1�2ES inf
h2H

L̂~~‘B;S
hð Þ2 0;1½ �;

ð44Þ

which allows us to state that the AGRC is the average maximum
accuracy of on random labels with a surrogate loss defined as

~~‘B;r h Xð Þ;Yð Þ ¼
supeX2B Xð Þ

‘ h eX� �
;Y

� �
ifr ¼ þ1

infeX2B Xð Þ
‘ h eX� �

;�Y
� �

ifr ¼ �1

8>>><>>>: : ð45Þ

Thanks to this definition, in the general Adversarial Setting, we
can state the counterpart of the bound of Eq. (27) based on the

AGRC by setting Ĉ~‘B
Hð Þ ¼ R̂~‘B

Hð Þ and / dð Þ ¼ 3
ffiffiffiffiffiffiffiffiffi
ln 2

dð Þ
2n

q
[30].

As we did for the AGRC, we can define the LRC in the Adversarial
Setting, namely the Adversarial LRC (ALRC), as

R̂~‘B
H; rð Þ ¼ ES sup

a2 0;1½ �;h2 h:h2H;1n

Pn

i¼1
a2 ~‘2

B
h;Zið Þ6r

� �2nXn
i¼1

ria~‘B h; Zið Þ: ð46Þ
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Analogously to the LRC, the ALRC is monotonically increasing in
r, namely if 0 6 r1 6 r2 6 1 then R̂~‘B

H; r1ð Þ 6 R̂~‘B
H; r2ð Þ and, in the

same setting of the ALVCE, namely ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ �, we can
reformulate Eq. (46) as

R̂~‘B
H; rð Þ ¼ ES sup

a2 0;1½ �
sup

h2 h:h2H;L̂Y
~‘B

hð Þ6 r
a2

n o 2
n

Xn
i¼1

ria~‘B h; Zið Þ

¼ ES sup
a2 0;1½ �

sup
‘1 ;���;‘n½ �2L~‘B ;D; r

a2

2
n

Xn
i¼1

ria‘i;

ð47Þ

where one can immediately see that there is a strong connection
between the ALRC and the ALVCE but, and as for the LRC and
GRC, the ALRC does not degenerate in the AGRC (we can easily
prove it using the same argument of Eq. (40)).

Thanks to this definition we can state the counterpart of the LRC

bound of Eq. (41) for the Adversarial Setting substituting LY
~‘B

ĥ~‘B

� �
to LY

‘ ĥ‘

� �
; L̂Y

~‘B
ĥ~‘B

� �
to L̂Y

‘ ĥ‘

� �
, and R̂~‘B

H; �ð Þ to R̂‘ H; �ð Þ. Conse-

quently we can state the counterpart of the bound of Eq. (30) for
the Adversarial Setting based on the ALRC by setting

c1 ¼ K�
K��1 ; Ĉ~‘B

H; c2ð Þ ¼ K�R̂~‘B
H; c2ð Þ; c2 ¼ 3r� þ

ffiffiffiffiffiffiffiffiffi
ln 3

dð Þ
2n

q
, and

/ dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 3

dð Þ
n

q
þ 2

ffiffiffiffiffiffiffiffiffi
ln 3

dð Þ
2n

q
where K� and r� are the values of K and r

that solves the problem of the ALRC counterpart of the bound of
Eq. (41).

3.2.3. Non-adversarial and adversarial settings: a comparison
Let us consider the same properties of r; r1; r2;I;B;B1;B2;X

defined in Section 3.1.3. Moreover, analogously to what has been
done for the (A) GVCE and (A) LVCE, let us now consider the two
settings described in Sections 3.2.1 and 3.2.2 and let us observe
the (A) GRC based bounds of Eqns. (17) and (27) and the (A) LRC
based bounds of Eqns. (21) and (30). By considering these bounds
and observing, by definition, a series of properties.

For what concerns the generalization and the empirical errors
the properties of Eq. (31) holds true also for a general 0;1½ �-
bounded loss

LY
‘ hð Þ ¼ LY

~‘I
hð Þ 6 LY

~‘B1
hð Þ 6 LY

~‘B2
hð Þ 6 LY

~‘X
hð Þ ¼ 1;

L̂Y
‘ hð Þ ¼ L̂Y

~‘I
hð Þ 6 L̂Y

~‘B1
hð Þ 6 L̂Y

~‘B2
hð Þ 6 L̂Y

~‘X
hð Þ ¼ 1; 8h 2 H:

ð48Þ

For what concerns the complexity terms, also in this case there
are many properties that we can state that follows directly from
their definitions. In particular, we can state the counterpart of
the properties of Eq. (32) for the (A) GRC and the (A) LRC

0 ¼ R̂‘ H;0ð Þ 6 R̂‘ H; r1ð Þ 6 R̂‘ H; r2ð Þ 6 R̂‘ H;1ð Þ 6 1;
0 ¼ R̂~‘B

H;0ð Þ 6 R̂~‘B
H; r1ð Þ 6 R̂~‘B

H; r2ð Þ 6 R̂~‘B
H;1ð Þ 6 1;

ð49Þ

remembering though that

0 6 R̂‘ Hð Þ 6 R̂‘ H;1ð Þ 6 1;
0 6 R̂~‘B

Hð Þ 6 R̂~‘B
H;1ð Þ 6 1;

ð50Þ

since the (A) LRC does not degenerate in the (A) GRC.
For what concerns instead the counterpart of the properties of

Eq. (33) for RC, the problem is a bit more tricky. In fact we can
surely say that
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R̂~‘X
Hð Þ 6 R̂~‘I

Hð Þ ¼ R̂‘ Hð Þ; R̂~‘X
H; rð Þ 6 R̂~‘I

H; rð Þ ¼ R̂‘ H; rð Þ;
ð51Þ

which follows directly from the properties of Eq. (33). But it is more
complex to derive these to limits

lim
R!X

R̂~‘B
Hð Þ; lim

B!X
R̂~‘B

H; �ð Þ; ð52Þ

which are not easy to bound if we do not put some further hypoth-
esis. For example if we use a hard loss function ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ �
and then ~‘B h; Zð Þ ¼ supeX2B Xð Þ

Yh eX� �
6 0

h i
. In this case, if B ! X, we

have that

L~‘B!X ;D ¼

b1; � � � ; bn : bi ¼ 1
2 Yi þ 1ð Þ� �

;

b1; � � � ; bn : bi ¼ 1
2 1� Y1ð Þ� �

;

b1; � � � ; bn : bi ¼ 1½ �

8>>><>>>:
9>>>=>>>;; ð53Þ

since, in this case, as we observed in the case of the AGVCE and the
ALVCE, either we correctly label all the Yi ¼ þ1 with h Xð Þ ¼ þ1 or
we correctly label all the Yi ¼ �1 with h Xð Þ ¼ �1 or we make a mis-
take on all the points with any other h 2 H. Consequently

R̂~‘B!X
Hð Þ ¼ ES sup

‘1 ;���;‘nf g2L~‘B!X ;D

2
n

Xn

i¼1

ri‘i;

R̂~‘B!X
H; rð Þ ¼ ES sup

a2 0;1½ �
sup

‘1 ;���;‘n½ �2L~‘B!X ;D; r
a2

2
n

Xn

i¼1

ria‘i;
ð54Þ

which are simple and computable quantities bounded by c
ffiffiffi
2

p
n

where c is a universal constant [20]. In Fig. 3 we computed the
quantities reported in Eq. (54) for different values of r; n, and
j Y : Y 2 D;Y > 0f gj ¼ 1� j Y : Y 2 D;Y < 0f gj to support our
statements.

Analogously to the (A) GVCE and (A) LVCE, for the (A) GRC and
(A) LRC it is not easy to prove what operator 	 2 6;P;¼f g to insert
following relations

R̂~‘X
Hð Þ 	 R̂~‘B2

Hð Þ 	 R̂~‘B1
Hð Þ 	 R̂~‘I

Hð Þ;
R̂~‘X

H; rð Þ 	 R̂~‘B2
H; rð Þ 	 R̂~‘B1

H; rð Þ 	 R̂~‘I
H; rð Þ;

ð55Þ

and the answer is the same stated for the (A) GVCE and (A) LVCE:
none of them. The (A) GVCE and (A) LVCE can increase for small
B and then can decrease for large B.

In order to support our statement, let us consider the same toy
example reported in Section 3.1.3. Let us also use the same loss
exploited in Section 3.1.3 ‘ h; Zð Þ ¼ Yh Xð Þ 6 0½ � and then
~‘B h; Zð Þ ¼ supeX2B Xð Þ

Yh eX� �
6 0

h i
. In this setting in Table 1 we have

retrieved L~‘B ;D;r 8B; r of the toy example. So we can also easily
compute the (A) GRC using Eq. (43) and the (A) LRC using Eq.
(47) remembering that R̂~‘I

Hð Þ is the GRC, R̂~‘B
Hð Þ is the AGRC,

R̂~‘I
H; rð Þ is the LRC, and R̂~‘B

H; rð Þ is the ALRC. The results of this
computation are reported in Fig. 4. From Fig. 4 it is possible to
observe the same behavior studied, observed, and discussed for
(A) GVCE and the (A) LVCE also for (A) GRC and the (A) LRC: there
may exist cases in which a perturbation B can be large enough to
not increase the empirical error while decreasing the complexity
resulting in sharper bound on generalization error of models
learned in the Adversarial Setting.

Finally note that, in some sense, the fact that for small B the (A)
GRC and the (A) LRC can increase should not surprise us. In fact, let
us suppose that



Fig. 3. Representation of the quantities reported in (Eq. 54) for different values of r, n, and j Y : Y 2 D;Y > 0f gj ¼ 1� j Y : Y 2 D;Y < 0f gj.
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X ¼ Rd ð56Þ
h Xð Þ ¼ W � X; H ¼ W : W 2 Rd; kWk2 ¼ H

� �
; H > 0

‘ h; Zð Þ ¼ max 0;min 1; 1�YW�X
2

� �� �
B Xð Þ ¼ eX : eX 2 X; keX � Xk1 6 B

n o
; B 2 0;1½ �:

ð57Þ

where ‘ h; Zð Þ is the truncated Hinge (or Ramp or Soft) loss. Then, by
exploiting the result of [17] we can state that

R̂~‘B
Hð Þ 6 R̂‘ Hð Þ þ BH

ffiffiffi
d
n

r
; ð58Þ

which is obviously a loose upper bound. In fact, in this case

lim
B!1

supeX2B Xð Þ
‘ h; Zð Þ ¼ 1;8h 2 H; ð59Þ

and then, thanks to Eq. (42)

lim
B!1

R̂~‘B
Hð Þ ¼ lim

B!1
ESsup

h2H
2
n

Xn
i¼1

ri supeX2B Xið Þ
‘ h; eX ; Yi

� �� �

¼ lim
B!1

ES
2
n

Xn
i¼1

ri

¼ 0:

ð60Þ
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Nevertheless, for small B the upper bound of Eq. (58) [17] can
be tight (given what we observed in the toy example for
AGRC and ALRC), while for large B it starts to be loose and not
useful.
4. Practical analysis of generalization

In this section we will perform a practical analysis to compare
the Non-Adversarial and the Adversarial Settings in terms of esti-
mating the generalization abilities of the empirical risk minimizer
using the bounds presented in the previous section but, instead of
using the toy sample of Sections 3.1.3 and 3.2.3, we will exploit
real world data.

Let us consider the case when X ¼ Rd;h Xð Þ ¼ W � X where
W 2 Rd and the size of H is regulated by the p-norm of the model
weights kWkp 6 H where p regulates the shape (e.g, the sparsity or
the density) of the solution [36]. Let us also consider the case

where B Xð Þ#Rd such that B Xð Þ ¼ eX : keX � Xkq 6 B
n o

(note that

for B ¼ 0 we have B ¼ I). In this case the value of q regulates
the shape of the perturbation/attack [37]. Note also that there is
a relation between sparsity of the regularizer and robustness to



Fig. 4. Quantitative analysis of the properties of the (A) GRC and the (A) LRC for the toy example reported in Section 3.1.3. In particular we reported R̂~‘B
Hð Þ and R̂~‘B

H; rð Þ for
B 2 I;B1;B2;Xf g and r 2 0;1½ �.
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attacks [38]. For simplicity, in this phase, we will set p ¼ 1 and
q ¼ 1 in the attack. The truncated Hinge (or Ramp or Soft) loss
function [32] ‘ h; Zð Þ ¼ 1

2 min 2;max 0;1� Yh Xð Þ½ �½ �will be exploited
(remember that this loss is symmetric).

In this setting, in order to find ĥ~‘B
and the ĥ‘ ¼ ĥ~‘I

, namely to
find the empirical risk minimizer in both the Non-Adversarial
and Adversarial Settings (see Eq. (11)) we have to solve the follow-
ing problem

inf
h2H

L̂~‘B
hð Þ ¼ inf

h2H
1
n

Xn
i¼1

supeX2B Xið Þ
‘ h; eX ;Y� �� �

; ð61Þ

which, in our setting, can be formulated as

min
W:W2Rd ;kWk16H

Xn
i¼1

maxeX :eX2Rd ;keX�Xik16B

min 2;max 0;1� YiW � eXh ih i
: ð62Þ
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Thanks to the linearity of the Problem (62), it can be simplified
as follows [17]

min
W:W2Rd ;kWk16H

Xn
i¼1

min 2;max 0;1� YiW � Xi þ kWk1B½ �½ �: ð63Þ

Unfortunately Problem (63) is non-convex but we can approxi-
mate its solution by solving its convex relaxation

min
W:W2Rd ;kWk16H

Xn
i¼1

max 0;1� YiW � Xi þ kWk1B½ �; ð64Þ

which a Linear Programming problem, in fact Problem (64) can be
reformulated as



Þ

Fig. 5. MNIST-0vs1: we reported the generalization error LY
~‘B

ĥ~‘B

� �
, approximated with the error on the test set, and the empirical error L̂Y

~‘B
ĥ~‘B

� �
of the empirical risk

minimizer, the (A) GRC R̂~‘B
Hð Þ and the Empirical Error plus the (A) GRC, namely the bound on the generalization error.
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min
Wþ ;W�2Rd ;n2Rn

Xn
i¼1

ni;

s:t:

Yi W
þ �W�� � � Xi � B

Xd

i¼1

Wþ
i þW�

i

� �
P 1� ni;

8i 2 1; � � � ;nf gXd

i¼1

Wþ
i þW�

i

� �
6 H

Wþ
i ;W

�
i P 0;8i 2 1; � � � ;df g

ni P 0;8i 2 1; � � � ;nf g

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

;

ð65
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where W ¼ Wþ �W�. The Linear Programming problems have
been solved using the Simplex algorithm [39,40] using the CPLEX.6

library
Instead, in order to find the complexity term, we will consider

in this part only the (A) GRC and the (A) LRC since the (A) VCE
and the (A) LVCE cannot be used with the loss function exploited
in this section (since it is a 0;1½ �-bounded loss function not a
0;1f g-valued loss function). We could not use the Hard Loss func-
tion since optimizing it is computationally prohibitive (NP-Hard
problem) and its convex relaxation would result in something sim-
ilar to the framework we already depicted here. Moreover, remem-
ber that, the (A) GRC and (A) LRC are tightly connected to the (A)
GVCE and (A) LVCE respectively in the case of the Hard Loss func-
tion (see Section 3.2.1 and [33]).



Fig. 6. MNIST-5vs6: we reported the generalization error LY
~‘B

ĥ~‘B

� �
, approximated with the error on the test set, and the empirical error L̂Y

~‘B
ĥ~‘B

� �
of the empirical risk

minimizer, the (A) GRC R̂~‘B
Hð Þ and the Empirical Error plus the (A) GRC, namely the bound on the generalization error.
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Let us consider then, since the loss is symmetric, the GRC
defined in Eq. (36) and the AGRC defined in Eq. (44) are computed
remembering that R̂‘ Hð Þ ¼ R̂~‘I

Hð Þ. As a consequence, in order to
compute the (A) GRC we have to solve the following problem

inf
h2H

1
n

X
i2Sþ Sð Þ

supeX2B Xið Þ
‘ h; eX ;Yi

� �� �
þ

X
i2S� Sð Þ

infeX2B Xið Þ
‘ h; eX ;�Yi

� �� �24 35:
ð66Þ

Note that for S ¼ 1; � � � ;1f g Problem (66) is equivalent to Prob-
lem (61). Problem (66) can be formulated as
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min
W :W2Rd ;kWk16H

X
i2Sþ

maxeX :eX2Rd ;keX�Xik16B

min 2;max 0;1� YiW � eXh ih i"

þ
X
i2S�

mineX :eX2Rd ;keX�Xik16B

min 2;max 0;1þ YiW � eXh ih i#
;

ð67Þ

which, thanks again to the linearity of the problem, can be simpli-
fied as follows [17]



Fig. 7. SVHN-0vs1: we reported the generalization error LY
~‘B

ĥ~‘B

� �
, approximated with the error on the test set, and the empirical error L̂Y

~‘B
ĥ~‘B

� �
of the empirical risk

minimizer, the (A) GRC R̂~‘B
Hð Þ and the Empirical Error plus the (A) GRC, namely the bound on the generalization error.
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min
W:W2Rd ;kWk16H

X
i2Sþ

min 2;max 0;1� YiW � Xi þ kWk1B½ �½ �
"

þ
X
i2S�

min 2;max 0;1þ YiW � Xi � kWk1B½ �½ �
#
:

ð68Þ

Unfortunately, also Problem (68) is non-convex but
we can approximate its solution by easily solving its convex
relaxation
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min
W :W2Rd ;kWk16H

X
i2Sþ

max 0;1� YiW � Xi þ kWk1B½ �
"

þ
X
i2S�

max 0;1þ YiW � Xi � kWk1B½ �
#
;

ð69Þ

which can be rewritten as

min
W:W2Rd ;kWk16H

Xn
i¼1

max 0;1� riYiW � Xi þ rikWk1B½ �: ð70Þ



Þ
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Problem (70) is a Linear Programming problem, in fact Problem
(70) can be reformulated as

min
Wþ ;W�2Rd ;n2Rn

Xn
i¼1

ni;

s:t:

riYi W
þ �W�� � � Xi � riB

Xd

i¼1

Wþ
i þW�

i

� �
P 1� ni;

8i 2 1; � � � ;nf gXd

i¼1

Wþ
i þW�

i

� �
6 H

Wþ
i ;W

�
i P 0;8i 2 1; � � � ;df g

ni P 0;8i 2 1; � � � ;nf g

8>>>>>>>>>>><>>>>>>>>>>>:
;

ð71

where W ¼ Wþ �W�. Note, again, that for S ¼ 1; � � � ;1f g, namely
ri ¼ 1 8i 2 1; � � � ;nf g Problem (71) is equivalent to Problem (65).

Let us now consider the LRC defined in Eq. (38) and the ALRC
defined in Eq. (46). The only differences between the computation of
the (A) GRC and the (A) LRC are: (i) we have to find a supremum with
respect to a 2 0;1½ � and (ii) we have to use just functions such that
1
n

Pn
i¼1a2‘2 h; Zið Þ 6 r remembering that r P minh2H 1

n

Pn
i¼1a2‘2

h; Zið Þ. For what concerns (i) we simply perform a brute force search
Fig. 8. Quantitative analysis of the properties of the (A) GRC and the (A) LRC for the MNIS
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in a 2 10 �8:00;�7:01;���;0:00f g. For what concerns (ii), using the same argu-
ment presented for the (A) GRC to obtain Problem (71), we can obtain
the following optimization problem that for the (A) LRC

min
Wþ ;W�2Rd ;n;gi2Rn

Xn
i¼1

ni;

s:t:

riY i W
þ �W�� � � Xi � riB

Xd

i¼1

Wþ
i þW�

i

� �
P 1� ni;

8i 2 1; � � � ;nf g
Yi W

þ �W�� � � Xi � B
Xd

i¼1

Wþ
i þW�

i

� �
P 1� gi;

8i 2 1; � � � ;nf gXd

i¼1

Wþ
i þW�

i

� �
6 H

Xd

i¼1

g2
i 6 nr

a2

Wþ
i ;W

�
i P 0;8i 2 1; � � � ;df g

ni;gi P 0;8i 2 1; � � � ;nf g

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

;

ð72Þ
T-0vs1. In particular we reported R̂~‘B
Hð Þ and R̂~‘B

H; rð Þ for different values of B and r.
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which is a convex Quadratically Constrained Linear Programming
problem [39,40] that we solved using the CPLEX6 library.

At this point we are able to compute all the quantities in the
GRC based bound of Eq. (17), namely (see Section 3.2.1)

LY
‘ ĥ‘

� �
6
1�dð Þ

L̂Y
‘ ĥ‘

� �
þ R̂‘ Hð Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2

d

� �
2n

s
; ð73Þ

and the AGRC based bound of Eq. (27), namely (see Section 3.2.2)

LY
~‘B

ĥ~‘B

� �
6
1�dð Þ

L̂Y
~‘B

ĥ~‘B

� �
þ R̂~‘B

Hð Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2

d

� �
2n

s
: ð74Þ

Note that the confidence term is the same and constant in both
bounds no matter B so we can neglect it. In other words we
assume that the sample is a good representation of the population
so we do not have to pay the associated risk and we have just to
pay the risk due to the size of H.

Let us now consider the MNIST dataset [41], a now classical test
bench in the adversarial context [6], which consists of 28� 28
greyscale (0 white and 1 black) images of numbers from 0 to 9.
In particular, we consider the binary classification problems of rec-
ognizing 0 against 1 (a simple case named MNIST-0vs1) and 5
against 6 (a more complex one named MNIST-5vs6) exploiting
n ¼ 100;1000f g samples for train (namely 50;500f g from each
class) and 10,000 for test (namely 5000 from each class). We will
consider also the SVHN dataset [42], which consists of
32� 32� 3 colored images of numbers from 0 to 9 taken in natural
scene images. In this case, we consider the binary classification
problems of recognizing 0 against 1 (SVHN-0vs1) exploiting
n ¼ 100;1000f g samples for train (namely 50;500f g from each
class) and 10,000 for test (namely 5000 from each class). Note that
SVHN-0vs1 is even more complex than MNIST-5vs6. We exploit 30
random realization of S to compute both (A) GRC and (A) LRC.

In Figs. 5–7 we reported, for MNIST-0vs1, MNIST-5vs6, and
SVHN-0vs1 respectively and for different values of n;W , and B a
series of quantities referring to bounds of Eqns. (73) and (74). In

particular we reported the generalization error LY
~‘B

ĥ~‘B

� �
, approxi-

mated with the error on the test set, and the empirical error

L̂Y
~‘B

ĥ~‘B

� �
of the empirical risk minimizer, the (A) GRC R̂~‘B

Hð Þ and
the Empirical Error plus the (A) GRC, namely the bound on the gen-
eralization error. Note that by setting (B ¼ 0) we get the Non-
Adversarial Setting while for (B > 0) we get the Adversarial Setting
and we tested the trend of these quantities for an increasing size of
B.

From the Figs. 5–7 it is possible to see also experimentally the
behavior of the empirical error, the complexity, and the generaliza-
tion bounds the we discussed and expected in the theoretical study
performed in Section 3. First let us observe some simple behaviour
that we expect knowing the classical theory in both the Non-
Adversarial and Adversarial Settings: the larger is n the smaller is
the test error, the larger the empirical error, and the smaller the
difference between the empirical and test error; the larger is B
the larger the empirical and the test error; for W there is an opti-
mal value (not too large not to small) according to the Structural
Risk Minimization principle. Then, let us observe the new beha-
viour. In particular, the complexity can increase with small B

(e.g., Figs. 5(b), 7(c), and 7(e)) while it tends to decrease as B

becomes larger (most of the cases). There is an optimal value of
B (mostly greater than zero) to get the best generalization bound
since increasing B impacts much more the complexity with
respect to the empirical error (see Figs. 5(f) and 6(f)). Note also that
for this optimal B the bound on the generalization error is tight,
i.e., close to the actual error.
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For the sake of completeness we reported in Fig. 8 the counter-
part of Fig. 4 for the MNIST-0vs1 dataset. In particular Fig. 8 reports
R̂~‘B

Hð Þ and R̂~‘B
H; rð Þ for different values of B and r. As expected

from the theory [24] the (A) LRC is able shrink the (A) GRC.
5. Conclusions

Recent research has shown that models induced by machine
learning, and in particular by deep learning, can be easily fooled
by an adversary who carefully crafts imperceptible, at least from
the human perspective, or physically plausible modifications of
the input data. This discovery gave birth to a new field of research,
the adversarial machine learning, where new methods of attacks
and defense are developed continuously, mimicking what is hap-
pening from a long time in cybersecurity.

In this context the scope of the paper was to shift the attention
and show that inducing models from data less prone to be fooled
by an adversary, while posing many unresolved theoretical (e.g.,
finding the best perturbation set [31]) and practical (e.g., solving
the non-convex optimization problem behind adversarial defense
[6]) challenges, actually provides some benefits when it comes to
assess their generalization abilities, namely bound their perfor-
mance on previously unseen samples. For this purpose we first
use a theoretical approach, relying on Statistical Learning Theory,
exploiting, studying, and extending the (Local) Vapnik–Chervo-
nenkis and (Local) Rademacher Complexity Theories to the Adver-
sarial Setting. We enrich the theoretical discussion with examples
and results that focus on giving more insights to the readers and
translate the theory into practical concepts. Then we switch from
theory to practice with a series of numerical experiments on real
data.

More specifically, the proposed generalization bounds for the
Adversarial Setting based on the (Local) Vapnik–Chervonenkis
and on the Local Rademacher Complexity are novel while the ones
based on the Rademacher Complexity have already been studied.
Then, we performed a new study on the connection between the
(Local) Vapnik–Chervonenkis and on the (Local) Rademacher Com-
plexity in the Adversarial Setting. Finally, theoretical and practical
analysis of the behaviour of the (Local) Vapnik–Chervonenkis and
the (Local) Rademacher Complexity based bound in the Adversarial
Setting when the perturbation domain changes in size has been
performed. This study shed new light on a previously unknown
phenomenon: increasing the size of the perturbation domain can
decrease the complexity of the space of functions and can increase
the tightness of the generalization error bounds. In fact, sometimes
it exists a perturbation large enough to not increase the empirical
error too much while remarkably decreasing the complexity
resulting in sharper bound on generalization error of models
learned in the Adversarial Setting.

Both theoretical and practical results support the idea that we
raise in this paper that dealing with an adversary can actually pro-
duce a benefit when it comes to bounding a performance of a
model on previously unseen samples.
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