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Abstract
This paper presents a unified framework for continuum-molecular modeling of anisotropic elasticity, fracture and diffusion-
based problems within a generalized two-dimensional peridynamic theory. A variational procedure is proposed to derive 
the governing equations of the model, that postulates oriented material points interacting through pair potentials from which 
pairwise generalized actions are computed as energy conjugates to properly defined pairwise measures of primary field vari-
ables. While mass is considered as continuous function of volume, we define constitutive laws for long-range interactions 
such that the overall anisotropic behavior of the material is the result of the assigned elastic, conductive and failure micro-
interaction properties. The non-central force assumption in elasticity, together with the definition of specific orientation-
dependent micromoduli functions respecting material symmetries, allow to obtain a fully anisotropic non-local continuum 
using a purely pairwise description of deformation and constitutive properties. A general and consistent micro-macro moduli 
correspondence principle is also established, based on the formal analogy with the classic elastic and conductivity tensors. 
The main concepts presented in this work can be used for further developments of anisotropic continuum-molecular formu-
lations to include other mechanical behaviors and coupled phenomena involving different physics.

Keywords  Pair potentials · Peridynamics · Fracture · Anisotropy · Diffusion

1  Introduction

Continuum-molecular models in solid mechanics assume 
generalized distance forces as ultimate actions, and describe 
macroscopic behavior of bodies from a microscopic level, 
making use at the same time of some concepts and tools 
proper of mathematical field theories. The origin of this per-
spective lies in the classical molecular models of Nineteenth 
century [1, 2], developed by Cauchy, Poisson and Navier 
[3–6] with the aim of providing an explanation per causas of 
elasticity [7]. They derived the equilibrium equations of elas-
tic bodies considered as composed of molecules [8] interact-
ing with elastic forces linearly variable with their mutual 
displacements. Indeed, these molecules were regarded as 
simple centres of forces endowed with the property of mass, 
their displacement being defined by a vector field in the 

continuum of euclidean geometry associated with the elastic 
body [4, 8]. Within this mechanistic view, macroscopic con-
stitutive relations derive from intermolecular properties, and 
the notion of stress is introduced basing it upon an hypoth-
esis concerning intermolecular forces [8]. Two main features 
characterize such models: the assumption of central forces 
between pair of molecules, and the existence of a region 
of molecular activity beyond which these pairwise actions 
are not supposed to extend. As an inevitable consequence 
of the assumed structure theory [8], stress-strain relations 
have to respect internal constrains affecting the number of 
independent elastic constant, namely the Cauchy relations 
[8, 9]. Therefore, equations of motion of anisotropic bodies 
contain 15 independent moduli, which reduce to a single 
elastic constant in case of isotropic symmetry [3, 4, 8, 9]. In 
the development of the theory, it also became evident to its 
founders that Cauchy relations do not depend upon consider-
ing matter as continuous or discontinuous.

Poisson proposed later molecules as polar objects, capa-
ble of rotation and displacement [8]. This suggestion was 
worked out in detail later by Voigt [10, 11] who pointed 
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out that the drawback of the classical molecular models lies 
in the too restrictive hypothesis of central actions depend-
ing only on the actual distance between molecules [3, 8]. 
According to Voigt’s model for elasticity, molecules interact 
in pairs via a system of actions reducible to a force and a 
couple [3]. He obtained that the equations of a linearized 
elasticity theory based on molecular assumptions, do not 
necessarily verify Cauchy relations, the elastic constants 
being 21 in the most general case. Influenced by Green’s 
energetic approach [8, 12], Voigt showed also that in non-
dissipative processes pairwise actions can be derived from a 
quadratic potential which depends, in general, on the actual 
position and orientation of pairs of molecules. Another dif-
ferent model for elasticity based on corpuscular assumptions 
was developed by Poincaré who postulated the existence of 
a force function (related to a multi-body potential) depend-
ing not only on the actual position of a pair of molecules 
but also on the relative position of other molecules [13]. 
Born developed later a molecular-type model accounting for 
thermal and other properties of solid bodies as well as elastic 
properties [8]. It should be underlined that in this context 
the term “molecular” is strictly related to the assumption 
about the ultimate nature of the internal actions [14], which 
in this case occur at a distance. The models for elasticity 
here mentioned, each one with its own peculiarities, provide 
a description of phenomena from a perspective of a given 
underlying structure, making use at the same time of the 
powerful tools of Calculus.

After a long time, a fundamental contribution to the 
development of mechanical models of this kind was given 
by Silling [15], who proposed at the beginning of the twenty-
first century a theory of solid mechanics, namely Peridynam-
ics, based on actions at a distance with the aim of modeling 
discontinuities and non-linear material response adopting a 
set of integro-differential equations without partial deriva-
tives in space [15]. Such theory postulates material points 
in a continuum interacting in pairs within a cut-off distance, 
the horizon, which represents in certain sense a generali-
zation of the concept of radius of the sphere of molecular 
activity characterizing molecular models of the XIX century. 
Indeed, since the horizon is, in general, a finite measure, 
the model results to be non-local, while constitutive laws 
for long-range interactions are defined such that the mac-
roscopic physical behavior of the material is the result of 
the assigned micro-interactions properties. Even if a non-
linearized kinematics is assumed, pairwise forces can be 
derived from elastic central pair potentials depending on 
the actual distance between pairs of material points. Hence, 
as for classical molecular models based on central-forces, 
Cauchy relations do hold [15, 16]. In any case, the distinc-
tive key point of Silling’s continuum-molecuar model lies in 
its non-local character, and in the fact that spatial derivatives 
do not appear in the peridynamic governing equations, with 

the consequence that they remain equally valid at points or 
surfaces of discontinuity [15]. This aspect lends itself to 
the description of modern problems in mechanics involving 
spontaneous formation of cracks [17–25]. It should be noted 
that some peridynamic fundamental concepts can also be 
found in other previous works on quasi-continuum models 
and non-local elasticity [26–28]. However, Silling’s work 
introduced a general mathematical theory including elastic-
ity, fracture, damage as well as other mechanical behaviors.

In order to overcome constitutive restrictions such as 
those imposed by Cauchy relations, the original peridy-
namic formulation (referred to as bond-based) was extended 
by introducing the assumption that the interaction forces 
between two material points depend on the displacement of 
all the material points within their neighborhood (e.g. the 
horizon regions of the two material points) [29, 30]. These 
enriched models, named state-based and non-ordinary state-
based, still consider the concept of distance action, requiring 
however the definition of point-wise defined deformation 
measures, namely the deformation states [29, 31–33]. This 
aspect represents an important breaking point with the origi-
nal theory, since the simplicity given by the paradigm of 
purely pairwise formalism is lost [15]. Indeed, as in Poincaré 
theory for elasticity, due to the new assumption concerning 
the nature of the interactions, energy conserving state-based 
models are associated with multi-body potentials [34]. Other 
peridynamic models which require, directly or not, the defi-
nition of multi-body potentials are detailed in [35, 36].

A different perspective was given instead by Gerstle [37], 
who proposed to maintain an analytical formulation based 
on pair potentials, while assuming an enriched kinematics 
to describe isotropic elasticity by two independent mate-
rial micromoduli. Actually, as already pointed out by Voigt, 
material points rotation (as additional kinematic descriptor) 
and the non-central forces assumption in a mechanism-based 
molecular model for elasticity, lead to resulting governing 
equations which do not necessarily verify Cauchy relations 
[4, 8]. However, the kinematic of pair interactions assumed 
by Gerstle et al. stems from that of an ideal Euler-Bernoulli 
beam model. As a consequence, the pair potential function 
consists of terms involving the definition of a bending micro-
modulus that, in general, cannot be neglected. This intro-
duces a constitutive internal length into the model which is 
proper of materials homogenized as polar continua, leading 
to size dependent results in elasticity under general inhomo-
geneous deformation [38]. Diana and Casolo then proposeda 
polar peridynamic continuum-molecular model based on a 
generalized kinematic employing the definition of a non-
central pair potential consisting of three independent terms, 
quadratic functions of equal number of pairwise deforma-
tion measures [39]. The implication is twofold. On one hand 
an explicit definition of a pairwise shear deformation and 
shear micromodulus can be obtained, and on the other, the 
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micromodulus associated with the mutual rotation of ori-
ented material points’ (e.g. the bending micromodulus), is 
independent of the other constitutive parameters and can 
be neglected if necessary (consistently with standard elas-
ticity) [40]. Other polar formulations for classical elastic-
ity have been proposed afterwards [41–43]. Most of them, 
however, still consider a kinematic of interacting material 
points inspired by beam models with non-vanishing bending 
micromoduli, these being function of the other micromoduli 
and/or abstract geometrical parameters.

The universal nature of integral equations used in peridy-
namics allows the theory to be extended also to other physical 
fields. This is motivated, for instance, by the need of describing 
transport phenomena in bodies with (possibly evolving) dis-
continuities, non-local diffusion in microstructured materials 
etc [44–46]. Such extensions can be obtained by adapting the 
integrand function expressing the ultimate action density func-
tion to the specific features of the physical phenomenon under 
consideration. Gerstle et al. [47] proposed a continuum-molec-
ular (peridynamic) model for one-dimensional diffusion-type 
problems along with a framework which allows four coupled 
physical processes to be modeled simultaneously: mechani-
cal deformation, heat transfer, electric potential distribution, 
and vacancy diffusion. Bobaru and Duangpanya proposed a 
one dimensional peridynamic heat transfer integro-differential 
equation using a different form of the kernel, and derived an 
analytical formulation for transient heat conduction by defin-
ing the peridynamic heat-flux while following a bond-based 
approach [44, 45, 48]. A model for transient advection-dif-
fusion problems was instead presented by Zhao et al. [49]. 
Prakash and Seidel [50, 51] proposed a coupled formulation 
for the study of the electrical and piezoresistive response of 
nanocomposite materials. A peridynamic diffusion model for 
damage from pitting corrosion was proposed by Chen and 
Bobaru [52], whereas Diana and Carvelli derived a polar elec-
tro-mechanical analytical formulation accounting for damage 
evolution in solids [53]. Other models of this kind can be found 
in [54–56]. All the here mentioned formulations for diffusion-
type problems and coupled phenomena fall in the category of 
bond-based models, which means in this case that the generic 
pairwise action between two material points depends on the 
actual value of their primary field variables (e.g. temperature, 
electric potential, concentration etc.). As stated before, models 
of this kind can be associated to quadratic pair potentials. As 
for state-based models instead, analytical formulations applied 
to diffusion were presented, among others, by Oterkus et al. 
[57, 58] and by Katiyar et al. [59].

Most of the research carried out on continuum-molecular 
formulations is devoted to isotropic materials, whose stiff-
ness, conductivity and strength properties are not direction-
dependent, while relatively few studies on anisotropic mate-
rials can be found in literature. In the context of elasticity 
and fracture, mathematical formulations of peridynamic 

anisotropic continua, in which Cauchy relations do not 
apply, were proposed later by disregarding the paradigm 
of purely pairwise interactions [60, 61], the available con-
tinuum bond-based models being characterized by the afore-
mentioned restriction in the number of independent mate-
rial constants [18, 62–68]. In particular, Ghajari et al. [63] 
proposed a peridynamic formulation based on continuous 
trigonometric functions for elasticity and fracture in ortho-
tropic materials using an analytical approach similar to that 
detailed in [69]. Due to the central force assumption and 
the directional dependency laws adopted, two of the four 
elastic moduli which define orthotropic in-plane elasticity 
have to be preset, whereas square-symmetric materials [70] 
cannot be modeled. A mechanical continuum-molecular for-
mulation based on pair potentials without restrictions in the 
number of material constants was proposed later by Diana 
et al. [40, 71, 72].

Regarding anisotropic diffusion-type models instead, 
theoretical studies were carried out by Seleson [46] and 
Mikata [73]. The latter analyzed the problem of anisotropic 
heat transfer focusing on the micro-conductivity function 
definition without making particular assumptions about 
the nature of the interactions. Recently, Diana and Carvelli 
have derived an analytical peridynamic formulation for ani-
sotropic materials accounting for their anisotropic overall 
conductivity and fracture properties, together with a gen-
eral procedure for the identification of the model parameters 
[72]. For the best of the author’s knowledge, other aniso-
tropic models based on pair potentials with similar features 
have not been proposed so far.

In a computational context, pair potential based contin-
uum-molecular models lead to mathematical formulations 
resulting in an easier implementation and higher computa-
tional efficiency compared to models based on multi-body 
potentials as state-based models [74]. Actually, their use is 
preferred, when possible, as the large number of literature 
works on bond-based type models demonstrates. Moreover 
a purely pairwise formalism provides an intuitive mecha-
nism-based description of macroscopic physical properties 
of materials, while being at the same time closely related to 
the mechanics of full-discrete models. This aspect may lead 
to the possibility to design real lattice-like systems whose 
physical and mechanical effective properties may be tailor-
ing designed by controlling those assigned to the microstruc-
ture (i.e. the pairwise interactions) [75].

This paper provides a unified theoretical and computa-
tional scheme for pair potentials based continuum-molecular 
modelling of anisotropic elasticity, fracture and diffusion-
type problems within the framework of a revised bond-based 
peridynamic theory with oriented material points. As impor-
tant contribution of this work, governing equations of both 
mechanical and diffusion-type models are derived using 
a unified approach based on a variational formalism. An 
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implicit meshfree implementation strategy is also detailed 
together with an analytical expression of the equivalent 
stiffness operators. Particular attention has been given to 
establish a consistent micro-macro moduli correspondence 
between material parameters of anisotropic peridynamics 
and classical continuum physics. The proposed method is 
validated against analytical solutions and experimental data, 
when available. By summarizing the work that we have been 
doing on this topic [40, 71, 72, 76], the manucript introduces 
a general approach to anisotropic problems that can be used 
for further developments of continuum-molecular formu-
lations to include other mechanical behaviors and coupled 
phenomena involving different physics. The proposed model 
couples the intuitive simplicity of the concept of mutual 
interaction in molecular models based on pair potentials 
(removing Cauchy relations restrictions), with the (mod-
ern) mathematical formalism of a peridynamic continuum 
formulation for anisotropic materials.

The paper is organized as follows: In Sect. 2 the aniso-
tropic model for elasticity is described. The energy-based 
fracture model accounting for directional-dependent tough-
ness in solids is discussed in Sect. 3, where several numeri-
cal experiments are also proposed. Finally, in Sect. 4, the 
analytical model for anisotropic diffusion-based problems 
is derived, with a focus on heat-transfer and steady-state 
electrical conduction.

2 � Elasticity

A two-dimensional continuum body Ω , composed of ori-
ented material points � , is considered.

Material points � and �′ within a finite distance (e.g. the 
horizon � [15]), are assumed to interact with each other 
through non-central pairwise actions depending on pair-
wise constitutive parameters and pairwise deformation vari-
ables (Fig. 1). The set of all material points �� ∈ Ω such that 
‖�� − �‖ ≤ � is denoted by H� , which is the horizon region 
of � . The generic vector � = �� − � is called bond [15] or 
virtual fiber. A theoretical (peridynamic) model of this kind 
is here referred to as (polar) continuum-molecular (CM) 
model.

Given the reference orthonormal basis 
{
�1, �2

}
 , the body 

configuration at time t is described by the displacement field 
�(�, t) = ui�i and rotation field �(�, t) defined over Ω . The 
applied body forces and couples are denoted by b(�, t) and 
c(�, t) , respectively. The functions �(�) = � and �(�) = � 
denote instead the densities of mass and mass moment of iner-
tia, and are assumed constant. Three linearized pairwise defor-
mation measures, functions of the relative position � = �� − � , 
relative displacement � = �(��, t) − �(�, t) = �� − � and 

rotations �(�, t) = � and �(��, t) = �� of the generic pair of 
interacting points, are defined. The deformation in the direc-
tion of the material points’ joining line � = �∕‖�‖ is the pair-
wise stretch s,

where �n = u�
n
− un is the component of the relative displace-

ment vector � along the unit vector � . The pairwise angular 
or shear deformation is defined as the angle difference

where, since �t = u�
t
− ut is the component of � along the 

unit vector � ∶ � ⊥� (Fig. 1), the shear deformation can be 
interpreted as the difference between the linearized rotation 
angle of the virtual fiber �t∕‖�‖ and the average rotation 
𝜃̄ of the interacting oriented material points � and �′ . The 
third pairwise deformation variable depends instead on the 
relative rotation of two oriented material points according 
to the dimensional ratio

(1)s(�, ��, t) =
� ⋅ �

‖�‖ =
�n

‖�‖

(2)𝛾(�, ��, t) =
� ⋅ �

‖�‖ −
𝜃� + 𝜃

2
=

𝜂t

‖�‖ − 𝜃̄

(3)�(�, ��, t) =
�� − �

‖�‖ =
�

‖�‖

Fig. 1   Detail of the interaction between the oriented material point � 
and the generic oriented material point �� ∈ H�
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which can be interpreted as the average curvature of the 
virtual fiber1.

Assuming that the material is conservative, we define the 
elastic pairwise potential or micropotential function

such that the scalar-valued mutual actions between pairs of 
oriented material points can be obtained as

where w(�, ��, t) = w(�, ��, t)∕‖�‖ is the pairwise elas-
tic potential energy function per unit distance ‖�‖ . From 
Eqs. 5–7 we obtain

where kn = kn(�, �
�) = kn(�) , kt = kt (�, �

�) = kt (�) and 
kb = kb(�, �

�) = kb(�) are the micromoduli functions or 
pairwise constitutive parameters depending, in the general 
case of anisotropic materials, on the spatial orientation 
� = Arg

(
� ⋅ �1 + �� ⋅ �2

)
 of the virtual fiber. In the above, 

Λ = Λ(‖�‖) is instead the influence or attenuation function, 
that weights the nonlocal interactions within the spatial 
domain H� with respect to ‖�‖ [77, 78].

At this point, it should be remarked that focusing on 
standard (Cauchy) solids rather than on heterogeneous mate-
rials homogenized as polar continua [79, 80], the definition 
of an elastic pair potential term related to mutual rotations, 
namely w� (�, �

�, t) , is not strictly required [39].
The general form of the nonlocal elastic energy density at 

� , namely the macroelastic energy density [18], is obtained 
by integrating the pairwise potential w(�, ��, t) over the hori-
zon region H� of radius �

(4)
w(�, ��, t) =

�
ws(�, �

�, t) + w� (�, �
�, t)

+ w� (�, �
�, t)

�
=

‖�‖
2

�
kns

2 + kt�
2 + kb�

2
�
Λ

(5)fn(�, �
�, t) =

�ws(�, �
�, t)

�s
=

�ws(�, �
�, t)

��n

(6)ft (�, �
�, t) =

�w� (�, �
�, t)

��
=

�wγ(�, �
�, t)

��t

(7)�b(�, �
�, t) =

�w� (�, �
�, t)

��
=

�wχ(�, �
�, t)

��

(8)fn(�, �
�, t) = Λkns

(9)ft (�, �
�, t) = Λkt�

(10)�b(�, �
�, t) = Λkb�

whereas the total macroelastic energy (e.g. the elastic poten-
tial energy of the body) is given by

The Hamiltonian action integral is defined as

where the density of kinetic energy is

while the potential energy related to prescribed body forces 
and couples, in the first instance assumed conservative, is

By substituting Eqs. 11, 14 and 15 in Eq. 13, considering 
Eqs. 1–3, and imposing the stationarity of the functional H , 
we obtain

where δ denotes the mathematical symbol for variation 
[76]. Equation 16 allows deriving the field equations at 
� ∈ Ω, whose general form reads

where � (��, �, ��, �, ��, �) = �(�, ��, �, ��, �) is the force den-
sity vector function given by

(11)W(�, t) =
1

2 ∫H�

w(�, ��, t) d��

(12)E(t) = ∫Ω

W(�, t) d�

(13)H = ∫
t2

t1
∫Ω

{D(�, t) − [V(�, t) +W(�, t)]}d� dt

(14)D(�, t) =
1

2
𝜌 �̇ ⋅ �̇ +

1

2
𝜚 𝜃̇2

(15)V(�, t) = −b ⋅ � − c �

(16)

δH = ∫
t2

t1
∫Ω

�
(b ⋅ δ� + c δ𝜃)

+ ∫H�

�
kn
� ⋅ �

‖�‖ δ� ⋅ � + kt

�
� ⋅ �

‖�‖ − 𝜃̄

�
δ� ⋅ �

+
kt

2

�
� ⋅ �

‖�‖ − 𝜃̄

�
‖�‖δ𝜃 + kb

𝜗

‖�‖δ𝜃
�
Λd��+

−
�
𝜌 �̈ ⋅ δ� + 𝜚 𝜃̈ δ𝜃

��
d� dt = 0

(17)∫H�

� (��, �, 𝜃�, 𝜃, ��, �)d�� + b(�, t) = 𝜌�̈(�, t)

(18)∫H�

�(��, �, 𝜃�, 𝜃, ��, �)d�� + c(�, t) = 𝜚𝜃̈(�, t)

(19)
�(�, ��, �, ��, �) = Λ

�
kn
� ⋅ �

‖�‖ �

+ kt

�
� ⋅ �

‖�‖ −
�� + �

2

�
�

�

1  It is worth considering that, alternatively, � could be taken directly 
as a pairwise deformation parameter, as reported in [39, 71].
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and �(��, �, ��, �, ��, �) = �(�, ��, �, ��, �) is the moment 
density function given by

As stated previously, when considering the continuum-
molecular model for equivalent Cauchy-elastic materials 
[81], the micro-constitutive parameter associated to the 
deformation measure defined in Eq. 3 is not required, and 
is here set equal to zero (e.g. kb = 0 ). In this case, using 
Eqs. 8–9, the force and moment density functions can be 
expressed as

As a consequence, both linear and angular momentuum con-
servation laws in Eq. 18 can be written exclusively in terms 
of micro-forces, with constitutive prescriptions being then 
needed for fn and ft only. Eq. 21 denotes the active part of 
the internal action, whereas micro-moments reduce to mere 
constraint reactions �t that can be determined via pairwise 
balance conditions. Pairwise (mutual) or active couples �b 
are not present if kb = 0 is assumed. A similar feature can 
be found in Voigt’s molecular model [3, 11], however here 
it is not a consequence of a kinematic constrain imposed to 
rotations within H� , but it comes from the direct constitutive 
assumption kb = 0.

2.1 � Discretized Equations: Elastodynamics

A meshfree discretization approach [18] is considered 
which requires the material domain Ω be divided into a set 
of N sub-domains Δ�p , each of which associated to a par-
ticle p of coordinates x1p, x2p . Hence, a proximity search 
algorithm identifies particles q belonging to the p-centered 
horizon region Hp according to the one-point quadrature 
scheme proposed by Hu et  al. [82, 83] which accounts 
for partial neighbor intersections2. The displacements 
�p = u

p

1
�1 + u

p

2
�2, �q = u

q

1
�1 + u

q

2
�2 and rotations �p, �q of 

the material particles p and q can be collected column-wise 
in vector form as

(20)
�(�, ��, �, ��, �) = Λ

�
kt

2

�
� ⋅ �

‖�‖ −
�� + �

2

�
‖�‖

+ kb
�� − �

‖�‖
�
= �t +�b

(21)� (�, ��, �, ��, �) = fn� + ft�

(22)�(�, ��, �, ��, �) =
ft‖�‖
2

= �t

(23)�p =
{
u
p

1
u
p

2
𝜃p

}⊤
, �q =

{
u
q

1
u
q

2
𝜃q

}⊤

such that, for each pair of interacting particles p and q ∈ Hp , 
we can collect column-wise �p and �q as

where �pq is a properly defined transformation matrix [38], 
and the displacements and rotations collected column-wise 
in vector form as

are aligned with the local reference basis 
{
�̂1, �̂2

}
 , where 

the unit vectors �̂1 ≡ � and �̂2 ≡ � . The pairwise compat-
ibility equation relating the pairwise deformation variables 
collected in the vector �pq =

{
spq 𝛾pq 𝜒pq

}⊤ , to the interact-
ing particles generalized displacements can be written in a 
compact matrix form as

where

‖�‖pq being the distance between the generic particles p and 
q. The pairwise constitutive equation is instead

where

defines the specific elastic property of each interaction. It 
relates the scalar-valued mutual actions defined in Eqs. 8–10 
and collected in the vector �pq , to the pairwise deformations 
measures defined by Eqs. 1–3. The non-dimensional fac-
tor Λpq = Λpq(‖�‖pq) controls the radial dependence of the 
non-local interaction between two particles, as specified in 
Sect. 2.

As for the balance of linear and angular momentuum of 
the continuum, the discrete algebraic system of governing 
equations in elastodynamics, and the analytical expression 
of the stiffness operator, can be derived from Hamilton’s 
variational principle referred to a closed discretized domain. 
The variation of the first term of Eq.  13, i.e. 
δ[∫ t2

t1
∫
Ω
D(�, t) d� dt] can be written in discrete form as

(24)�pq =

{
�p
�q

}
= �⊤

pq

{
�̂p
�̂q

}
= �⊤

pq
�̂pq,

(25)�̂p =
{
û
p

1
û
p

2
𝜃p

}⊤
, �̂q =

{
û
q

1
û
q

2
𝜃q

}⊤

(26)�pq = �pq�pq�pq = �pq�̂pq

(27)�pq =
1

2‖�‖pq
⎡⎢⎢⎣

−2 0 0 2 0 0

0 − 2 − ‖�‖pq 0 2 − ‖�‖pq
0 0 − 2 0 0 2

⎤⎥⎥⎦

(28)�pq = �pq�pq = �pq�pq�̂pq,

(29)�pq = Λpq

⎡⎢⎢⎣

k
pq
n 0 0

0 k
pq

t 0

0 0 k
pq

b

⎤⎥⎥⎦

2  Other quadrature rules, especially developed for non-local models, 
could alternatively be adopted [83, 84]
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where integration-by-parts is used between the first and the 
second steps, and

The variation of the second term of Eq.  13, i.e. 
δ[∫ t2

t1
∫
Ω
V(�, t) d� dt] , can be treated in discrete form as

where �p = {b
p

1
b
p

2
cp}T is the vector of body forces and 

body couples applied at particle p in the global reference 
system of unit vectors �1, �2 . Finally, considering Eq. 4, the 
last term of Eq. 13, i.e. δ[∫ t2

t1
∫
Ω
W(�, t) d� dt] , can be written 

instead for a discretized body as

where H denotes the number of particles q within the p-cen-
tered horizon � , while �pq is the partial factor for the sub-
domains Δ�q , related to the specific quadrature rule adopted 
[83]. Considering Eq. 13 together with Eqs. 30, 32 and 33, 
the stationary condition δH = 0 gives

where �pq =
[
�3 �3

]⊤ is a specific topology incidence 
matrix for non-pairwise defined matrices and vectors [76]. 
The assembly operator  replaces the double sum symbol, 
and is introduced so that each algebraic object is added to 
the appropriate location in properly defined global matrices 
and vectors [85]. In this way, Eq. 34 can be then rewritten 
in compact form as

where the global mass matrix is given by

(30)

δ

[
∫

t2

t1

N∑
p=1

1

2
�̇⊤
p
�p�̇pΔ𝜐p dt

]

= −∫
t2

t1

N∑
p=1

δ�⊤
p
�p�̈pΔ𝜐p dt

(31)�p = diag{�p �p �p}

(32)−∫
t2

t1

N∑
p=1

δ�⊤
p
�p Δ𝜐p dt

(33)
δ

�
1

2 ∫
t2

t1

N�
p=1

H�
q=1

‖�‖pq
2

𝛼pqΔ𝜐qΔ𝜐p

�⊤
pq

�
�⊤

pq
�⊤
pq
�pq�pq�pq

�
�pqdt

�

(34)

(35)��̈ +�� = �

whereas the stiffness operator in global coordinate system 
corresponding to the whole body is defined as

and the global generalized body forces vector is

Moreover, the vector of global generalized displacements 
is given by

2.2 � Anisotropic Elastic Pair Potentials and Material 
Micromoduli

Given the reference orthogonal basis 
{
�1, �2

}
 defined in 

Sect. 2, the classical constitutive stress-strain relation 
�ij = Cijhk�hk of a two-dimensional homogeneous linearly 
elastic anisotropic Cauchy continuum can be written in 
Voigt notation as

which in component form is given by

Cijhk being the components of the elasticity tensor. Consider-
ing now a generic orthogonal basis 

{
�̂1, �̂2

}
 , Eq. 40 can be 

rewritten as

where �̂ = �𝜎� and �̂ = �𝜀� , where

and

(36)

(37)

(38)

(39)

(40)� = ��

(41)

⎧⎪⎨⎪⎩

�11
�22
�12

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�11
�22
2�12

⎫⎪⎬⎪⎭

(42)�̂ = �̂�̂

(43)�� =

⎡⎢⎢⎣

cos2 � sin2 � 2 cos� sin�

sin2 � cos2 � − 2 cos� sin�

− cos� sin� cos� sin� cos 2�

⎤⎥⎥⎦
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respectively. The angle � is positive if the basis rotation is 
anticlockwise, and the tensor �̂ in Eq. 42 is defined as

where �−1
𝜀

= �⊤
𝜎
.

According to Eq. 45, the off-axis axial Ĉ1111 and shear 
Ĉ1212 elastic moduli can be written as circular functions of 
the angle � by

where C1111 , C1122 , C2222 , C1112 , C2212 and C1212 are the six 
given elastic constants defining in-plane fully anisotropic 
Cauchy elasticity. The mechanistic nature of the continuum-
molecular model requires the definition of pairwise constitu-
tive laws for microstructure (i.e. the virtual fibers and then 
the pairwise interactions) such that the overall elastic behav-
ior of the material is the result of the assigned micro-interac-
tions properties [76]. Besides, to assign microscopic proper-
ties on the basis of macroscopic ones, the identification of 
a representative cell is of the essence [76, 86]. In non-local 
models of this kind, the representative cell is the horizon 
region H� over the integral in Eq. 11 is defined, while the 
micro-macro moduli correspondence principle is based on a 
micro-macro energy equivalence, which allows macroscopic 
properties to be directly associated to microscale-defined 
constitutive laws [72]. Since in-plane Cauchy anisotropic 
linear elasticity is defined by six independent elastic moduli, 
it follows that kn(�) and kt (�) must be functions of at least 
six independent microelastic constants.

In order to preserve material symmetries, and in analogy 
with the classical continuum, we can assume3 without loss 
of generality that the pairwise axial and shear stiffness kn(�) 

(44)�� =

⎡
⎢⎢⎣

cos2 � sin2 � cos� sin�

sin2 � cos2 � − cos� sin�

−2 cos� sin� 2 cos� sin� cos 2�

⎤
⎥⎥⎦

(45)�̂ =

⎡
⎢⎢⎣

Ĉ1111 Ĉ1122 Ĉ1112

Ĉ1122 Ĉ2222 Ĉ2212

Ĉ1112 Ĉ2212 Ĉ1212

⎤
⎥⎥⎦
= �𝜎��

⊤
𝜎

(46)

Ĉ1111(𝜓) = C1111 cos
4 𝜓 + C2222 sin

4 𝜓

+ 2C1122 sin
2 𝜓 cos2 𝜓 + 4C1212 sin

2 𝜓 cos2 𝜓

+ 4C1112 cos
3 𝜓 sin𝜓 + 4C2212 cos𝜓 sin3 𝜓

(47)

Ĉ1212(𝜓) = C1111 sin
2 𝜓 cos2 𝜓

+ C2222 sin
2 𝜓 cos2 𝜓 − 2C1122 sin

2 𝜓 cos2 𝜓+

− 2(C1112 − C2212)(cos
3 𝜓 sin𝜓 − cos𝜓 sin3 𝜓)

+ C1212(cos
2 𝜓 − sin2 𝜓)2

and kt (�) , exhibit a directional dependency as Ĉ1111(𝜓) and 
Ĉ1212(𝜓) described by Eqs. 46 and 47, respectively

where K1111 and K2222 are the microelastic axial moduli of 
virtual fibers parallel to the unit vectors �1 and �2 , respec-
tively, whereas K1212 is the microelastic shear modulus cor-
responding to the two directions defined by the aforemen-
tioned unit vectors. Differently, K1122 , K1112 and K2212 are the 
microelastic moduli related to the axial-axial and axial-shear 
couplings in anisotropic Cauchy elasticity. It is worth to note 
that the coupling between macro shear and axial deforma-
tion is here obtained without introducing additional terms 
in the elastic micropotential function expressed by Eq. 4, 
hence without modifying the formal structure of the pairwise 
constitutive law characterizing the generic virtual fiber. In 
the following subsection, we establish analytical relations 
between the microelastic moduli K1111 , K2222 , K1122 , K1212 , 
K1112 and K2212 , and the six elastic constants of Cauchy ani-
sotropic two-dimensional continua, adopting a general and 
consistent approach that does not require the definition of 
specific deformation fields.

2.2.1 � Micro–Macro Moduli Correspondence

Let us consider a general time-independent two-dimensional 
homogeneous deformation field. The strain energy density 
of a linear elastic fully anisotropic Cauchy continuum at a 
generic position � is then

with �11 , �22 and �12 macro strain components (see Eq. 41) 
in the reference basis 

{
�1, �2

}
.

According to Eq. 11, the corresponding quantity in the 
continuum-molecular model is instead given by the general 
integral

(48)

kn(�) = K1111 cos4 � +K2222 sin4 �

+ 2K1122 sin2 � cos2 � + 4K1212 sin2 � cos2 �

+ 4K1112 cos3 � sin� + 4K2212 cos� sin3 �

(49)

kt (�) = K1111 sin2 � cos2 �

+K2222 sin2 � cos2 � − 2K1122 sin2 � cos2 �+

+K1212 (cos
2 � − sin2 �)2 − 2(K1112+

−K2212)(cos
3 � sin� − cos� sin3 �)

(50)
� =

1

2
(C1111�

2
11
+ C2222�

2
22
+ 2C1122�11�22

+ 4C1212�
2
12
+ 4C1112�12�11 + 4C2212�12�22)

3  Considering for the generic virtual fiber �̂ ≡ �̂1 , and �̂ ≡ �̂2.
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where, under the assumed conditions, the pairwise defor-
mations s(�) and �(�) of the generic virtual fiber can be 
expressed as linear functions of the homogeneous macro 
strain components �ij and quadratic functions of the direction 
cosines of the orthonormal unit vectors � = ni�i and � = ti�i 
(as previously defined), by

which are obtained through the Cauchy-Born rule [87, 88], 
particularized to our case4, and according to 𝜺̂ = ��𝜺 , where 
�� is given by Eq. 44 [72, 76]. Hence, one obtains

Substituting Eq. 54 in Eq. 51, and assuming kn(�) and kt (�) 
by Eqs. 48, 49, and 51 gives as general solution

where N = N(�) is a scalar-valued function of the horizon 
� , depending on the specific influence function considered. 
In case of dimensionless attenuation functions, N  can be 
expressed as

with Ξ ∈ ℝ
+ . In what follows, we assume without loss of 

generality that Λ(‖�‖) = 1 , thus

Comparing Eqs. 50 and 51, and collecting the terms that 
multiply the same strain components �ij , six independent 

(51)

W =
1

2 ∫H�

[ws(�, �
�) + wγ(�, �

�)] d��

=
h

4 ∫
�

0

�
‖�‖2Λ(‖�‖)∫

2�

0

�
kn(�)s2(�)

+ kt (�)�2(�)
�
d�

�
d‖�‖

(52)s(𝜓) = 𝜀̂11(𝜓) = 𝜀nn(𝜓) = 𝜀ijninj

(53)𝛾(𝜓) = 𝜀̂12(𝜓) = 𝜀nt(𝜓) = 𝜀ijnitj,

(54)
s(�) = �11 cos

2 � + �22 sin
2 � + 2�12 cos� sin�

�(�) = �12 cos 2� + (�22 − �11) cos� sin�

(55)

W = hN[�2
11
(19K1111 + 3K2222 + 12K1212

+ 2K1122) + �2
22
(3K1111 + 19K2222 + 12K1212

+ 2K1122) + 2�11�22(K1111 +K2222 + 4K1212

+ 6K1122) + 4�2
12
(3K1111 + 3K2222 + 12K1212

+ 2K1122) + 16�11�12(3K1112 +K2212)

+ 16�22�12(K1112 + 3K2212)]

(56)N = �3Ξ

(57)Ξ =
�

384

equations expressing the classical macromoduli in terms of 
micromoduli are obtained

where the constant C is

By solving the algebraic system given by Eqs. 58–63 for the 
six micromoduli, we obtain

Polar plots of the micromoduli functions kn(�) , kt (�) in 
Eqs. 48 and 49 for a representative anisotropic material are 
reported in Fig. 2.

In the case of general in-plane orthotropy with principal 
material exes defined by the unit vectors �̌1 ≡ �1 , �̌2 ≡ �2 , 
C1112 = C2212 = 0 , thus K1112 = K2212 = 0 . Moreover, two-
dimensional materials of square symmetry or square-sym-
metric materials [70, 89], called also two-dimensional cubic 
materials or materials with two-dimensional cubic symmetry 
[90–92] (symmetry rotations ��∕2

3
 ), have the further condi-

tion C1111 = C2222 , hence K1111 = K2222 . In the special case 

(58)C1111 = C(19K1111 + 3K2222 + 12K1212 + 2K1122)

(59)C2222 = C(3K1111 + 19K2222 + 12K1212 + 2K1122)

(60)C1122 = C(K1111 +K2222 + 4K1212 + 6K1122)

(61)C1212 = C(3K1111 + 3K2222 + 12K1212 + 2K1122)

(62)C1112 = 4C(3K1112 +K2212)

(63)C2212 = 4C(K1112 + 3K2212)

(64)C = 2hN =
h��3

192

(65)K1111 =
12 (C1111 − C1212)

�h�3

(66)K2222 =
12 (C2222 − C1212)

�h�3

(67)K1112 =
6 (3C1112 − C2212)

�h�3

(68)K2212 =
6 (3C2212 − C1112)

�h�3

(69)K1122 =
12 (3C1122 − C1212)

�h�3

(70)K1212 =
3 (8C1212 − C1111 − C2222 − 2C1122)

�h�3

4  The rotation field �(�) is null over Ω when the body is subjected 
to a symmetric macro-deformation gradient not depending on space 
coordinates [39, 71].
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of elastic isotropy, C1111 = C2222 , and C1122 = C1111 − 2C1212 . 
Therefore, Eqs. 65–70 provide two independent micromod-
uli depending on C1111 and C1212 macromoduli only, by

from which it follows that, in this case, Eqs. 65–70 lead to 
angle invariant pairwise axial and shear stiffness. Moreo-
ver, it can be noted that while kn in Eq. 71 is always posi-
tive definite (see Fig. 3), kt given by Eq. 72 is non-negative 
for C1212 ≤ C1111∕3 , thus, for Poisson’s ratios � ≤ 1∕3 and 
� ≤ 1∕4 in plane stress and plane strain, respectively. An 
important consideration is that this analytical evidence is 
independent of the attenuation function considered and is 
rather a well-known intrinsic trait of mechanistic models 
associated with elastic pair potentials,5 and characterized 
by uniform and overall isotropic properties [14, 39, 94–96].

Besides, this feature is proper of energy conserving full-
discrete models such as periodic mass-spring lattices and 
architected materials featuring repetitive unit cells com-
posed of rigid elements connected by elastic interfaces [14, 
96–99], whose constitutive laws involve pairwise deforma-
tion measures, and postulate the existence of elastic mutual 
potentials allowing inter-molecular actions to be derived 
from centroidal kinematics. For further readings one may 
also refer to [100–103]. Equations 48 and 49 together with 
Eqs.  65–70 determine the axial and shear microelastic 

(71)K1111 = K2222 = kn =
12 (C1111 − C1212)

�h�3

(72)
K1212 =

(K1111 −K1122)

2

= kt =
12 (3C1212 − C1111)

�h�3

stiffness associated with each bond, thus with each orienta-
tion � , in such a way to reproduce fully anisotropic Cauchy 
elasticity. Under general inhomogeneous deformations, the 
micropotential function w(�, ��, t) = ws(�, �

�, t) + w� (�, �
�, t) 

in Eq. 4, where

and

(73)

ws(�, �
�, t) = 6s2‖�‖�h�3

�
(C1111 − C1212) cos

4 �

+ (C2222 − C1212) sin
4 � + (4C1122

+ 6C1212 − C1111 − C2222) sin
2 � cos2 �

+ 2 (3C1112 − C2212) cos
3 � sin�

+ 2 (3C2212 − C1112) cos� sin3 �
�

Fig. 2   Off-axis Ĉ1111(𝜓) , Ĉ1212(𝜓) macromoduli and kn(�) , kt (�) 
micromoduli corresponding to a Cauchy anisotopic material with 
C1111 = C2222 , C1122 = C1111∕5 , C1212 = C1111∕3 , C1112 = C1111∕10 , 

and C2212 = C1111∕5 . Macromoduli and micromoduli are normalized 
with respect to the maximum values of Ĉ1111(𝜓) and kn(�) , respec-
tively

Fig. 3   Normalized macro-moduli C1j1j, j = 1, 2 of Cauchy isotropic 
continuum, and corresponding micromoduli K1j1j, j = 1, 2 of the con-
tinuum-molecular model as function of the Poisson’s ratio � (in the 
studied range −1 < 𝜈 < 1∕2 ), for a given Young modulus E 

5  In general, not associated, directly or indirectly, with volume-
dependent (dilatational) multi-body potentials [15, 93].
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totally defines the linear elastic macroscopic behavior of 
an equivalent classical continuum [76], while providing a 
mechanism-based description of material anisotropy. In the 
special case of isotropic symmetry, Eqs. 71–72 hold, and 
Eqs. 73–74 reduce to

Moreover, it is self-apparent that in the limit case of 
C1111 = 3C1212 , the conceived elastic continuum-molecular 
model reduces to the well-known Silling’s non-local con-
tinuum with central actions [15].

It should be mentioned that arbitrary material rotations 
can be easily taken into account in the proposed model. Con-
sider an anisotropic Cauchy solid, and 

{
�̌1, �̌2

}
 be an ortho-

normal basis embedded in the material such that, initially, we 
have �̌1 ≡ �1 , �̌2 ≡ �2 . For arbitrary rotations of the material, 
Eqs. 48 and 49 modify substituting the bond angle � with 
the angle difference � − � , where 𝜁 = Arg

(
�̌1 ⋅ �1 + 𝚤�̌2 ⋅ �2

)
 

is positive if denotes an anticlockwise rotations of �̌i with 
respect to �i . Furthermore, in case of orthotropic elastic-
ity with principal material axes in the direction of the unit 
vectors �̌i Eqs. 48 and 49 can be written in the equivalent 
reduced form

where the micromoduli given by Eqs. 65 and 66 and 69 and 
70, are obtained considering macro-moduli defined in the 
material basis 

{
�̌1, �̌2

}
 . In any case, Eqs. 48–49 together with 

65–70, can be adopted for modeling directly elastic orthot-
ropy with macro-moduli given in the non-principal reference 
basis 

{
�1, �2

}
.

Let us consider now the discretized model detailed in 
Sect. 2.1. The scalar-valued functions in Eqs. 48 and 49 have 

(74)

wγ(�, �
�, t) =

3

2
�2‖�‖�h�3

�
4(C1111 + C2222+

− 6C1122) sin
2 � cos2 � + (8C1212 − C1111+

− C2222 − 2C1122) (cos
2 � − sin2 �)2 − 16(C1112+

− C2212)(cos
3 � sin� − cos� sin3 �)

�

(75)ws(�, �
�, t) = 6�h�3s2‖�‖ (C1111 − C1212)

(76)wγ(�, �
�, t) = 6�h�3�2‖�‖ (3C1212 − C1111)

(77)

kn(� , �) = K1111 cos
4(� − �) +K2222 sin

4(� − �)

+ 2K1122 sin
2(� − �) cos2(� − �)

+ 4K1212 sin
2(� − �) cos2(� − �)

(78)

kt (� , �) = K1111 sin
2(� − �) cos2(� − �)

+K2222 sin
2(� − �) cos2(� − �)+

− 2K1122 sin
2(� − �) cos2(� − �)

+K1212[cos
2(� − �) − sin2(� − �)]2

to be defined for given values of the angle � such that the 
directional dependent constitutive parameters are assigned in 
a finite number of bond directions. In case of a regular grid 
with spacing Δx and given quadrature rule [83], the number of 
bond directions to be associated with kn(�) and kt (�) , depends 
on the density parameter m = �∕Δx [104] expressing the ratio 
between the horizon and the grid spacing itself. Higher values 
of the density parameter correspond to finer angular discretiza-
tions of the the continuous circular functions in Eqs. 48 and 49. 
Hence, m should be chosen in such a way that the effective ani-
sotropic elastic behavior of the material is correctly described 
by the discretized model [76]. Given a a homogeneous macro-
deformation field defined by a deformation gradient � of com-
ponents Fij with i, j = 1, 2 in the reference basis 

{
�1, �2

}
 , the 

macroelastic energy of the discretized continuum-molecular 
model should equal the classical continuum counterpart (i.e. 
its strain energy density) for any arbitrary rotation � of the 
material [76]. As representative cases, we consider a uniaxial 
extension and a pure shear macro-deformation field. As Fig. 4 
shows, to correctly represent the variation of the elastic energy 
density as function of the rigid rotation � of the basis 

{
�̌1, �̌2

}
 

embedded in the material, m > 3 should be adopted in discre-
tized continuum-molecular models for anisotropic elasticity. 
It is apparent that higher values of the density parameter lead 
to higher computational costs since larger is the number of 
non-zero elements in the elastic stiffness operator described 
by Eq. 37 [105]. In what follows, unless otherwise specified, 
m = 5 is used (see Fig. 4).

At this point it should be noted that the analytical 
identification procedure (namely the micro-macro corre-
spondence scheme) developed in this section is derived by 
implicitly assuming an unbounded domain, or referring to 
material points located in the bulk [15]. In fact, material 
points in Ω that have a distance D̆ < 𝛿 from the nearest 
point on the boundary do not have a full horizon region H� 
[15], thus their material properties result to be slightly dif-
ferent from those of points in the bulk. In order to take into 
account this important aspect in numerical simulations, a 
specific surface correction algorithm is required. In this 
work we refer for simplicity to the volume method by Lee 
and Bobaru [106], particularized to our case.

2.3 � Benchmark Problems

2.3.1 � Crack‑Tip Problem in Anisotropic Bodies

Consider the plane elastostatic problem of a horizontal 
semi-infinite crack under far-field loading in a homogene-
ous anisotropic body. The reference basis is 

{
�1, �2

}
 , with 

unit vector �1 aligned with the axis of the crack, and a local 
polar coordinate system (r, � ) is defined at the crack tip 
(Fig. 5). In the Lekhnitskii formalism [107], the problems 
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of two-dimensional anisotropic elasticity are formulated in 
terms of two independent analytic functions of complex var-
iables, whose determination for given boundary conditions, 
require the solution of the characteristic equation

in which Sijhk are the components of � = �−1 with � defined 
in Eq. 40). Due to the positive-definiteness of the elastic 
energy, the roots of Eq. 79 are always complex or purely 
imaginary and occur in conjugate pairs as �1,�1 and �2,�2 
[108, 109].

The displacement field in a small region surrounding the 
crack tip are analytically related to the mode-I and mode-II 
stress intensity factors by [109, 110]

(79)
S1111�

4 − 2S1112�
4 +

(
2S1122 + S1212

)
�2+

− 2S2212 + S2222 = 0

Fig. 4   Normalized macroelastic energy-namely strain energy density-as 
function of the orientation � of the material reference system and corre-
sponding to a simple extension (first column) and pure shear (second col-
umn) homogeneous deformation fields in the case of a square-symmetric 
material ( C1111 = C2222;C1122 = C1111∕5;C1212 = C1111∕3 , first row) 

and a fully anisotropic material ( C1111 = C2222;C1122 = C1111∕5;C1212

= C1111∕3;C1112 = C1111∕10;C2212 = C1111∕5 , second row) for different 
values of the density paramenter m 

Fig. 5   Geometry and boundary conditions used for the analysis of the 
near-tip displacement field in anisotropic media
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where �1 and �2 are the roots of Eq. 79 [107, 109] and the 
scalar-valued variables pi , qi for i = 1, 2 are given by

The ability of the CM model in describing the displace-
ment fields surrounding a crack-tip in a fully anisotropic 
body is illustrated for the case of a material characterized 
by C1111 = C,C2222 = 4C∕5;C1122 = C∕5;C1212 = C∕3;C1112 = C∕10;C2212 = C∕6 . 
When examining the near-crack front region, the universal 
character of the asymptotic fields at the crack-tip eliminates 
the need to model finite geometry specimens and particular 
loading conditions [40]. The dominance of the asymptotic 
solution allows for a boundary layer analysis involving only 
the near-front region, to which the effects of loading and 
specimen geometry are transmitted by prescribing to its 
boundary the displacement field from this elastic solution 
and the associated stress intensity factors [111, 112]. This 
“boundary layer” analysis considerably reduces the size of 
the problem and allows the results to be general and applica-
ble to finite geometry configurations characterized by their 
own (known) stress intensity factors [40, 111].

As representative cases, we consider far-field loadings 
defined by mixity mode factors �K = tan−1(K∞

II
∕K∞

I
) corre-

sponding to Mode I ( �K = 0 ) and mode II ( �K = �∕2 ). The 
performed analysis setup is shown schematically in Fig. 5, 
where a circular shape of diameter 2a, unit thickness, and 
crack of length a (note that this model represents a crack 
whose length is infinite compared to the size of the modeled 
region), is subjected to displacement boundary conditions 

(80)

u1(r,�) = K∞
I

�
2r

�
Re

�
1

�1 − �2

�
�1p2

√
cos� + �2 sin� − �2p1

√
cos� + �1 sin�

��

+ K∞
II

�
2r

�
Re

�
1

�1 − �2

�
p2

√
cos� + �2 sin� − p1

√
cos� + �1 sin�

��

(81)

u2(r,�) = K∞
I

�
2r

�
Re

�
1

�1 − �2

�
�1q2

√
cos� + �2 sin� − �2q1

√
cos� + �1 sin�

��

+ K∞
II

�
2r

�
Re

�
1

�1 − �2

�
q2

√
cos� + �2 sin� − q1

√
cos� + �1 sin�

��

(82)
pi = S1111�

2
i
+ S1122 − S1112�i

qi = S1122�i +
S2222

�i

− S2212

along its entire boundary corresponding to Eqs. 80 and 
81. The spatial domain is discretized using a regular grid 
with spacing Δx = a∕120 , resulting in a model composed 
of 45344 particles. The horizon results to be 𝛿 < a∕25 
whereas m = 5 , which lead to negligible non-local effects 
in the immediate vicinity of the crack-tip [105].

The computed displacement fields are reported in Fig. 6. 
Figure 7 shows that the displacements obtained by the ani-
sotropic CM formulation are in excellent agreement with the 
analytical solution [109], demonstrating that the model is 
capable to describe correctly general inhomogeneous defor-
mation fields in classical fully-anisotropic materials.

Besides the concept of stress is not required here since 
the deformation measures defined are work conjugates to 
actions at a distance and not to contact actions, the stress 
field6 can be obtained from pairwise forces by particulariz-
ing to our case the original stress definition by Saint Venant 
and Cauchy [4, 8] given in the context of classical molecu-
lar theory of elasticity. Considering for simplicity a discrete 
lattice of particles, let define an arbitrary plane Π of unit 
normal �∗ , passing through the centroid of particle p and 
dividing the family region Hp into two pieces denoted as H+

p
 

and H−
p
 , respectively. The intersection between the plane 

Π and the sub-domain Δ�p is denoted by Ap . The force per 
unit area which one part exerts on the other through Ap can 
be expressed as

where N+ and N− are the number of particles in H+
p
 and H−

p
 , 

respectively. The summation involves only the set of bonds 
passing through (or ending at) the cross section Ap = Δxh 
from the positive H+

p
 side (one may refer to [40] for further 

details). The normal and tangential components of the trac-
tion vector t(�p, �∗) defined above are the normal and shear 
stress given by

where �∗ denotes the unit vector perpendicular to �∗ . As illus-
trative example, Eq. 83 is applied to compute the �22 stress 
field in the near-tip zone with assigned mixity factor �K = 0 . 
Figure 8 shows that numerical results are consistent with the 
analytical solution by Sih et al. [109].

(83)

t(�p, �
∗) =

1

Ap

N−∑
q−=1

N+∑
q+=1

�pqΔ�pΔ�q

=
1

Ap

N−∑
q−=1

N+∑
q+=1

[
fn� + ft�

]
Δ�pΔ�q

(84)
�
�∗�∗

= t(�p, �
∗) ⋅ �∗

�
�∗�∗

= t(�p, �
∗) ⋅ �∗

6  Considering Eqs. 22, and according to Voigt [11], the couple stress 
field is instead null, under the assumed conditions.
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At this point it should be mentioned that, in general, 
the CM model (for equivalent Cauchy materials) solution 
converges to the classical elasticity solution as the horizon 
size reduces (keeping the density factor m constant) [113]. 
Moreover, for a given elastic problem and in the limit of � 
going to zero, it can be demonstrated that the rotation field 
�(�) is related to the macrorotation of classical elasticity 
such that

where �ijk is the alternating symbol, while �12(�) and �21(�) 
are the non-zero components of the (infinitesimal) rotation 
tensor � = skew[��(�)].

Regarding the displacement map computed for the 
elastic problem under consideration, it is noted a fast 

(85)�(�) ∼ �21(�) = −�12(�) = ϖ3(�) =
1

2
�3jkuk,j

convergence of the non-local solution to the classical 
(local) solution. In any case, numerical predictions result 
to be consistent with the exact solution by Sih et al. even 
in the case of coarser discretizations, as shown in Fig. 9.

2.3.2 � Elastic Behavior of Architected Meterials

The CM mechanical formulation is applied to model the 
effective elastic behavior of periodic mechanical metama-
terials homogenized as anisotropic Cauchy continua. In 
particular, we consider here the two-dimensional tetrachi-
ral blocky system by Bacigalupo and Gambarotta [76, 98] 
as illustrative case. This architected material is made up 
of square blocks of side a inclined by the chirality angle 
𝛽(0 ≤ 𝛽 < 𝜋∕4) , and connected by elastic interfaces of 
length b and thickness 𝜇̆ , as shown in Fig. 10. Assuming 

Fig. 6   Displacement field near the crack-tip obtained by the CM model in the case of a fully anisotropic material 
( C1111 = C,C2222 = 4C∕5;C1122 = C∕5;C1212 = C∕3;C1112 = C∕10;C2212 = C∕6 ) under Mode I ( �K = 0 ), and Mode II ( �K = �∕2)
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for simplicity interface made of homogeneous isotropic 
elastic material with Young modulus E and Poisson’s ratio 
� , and plane stress-conditions, the following relations hold 
[76]

where �
�
 and �

�
 are the normal and tangential overall stiff-

ness of the interface, respectively.
In the case of symmetric macro-fields, the continualization 

scheme outlined in in [98] leads to the effective fourth order 
elasticity tensor of the square symmetry group [70] (symme-
try rotations ��∕2

3
 ), whose components in the reference basis {

�1, �2
}
 are given by

(86)�
�
=

b

𝜇̆

E

(1 − 𝜈2)
, �

�
=

b

2𝜇̆

E

(1 + 𝜈)

(87)

C1111 = C2222

=
(�

�
− �

�
)2 cos 4� − (�

�

2 + 14�
�
�
�
+ �

�

2)

8
[
(�

�
− �

�
) cos 4� − (�

�
+ �

�
)
]

(88)C1212 =
1

2

(
�
�
sin2 � + �

�
cos2 �

)

(89)C1122 = −
(�

�
− �

�
)2 cos �2 sin �2

2
(
�
�
cos2 � + �

�
sin2 �

)

(90)C1112 = −C2212 =
1

4

(
�
�
− �

�

)
sin 2�

Fig. 7   Displacements u1 and u2 along different abscissae and obtained by the CM model in the case of a fully anisotropic material 
( C1111 = C,C2222 = 4C∕5;C1122 = C∕5;C1212 = C∕3;C1112 = C∕10;C2212 = C∕6 ) under Mode I ( �K = 0 ), and Mode II ( �K = �∕2)
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 which depend on the chirality angle � as well as on the 
constitutive parameters characterizing the interfaces. In 
fact, the overall anisotropic behavior of the here considered 
mechanical metamaterial (which is defined by the effective 
macromoduli Cijhk in Eqs. 87–90) arises from geometric-
topological features and specific material properties of its 
elastic constituents [76].

The accuracy of the CM model is assessed by consider-
ing frequency analyses and comparing homogeneous CM 
solutions to heterogeneous finite element solutions of a 
microstructured geometry. The geometry studied consists 
of an array of 25× 25 tetrachiral periodic square blocks with 
a=20mm and chirality angle � = tan−1(1∕2) . In this case, 
since b = (1 − tan �)a [98], the interface length is equal to half 
side of the square block. The distance between the centroids 
of two neighboring blocks is denoted by � = a∕ cos � . Iso-
tropic material with Young modulus E = 10MPa and Poisson’s 
ratio � ≈ 1∕2 is considered for the interfaces. Uniform density 
�c = 1000 Kg/m3 are assumed instead for both rigid blocks 
and interfaces. The sample was chosen to be large enough 
in relation to the periodic cells to reduce overall size effects. 
In the FE microstructured model, rigid-body constraints are 
applied to the square blocks of the tetrachiral system, while 
the interfaces of (vanishing) thickness 𝜇̆ = a∕500 , are meshed 
using eight-node quadratic elastic elements, resulting in a 
global model composed of 380311 nodes and 115962 finite 
elements[76]. Regarding instead the CM computational frame-
work, by omitting the applied external load vector � in Eq. 35, 
and assuming simple harmonic motion � = �̆ exp(𝚤𝜔̆t) , the 
eigenvalue problem is obtained

where the eigenvalues 𝜔̆ are the circular natural frequen-
cies of the system. The lowest five eigenvectors �̆ (modal 
shapes) of the square lamina with homogenized elastic and 
inertial properties are produced by assembling the global 
stiffness and mass matrices � and � of the discretized CM 
model as detailed in Sect. 2.1. Hence, the modal shapes and 
natural frequencies of the heterogeneous microstructured 
square lamina obtained from finite element analysis are 
compared to those from homogeneous continuum-molecular 
simulations. The conceived anisotropic model for equivalent 
Cauchy materials predicts modal shapes and natural frequen-
cies that are in excellent agreement with finite element solu-
tions (see Figs. 11 and 12). The �-convergence analysis [114] 
(i.e. horizon reduction keeping m fixed) shows that the CM 
natural frequencies seem not to be affected by the grid spac-
ing Δx adopted (see Fig. 11). In fact, reducing the horizon 
size by eight times (while keeping m = 5 constant) results 
in minimal changes in the continuum-molecular numerical 

(91)
(
� − 𝜔̆2�

)
�̆ = �,

solution. However, it is noted that increasing the density 
parameter m (keeping � = 5∕4a ≈ � fixed), a slight reduc-
tion in the difference between the CM heterogeneous finite 
elements solution is observed. In this case, a m-convergence 
procedure [114] allows the meshfree numerical solution to 
converge to the continuum-molecular non-local solution cor-
responding to � = � [76].

Fig. 8   �22 stress along the positive abscissa x2∕a = 0 and detail of 
the �22 field near the crack-tip obtained by Eq.  83 in the case of a 
fully anisotropic material ( C1111 = C,C2222 = 4C∕5;C1122 = C∕5;

C1212 = C∕3;C1112 = C∕10;C2212 = C∕6 ) under Mode I

Fig. 9   Detail of the vertical displacement along the crack upper edge 
obtained by the CM model in the case of a fully anisotropic material 
(  C1111 = C,C2222 = 4C∕5;C1122 = C∕5;C1212 = C∕3;C1112 = C∕10;C2212 = C∕6  ) 
under Mode I ( �k = 0 ). Grid spacings Δx = a∕60 and Δx = a∕30 cor-
respond to discrete models composed of 11304 and 2828 particles, 
respectively
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3 � Fracture

Within the conceived CM frawework, brittle fracture is 
modeled by a general energy-based failure criterion char-
acterized by the definition of orientation dependent criti-
cal values wc(�, �

�, �) = wc(� , �) of the bond total stored 
energy density defined in Eq. 4.

An energy-based failure criterion was firstly intro-
duced by Foster et  al. [115] for isotropic materials in 
the theoretical framework of state-based peridynamics. 
Such approach was then adapted to pair potentials based 
continuum-molecular models with non-central interac-
tions by Diana and Ballarini [40] for modeling fracture 
in orthotropic elastic materials with theoretically uniform 
resistance to fracture [116]. Orientation dependent frac-
ture energy within a mechanism-based energetic failure 
criterion accounting for different degrees of anisotropy has 
been introduced instead in [72], and the resulting model 
successfully applied to the study of crack propagation in 
cortical bone tissues. In this context, the need for consid-
ering failure criteria accounting for both axial and shear 
pairwise deformations firstly relies on crack front which 
is in general locally associated to a mixed-mode defor-
mation in anisotropic materials [40]. Therefore, a failure 
criterion based on critical elongation alone is not, in gen-
eral, recommended for use with non-central elastic pair 
potentials, since it does not take into account the shear/
angular deformation of the virtual fiber. This aspect may 
lead to reduced accuracy in kinking angle predictions or 
incorrect energy dissipation during crack extension [40]. 
Conversely, in isotropic brittle materials at atmospheric 
pressure the crack front is locally associated with a mode I 
deformation, and critical deformation based criteria gener-
ally lead to well simulated failure conditions and realistic 
crack paths even in the case of overall mode II loading [36, 

41, 117–120]. Nevertheless, based on our experience, an 
energy-based failure criterion guarantees a more accurate 
estimation of the peak load in presence of non-central pair-
wise interactions [72]. A fundamental advantage of using 
energy-based failure criteria for materials with direction-
dependent properties is that they allow for decoupling ani-
sotropic elasticity and material fracture resistance, with 
evident simplification of the micro parameters identifica-
tion procedure [72].

The energy-based criterion adopted considers the 
instantaneous bond failure when the scalar-valued 
micropotential energy function w(�, ��, t) attains its criti-
cal value wc(� , �).

As previously declared (see Sect.  2), the rotational 
material micromodulus is not defined when modeling 
Cauchy-elastic materials, thus w� (�, �

�, t) = 0 in our 
case. Assuming that the material resistance to fracture 
is orientation dependent, the critical value of the bond 
stored energy density is not direction-invariant, and rather 
depends on the virtual fiber angle � . For a given orienta-
tion of the material denoted by the angle � as defined in 
Sect. 2.2.1, the critical value wc(�) is obtained analytically 

Fig. 10   Periodic square of the tetrachiral block-lattice material [98] 
made of rigid units connected by elastic interfaces

Fig. 11   Tetrachiral block lattice with homogeneous isotropic elastic 
interfaces ( � ≈ 1∕2 ): Natural frequencies obtained with the micro-
structured finite element model (black triangles) and the anisotropic 
continuum-molecular model for different discretization parameters
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by equating the fracture energy Gc(�) = G(�) to the total 
work required to break all the bonds per unit of fracture 
surface, when assumed normal to the unit vector �� (see 
Fig. 13). 

Hence, we have

Considering that experimental measures of the fracture 
energy in materials of orthotropic symmetry (symme-
try rotations ��

3
) is, in general, given for two orthogonal 

orientation of the principal material basis 
{
�̌1, �̌2

}
 , namely 

� = 0 and � = �∕2 (with G𝜁=0 > G𝜁=𝜋∕2 ), wc(� , �) may be 
written as function the bond orientation angle by a general 
two parameter law defined as [72]

where n = 2N , with N ∈ ℕ
+ , while wc1 and wc2 are the max-

imum and minimum values of the critical micropotential 
energy, namely the critical pairwise stored energy density of 
virtual fibers aligned with the unit vectors �̌1 and �̌2 , respec-
tively. By substituting Eq. 93 in Eq. 92 and considering 
� = 0 and � = �∕2 , we get

(92)G(�) = ∫
�

0 ∫
�

z ∫
cos−1

z

‖�‖

−cos−1
z

‖�‖

wc(� , �) h‖�‖ d� d� dz

(93)wc(� , �) = wc2 + (wc1 − wc2)cos
n(� − �)

(94)
G�=0 = ∫

�

0 ∫
�

z ∫
cos−1

z

‖�‖

−cos−1
z

‖�‖

wc2 + (wc1 − wc2)

cosn[�] h‖�‖ d� d� dz

Adopting n = 2 , a system of two equations in the two 
unknown wc1 and wc2 is derived solving the integrals in 
Eqs. 94 and 95

which results in

If instead, n = 4 is adopted in Eqs. 93, 94 and 95 lead to the 
following relations

whereas with n = 8 we obtain

(95)

G�=�∕2 = ∫
�

0 ∫
�

z ∫
cos−1

z

‖�‖

−cos−1
z

‖�‖

wc2 + (wc1 − wc2)

cosn[� + �∕2]

h‖�‖ d� d� dz

(96)
9G�=0 = 2h�3(2wc1 + wc2)

9G�=�∕2 = 2h�3(wc1 + 2wc2)

(97)
wc1 =

3(2G�=0 − G�=�∕2)

2h�3

wc2 =
3(2G�=�∕2 − G�=0)

2h�3

(98)
wc1 =

3(12G�=0 − 7G�=�∕2)

10h�3

wc2 =
3(8G�=�∕2 − 3G�=0)

10h�3

Fig. 12   Tetrachiral block lattice with homogeneous isotropic elastic interfaces ( � ≈ 1∕2 ): Eigenmodes obtained with the microstructured finite 
element model (first row) and the anisotropic continuum-molecular model adopting � = 5∕4a and m = 5 (second row) [76]
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In the case of fracture energy independent of �  , 
G�=0 = G�=�∕2 = G , � = 1 , and Eqs. 97–99 (same for any 
exponent n) reduce to the well known [40, 115]

with wc(� , �) = wc representing in this case a constant 
angle-independent function. Critical parameters wc1 and wc2 
cannot be less than zero otherwise bond rupture generates 
energy, thus, a restriction exists on the maximum value of 
the ratio � = G�=0∕G�=�∕2 that can be considered for a given 
exponent n. For instance, assuming n=2 and n=8 in Eq. 93, 
we get G𝜁=0 < 2G𝜁=𝜋∕2 and G𝜁=0 < 3.65G𝜁=𝜋∕2 , respectively, 
whereas n=32 leads to 𝜆 < 7.14 . Hence, n can be used to 
model materials with varying levels of fracture resistance 
anisotropy, as Eqn. 93 with the corresponding values of 
the parameters wc1 and wc2 , can handle � values up to 2 
and 3.65, respectively. As n is increased for a given anisot-
ropy ratio � , the transition between the two extreme values 
wc1 and wc2 of wc(� , �) becomes increasingly less smooth 

(99)
wc1 =

3(280G�=0 − 187G�=�∕2)

186h�3

wc2 =
3(128G�=�∕2 − 35G�=0)

186h�3

(100)wc1 = wc2 = wc =
3G

2h�3

(Fig. 14), and then larger values of the density parameter 
m may be required for an accurate angular discretization 
of the continuous trigonometric function in Eq. 93 [72]. 
Conversely, larger values of � for a given exponent n result 
in a progressive increase of the effective anisotropy of the 
critical micropotential function wc(� , �) (Fig. 15). In any 
case, wc1 and wc2 are calculated to match, for any n, the 
given experimental fracture energy values of the material, 
namely G�=0 and G�=�∕2 (Figs. 16 and 17). However, since 
the integrals in Eqs. 94 and 95 are referred to (two) specific 
orientations � of the principal material axes (or conversely, 
referred to specific crack surface orientation for � = 0 ), the 
effective fracture energy of the material model takes inter-
mediate values for 𝜋∕2 > 𝜁 > 0 which depends indirectly 
on the critical micropotential function adopted, as shown 
in Figs. 16 and 17. A similar conceptual idea can be found 
in phase-field models of brittle fracture, in which direction-
dependent crack propagation in solids can be modeled in a 
variational framework by considering anisotropic fracture 
energy functions satisfying given symmetry conditions 
[121, 122]. However, differently from the phenomenologi-
cal phase-field approach, in our case fracture is described as 
a mechanism-based process, since cracks nucleate and grow 
when a number of bond failures coalescence into a surface 
and propagate [115]. It should be noted that other direction 
dependent critical micropotential energy laws wc(� , �) can 
be assumed, depending on the specific behavior of the mate-
rial to be modeled, and on the experimental data at disposal. 
When considering fracture resistance properties invariant to 
�

�∕2

3
 rotations of the material reference system, Eq. 93 may 

be replaced by

 where, in this case, the extremum values wc1 and wc2 of the 
critical micropotential function are referred to bond direc-
tions that differ of Δ� = �∕4 , whereas the fracture energies 
from Eq. 92 are denoted by G�=0 = G�=�∕2 and G�=�∕4 (with 
G𝜁=0 < G𝜁=𝜋∕4 ). As for Eq. 93, higher values of the exponent 
n correspond to higher degrees of anisotropy of the over-
all fracture resistance of the material which is possible to 
model7. Adopting n = 4 , the system of two equations in the 
two unknown wc1 and wc2 is given by

which leads to

(101)wc(� , �) = wc2 + (wc1 − wc2)cos
n[2(� − �)]

(102)
945G�=0 = 2h�3(107wc1 + 208wc2)

945G�=�∕4 = 2h�3(128wc1 + 187wc2)

Fig. 13   Schematics for computing the equivalent fracture energy of 
the material associated to a fracture plane orthogonal to the horizon-
tal and corresponding to a given orientation � of the material refer-
ence system

7  The considerations made in this section are general and can be 
extended to other cases. For Instance, Eq.  101 can be generalized 
further as w

c
(� , � ) = w

c2 + (w
c1 − w

c2)cos
n[A(� − � )] with A ∈ ℕ

+ 
frequency parameter which allows to model different angular-depend-
ent behaviors [122].
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where Eqs.  103 allow to model anisotropy ratios up to 
� = G�=�∕4∕G�=0 ≈ 1.2 . A typical effective reciprocal frac-
ture energy angular-dependency (resulting from Eq. 101), 
is shown in Fig. 18. As previously declared, an important 
aspect of the energy-based failure criterion here illustrated, 
is that the directional dependent elastic and failure param-
eters of each interaction are theoretically independent of 
each other. In fact, when equating the total work per unit of 
fracture surface and material fracture energy, the integrand 
function in Eq. 92 is not given in terms of microelastic mod-
uli or micromoduli functions kn(�) and kt (�) , resulting in a 
simplification of the fracture model critical parameters cal-
culation with respect to deformation-based failure criteria.

The status of each virtual fiber is specified by a history-
dependent pairwise scalar valued function μ(�, ��, t) [18]

where w(�, ��, t) = w(� , t) . Hence, a local damage scalar 
variable can be defined at each position � and time t

where d(�, t) is the point-wise local damage variable associ-
ated to the energy-based failure criterion.

(103)
wc1 =

(208G�=�∕4 − 187G�=0)

14h�3

wc2 =
(128G�=0 − 107G�=�∕4)

14h�3

(104)μ(�, ��, t) =

{
0, w(�, ��, t) ≥ wc(𝜓 , 𝜁)

1, w(�, ��, t) < wc(𝜓 , 𝜁)

(105)d(�, t) = 1 −
∫
Hx

μ(�, ��, t)d�

∫
Hx

d�

It is worth noting that circular functions in Eqs. 93 and 
101 can also be adopted for modeling elastic direction 
dependency in orthotropic materials, with exponent n mod-
ulated to handle different degrees of material anisotropy, 
while conserving positive-definiteness of the axial and shear 
elastic micromoduli.

3.1 � Numerical Experiments

In this subsection four numerical fracture experiments 
are described, assuming an increasing level of complex-
ity of the constitutive and failure models adopted. Results 
obtained are compared with theoretical and experimental 
predictions, when available. In the first two benchmark prob-
lems proposed, we show the general capabilities of the CM 
approach in modeling spontaneous crack nucleation, crack 
propagation and curving in brittle materials assuming for 
the purposes of the discussion isotropic elastic and failure 
properties.

Then, the model is applied to predict crack kinking in 

elastic anisotropic bodies with orientation independent 
resistance to fracture, and subjected to different loading 
conditions. Finally, the proposed formulation is adopted 
to model fracture in anisotropic media considering both 
directional dependent elastic and failure properties of the 
material.

Numerical simulations are performed using an implicit 
non-linear quasi-static scheme in displacement control with 
adaptive step refinement [72, 125]. Moreover, to avoid frac-
ture in compressive zones a further condition of positiveness 

Fig. 14   Continuous function wc(� , � ) for a given material inclined 
at � = 0 , with � = G�=0∕G�=�∕2 = 1.8 and corresponding to different 
values of the exponent n in Eq. 93

Fig. 15   Continuous function wc(� , � ) for a given material inclined at 
� = 0 , with exponent n = 8 in Eq. 93 and corresponding to different 
values of � = G�=0∕G�=�∕2



Anisotropic Continuum‑Molecular Models: A Unified Framework Based on Pair Potentials for…

1 3

of the pairwise deformation s is considered to determine the 
current status of each interaction. Hence, according to [40], 
the degradation function in Eq. 104 applies only to those 
interactions for which s is not negative. This is in a certain 
sense similar to the tension-compression split of the stored 
energy functional usually considered in phase field models 
of fracture [126, 127].

3.1.1 � Crack Nucleation, Kinking and Curving

The first example is a model problem introduced in Bour-
din et al. [129] to highlight the ability of the variational 
approach to fracture [130] to recover initiation phenomena 
and complex crack patterns in solids. The problem has been 
revised in [123] and proposed by a number of authors as a 
paradigmatic example to illustrate the potentiality of compu-
tational frameworks based on the aforementioned theoretical 

scheme [127, 131]. A two-dimensional square, brittle and 
elastic matrix with edge-length a is bonded to a rigid cir-
cular fiber inclusion of diameter a/3, as shown in Fig. 19. 
The fiber remains fixed, while a uniform displacement field 
u2 is imposed on the upper side of the square; the remain-
ing sides are traction free, as specified in [123]. The elastic 
matrix is characterized by Young modulus E = 4000MPa 
and Poisson’s ratio � = 0.2 . The assumed fracture energy 
of the material is instead G = 0.01N/mm, whereas a = 30

mm is adopted for computational convenience [127]. The 
square domain is partitioned into 57600 particles, the grid 
spacing adopted being Δx = a∕240 . Fracture is not allowed 
at constrained borders. This forbids the development of 
fractures exactly at the boundary of the inclusion, and may 
well interpret the confining effects offered in a real experi-
mental set-up by fractional contact or gluing of the sup-
ports [131]. An incremental applied vertical displacement 
Δu2 = Δu∗ = 10−4 mm is considered at each pseudo-time 
step of the simulation, with maximum applied displacement 
at the end of the numerical experiment u∗ = ũ = 0.02mm. 
Results obtained show that the matrix remains purely elastic 
until a crack of finite length appears near the top of the inclu-
sion (Fig. 20. The crack curves almost instantaneously and 
symmetrically around the circular inclusion, the onset of the 
cracking process being brutal because the crack appears at a 
theoretically non-singular point [123]. The crack then con-
tinues to propagate horizontally until complete failure of the 
specimen. The crack trajectory obtained is practically identi-
cal to those obtained by Bourdin et al., as shown in Figs. 19 
and 20. It is interesting to note that, consistently with results 
reported in [123, 131] the crack appear at a small distance of 
the order of the length-scale parameter of the fracture model 
(the horizon � in our case and the regularization length in 

Fig. 16   Normalized reciprocal values of the resulting fracture energy 
as function of the anisotropy angle � , and corresponding to different 
values of the exponent n in Eq. 93 with � = G�=0∕G�=�∕2 = 1.8

Fig. 17   Normalized reciprocal values of the resulting fracture energy 
as function of the anisotropy angle � , and corresponding to different 
values of the ratio � in Eq. 93 with n = 8

Fig. 18   Normalized reciprocal values of the resulting fracture energy 
as function of the anisotropy angle � , with exponent n = 16 in 
Eq. 101 and corresponding to � = 5∕4
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the computational framework of the variational approach to 
fracture [131]). In any case, contrary to the classical varia-
tional approach to fracture, and consistently to the real phys-
ics of brittle materials, the conceived fracture model is non 
symmetric under tension and compression (see Sect. 3.1).

In the second example, a notched plate with hole is exam-
ined and compared to the experimental crack path obtained 
by Ambati et al. [124], and with numerical results obtained 
by a phase-field (PF) model [128]. This is a well-known 
numerical experiment widely used in literature to validate 
computational models for mixed-mode fracture. The layout 
of the problem is shown in Fig. 21 where all the dimensions 
are expressed in terms of the length a = 5mm, with out of 
plane thickness h = 3a . Assuming plane stress conditions, 
the isotropic material parameters adopted are the following: 
Young Modulus E = 5980MPa, Poisson’s ratio � = 0.221 , 
and fracture energy G = 2.28N/mm. The rectangular domain 
is discretized using a regular grid spacing Δx = a∕10 , which 
leads, after removing particles from holes, to a model com-
posed of 29345 particles.

Zero displacement boundary conditions u1 = u2 = 0 , 
are imposed to all particles in the boundary of the lower 
pin, whereas the vertical displacements of all particles in 

the boundary of upper pin are kinematically constrained to 
have the same vertical displacement u2 = u∗ [128]. At each 
pseudo-time step of the simulation an initial incremental 
applied vertical displacement Δu2 = Δu∗ = 10−3 mm is 
considered, which may be progressively reduced by the 
adaptive-pseudo time step refinement algorithm to reach 
numerical convergence. The maximum applied displace-
ment at the end of the simulation is u∗ = ũ = 1.2mm. As 
shown in Fig. 22, a main crack develops from the notch. 
The crack then curves and reach the large off-centered hole. 
Later, a secondary straight crack appears from the hole to 
the vertical right edge. Results obtained agree very well with 
experimental data reported in Fig. 21, where the envelope 
of the experimental crack paths found for the four tested 
samples by Ambati et al. [124] is marked by the gray area. 
Moreover, it is noted from Fig. 23 that load-displacements 
curves corresponding to different CM density parameter 
m = �∕Δx are consistent with results by Kakouris & Trian-
tafyllou [128] obtained using a phase-field model with the 
same displacement step increment, boundary conditions and 
material properties.

In the third set of numerical experiments the problem 
of crack kinking in anisotropic elastic bodies is examined. 
The layout of the problem is the same as in Fig. 5, and used 
for validating the anisotropic elastic model in Sect. 2.3.1. 
By increasing the magnitude of the prescribed far-field 
displacements given by Eqs. 80 and 81 so that the fail-
ure/fracture criterion is satisfied, the “pre-existing” crack 
of Fig. 5) extends in a direction dictated by the angle �K 
(Fig. 24). Given a mode mixity ratios �K = tan−1(K∞

II
∕K∞

I
) , 

the crack extension direction depends on the elastic ani-
sotropy of the material and may be influenced also by 
potential anisotropy and spatially random distribution of 
its surface energy [40]. For the purposes of this discussion, 
and in order to guarantee consistency among the results 
compared and corresponding to different materials, illus-
trative examples assume always anisotropic elasticity, with 

Fig. 19   Layout and final crack path (yellow line) of the two-dimen-
sional traction experiment reported in [123]

Fig. 20   Elastic matrix with inclusion: Normalized vertical displacement fields evidencing the evolution of the cracking process in four subse-
quent steps ( S.1 ∶ u∗ = 0.9920ũ ; S.2 ∶ u∗ = 0.9926ũ ; S.1 ∶ u∗ = 0.9927ũ ; S.1 ∶ u∗ = 0.9929ũ)
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homogeneous and (directionally) uniform resistance to 
fracture. This is similar to the approach used in [108, 116].

The simulations are performed considering a square-
symmetric material and a fully anisotropic material sub-
jected to several mode mixity ratios �K ranging from 0◦ to 
90◦ . The orthotropic material of square-symmetry is a sili-
con crystal of orientation ⟨100⟩ , whose two-dimensional 
plane stress elastic tensor reads [132]

and whose resistance to fracture is assumed uniform within 
the surface plane considered [132].

The fully anisotropic material instead is character-
ized by same ratio among elasticities as that considered 
in Sect. 2.3.1 (assuming C = 100 GPa). Specifically, the 
elastic tensor in this case is

The magnitude of the K-field displacements applied at the 
circumferential boundary of the near tip-region is progres-
sively increased until a small extension of the main crack 
appears. Such crack extension should be on one hand small 
enough not to alter significantly the K-field overall condi-
tions transmitted by the boundary layer during crack propa-
gation, and on the other should be sufficiently large to allow 
for its direction measurement. Taking into account these 
considerations, a square of edge a/2 and centered at the 
crack-tip is taken as a reference for kinking angle �K meas-
urement. The computed kinking angles are also compared 
with theoretical predictions by maximum-hoop stress inten-
sity factor criterion (HSIF-criterion) [108, 133], according 
to which, the crack will extend along a path whose tangent 
forms an angle perpendicular to the maximum circumferen-
tial (hoop) stress. Actually, this fracture criterion relies on 
the definition of two stress intensity factors; the so-called 
“hoop” K�� (HSIF) and “shear” Kr�(SSIF) stress intensity 
factors, respectively (cfr. Sect. 2.3.1 and Fig. 5) [108, 134]. 
The first involves the circumferential stress and the latter the 
shear stress, HSIF and SSIF being (for anisotropic materials) 
more convenient quantities than the commonly used Modes I 
and II stress intensity factors, since they uncouple the Modes 
I and II on planes at suitable angles relative to the main crack 
[108, 135]. Kinking angles corresponding to HSIF-criterion 
can be determined analytically as function of the apparent 
stress intensity factors ( K∞

I
 , K∞

II
 ), and material parameters, 

as specified in [40, 108]. Results obtained are reported in 
Figs. 25, 26 and 27. It is noted that CM crack extension 

(106)� =

⎡
⎢⎢⎣

141.1 39.3 0.00

39.3 141.1 0.00

0.00 0.00 79.6

⎤
⎥⎥⎦
GPa

(107)� =

⎡⎢⎢⎣

100.0 20.0 10.0

20.0 80.0 16.7

10.0 16.7 33.4

⎤⎥⎥⎦
GPa

directions are consistent with HSIF �K angle predictions. 
Another consideration is that, for the specific materials con-
sidered in this section, the maximum energy release rate 
criterion (G-criterion) [116, 136] leads to similar predicted 
kinking angles. Moreover, it is noted that larger values of 
the density parameter m = �∕Δx in numerical simulations 
do not lead to considerable differences in terms of crack 
extension directions computed by the CM model (Figs. 25, 
26 and 27).

3.1.2 � Anisotropic Fracture in Cortical Bone

In this section, the CM formulation is adopted to model frac-
ture in cortical bone tissues. Bone is a complex hierarchical 
composite which has natural mechanisms to resist fracture 
[137]. Actually, the simultaneous activation of toughening 
mechanisms by collagen fibres, lamellar structure of col-
lagen fibres and osteon (Haversian canals) at various length 
scales provides enduring strength and toughness (Fig. 28).As 
a result, the material exhibits specific anisotropic properties 
which limit the possibility of formation of fracture planes 
normal to the anatomical axis of bone which defines the so 
called longitudinal direction [137].

Numerical analyses are performed to simulate experi-
mental crack paths obtained by Behiri and Bonfield [138, 
139], which highlight the orientation dependence of the frac-
ture properties of bovine cortical bone tissues. The authors 
used the compact tension (CT) test to produce stable frac-
ture propagation in fluid-saturated specimens at various 

Fig. 21   Notched plate with hole: geometry and boundary conditions 
(left); envelope of the experimental crack paths [124], and final crack 
path obtained by the CM model (right)
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orientations � of the material, whose principal directions 
are those parallel and perpendicular to the osteons (Fig. 28).

Since cortical bone is, in general, stronger in the longitu-
dinal direction, the load conditions used in CT tests result in 
final crack paths almost parallel to the osteons [63, 72, 139].

Orthotropic elastic moduli of bovine bone were obtained 
by Van-Buskirk et al. adopting a pulse transmission ultra-
sound method [140]. Assuming the principal orthonormal 
basis of unit vectors �̌1 and �̌2 directed along the longitudinal 

ľ , and transverse radial ř directions (Fig. 28), respectively, 
the two-dimensional elastic tensor in compact form is

(108)�̌ =

⎡⎢⎢⎣

25.00 5.89 0.00

5.89 16.25 0.00

0.00 0.00 6.65

⎤⎥⎥⎦
GPa

Fig. 22   Notched plate with hole: Damage d evolution in four subsequent steps of the numerical experiment ( S.1 ∶ u∗ = 0.326mm ; 
S.2 ∶ u∗ = 0.329mm ; S.3 ∶ u∗ = 0.702mm ; S.4 ∶ u∗ = 1.201mm)

Fig. 23   Notched plate with hole: Load-displacement curves obtained 
by the CM model using different density parameters m = �∕Δx . The 
gray dashed line denotes the result obtained using a phase-field (PF) 
approach [128]

Fig. 24   Crack kinking in anisotropic materials: Layout of the prob-
lem, horizontal displacement field (normalized with respect to the 
maximum displacement ũ1 ), and kinked crack obtained consider-
ing the orthotropic material of square symmetry under pure mode II 
( �K = 90◦)
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The orientation of the principal material reference system 
with respect to the reference basis is denoted, as usual, by 
the anisotropy angle � (Fig. 28). Regarding fracture prop-
erties, energy-release rates G�=0 and G�=�∕2 as defined in 
Sect. 3 are calculated, consistently with the elastic moduli 
adopted, by [72, 116]

where Siiii, i = 1, 2 are the conventional compliance moduli 
and �1,�1 or �2,�2 are the conjugate pairs root of Eqn. 79 
with S1112=S2212 = 0 . According to Fig. 13, the critical stress 
intensity factors Kcľ and Kcř in Eq. 109 refer to longitudinally 
( � = 0 ) and transversely ( � = �∕2 ) oriented bovine cortical 
tissues, respectively. The values Kcľ = 6.5MPa ⋅m1∕2 and 
Kcř = 4.0MPa ⋅m1∕2 adopted in this study are those meas-
ured experimentally by Behiri and Bonfield using grooved 
CT specimens of bovine bone [138, 139]. Same values can 
be also found in [63]. In fact, elastic and failure properties of 
this specific material, homogenized as a Cauchy orthotropic 
material, have been considered in other previous studies for 
validation of anisotropic models for fracture based on pair-
potentials [63, 64]. However, differently from [63, 64], the 
model here considered does not suffer of restrictions affect-
ing the number of independent micromoduli which define 
the effective in-plane elastic orthotropy of the material [72]. 
This allows to set all the four elastic macro-moduli given by 
the experimental study by Van-Buskirk et al. [140] with-
out introducing approximations imposed by the presence of 
internal constrains. Moreover, the anisotropic fracture model 
adopted in this work is based on the definition of a energy-
based failure criterion, with the advantage of decoupling 
elasticity from failure properties of the material in the ana-
lytical identification of the model parameters. Compact ten-
sion tests on cortical bone specimens at different orientations 
� , as performed by Behiri and Bonfield [138], have been 

(109)
G𝜁=0 =

1

2
S2222Im[−K2

cľ
(𝜇1 + 𝜇2)𝜇1𝜇2]

G𝜁=𝜋∕2 =
1

2
S1111Im[−K2

cř
(𝜇1 + 𝜇2)𝜇1𝜇2]

Fig. 25   Crack kinking in anisotropic materials: Crack extension 
directions obtained considering the orthotropic material of square 
symmetry under mode I and mixed mode loading ( �K = 70◦ ). Filled 
triangles denotes the theoretical predictions by HSIF-criterion

Fig. 26   Crack kinking in anisotropic materials: Crack extension directions obtained considering the fully anisotropic material under different 
mixity factors �K . Filled triangles denotes the theoretical predictions by HSIF-criterion
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simulated in displacement control and quasi-static condi-
tions [125] using the conceived anisotropic CM formulation. 
The microelastic moduli are calculated using Eqs. 65–70, 
the micromoduli functions being defined by Eqs. 77 and 
78. Considering the peculiarities of this material, critical 
micropotential energy function was determined using Es. 
93 along with Eq. 99 [72]. The results, obtained adopting an 
almost uniform grid spacing Δx = 0.3 mm and m = 5 result-
ing in a model of 12312 particles, are shown in Figs. 29, 
30, and 31 along with experimental final crack paths cor-
responding to angles of anisotropy � = 0 , � = �∕4 , � = �∕3 
and � = �∕2 . The crack paths predicted using the CM model 
are in very good agreement with experimental data [138]. As 
can be seen from Fig. 29, experiments show quite complex 
fracture patterns especially in case of � = �∕4 and � = �∕2 . 
The continuum-molecular model is able to describe the pro-
gressive reduction of the average inclination angle of the 
fracture surface in cortical bone specimens inclined at �∕4 , 
as well as the initial deflection that the crack profile under-
goes before propagating straight along the strongest direc-
tion in case of � = �∕2 . It is noted that even with coarser 
meshes, crack profiles correlate well with experimental data 
[72]. In case of � = 0 , experimental and numerical data 
show an almost collinear extension of the pre-existing main 
crack of the CT specimen. The theoretical peak load P can 
be then calculated by [63, 141]

where h is the thickness, ă is a geometrical parameter 
depicted in Fig. 28, whereas Y = 6.554 is a non-dimensional 

(110)P =
Kcř hă

1∕2

Y

constant depending on the geometry of the specimen [141]. 
The peak load P = 98N is determined from Eq. 110 for 
Kcř = 4.0MPa ⋅m1∕2 and thickness h = 1 mm. This theo-
retical prediction, calculated analytically on the basis of 
explicitly given experimental data [141], is in very good 
agreement with the peak load value PCM = 96 N obtained 
by the CM model (Fig. 32).

4 � Diffusion‑Based Problems: Heat Transfer 
and Electrical Conduction

Let us consider the two-dimensional continuum solid body Ω 
described in Sect. 2, focusing here on its thermal conductive 
properties. Material points � and �′ within a finite distance � , 

Fig. 27   Crack kinking in anisotropic materials: Kinking angles �K 
obtained considering the orthotropic material of square symmetry 
(left) and the fully anisotropic material (right) subjected to general 

Mixed-mode loading. A comparison with analytical predictions by 
HSIF criterion is also proposed

Fig. 28   Layout of the compact tension test on cortical bone speci-
mens considered for numerical experiments (unit thickness h is 
assumed)
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are postulated to interact with each other through pairwise 
exchanges of heat energy, function of pairwise conductivity 
properties and pairwise thermal parameters. The homogene-
ous body configuration is now described by the temperature 
field T(�, t) defined over Ω . The rate of introduction of heat 
energy per unit volume is denoted by �T(�, t) . The constant 
parameter cT  denotes instead the specific heat capacity of 
the material. The thermal diffusion model is based on the 
definition of a pairwise scalar thermal parameter defined by

that can be considered as the equivalent of a pairwise defor-
mation measure in elasticity, and is function of the bond 
temperature gradient g(�, ��, t) = g(�, ��, t)� , with � as 
defined in Sect. 2. We define a specific pair potential func-
tion for heat transfer

such that the thermal response function or pairwise thermal 
action (having dimensions of a heat current per unit volume 
squared) can be derived as

(111)g(�, ��, t) =
[T(��, t) − T(�, t)]

‖�‖ =
(T� − T)

‖�‖

(112)wT(�, �
�, t) =

ΛkTg
2

2
=

ΛkT(T
� − T)2

2‖�‖2

(113)fT(�, �
�, t) =

�wT

��T
=

ΛkT g

‖�‖ =
ΛkT(T

� − T)

‖�‖2

where �T = (T� − T) , while Λ = Λ(‖�‖) is the attenu-
ation function defined in Sect. 2. In Eqs. 112 and 113, 
kT = kT(�, �

�) is the pairwise conductivity (assumed not to 
depend on temperature for simplicity), namely microconduc-
tivity of the heat transfer model, having the dimensions of a 
thermal conductivity per unit volume. As for the microelas-
tic functions in elasticity, the microconductivity function in 
the general case of non-isotropic materials depends on the 
spatial orientation � = Arg

(
� ⋅ �1 + �� ⋅ �2

)
 of the pairwise 

interaction considered, such that kT(�, ��) = kT(�).
The pairwise micro-heat flux density (vector) can be 

then defined according to Fourier’s law, particularized to 
our case, as

The thermal macro-potential density function is obtained 
by integrating the pair potential wT  over the horizon region 
H� of radius �

The integral I  can be defined [142–144]

(114)qT(�, �
�, t) = −ΛkT g

(115)WT(�, t) =
1

2 ∫H�

wT(�, �
�, t) d��

(116)I(t) = ∫Ω

{WT(�, t) − [T𝜔T(�, t) − T𝜌cTṪ]}d�

Fig. 29   Compact tension test on bovine cortical bone tissues: Experi-
mental crack paths [138] (first row and gray-filled triangles) and nor-
malized vertical displacement map of cracked specimens obtained by 

CM anisotropic model (second row) corresponding to different ani-
sotropy angles � [72]
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If we let δI = 0 in Eq. 116, while assuming Ṫ  as invariant 
[142, 145, 146], after some manipulations, the field equation 
for time-dependent heat transfer at � can be obtained8

where fT(T, T
�, �, ��) is given by Eq.  113. Equation  117 

represents the conservation of energy law for a continuum-
molecular model based on pair potentials. Steady-state con-
ditions are obtained setting the right term of Eq. 117 equal 
to zero.

For the steady-state electrical conduction problem we can 
consider the same formal structure of the heat-transfer prob-
lem, replacing Eq. 111 by

(117)∫
H�

fT(T, T
�, �, ��) d�� + 𝜔T(�, t) = 𝜌cTṪ(�, t)

(118)e(�, ��, t) = −
[�(��, t) − �(�, t)]

‖�‖ = −
(�� − �)

‖�‖

where � denotes the electric potential  while t repre-
sents here the pseudo-time step in equivalent quasi-
static conditions. The pairwise bond electric field is then 
e(�, ��, t) = e(�, ��, t)� . The electrical micropotential is 
instead defined as

where ke is the microconductivity having the dimension of 
an electric conductivity per unit volume. The electrical pair-
wise interaction between pairs or material points has the 
dimensions of an electric current per unit volume squared, 
and can be derived in a manner analogous to that of the pair-
wise thermal interaction. The first derivative of the micropo-
tential function in Eq. 119 gives

(119)we(�, �
�, t) =

Λkee
2

2
=

Λke(�
� − �)2

2‖�‖2

(120)fJ(�, �
�, t) =

Λkee

‖�‖ =
Λke(�

� − �)

‖�‖2

Fig. 30   Compact tension test on bovine cortical bone tissues: Dam-
age and crack path evolution in four subsequent steps and obtained 
setting � = �∕4 ( S.1 ∶ Δu∗ = 0.151mm ; S.2 ∶ u∗ = 0.183mm ; 

S.3 ∶ Δu∗ = 0.248mm ; S.4 ∶ Δu∗ = 0.355mm ). The experimental 
crack profile from [138] is denoted by filled triangles

Fig. 31   Compact tension test on bovine cortical bone tissues: Dam-
age paths obtained by CM model in the case of � = 0 and � = �∕2

Fig. 32   Compact tension test on bovine cortical bone tissues: Force-
displacement curve obtained by CM model in the case of � = 0 . The 
violet dashed line denotes the theoretical peak-load

8  Alternatively, Eq.  117 can be derived using directly the unsteady 
form of the principle of virtual temperatures [147] from Galerkin pro-
cedure.
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The balance equation at � is

where �e is the net current per unit volume at � . The cur-
rent density and the heat flux can be derived as non-primary 
quantities using the approach described in [44, 53].

4.1 � Discretized Equations: Transient 
and Steady‑State Problems

Using a meshfree discretization procedure, the domain Ω is 
divided, as usual, into N sub-domains Δ�p associated to parti-
cles p. Particles q belonging to the p-centered horizon region 
Hp are then selected as described in the previous sections. Con-
sidering the heat-transfer problem, the primary scalar field var-
iables of the material particles p and q are denoted by zp = Tp 
and zq = Tq , respectively. If the particle q ∈ Hp , the primary 
field variables can be collected column-wise in vector form as

The pairwise compatibility equation relating the pairwise 
thermal parameter to the interacting particles temperatures 
can be written in compact form as

where

The scalar pairwise constitutive equation of the discretized 
system is instead

where kpq
T

 is the microconductivity characterizing the spe-
cific interaction between particles p and q. The algebraic 
system of governing equations of the transient heat transfer 
problem and the equivalent stiffness operator can be derived 
invoking δI = 0 subject to the condition specified above 
(see [142, 146]), and referred to a discretized system. Hence, 
for the third term of Eq. 116, we obtain

(121)∫
H�

fJ(�,�
�, �, ��) d�� + �e(�, t) = 0

(122)�pq =

{
Tp
Tq

}

(123)gpq = �pq �pq

(124)�pq =
1

‖�‖pq
�
−1 1

�

(125)f
pq

T
=

Λpq k
pq

T

‖�‖pq �pq�pq

(126)

δ

[ N∑
p=1

Tp𝜌pc
p

T
ṪpΔ𝜐p

]

=

N∑
p=1

δTp𝜌pc
p

T
ṪpΔ𝜐p

where the variation is taken keeping the quantity Ṫp fixed 
[142, 145, 148]. The variation of the second term of Eq. 116 
can be treated in discrete form as

where �Tp represents the heat source term at particle p. 
Finally, for the macro-potential term in Eq. 116 we can write

where Dpq

T
= Λpqk

pq

T
 , while H, and �pq have been defined in 

Sect. 2.1. Therefore, making use also of Eqs. 122–124, we 
obtain

where �T
pq

=
[
�1 �1

]⊤ is a specific topology incidence vec-
tor for point-wise defined vectors and scalars. As detailed in 
Sect. 2, the subscripts p and q are associated with different 
degrees of freedom of the system, thus the assembling sym-
bol in Eq. 129 denotes that the algebraic objects have to be 
assembled properly through superposition.

After global assembling, Eq. 129 can be rewritten in 
compact form as

where �T  is given by

whereas the equivalent stiffness operator corresponding to 
the whole body is given by

and the global heat source vector is

Moreover, the global primary field vector is given by

(127)δ

[ N∑
p=1

−Tp�TpΔ�p

]
= −

N∑
p=1

δTp�Tp Δ�p

(128)
δ

[
∫Ω

WT d�

]
∼ δ

[
1

2

N∑
p=1

H∑
q=1

1

2

�⊤
pq

[
�⊤
pq
D

pq

T
�pq

]
�pq 𝛼pqΔ𝜐q Δ𝜐p

]

(129)

(130)�T�̇ +�T� = �T

(131)

(132)

(133)
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In steady-state problems, Eq. 130 reduces to �T� = �T  . The 
steady-state discretized equations can be applied directly to 
steady-state electrical conduction, provided that the primary 
field in this case is represented by the electric potential. Eq 
122 is then replaced by

Moreover, due to the convention used for the direction of the 
electric field, Eq. 124 should be multiplied by minus one.

4.2 � Micro–Macro Conductivities

In the classical theory of homogeneous anisotropic materials, 
the thermal (electrical) conductivity is direction-dependent 
and the heat-flux (electric current density vector) is not nec-
essarily parallel to the temperature gradient (electric field).

Given the usual reference orthonormal basis 
{
�1, �2

}
 , the 

classical constitutive equation (Fourier’s law) relating the 
heat flux q and the thermal potential (temperature) gradient 
�T(�, t) = � reads

hence as

Considering a generic basis 
{
�̂1, �̂2

}
 rotated by an angle � 

with respect to the reference basis, Eq. 137 can be rewrit-
ten as

where q̂ = �⊤
T
q and 𝝇 = �⊤

T
𝝇 , with

The thermal conductivity tensor �̂T  in Eq. 138 is defined as

According to Eqs. 138–140, the off-axis conductivity K̂T11
 

can be written as function of � , in terms of the three con-
ductivities KT11

 , KT12
 and KT22

 by

Z (134)

(135)�pq =
{
𝜙p 𝜙q

}⊤

(136)q = −�T�

(137)
{

q1
q2

}
= −

[
KT11

KT12

KT12
KT22

]{
�1
�2

}

(138)q̂ = �̂T𝝇,

(139)�T =

[
cos� − sin�

sin� cos�

]

(140)�̂T =

[
K̂T11

K̂T12

K̂T12
K̂T22

]
= �⊤

T
�T�T

(141)
K̂T11

(𝜓) =KT11
cos2 𝜓 + KT22

sin2 𝜓

+ 2KT12
sin𝜓 cos𝜓

As in Sect. 2.2, to preserve material symmetries, we can 
assume here that the microconductivity characterizing each 
interaction of the proposed continuum-molecular model 
exhibits a directional dependency as K̂T11

(𝜓) described by 
Eqs. 141

where KT11
 and KT22

 are the micro-conductivities of bonds 
aligned with the unit vectors �1 and �2 , respectively, whereas, 
KT12

 is the microcondictivity related to the non-symmetric 
conductive properties in anisotropic materials. Thus, three 
independent microcothermal moduli are defined for repro-
ducing the overall conductive behavior of a two-dimensional 
anisotropic solid. The relation between the microthermal 
moduli, KT11

 , KT22
 , KT12

 (For electrical conduction, the three 
micro-conductivity parameters or microelectrical moduli 
are denoted by Ke11

 , Ke22
 , Ke12

 ) and the classical macro-con-
ductivities of anisotropic continua is obtained following a 
general approach consistent with that detailed in Sect. 4.2.

Consider a general time-independent two-dimensional 
homogeneous thermal gradient of components �1 , �2 . Under 
these conditions, g(𝜓) = 𝜍̂1(𝜓) , thus the pairwise thermal 
measure g(�) of a fiber inclined at � , is related to the homoge-
neous potential-gradient components �i according to 𝝇 = �⊤

T
𝝇 . 

Hence, we have

where, consistently with Eq. 53, g(�) = �n(�) . Substituting 
Eq. 143 in Eq. 115, and assuming kT(�) by Eqs. 142, Eq. 115 
gives

whose general solution is

where h denotes, as usual, the out of plane thickness and NT  
is a scalar-valued function of the horizon � , related to the 
specific influence function Λ considered. In case of dimen-
sionless influence functions, NT  can be expressed as

(142)
kT(�) =KT11

cos2 � +KT11
sin2 �

+ 2KT12
sin� cos�

(143)g(�) = �1 cos� + �2 sin�

(144)

WT =
1

2 ∫H�

wT(�) d��

=
h

4 ∫
�

0

‖�‖∫
2�

0

�
ΛkT(�)g2(�)

�
d� d‖�‖

=
h

4 ∫
�

0

‖�‖∫
2�

0

Λ
�
�1 cos� + �2 sin�

�2
�
KT11

cos2 � +KT22
sin2 �

+ 2KT12
sin� cos�

�
d� d‖�‖

(145)
WT = hNT[�

2
1
(3KT11

+KT22
) + 4KT12

�1�2

+ �2
2
(KT11

+KT22
)]
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where ΞT ∈ ℝ
+ . In the following, as for the mechani-

cal model, we assume without loss of generality that 
Λ(‖�‖) = 1 , thus

The thermal macro-potential function WT  has the dimen-
sions of a rate of entransy per unit volume, which is related 
to the specific heat transfer ability of the material [149].

The corresponding quantity in classical continuum phys-
ics can be computed by

Comparing Eqs. 148 and 145, and collecting the terms mul-
tiplying the same temperature gradient components �i , three 
independent equations expressing the macro-conductivities 
in terms of micro-conductivities are obtained

where the constant CT  is

By solving the algebraic system given by Eqs. 149–151 we 
obtain

In the special case of isotropy, we have KT12
= 0 and 

KT11
= KT22

= KT  . Hence KT12
= 0 and KT11

= KT22
= KT  , 

where

(146)NT = �2ΞT

(147)ΞT =
�

32

(148)
PT =

1

2
� ⋅ �T�

=
1

2
(KT11

�2
1
+ 2KT12

�1�2 + KT22
�2
2
)

(149)KT11
= CT(3KT11

+KT22
)

(150)KT12
= 2CTKT12

(151)KT22
= CT(KT11

+ 3KT22
)

(152)CT = 2hNT =
�h�2

16

(153)KT11
=

2(3KT11
− KT22

)

�h�2

(154)KT22
=

2(3KT22
− KT11

)

�h�2

(155)KT12
=

8KT12

�h�2

(156)KT = kT =
4KT

�h�2

which is consistent with results for isotropic materials 
reported in [44, 53] and obtained using different approaches 
and procedures.

Given the principal material reference defined by the 
orthonormal basis 

{
�̌1, �̌2

}
 , inclined at � with respect to the 

reference basis, Eq. 142 takes the equivalent form

where

ǨT11
 and ǨT22

 being the eigenvalues of the thermal conductiv-
ity tensor �T  , that according to the Jacobi rotation method, 
are given by

The angle of anisotropy � denoting the orientation of the 
principal material axes is instead

Adopting Eqs. 157–162, the effective material behavior is 
defined by the two microconductivities KTii

, i = 1, 2 , and 
the anisotropy angle � . As for elasticity, the continuum-
molecular model provides a mechanism-based description 
of direction-dependent conductive properties of materials, 
as the overall anisotropy is the result of pairwise properties 
assigned at a lower scale.

In the eventuality of negative values of the micro-con-
ductivity moduli resulting from Eqs. 158–159, the equiv-
alent stiffness operator may result non-positive definite. 
This may introduce material instability, especially in pres-
ence of non-linearities. At this point it should be reminded 
that Eq. 157 results from the assumption of trigonometric 
dependency of kT(�) on � (for a given anisotropy angle) as 
that of K̂T11

(𝜓) . However, other different circular functions 
describing the direction-dependent microconductivity can 
be assumed, provided that the material symmetries are 
respected. For instance, a more general description of 
kT(� , �) as function of the bond spatial orientation can 

(157)kT(� , �) = KT11
cos2(� − �) +KT22

sin2(� − �)

(158)KT11
=

2(3ǨT11
− ǨT22

)

𝜋h𝛿2

(159)KT22
=

2(3ǨT22
− ǨT11

)

𝜋h𝛿2

(160)
ǨT11

=KT11
cos2 𝜁 + KT22

sin2 𝜁

+ 2KT12
sin 𝜁 cos 𝜁

(161)
ǨT22

=KT11
sin2 𝜁 + KT22

cos2 𝜁

− 2KT12
sin 𝜁 cos 𝜁

(162)� =
1

2
tan−1

[
2KT12

(KT11
− KT22

)

]
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be obtained adopting a trigonometric law similar to that 
of Eq. 93

where n = 2N , with N ∈ ℕ
+ (Eq. 157 is got assuming n = 2 

in Eq. 163). Larger values of the exponent n are associated 
with higher order anisotropic microconductivity functions 
kT(� , �) , whose moduli KT11

 and KT22
 have to be calculated, 

as usual, to reproduce the effective conductive properties 
of a material. This reflects itself in the possibility to model 
materials with different levels of effective anisotropy, as 
Eq.  163 leads to non-negative micro-conductivities for 
ǨT11

∕ǨT22
≤ n + 1 . As an example, assuming n=4 we obtain

whereas n = 12 gives

Therefore, adopting Eqs. 164–165 and 166–167 together 
with Eq. 163, the model is able to handle overall anisotropy 
ratios ǨT11

∕ǨT22
 up to 5 and 13, respectively, while avoiding 

negative parameters [72]. Different exponents n with their 
corresponding positive-definite micro-conductivities lead, in 
principle, to same results since ke1 and ke2 are, in any case, 
derived analytically to match the effective anisotropy of 
the material. However, given an anisotropy ratio ǨT11

∕ǨT22
 , 

incremental values of n result in microconductivity functions 
kT(� , �) characterized by a progressively faster transition 
between its extremum values. For this reason, when consid-
ering discrete lattices of particles instead of material points 
in a continuum, the exponent n should not be too large with 
respect to ǨT11

∕ǨT22
 , in such a way to ensure an accurate 

angular discretization of the microconductivity function 
for a given density parameter m = �∕Δx and arbitrary grid 
orientations (see Sect. 2.2.1). Another consideration is that 
when n = 2 in Eq. 163, the function kT(� , �) takes the form 
of that proposed in [18, 63] for elasticity models based on 
pairwise central-forces. Moreover, the directional-depend-
ent function obtained using eight-order spherical harmonic 
expansions proposed in [63] for two parameters orthotropic 
elasticity, can be obtained from the proposed two parameters 
anisotropic function by setting n = 12 in Eq. 163.

(163)kT(� , �) = KT22
+ (KT11

−KT22
)cosn(� − �)

(164)KT11
=

7ǨT11
− 3ǨT22

𝜋h𝛿2

(165)KT22
=

5ǨT22
− ǨT11

𝜋h𝛿2

(166)KT11
=

991ǨT11
− 595ǨT22

𝜋h𝛿2

(167)KT22
=

13ǨT22
− ǨT11

𝜋h𝛿2

As stated before, the equations derived in this subsection 
apply directly to electrical conduction and can be extended 
to other diffusion-based problems. Consistently with previ-
ous sections, in what follows the density parameter is m = 5 , 
whereas the volume method is adopted as surface correction 
algorithm.

4.3 � Benchmark Problems

In order to demonstrate the effectiveness and accuracy of 
the CM model for diffusion-based problems in anisotropic 
materials, two illustrative numerical examples are consid-
ered in this section. The first example consists of a Dirichlet 
problem on a circular anisotropic two-dimensional domain, 
whereas the second set of numerical experiments deals with 
damage sensing and crack-length determination via potential 
drop technique in bone tissues.

4.3.1 � Heat Transfer in an Anisotropic Unit Disc

Given the usual reference basis 
{
�1, �2

}
 , let us consider 

an anisotropic medium with thermal conductivity tensor 
defined by [150, 151]

According to Eq. 162, the principal material reference sys-
tem defined by 

{
�̌1, �̌2

}
 is inclined at � = �∕8 with respect to 

the reference basis (Fig. 33). The Dirichlet problem is solved 
in a circular plane domain Ω =

{
(x1, x2) ∶ x1

2 + x2
2 < 1

}
 of 

unit radius a. The following temperature distribution can be 
shown to satisfy the corresponding governing heat conduc-
tion equation [150]

which leads to inhomogeneous temperature gradient field 
defined over the spatial circular domain Ω . Adopting a 
regular grid spacing Δx = a∕100 , the circular domain is 
discretized into 31428 particles. Micro-macro conduc-
tivities correspondence is established by Eq. 163, where 
n = 34 is adopted, the effective anisotropy ratio  being 
ǨT11

∕ǨT22
≈ 33.96 . Eq. 169 is used to impose the boundary 

conditions to a circumferential boundary layer of thickness 
� = mΔx = a∕20 . Results provided for temperature T  distri-
bution are reported in Figs. 34 and 35, where numerical solu-
tion is compared with exact analytical solution from Eq. 169. 
As for stress in elasticity, pairwise constitutive equations in 
continuum-molecular formulations for heat transfer do not 
involve a point-wise defined heat flux. However, considering 

(168)�T =

[
5 2

2 1

]
W∕(mK)

(169)T(x1, x2) =
x1

3

5
− x1

2x2 + x1x2
2 +

x2
3

5
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for simplicity a discrete lattice of particles, it can be com-
puted as postprocessing quantity by

where HT+ denotes the number of particles q within the 
p-particle’s horizon that have higher temperature with 
respect to particle p [48, 53].

In classical continuum physics, the heat flux vector is 
instead given by Eq. 136, which considering Eqs. 168–169 
gives

where

The heat flux magnitude ‖q‖ computed by CM model using 
Eq. 170 within the circular domain under consideration is 
reported in Fig. 36. Exact solution obtained from Eqs. 171 
and 172 is compared with numerical predictions in Fig. 37, 
which demonstrates the consistency between Eqs. 136 and 
170.

4.3.2 � Damage Sensing in Conductive Tissues

The internal structure of bone affects not only its mechani-
cal properties but also its effective conductive behavior 
[72, 152]. Reddy and Saha [153] evaluated the electrical 
conductivity of compact (cortical) bone in three orthogonal 

(170)q(�p) =

HT+�
q=1

kT(Tq − Tp)

‖�‖pq
�pq

‖�‖pq Δ�q

(171)q(x1, x2) = −

{
5 �1(x1, x2) + 2 �2(x1, x2)

2 �1(x1, x2) + �2(x1, x2)

}

(172)
�1(x1, x2) =

3x1
2

5
− 2x1x2 + x2

2

�2(x1, x2) = −x2
2 + 2x1x2 +

3x2
2

5

directions parallel to the principal directions (e.g. longitu-
dinal, radial, and circumferential) of a long bone, indicating 
the overall anisotropic character of this material.

The electrical properties were found to be substantially 
dependent on bone moisture content and signal frequency 
applied to the test specimen, but essentially frequency 
independent below 10 kHz [153]. According to Reddy and 
Saha, in fluid-saturated (wet) compact bovine bone at low-
frequency or DC conditions, the effective resistivity in the 
radial direction is roughly three times that in the longitudinal 
direction [153], which is consistent with Chakkalakal et al. 
results [152]. In particular, as reported in [153], electrical 
resistivity in the radial direction is 𝜌ř=540 Ω m, whereas in 
longitudinal direction 𝜌ľ=170 Ω m, with 𝜌ř∕𝜌ľ ≈ 3.2 . Such 
electrical resistivity anisotropy is expected, compact bone 
material being characterized by higher porosity in the lon-
gitudinal direction due to the presence of Haversian canals 
[153].

Considering the principal orthonormal basis of unit vec-
tors �̌1 and �̌2 directed along the longitudinal ľ and transverse 
radial ř directions (Fig. 38), the two-dimensional conductiv-
ity tensor is then given by

The angle of anisotropy is instead denoted by � (Fig. 38). 
We revisit here the numerical experiment in Sect. 3.1.2 by 
coupling the CM mechanical and electrical conduction mod-
els in the hypothesis of small deformations, [53] to study 
the effect of evolving discontinuities in cortical bone tissues 
effective conductive behavior. Potential drop crack length 
determination technique [154, 155] is used to correlate elec-
trical output data to mechanical damage parameters.

The electromechanical setup under consideration is 
detailed in Fig. 38, which shows the arrangement of direct 
electrical current input leads and potential probe output 
leads. Dimensions of the specimens, mechanical boundary 
conditions, elastic and fracture parameters of the material as 
well as discretization parameters of the model are the same 
considered in Sect. 3.1.2.

The electrical microconductivity function ke(� , �) is 
determined using Eqs. 163, 164 and 165. The set of dis-
cretized equations of the quasi-static coupled electro-
mechanical problem under consideration are obtained by 
superposition of Eqs. 35 and 130 neglecting inertial and 
time dependent terms. In particular, the coupled stiffness 
operator characterizing each pairwise interaction is given by

where, according to Eqs. 37 and 132

(173)�̌e =

[
1∕𝜌ľ 0

0 1∕𝜌ř

]
S∕m

(174)�em
pq

= μ
[
�̆m�pq + �̆e�

e
pq

]

Fig. 33   Steady-state heat transfer in an anisotropic unit disc: Geom-
etry of the domain and boundary conditions considered
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while �̆m and �̆e are specific topology incidence matrices 
for coupled problems [72]. As can be seen from Eq. 174, the 
pairwise scalar valued function μ defined in Sect. 3 affects 

(175)
�pq =

‖�‖pq
2

�
�⊤

pq
�⊤
pq
�pq�pq�pq𝛼pqΔ𝜐q Δ𝜐p

�

�e
pq

=
1

2

�
�⊤
pq
D

pq

T
�pq𝛼pqΔ𝜐q Δ𝜐p

�

also the conductivity of the bond, and when μ = 0 it is no 
longer able to conduct electric current. Results of the non-
linear electromechanical problem for different values of 
the angle of anisotropy � are reported in Figs. 39 and 40. 
As can be observed from Fig. 40, the average slope of the 
Δ�∕Δ�0 curves depend on the angle of anisotropy � , on the 
crack angle and crack pseudo-velocity. The latter effect can 
be excluded by reporting Δ�∕Δ�0 as function of the crack 
length bk (see Fig. 38) measured during the simulation. In 
this way, by detecting the average slopes of the Δ�∕Δ�0

-bk∕a relationships (Fig. 41), it would be possible to get a 
direct determination of the actual crack length bk from the 
value of Δ� registered by potential probe output leads.

5 � Coupled Phenomena and Further 
Developments

For thermo-mechanical problems, the scalar-valued pair-
wise force function fn(�, ��, t) defined in Eq. 8 can be mod-
ified including the temperature effect as

where �T = �T(�, �
�) is the linear thermal expansion coef-

ficient along the direction � of the bond between � and �′ , 
whereas T̄  is the average temperature change of the vir-
tual fiber itself [58, 156]. Field equations are then modified 
accordingly to include the thermoelastic constitutive relation 
and the contribution from deformational heating and cool-
ing, as detailed by Oterkus et. al [58].

(176)fn(�, �
�, t) = Λkn[s(�, �

�, t) − 𝛼TT̄(�, �
�, t)]

Fig. 34   Steady-state heat transfer in an anisotropic unit disc: Temper-
ature distribution obtained by CM model. Plotted results are normal-
ized with respect to the maximum temperature T̃ = 0.73K

Fig. 35   Steady-state heat transfer in an anisotropic unit disc: Temper-
ature T  along three different abscissae

Fig. 36   Steady-state heat transfer in an anisotropic unit disc: Heat 
flux magnitude distribution obtained by CM model. Plotted results 
are normalized with respect to the maximum value ‖q̃‖ = 8.11 W∕m2
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A piezoresistive behavior could be modeled instead 
considering the electrical microconductivity ke(� , �) as 
function of an elastic deformation measure [50, 53]. In 
this case, the actual length of the fiber may be required in 
the definition of the pairwise electric field e as well as in 
Eq. 118 [50, 53].

Regarding elasticity, the definition of the third pairwise 
deformation parameter in Eq. 3, allows the model to be 
extended to microstructured materials homogenized as polar 
continua, for which a micro-macro correspondence involv-
ing bending moduli is also rerquired. In that case, it would 
be

which leads to elastic size effect proper of two-dimensional 
discrete heterogeneous materials, the resulting constitutive 
internal length being, in principle, independent of the size of 
the horizon. In fact, these non-local effects are not due to the 
integral nature of balance Eqs. 17 and 18, and then do not 
vanish when the horizon � goes to zero. This fundamental 
feature characterizing the conceived continuum-molecular 
framework would also give the possibility to model Cosserat 
anisotropic materials and to include chiral effects even asso-
ciated to overall isotropic elastic properties. Besides, since 
piezoelectricity may be related to chiral asymmetry [157], 
this aspect would permit to estabilish a mechanism-based 
description of such complex phenomenon.

Consider here for simplicity the theoretical case of an 
orthotropic material within the context of couple stress-
elasticity [80]. Assuming unit vectors of the reference basis 
aligned with the principal material axes, the constitutive 

(177)�b = Λkb� = Λkb
�� − �

‖�‖ ≠ 0

behavior of the (centrosymmetric) couple-stress continuum 
is governed by Eq. 40 and

relating the couple-stress vector � and the curvature vec-
tor � . The components of the tensor � are E3i3i, i = 1, 2 . 
Considering the micro-macro correspondence procedure 
particularized to this case, and the micromodulus function 
kb(�) given by

where Kb
3131

≥ Kb
3232

 , in case of n = 2 in Eq. 179 we obtain

where Kb
3131

= Kb
3232

 if the material is isotropic or square 
symmetric ( E3131 = E3232).

6 � Conclusions

In this paper we have proposed a unified scheme based on 
pair-potentials for continuum-molecular modeling of ani-
sotropic elasticity, fracture and diffusion-type problems 
within the framework of a revised peridynamic theory with 

(178)� = ��

(179)kb(�) = Kb
3232

+ (Kb
3131

−Kb
3232

)cosn(�)

(180)Kb
3131

=
3 (3E3131 − E3232)

�h�3

(181)Kb
3232

=
3 (3E3232 − E3131)

�h�3

Fig. 37   Steady-state heat transfer in an anisotropic unit disc: Detail of 
the heat flux magnitude ‖q‖ along two different abscissae Fig. 38   Damage sensing in conductive tissues: Layout of the elec-

tromechanical problem considered and arrangement of current input 
leads and potential probe leads for potential drop crack length deter-
mination
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oriented material points. The governing equations of the 
model for both elasticity and diffusion-based problems have 
been derived using a variational formalism. The obtained 
elasticity equations are not affected by internal restrictions 
involving the number of independent material constants. 
An implicit implementation strategy based on a meshfree 
approach has been also detailed together with analytical 

expressions of the equivalent stiffness operators. Particular 
attention has been given to establish a general micro-macro 
moduli correspondence between the continuum-molecular 
and classical continuum physics material parameters, in such 
a way that the micromoduli and their corresponding angular 
functions reproduce the overall anisotropy of the material. 
This theoretical scheme couples the intuitive simplicity of 
a purely pairwise description of (generalized) deformation 
and constitutive laws (removing Cauchy relations restric-
tions in elasticity), with the mathematical formalism of a 
continuum formulation for anisotropic materials. Moreover, 
the presence of oriented material points in the mechanical 
formulation allows to establish a natural relation with polar 
continua, as well as with real lattice-like and full-discrete 
systems. The accuracy of the method has been assessed by 
several numerical experiments, whose results have been 
compared with both analytical solutions and experimental 
data.

Fig. 39   Damage sensing in conductive tissues: Electric poten-
tial maps corresponding to four subsequent steps of the simula-
tion and obtained considering � = 0 ( S.0 ∶ Δu∗ = 0mm , ŏ = 1 ; 
S.1 ∶ Δu∗ = 0.169mm , ŏ = 1.03 ; S.2 ∶ Δu∗ = 0.211mm , , ŏ = 1.10 ; 

S.3 ∶ Δu∗ = 0.348mm , ŏ = 1.16 ). Results are normalized with 
respect to the of the maximum value of the electric potential in the 
uncracked specimen (S.0)

Fig. 40   Damage sensing in conductive tissues: Potential drop and 
force-displacement (F-Δu∗ ) relationship corresponding to the anisot-
ropy angles � = 0 , � = �∕4 , � = �∕3 and � = �∕2

Fig. 41   Damage sensing in conductive tissues: Δ�∕Δ�0 vs. normal-
ized crack length bk∕a for direct determination of the actual crack 
length from the value of Δ� registered by potential probe output leads 
(Electric potential differences for different angles � are normalized 
with respect to the respective initial values)
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Further studies are needed to extend the conceived ani-
sotropic continuum-molecular model with oriented mate-
rial points including multi-body potentials and other physi-
cal behaviors/physical problems such as piezoelectricity, 
Cosserat elasticity, cohesive fracture, plastic deformations, 
advection-diffusion and wave propagation.
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