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Abstract 

A large-amplitude axial vibration of a rotor fan with shrouded blades has been experimentally 

observed. Various mechanical measurements have been performed to characterize this vibration. To 

this aim, a new test stand has been designed. The analysis of the Campbell diagram shows that the 

vibration is related to a backward-whirl vibrational mode of the rotor which is always present, with 

different amplitudes depending on the operating conditions and configuration. Modifications of the 

shroud roughness and insertion of small obstacles in the gap region have independently shown that 

leakage flow fluctuations constitute the excitation of the large-amplitude vibration. This indicates 

that the phenomenon is likely an aeroelastic flutter, as it is also suggested by the observed 

intermittency and aerodynamic stiffening. A complete series of aerodynamic measurements have 

been carried out, employing complementary techniques (PIV and LDA), to supply general 

information on the flow as well as deepen the unsteady flow involved in the flutter phenomenon. The 

PIV measurements have shown a recirculating flow downstream of the fan due to the presence of the 

obstruction disk which results in a backflow entering the gap between the rotating ring and the 

stationary shroud (the leakage flow). Large-scale eddies have been found at the edge and inside of 

this recirculating flow by investigating the PIV snapshots and have been proved by POD analysis. The 

LDA measurements close to the gap region have confirmed that the leakage flow enters from the gap 

downstream of the fan and mixes with the rotor inflow upstream of the fan when it leaves the gap. 

Using a new double phase ensemble average technique, the periodic part of the LDA signals related 

to the vibration has been investigated; it allows studying the effect of the precession motion of the 

rotor on the flow. Analyzing the flow using this method shows that the flutter also affects the relative 

flow angle at the rotor inlet, and consequently the angle of attack at the blade tips, which finally 

causes the aeroelastic phenomenon. Moreover, it has been found that the maxima and minima in the 

velocity field are located at angular positions different from the ones at which the gap outlet area is 

maximum and minimum, but a certain delay exists. 
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1. INTRODUCTION AND BACKGROUND 

In automobile engine cooling systems, radiators work only if air flows through them, which is why a 

low-speed electric fan is vital to provide suitable airflow under different operating conditions: e.g. 

when the vehicle is idle, driving at low speed, and under high loading as uphill driving. 

Choosing the appropriate fan will depend on many factors including the available space, the driving 

method, mechanical and aerodynamic efficiency, as well as its mechanical strength, noise levels, and 

ultimately its cost. Depending on where they are placed, cooling fans can either push or pull air 

through radiators, and in addition to their layout and positioning, these large-scale products have 

peculiar shapes. For instance, there are important differences between radially stacked (i.e. straight) 

and leaned/swept (i.e. curved) fan blades. The former have usually better aerodynamic performance 

and fewer structural problems than the latter but are noisier. This is why, nowadays, curved blades 

are almost universally adopted despite the resulting complications. Other characteristics of low-

speed fans, such as low-solidity blading, large gaps between stationary and rotating parts, and small 

hub-to-tip diameters ratio, can produce high mechanical flexibility and flow distortions, which may 

result in phenomena that are unusual for more widely examined turbomachines such as axial 

compressors and even industrial fans. 

In some types of cooling fans, centrifugal force and aerodynamic load cause the blades to deform, 

which is often limited by a ring connecting the blade tips [1]. This rotating ring, which rotates in a 

stationary shroud with a gap in between, in addition to strengthening the rotor, further increases the 

fan's volumetric efficiency since it limits the recirculating airflow at the blade tip; however, it may 

increase the radiated noise and may result in unusual phenomena, e.g., it creates a peculiar flutter-

like vibration as in the present case. 

In this research, a cooling fan of this type with unequally spaced 7 blades and a 456-mm-external-

diameter external ring is studied. This rotor is installed on and guided by a stationary shroud that in 

production units supports the radiator. In addition, a disk has been placed downstream of the rotor 

to simulate the aerodynamic obstruction caused by the thermal engine. 

The problem starts when the fan approaches the design speed; at this point, simultaneously with the 

rotation of the fan, a high-amplitude axial oscillation is observed, which, in the outer ring, may reach 

more than ±5 mm. 

Investigating the cause of these vibrations can be complicated because of interactions between the 

inertial, elastic, and aerodynamic forces occurring while the rotor is exposed to the fluid flow which 
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turns this flutter-like oscillation into an aeroelastic problem. Two aspects are investigated in this 

research, which are expected to cause this aeroelastic phenomenon. The first one is related to the fan 

outflow (downstream), which hits the obstruction disk and quickly becomes centrifugal. This flow is 

associated with a recirculating flow that enters the gap as a backflow. The second subject is related 

to the axial displacement of the rotor ring inside the stationary shroud due to the periodic vibration; 

this causes a periodic modification in the gap geometry (gap size), namely, in the opening and closing 

of the gap outlet upstream of the fan. As a result, a periodic perturbation of the fan inflow likely 

results in a periodic aerodynamic force, which in turn drives the vibration in a typical aeroelastic 

loop. 

There has been a lot of research on the tip-leakage flow of axial flow fans in recent years, e.g. see 

Refs. [2-8]. Blade tip noise in low-speed shrouded fans has also been investigated by Moreau and 

Kindler, e.g. see Refs. [9-11]. In addition, many articles have been published in the field of 

aeroelasticity, especially in turbomachines, e.g. see Refs. [12-13], but none of those are related to 

shrouded fans and those studies are different from the investigated subject in this research. Hence, 

to the best knowledge of the author, this flutter-like problem has never been reported before in the 

literature for the shrouded fans. 

This research aims to identify and describe systematically this flutter-like phenomenon, 

experimentally studying both the vibration and the flow upstream and downstream of the fan. Then, 

an attempt will be made to study the interaction of aerodynamic forces on the elastic structure and 

also the flow behavior in the area close to the gap to find an answer to the reason for this flutter-like 

oscillation. 

Investigating this phenomenon in this study may also help to better understand aeroelastic 

phenomena related to the leakage flow in more important turbomachines such as axial compressors 

and turbines. 

Since we are dealing with an aeroelastic problem, the flutter-like vibration is studied from two 

aspects: structural and aerodynamic points of view. For this purpose, several experiments have been 

conducted on these two aspects, with the final aim of investigating the interaction of these two. Due 

to both the lack of information about the nature of this phenomenon and the practical difficulties 

related to aerodynamic measurements in such a complicated geometry, a kind of trial-and-error 

approach has been followed. To perform all these experiments, a new test stand has been designed 

which is suitable for simultaneous mechanical and aerodynamic measurements on fans. 
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This research is outlined in the following way: 

In Chapter One, the context of the study is introduced. The research objectives and questions are 

identified, and the value of such research is argued. No related bibliography has been reviewed 

because, to the knowledge of the author, such a problem has never been reported in the literature. 

In Chapter Two, the experimental setup and measurement techniques are reviewed including the 

test stand specifications and the measurement devices and methods that will be used for structural 

and aerodynamic measurements. 

In Chapter Three, the theoretical background of data processing techniques is presented. In addition, 

a new double ensemble average technique is introduced. 

In Chapter Four, the general characteristics of the fan are reported. Results of both an experimental 

and a FEM modal analysis are investigated. A comprehensive mechanical investigation is performed 

using different measurement devices and methods. Then, the dynamic and aeroelastic behavior of 

the fan is discussed. Finally, theoretical background for the structural and aerodynamic forces is 

developed. 

In Chapter Five, in order to study the flow characteristics relevant to the vibration, the result of a 

wide range of aerodynamic investigations are reported and analyzed, which have been performed by 

means of PIV and LDA measurements. 

In Chapter Six, finally, conclusions are drawn and an outlook is given. 
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2. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES 

2.1. Test stand 

2.1.1. General information 

The new test stand has been designed and manufactured to provide reliable and reproducible tests. 

For this purpose, this test stand has been designed based on ISO standard 5801 and made of 3-mm-

thick iron plate, is almost 4-m long (2.2 m without the auxiliary centrifugal fan) and has a 1.7-m 

diameter, Fig 2.1; This stand consists of 5 sections (tubes). Two flanges are welded to the front and 

back of each section so that the sections can be connected to each other. At the front and back of the 

test stand, two round flat plates, which are reinforced by several ribs, are connected to the first and 

final sections. The front plate has a test panel installation area of 1 × 1 𝑚 and the back plate has an 

external appendage to let the flow enter and exit and connect the chamber to the auxiliary fan. The 

front section has 3 windows at the sides and top for optical tests. For installing measuring 

instruments access to the inside of the chamber is possible through these windows. 4 holes and wall 

pressure tappings have been embedded equally angular spaced in the front section at the same axial 

location to measure the average static pressure at the wall. In addition, 3 holes have been considered 

for insertion of the Pitot-static tube at the different axial positions of the front section. The 3 middle 

sections are for flow straightening. First, two layers of nets and behind those a layer of honeycomb 

to prevent the growth of swirl in a normally axial flow and to reduce turbulence in the settling 

chamber. A window is designed at the back section of the enclosure to provide easier access for the 

installation and maintenance of the flow control system. The flow control system is a conical valve 

 

Figure 2.1. Test stand with auxiliary centrifugal fan (The mesh size is not the actual size for nets 

and honeycomb). 
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controlled by a linear electrical actuator and it can provide the volumetric flow rate in the ranges of 

0 to 3 𝑚3/𝑠. This system has been mounted and fixed to the walls of the back section of the test stand 

and the external connector of the back plate using two cross beams. For ease of carrying, there are 

separate bases under the front and back sections of the system, allowing the system to be separated 

into two parts. These bases are equipped with rubber pads for fixing and separate wheels for 

mobility.  

For mounting the fan to the front plate, a replaceable 1×1 m and 10 mm thick aluminum test plate 

has been designed which also allows the installation of measuring devices. 

This test stand may be operated in two different configurations. Namely, the basic configuration is of 

the “pushing” kind, Fig 2.2a, i.e. air is pushed from the settling chamber into the fan, but the flow 

direction may be reversed, i.e. air may be pushed into the settling chamber by the fan, “sucking” kind 

Fig 2.2b. 

The auxiliary fan is a centrifugal fan that can provide a maximum of 3 𝑚3/𝑠 volumetric flow rate and 

10790 𝑁/𝑚2 total pressure. By turning the fan and using two different connectors which are 

designed for this purpose this fan can be used in both configurations of sucking and pushing the air. 

For the determination of flow rate at the inlet, two sets of bell-mouth inlets have been designed to 

cover all the needed flow rate ranges, Fig 2.3. Besides, a safety cage has been provided to cover the 

test area at the front of the test stand.  

 

Figure 2.2. Two configurations of test stand. a) pushing air. b) sucking air. 
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2.1.2. Structural analysis 

For proper design of the test-plenum and in order to have suitable mechanical characteristics of the 

whole assembly, stress, and buckling FEM analyses have been done; a modal analysis has also been 

 

Figure 2.4. a) Axial deformation up to maximum pressure (1000 Pa) inside the test stand. b) 

Axial deformation at the center of the front plate due to the pressure increase. 

 

Figure 2.3. Geometry of inlets. 
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performed in order to check that the modal frequencies of the test-stand are larger than the expected 

vibration frequency of the investigated fan. These analyses have been carried out on the test stand 

geometry with and without the aluminum plate to also consider the effect of this plate. 

2.1.2.1. Stress and deformation analysis 

The stress and deformation FEM analysis have been done to determine where the maximum 

deformation takes place and to be sure the maximum stress is less than the yield stress of the 

structure. One of the important points to monitor the deformation is the center of the front plate 

where the cooling fan is going to be mounted. An increasing pressure ramp at the range of 0 to 1000 

Pa has been applied inside the chamber and as the axial deformation is the most important part of 

total deformation, the axial deformation of the test stand at maximum pressure (1000 Pa) has been 

reported in Fig 2.4a for both cases with and without the aluminum plate. In the case with the 

aluminum plate, it can be seen that the maximum stress and deformation take place at the center of 

the front plate where the stress and deformation are 10 MPa and 0.47 mm respectively. While the 

maximum stress and deformation in the case without the aluminum plate are in the back plate of the 

 

Figure 2.5. First 4 mode shapes and frequencies of the test stand, top row: without aluminum 

panel, bottom row: with aluminum panel. 
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test stand which are 5.89 MPa and 0.19 mm respectively. This analysis shows the maximum stress 

due to the pressure rise in the test stand is far below the yield stress of the structure’s material, both 

steel and aluminum. 

Another aspect is by measuring the maximum deformation in the center of the aluminum test plate 

where the fan is mounted at the maximum investigated pressure range for the studied fan which is 

almost 500 Pa it can be seen that the axial deformation is almost 0.2 mm which is negligible, Fig 2.4b.  

2.1.2.2. Buckling analysis 

The failure mode known as buckling is defined by the abrupt failure of a structural part under high 

compressive loads, where the actual compressive stresses at failure are lower than the 

ultimate compressive stresses the material can take. Elastic buckling of shell structures, such as 

cylindrical shells subjected to external pressure and loaded in axial compression, is extremely 

sensitive to defects and can be disastrous. Linear buckling analysis prevents any structural buckling 

failure related to pressure rise inside the test stand. To do this, the test stand has been considered 

with and without the aluminum plate at the maximum external pressure, 1000 Pa, when the air is 

sucked into the chamber. By performing the linear buckling analysis, the first critical mode with 

mounting the aluminum plate on the test stand happens at 149 times applied maximum external 

pressure, 149000 Pa. This result shows that buckling failure happens much higher than the ultimate 

compressive stresses. This first critical mode for the case without the aluminum plate is 420 times. 

2.1.2.3. Modal analysis 

In this study, the dynamic behavior of the fan is supposed to be investigated and it is important to 

know the dynamic characteristics of the test stand as well. One method for evaluating the dynamic 

behavior of mechanical parts and structures is modal analysis. The natural properties of a structure, 

such as its natural frequency and mode shapes, can also be explained using this technique. 

Performing a FEM modal analysis for the test stand both with and without the aluminum plate cases 

gives natural frequency and mode shapes. Figure 2.5 shows the first 4 mode shapes and frequencies 

of the test stand for both with and without aluminum plate cases. The first natural frequency in the 

case with the aluminum plate is 14.4 Hz and the next modes are happening at frequencies higher than 

50 Hz which is higher than the design rotational speed.  

The test stand has been constructed and completed in May 2020. After installation and setup in the 

DIME laboratory, a set of measurement devices have been installed for mechanical and fluid dynamic 

measurements (upstream and downstream). The test stand has been designed in order to allow 
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maximum flexibility: it may be used as a wind tunnel and also to test low-speed axial compressor 

models. 

2.2. Measurement of operating parameters 

2.2.1. Pressure measurements 

It is essential to ensure that static pressure measurements on the fan's inlet and outlet are taken 

relative to atmospheric pressure or the pressure present in a common test enclosure. When the flow 

is reasonably uniform, free of swirl and separation, four interconnected wall tappings can be used, 

Fig 2.6. In accordance with ISO 5801 [14], fan pressure is defined as the difference between 

stagnation pressures at the fan outlet and inlet. In the case of standard air with duct velocities less 

than 40 m/s and Mach numbers less than 0.122, the stagnation pressure is virtually equal to the total 

pressure. 

2.2.2. Rotational speed 

Various types of tachometers can be used to measure rotational speed. Accuracy is important since 

fan performance is sensitive to even small variations in speed and thereafter this change of speed 

matters because the flow rate varies directly as the speed, pressure as the square of the speed, and 

absorbed power as the cube of the speed. For the desired experiments two sets of optical sensors 

have been mounted on the wooden panel with reflective elements as a target on the rotor. 

2.2.3. Particle Image Velocimetry 

Particle Image Velocimetry (PIV) is a flow field measurement technique that provides instantaneous, 

cross-sectional measurements of flow velocity vectors. Normally, two velocity components are 

measured. However, a stereoscopic approach is able to record three velocity components, which 

 

Figure 2.6. Four interconnected wall tappings for pressure measurements [14]. 
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results in instantaneous 3D velocity vectors for the entire area. This method can cover the velocity 

range from zero to supersonic and does not require intrusive approaches to measure the velocities 

of micron-sized particles passing through the flow [15]. 

The operation process of a PIV system is briefly shown in Fig 2.7. PIV measures the particle 

movement between two pulses of light to obtain velocity vectors of the particle-seeded flow on the 

sub-sections of the targeted area. A light sheet (laser sheet) illuminates the flow in the target area. 

Digital cameras are able to capture separate image frames when the target area at each light pulse is 

captured by the camera lens. Following the recording of two light pulses, the images are divided into 

small subsections, known as interrogation areas (IA). The pixels in 𝐼1 and 𝐼2 of each interrogation 

area are then correlated with each other. A signal peak is produced by the correlation, which 

identifies ∆𝑋, the common particle displacement: 

 𝑉̅ =
∆𝑋̅

𝑡
 (2.1) 

 

Figure 2.7. The operation process of a PIV system [15]. 
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In order to obtain a velocity vector map over the entire target area, the cross-correlation for each 

interrogation area needs to be repeated over the two image frames captured by the camera. The flow 

structure can be clearly identified by recording both light pulses in the same image frame to trace the 

particles' motions. Seeding particles in air flows are generally oil droplets with a range of 1 µm to 5 

µm. 

As shown in Fig 2.8 the PIV system that has been used for instantaneous imaging in the University of 

Genoa laboratory includes: A double-cavity Nd:Yag pulsed laser (pulses of energy 400 mJ at a 

wavelength of 532 nm, with pulse duration of 8 ns and maximum repetition rate of 10 Hz), and the 

two laser beams are merged to make a 2mm thick light sheet; Two Dantec High Sense Mk II digital 

cameras with a 1344 × 1024 CCD matrix to record the light scattered by the seeding particles; 

Although the frame rate can be changed, the maximum value in double frame mode is 6 Hz; A fog 

generator that can generate particles in a range of diameter between 0.5 - 2 µm. 

2.2.4. Laser Doppler Anemometry 

For more than three decades, the Laser Doppler Anemometer, or LDA, has been a widely accepted 

tool for fluid dynamic research in gases and liquids and it is a well-known method for determining 

flow velocity. Because of its non-intrusive principle and directional sensitivity, it is well suited for 

applications including reversing flow and rotating machinery in situations where physical sensors 

are difficult or impossible to use. In addition to being non-intrusive, the method has several 

advantages, including high spatial and temporal resolution, no calibration required, and the ability 

to measure in reverse flow conditions [16]. 

The basic configuration of an LDA is depicted in Fig 2.9 and can be described as follows: A laser-

generated continuous wave; Transmitting optics that include a beam splitter to split the continuous 

 

Figure 2.8. The PIV system. 
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wave and a focusing lens; Receiving optics to collect and concentrate the return beam, containing a 

focusing lens, an interference filter, and a photodetector; Finally, to process the return beam a signal 

conditioner and a signal processor. 

As a beam splitter, a Bragg cell is commonly used. It consists of a glass crystal with an attached piezo 

crystal that vibrates and produces acoustic waves that act as an optical grid. The Bragg cell produces 

two equal-intensity beams with frequencies 𝑓0 and 𝑓𝑠ℎ𝑖𝑓𝑡. These are focused into optical fibers, which 

are then sent to a probe. The parallel exit beams from the fibers are concentrated by a lens in the 

probe, causing them to intersect in the probe volume. 

Typically, the probe volume has only a few millimeters long. Interference between the laser beams 

causes the light intensity to be modulated. Fringes are the result of this, which are parallel planes of 

high light intensity. The wavelength of the laser light, 𝜆, as well as the angle between the beams, 𝜃, 

determine the fringe distance 𝑑𝑓: 

 𝑑𝑓 =
𝜆

2 sin(𝜃/2)
 (2.2) 

The light scattered by each particle passage is proportional to the local light intensity. Light scattered 

by very small "seeding" particles conveyed in the fluid as they travel through the probe volume 

provides information on flow velocity. In the probe volume, the scattered light has a Doppler shift 

with a Doppler frequency 𝑓𝐷, which is perpendicular to the bisector of the two laser beams and 

 

Figure 2.9. The basic configuration of an LDA system [16]. 



 

13 

 

proportional to the velocity component. To gather the particles' information a receiver lens collects 

the scattered light and focuses it on a photodetector. An interference filter placed before the 

photodetector allows only the required wavelength to pass the photodetector. This eliminates noise 

from ambient light as well as other wavelengths. By using a photodetector, light intensity fluctuations 

can be converted into an electrical signal called the Doppler burst that due to the intensity profile of 

the laser beams has a sinusoidal waveform with a Gaussian envelope. In the signal processor, the 

Doppler bursts are filtered and amplified, which calculates 𝑓𝐷 for each particle, usually using 

frequency analysis for instance a robust Fast Fourier Transform algorithm. Given that velocity equals 

distance divided by time, the velocity expression is as follows: 

 𝑉 = 𝑑𝑓 × 𝑓𝐷  (2.3) 

Where the fringe spacing 𝑑𝑓 represents the distance that the particle traveled and the Doppler 

frequency 𝑓𝐷 delivers information about the time, 𝑡 = 1/𝑓𝐷. 

Two more beams in a plane perpendicular to the first beams can be added to the optics to measure 

two velocity components. In this configuration, all the beams intersect in a common volume, and 

different wavelengths are used to separate the measured components. 

 

Figure 2.10. The LDA system. 



 

14 

 

In most cases, the flow must be seeded. The particles should ideally be small enough to follow the 

flow while still being large enough to scatter enough light to get a decent signal-to-noise ratio at the 

photodetector output. 

Many challenges with the application of this technique, such as determination of the sign of the flow 

direction, and three-component measurements, are not addressed here. 

The LDA system that has been used for doing tests in the laboratory of the University of Genoa is a 

two-color, four-beams laser LDA system (Dantec Fiber Flow) with a backward-scatter configuration, 

Fig 2.10. The light sources are two 200 mW diode-pumped solid-state lasers that emit two pairs of 

green and blue beams, allowing for simultaneous measurement of two velocity components. The 

probe volume has a 1.4 mm length with a 0.09 mm cylinder diameter. A fog generator seeded the 

flow with particles with a diameter of 0.5e2 mm. The control system of the optical probe is a three-

axis computer-controlled traversing mechanism. The minimum linear translation step for this 

system is 1 mm. Also, a Burst Spectrum Analyzer (Dantec BSA P70 processor) module is used to 

process the photomultiplier signals. 
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3. DATA PROCESSING TECHNIQUES 

3.1. Spectral analysis 

This section provides some theoretical background on the traditional spectral analysis based on the 

Fourier transform and introduces the wavelet transform as a generalization or extension of the usual 

Fourier framework. 

3.1.1. Fourier transform 

This section provides the background on the Fourier transform. This information is available in 

most of the textbooks on signal properties, transform defining concepts and properties that will be 

employed in the subsequent sections. Some reasons for its fundamental importance and its 

limitations are discussed as well. 

3.1.1.1. Definition 

Given a function y(t), depending on the time t, its Fourier Transform (FT) is defined as: 

 𝑦̂(𝜔) = ∫ 𝑦(𝑡) 𝑒− 𝑖 𝜔𝑡 𝑑 𝑡
∞

−∞

= ℱ𝜔[𝑦] (3.1) 

where the symbol ℱ𝜔[•] can be reviewed as a linear operator (a functional) providing a complex 

number for any value of the parameter 𝜔 ∈ ℝ. On the other hand, the integral of Eq. (3.1) represents 

the correlation of 𝑦(𝑡) with 𝑒𝑖 𝜔𝑡, thus the FT may be interpreted as a measure of the similarity 

between the given function and the harmonic functions. Since the parameter 𝜔 multiplies the time in 

the argument of the harmonic function, it takes the meaning of circular frequency. However, it is just 

the case to note that, in general, 𝑡 may be any ordering parameter and 𝜔 takes a consequent meaning 

(e.g. if 𝑡 is a spatial coordinate, ω is the wave number). 

Eq. (3.1) can be inverted retrieving 𝑦(𝑡) from its FT as 

 𝑦(𝑡) =
1

2𝜋
∫ 𝑦̂(𝜔) 𝑒𝑖 𝜔𝑡 𝑑 𝑡

∞

−∞

= ℱ𝑡
−1[𝑦̂] (3.2) 

The FT pair exists for any absolutely integrable function, i.e. 𝑦 ∈ 𝐿1(ℝ), but its domain can be 

extended to the set of the square-integrable functions 𝐿2(ℝ) through a limit operation, with the 

advantage of enabling the use of the Hilbert space framework. In this way, the FT can be reviewed as 

an inner product or, geometrically, as an orthogonal projection  
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 ℱ𝜔[𝑦] = ⟨𝑦, 𝑒𝑖 𝜔𝑡⟩ (3.3) 

where the symbol ⟨•,•⟩ represents the inner product defined as 

 ⟨𝑦, 𝑧⟩ = ∫ 𝑦(𝑡)𝑧∗(𝑡) 𝑑 𝑡
∞

−∞

 (3.4) 

in which * represents the complex conjugate. The norm induced by the inner product (3.4) is 

 ‖𝑦‖2 = ∫ |𝑦(𝑡)|2 𝑑 𝑡
∞

−∞

 (3.5) 

3.1.1.2. Relevant properties 

The substitution of Eq. (3.2) (to represent both y and z through their FTs) into Eq. (3.4) provides the 

relationship: 

 

⟨𝑦, 𝑧⟩ = ∫ 𝑦(𝑡)𝑧∗(𝑡) 𝑑 𝑡
∞

−∞

= 

= ∫
1

2𝜋
∫ 𝑦̂(𝜔) 𝑒𝑖 𝜔𝑡 𝑑 𝜔

∞

−∞

1

2𝜋
∫ 𝑧̂∗(𝜔′) 𝑒− 𝑖 𝜔′𝑡 𝑑 𝜔′

∞

−∞

𝑑 𝑡
∞

−∞

= 

=
1

4𝜋2
∫ ∫ 𝑦̂(𝜔)𝑧̂∗(𝜔′) ∫ 𝑒𝑖(𝜔−𝜔′)𝑡 𝑑 𝑡

∞

−∞

∞

−∞

𝑑 𝜔 𝑑 𝜔′ =
∞

−∞

 

=
1

2𝜋
∫ 𝑦̂(𝜔)𝑧̂∗(𝜔)

∞

−∞

𝑑 𝜔 =
1

2𝜋
⟨𝑦̂, 𝑧̂⟩ 

(3.6) 

where it has been used the orthogonality of the harmonic functions, i.e., ⟨𝑒𝑖 𝜔1𝑡, 𝑒𝑖 𝜔2𝑡⟩ =

2𝜋𝛿(𝜔1 − 𝜔2), δ being the Dirac function. Eq. (3.6) is referred to as the Parseval theorem and states 

the invariance of the inner product with respect to the FT (but the factor 2π). Eq. (3.6) can be 

obviously particularized for y = z resulting 

 ‖𝑦‖2 = ∫ |𝑦(𝑡)|2 𝑑 𝑡
∞

−∞

=
1

2𝜋
∫ |𝑦̂(𝜔)|2 𝑑 𝜔

∞

−∞

=
1

2𝜋
‖𝑦̂‖2 (3.7) 

This property can be interpreted as a conservation of energy across the passage between the time 

domain and frequency domain. 

Table 3.1 shows some fundamental properties of the FT. 
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3.1.1.3. Fourier transform and Linear Time Invariant systems 

If 𝑥(𝑡) and 𝑦(𝑡) are, respectively, the input and the output of a linear time-invariant (LTI) system ℒ, 

i.e., 𝑦 = ℒ[𝑥], then their relationship is explicitly given by the convolution integral: 

 𝑦(𝑡) = ∫ ℎ(𝑡 − 𝜏)𝑥(𝜏) 𝑑 𝑡
∞

−∞

 (3.8) 

where h is the Impulse-Response Function (IRF) of ℒ. Using Eq. (3.8) it is easy to show that if x is a 

harmonic function, then y is a harmonic with the same frequency, i.e.: 

 𝑥(𝑡) = 𝑒𝑖 𝜔𝑡     →     y(t) = ℎ̂(𝜔)𝑒𝑖 𝜔𝑡 (3.9) 

where ℎ̂ is the Frequency-Response Function (FRF) of ℒ. Eq. (3.9) states that the harmonic functions 

are the eigenfunctions of LTI systems and the FRF represents the set of their eigenvalues (which is 

called spectrum). The use of this property in conjunction with Eq. (3.1) provides the frequency-

domain counterpart of Eq. (3.8) 

 𝑦̂(𝜔) = ℎ̂(𝜔)𝑥̂(𝜔) (3.10) 

It is worth noting that the FT 𝑦̂(𝜔) is defined by an integral involving the whole support of 𝑦(𝑡) and, 

for this reason, it is referred to as a global representation. This property makes the FT relatively 

simple to use but may result in serious limitations. To explain this concept, let us consider the signal 

𝑓(𝑡) = 𝑠𝑖𝑛 𝜔 𝑡, with 𝜔 = 3 𝑟𝑎𝑑/𝑠 for 𝑡 < 0 and 𝜔 = 9 𝑟𝑎𝑑/𝑠 for 𝑡 ≥ 0 (Fig. 3.1a). Its FT (Fig. 3.1b) 

contains two peaks located at the frequencies corresponding to the two portions of the signal. 

However, two serious drawbacks appear. 

 𝑓(𝑡)  𝑓(𝜔) 

Translation 𝑓(𝑡 + 𝑡0) → 𝑒𝑖 𝜔𝑡0 𝑓̂ (𝜔) 

Modulation 𝑒𝑖 𝜔0𝑡 𝑓 (𝑡) → 𝑓(𝜔 − 𝜔0) 

Dilation 𝑓 (
𝑡

𝑠
) → |𝑠|𝑓(𝑠𝜔) 

Derivation 𝑓(𝑝)(𝑡) → (𝑖 𝜔)𝑝𝑓(𝜔) 

 

Table 3.1. Some fundamental properties of the FT. 
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First, by observing the FT it is not possible to tell if 𝑓(𝑡) is the sum of two narrow-band components 

(e.g., modulated harmonics) or a single harmonic that changes its frequency at some time (like it 

actually is).  

Second, besides the two peaks at 3 and 9 𝑟𝑎𝑑/𝑠, the FT is non-zero in relatively large neighborhoods 

of these frequency values. These contributions are necessary to cancel the harmonic at 3 𝑟𝑎𝑑/𝑠 for 

𝑡 > 0 and the harmonic at 9 𝑟𝑎𝑑/𝑠 for 𝑡 < 0, making the representation highly inefficient. 

3.1.2. Demodulation and instantaneous frequency 

The poor efficiency of the Fourier transform in the representation of the signal shown in Figure 3.1 

is determined by the time variation of the frequency. The definition of an instantaneous frequency, 

possibly changing with time, is somehow problematic since the frequency is defined as a property of 

the harmonic functions (number of cycles in the unit time) and therefore is necessarily a constant. 

On the other hand, it is obvious that signals with variable frequency do exist, therefore the 

instantaneous frequency needs a proper definition. 

The instantaneous frequency of a signal may be defined in a different way, but the definition related 

to analytic signals is probably the most adopted in the data processing community.  

A function 𝑓𝑎(𝑡) is said analytic if its FT 𝑓𝑎(𝜔) is zero for any negative frequency. According to this 

definition, an analytic signal is necessarily complex-valued, but it is entirely defined on the basis of 

its real part. Indeed, the real part 𝑓(𝑡) of 𝑓𝑎(𝑡) is given by the obvious relationship 

 

Figure 3.1. a) A sinusoidal signal containing two distinct frequencies, b) FT of the signal. 
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 𝑓(𝑡) = 𝑟𝑒𝑎𝑙(𝑓𝑎(𝑡)) =
1

2
(𝑓𝑎(𝑡) + 𝑓𝑎

∗(𝑡)) (3.11) 

which can be translated in terms of FT as 

 𝑓(𝜔) =
1

2
(𝑓𝑎(𝜔) + 𝑓𝑎

∗(−𝜔)) (3.12) 

Taking into account that fa is an analytic signal (its FT is zero for negative frequency), Eq. (3.12) can 

be rewritten as 

 

𝑓𝑎(𝜔) = {2𝑓(𝜔)if 𝜔 ≥ 0
0if 𝜔 < 0

 

                         = 𝑓(𝜔) + 𝑠𝑖𝑔𝑛(𝜔) 𝑓(𝜔) 

                                   = 𝑓(𝜔) + 𝑖[− 𝑖𝑠𝑖𝑔𝑛(𝜔)] 𝑓(𝜔) 

(3.13) 

The last of Eq. (3.13) demonstrates that the FT of fa can be calculated from the FT of 𝑓.  This 

relationship can be converted in the time domain as 

 𝑓𝑎(𝑡) = 𝑓(𝑡) + 𝑖 ℋ[𝑓(𝑡)] (3.14) 

where the operator ℋ[•] is called Hilbert transform and is defined through the convolution integral 

 ℋ[𝑓] =
1

𝜋
∫

𝑓(𝜏)

𝑡 − 𝜏
𝑑 𝜏

∞

−∞

 (3.15) 

By comparing Eq. (3.14) and Eq. (3.15), it can be deduced that the FRF of the Hilbert transform is -𝑖 

for any positive frequency and 𝑖 for negative frequency. This implies that the Hilbert transform is an 

ideal filter that shifts the phase of the input signal by 90 deg.  

On the bases of this interpretation, given any real signal 𝑓, an analytic signal can be computed by 

adding an imaginary component equal to the shifted version of 𝑓 computed through the Hilbert 

transform. 

Analytic signals have a fundamental importance in demodulation, i.e., the estimation of the 

instantaneous amplitude and phase of signals of the type: 

 𝑓(𝑡) = 𝐴(𝑡) 𝑐𝑜𝑠 𝜙 (𝑡) (3.16) 

for which the instantaneous frequency is defined as the time derivative of the phase 
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 𝜔(𝑡) =
𝑑 𝜙 (𝑡)

𝑑 𝑡
 (3.17) 

Assuming that amplitude and frequency change slowly with time, the Hilbert transform of 𝑓 results 

 ℋ[𝐴(𝑡) 𝑐𝑜𝑠 𝜙 (𝑡)] ≃ 𝐴(𝑡) 𝑠𝑖𝑛 𝜙 (𝑡) (3.18) 

 

 

 

 

Figure 3.2. Analytic signal and demodulation of the signal reported in Figure 3.1 as well as the 

instantaneous amplitude, phase, and frequency. 
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Accordingly, Eq. (3.14) reads 

 
𝑓𝑎(𝑡) = 𝐴(𝑡) 𝑐𝑜𝑠 𝜙 (𝑡) + 𝑖 𝐴 (𝑡) 𝑠𝑖𝑛 𝜙 (𝑡) 

= 𝐴(𝑡)𝑒𝑖 𝜙(𝑡) 

(3.19) 

From Eq. (3.19) it is clear that the instantaneous amplitude and phase of 𝑓(𝑡) can be estimated as 

 
𝐴(𝑡) = |𝑓𝑎(𝑡)| 

𝜙(𝑡) = ∠𝑓𝑎(𝑡) 

(3.20) 

Figure 3.2 shows the analytic signal obtained from the signal reported in Figure 3.1, as well as the 

instantaneous amplitude, phase, and frequency. It can be observed that the amplitude and frequency 

are estimated correctly with the exception of some distortion occurring about 𝑡 = 0. 

Eq. (3.20) and Eq. (3.17) strictly hold only for amplitude-phase modulated signals and cannot be used 

directly to process a generic signal possibly including multiple harmonic components. Indeed, the 

demodulation procedure described above is regularly applied after a preprocessing aimed at 

separating the spectral component of interest. The simplest approach is band-pass filtering.  

3.1.3. Time-frequency localization 

The major drawback of the FT is its inability of detecting (and represent efficiently) time variations 

of the signal properties. This limitation is intimately related to the use of the harmonics as basis 

functions, which extends from -∞ to +∞ keeping the same characteristics. On the contrary, to identify 

the local properties of a signal, it is necessary to correlate it with functions that are well localized in 

time. This can be done by generalizing the FT by a transformation that retains the form of Eq. (3.1), 

i.e. 

 𝒯𝛾
𝜙[𝑓] = ∫ 𝑓(𝑡)𝜙𝛾

∗(𝑡) 𝑑 𝑡
∞

−∞

= ⟨𝑓, 𝜙𝛾⟩ (3.21) 

where 𝜙𝛾 ∈ 𝐿2(ℂ) are a set of basis functions depending on one or more parameters collectively 

identified with the symbol γ. The operator 𝒯𝛾
𝜙

 is called time-frequency transformation, while the 

basis functions 𝜙𝛾 are called time-frequency atoms. The FT is clearly a particular case of time-

frequency transformation for which 𝜙𝛾(𝑡) = 𝑒𝑖 𝛾𝑡 and 𝛾 = 𝜔. 
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To proceed further with this idea, it is necessary to specify more clearly what time localization means 

and how to measure it. Accordingly, we can identify the central time of 𝜙𝛾 and measure its time spread 

by the relationships 

 

𝑢 = ∫ 𝑡|𝜙𝛾(𝑡)|
2

𝑑 𝑡
∞

−∞

 

𝜎𝑡
2 = ∫ (𝑡 − 𝑢)2|𝜙𝛾(𝑡)|

2
𝑑 𝑡

∞

−∞

 

(3.22) 

which have a clear analogy with the definition of mean value and variance in probability theory, with 

the difference that the function 𝜙𝛾 is squared as it is normalized in 𝐿2 instead of in 𝐿1 likewise for the 

probability density function. Relying on this definition, we may desire to have a set of functions 𝜙𝛾 

having a time-spread small compared to the time scale of the signal variations and that can be located 

in time to explore the evolution of the signal. 

On the other hand, the time-frequency transformation defined by Eq. (3.21) can be expressed in the 

frequency domain using the Parseval theorem Eq. (3.6), yielding 

 𝒯𝛾
𝜙[𝑓] =

1

2𝜋
∫ 𝑓(𝜔)𝜙̂𝛾

∗(𝜔) 𝑑 𝜔
∞

−∞

=
1

2𝜋
⟨𝑓, 𝜙̂𝛾⟩ (3.23) 

from which it is clear that 𝒯𝛾
𝜙

, besides measuring the correlation of 𝑓 with 𝜙𝛾, also measure the 

correlation of 𝑓 with 𝜙̂𝛾. On this bases, we can conclude that if we wish to distinguish the contribution 

of different harmonics possibly present in the signal, we need to select a function 𝜙𝛾 whose FT is well 

localized in frequency. In analogy to Eq. (3.22), the central frequency and the frequency spread of 𝜙𝛾 

is defined as 

 

𝜉 = ∫ 𝜔|𝜙̂𝛾(𝜔)|
2

𝑑 𝜔
∞

−∞

 

𝜎𝜔
2 = ∫ (𝜔 − 𝜉)2|𝜙̂𝛾(𝜔)|

2
𝑑 𝜔

∞

−∞

 

(3.24) 

It is easy to deduce that for the particular case of the FT 𝜎𝑡 = ∞ and 𝜎𝜔 = 0. This result confirms that 

the basis functions of the FT are perfectly localized in frequency but are fully spread in time. As a 

consequence, using the FT it is theoretically possible to separate harmonic components that are 

infinitely close to each other but it is impossible to distinguish events happening at different times. 
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In principle, it would be desirable to define a set of time-frequency atoms that are well localized both 

in time and frequency. Unfortunately, this result is not achievable due to the third of the properties of 

the FT reported in Table 3.1, which states if a function is dilated in time, then its FT contracts in 

frequency (and vice versa). The impossibility of reducing arbitrarily the time and the frequency 

spread at the same time is formally expressed by the Heisenberg uncertainty principle, which sets 

the condition: 

 𝜎𝑡𝜎𝜔 ≤
1

2
 (3.25) 

3.1.4. Continuous wavelet transform 

Given a function 𝑓(𝑡) 𝐿2, its wavelet transform is obtained by correlating 𝑓 with the time-frequency 

atoms 𝜓𝑢,𝑠 called wavelets, parametrized by their central time 𝑢 and their scale 𝑠. 

 

𝑊𝑢,𝑠[𝑓] = ⟨𝑓, 𝜓𝑢,𝑠⟩ = ∫ 𝑓(𝑡)𝜓𝑢,𝑠
∗ (𝑡)𝑑𝑡

∞

−∞

 

=
1

2𝜋
⟨𝑓, 𝜓̂𝑢,𝑠⟩ =

1

2𝜋
∫ 𝑓(𝜔)𝜓̂𝑢,𝑠

∗ (𝜔)𝑑𝜔
∞

−∞

 

(3.26) 

The wavelet atoms are derived from a prototype function called the mother wavelet through a 

translation and dilation process. For any 𝑢 and s in ℝ, they are defined as 

 𝜓𝑢,𝑠(𝑡) =
1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
) (3.27) 

where the factor 𝑠−0.5 has the function of keeping the 𝐿2 norm of the wavelet constant after dilation. 

The translation and dilation of the mother wavelet induce a contraction and modulation of its FT 

(properties 1 and 3 of Table 3.1): 

 𝜓̂𝑢,𝑠(𝜔) = √𝑠𝜓̂(𝑠𝜔) 𝑒𝑥𝑝(−𝑖𝜔𝑢) (3.28) 

Without any loss of generality, we assume that the mother wavelet has a unit norm, thus 

 

‖𝜓𝑢,𝑠‖
2

= ∫ |𝜓𝑢,𝑠(𝑡)|
2

𝑑𝑡
∞

−∞

= 1 

‖𝜓̂𝑢,𝑠‖
2

= ∫ |𝜓̂𝑢,𝑠(𝜔)|
2

𝑑𝑡
∞

−∞

= 2𝜋 

(3.29) 
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To analyze the time evolution of the frequency components of the signal it is necessary to use an 

analytic wavelet to separate amplitude and phase information. The Fourier transform of an analytic 

wavelet vanishes for  <  0. Besides, it can be proved that the wavelet transform can be inverted, i.e., 

𝑓 can be reconstructed from W𝑢,𝑠[𝑓] if the so-called compatibility condition is fulfilled: 

 𝐶𝜓 = ∫
|𝜓̂(𝜔)|

2

𝜔
𝑑𝜔 < +∞

+∞

0

 (3.30) 

In this work, we select a wavelet constructed by the frequency modulation of a Gaussian function. 

Wavelets of this kind are referred to as Gabor or Morlet wavelets. Such a wavelet and its Fourier 

transform have the form: 

 𝜓(𝑡) = √
2𝜎𝜔

2

𝜋

4

𝑒𝑥𝑝(𝑖 𝜔𝑐 𝑡) 𝑒𝑥𝑝(−𝜎𝜔
2𝑡2) (3.31) 

 𝜓̂(𝜔) = √
2𝜋

𝜎𝜔
2

4

𝑒𝑥𝑝 (−
(𝜔 − 𝜔𝑐)2

4𝜎𝜔
2 ) (3.32) 

where 𝜔𝑐  and 𝜎𝜔 are two parameters having the meaning of central (circular) frequency and 

frequency spread, respectively.  

When the mother wavelet is translated and dilated through Eq. (3.27) and Eq. (3.28), the wavelet 𝜓𝑢,𝑠 

and its Fourier transform 𝜓̂𝑢,𝑠 remain centered, respectively, on the time 𝑢 and the central frequency 

 = 𝜔𝑐/𝑠, indeed: 

 ∫ 𝑡|𝜓𝑢,𝑠(𝑡)|
2

𝑑𝑡
∞

−∞

= 𝑢 (3.33) 

 𝜉 =
1

2𝜋
∫ 𝜔|𝜓̂𝑢,𝑠(𝜔)|

2
𝑑𝜔

∞

−∞

=
𝜔𝑐

𝑠
 (3.34) 

On the other hand, the spread of the wavelet about its time location 𝑢 and of its Fourier transform 

around the central frequency 𝜉 can be evaluated (using an 𝐿2 measure) as 

 𝜎𝑡,𝑠
2 = ∫ (𝑡 − 𝑢)2|𝜓𝑢,𝑠(𝑡)|

2
𝑑𝑡

∞

−∞

=
𝑠2

4𝜎𝜔
2  (3.35) 

 𝜎𝜔,𝑠
2 =

1

2𝜋
∫ (𝜔 − 𝜉)2|𝜓̂𝑢,𝑠(𝜔)|

2
𝑑𝜔

∞

−∞

=
𝜎𝜔

2

𝑠2
 (3.36) 
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and depend on the scale 𝑠. In particular, the ratio between the scale s and the wavelet parameter 𝜔𝑐  

determines both the time spread 𝜎𝑡,𝑠 of 𝜓𝑢,𝑠 and the frequency spread 𝜎𝜔,𝑠 of 𝜓̂𝑢,𝑠, but, if the time 

spread increases, then the frequency spread decreases of the same fraction keeping the product 

𝜎𝑡,𝑠𝜎𝜔,𝑠 constant. It can be demonstrated that the product 𝜎𝑡,𝑠𝜎𝜔,𝑠 cannot be lower than 1/2, 

independently of the wavelet type chosen, according to the time-frequency Heisenberg uncertainty 

theorem. The practical consequence of this principle is that the wavelet transform W𝑢,𝑠[𝑓] represents 

the (complex) amplitude of 𝑓(𝑡) in a neighborhood of the time 𝑡 = 𝑢 and frequency 𝜉 = 𝜔𝑐/𝑠, having 

a characteristic size 𝜎𝑡,𝑠 and 𝜎𝜔,𝑠. The finite size of this neighborhood implies that the wavelet 

transform operates a local averaging in the time-frequency plane. 

In practice, when we analyze a signal, we are interested in locating a wavelet atom at a specific time 

𝑢 and at 𝑎 given central frequency 𝜉. To obtain this result, we can choose arbitrarily the central 

frequency c of the mother wavelet and then determine the scale 𝑠 = 𝜔𝑐/𝜉 through Eq. (3.34). In this 

case, the time and frequency spread are 

 𝜎𝑡,𝑠 =
1

2

𝜔𝑐

𝜎𝜔

1

𝜉
;                   𝜎𝜔,𝑠 =

𝜎𝜔

𝜔𝑐
𝜉 (3.37) 

showing that the time and frequency localization characteristics of the wavelet depend on the ratio 

𝜎𝜔/𝜔𝑐, which can be regarded as the frequency spread non-dimensionalized by the central frequency. 

3.1.5. Spectral representation of stationary random processes 

When a signal is an interpreter as a random process, its representation involves statistical quantities. 

If these statistics are invariant for shifts of the temporal reference, a random process is called 

stationary. It should be mentioned that the realizations of a stationary random process are functions 

that, in principle, never vanish and therefore cannot be in 𝐿2. For this reason, the realizations of a 

stationary random process do not possess a Fourier transform. 

Let 𝑥(𝑡) be a realization of a random process (that for simplicity is assumed as zero-mean) and 𝑥𝑇(𝑡) 

a function obtained by windowing 𝑥(𝑡) in 𝑡(−𝑇/2, 𝑇/2). 

 𝑥𝑇(𝑡) = {𝑥(𝑡) for  𝑡 ∈ (−
𝑇

2
,
𝑇

2
)

0 otherwise

 (3.38) 

Assuming that 𝑥𝑇 ∈ 𝐿1(−𝑇/2, 𝑇/2), its Fourier transform is: 
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 𝑥𝑇(𝜔) = ∫ 𝑥𝑇(𝑡)
∞

−∞

𝑒− 𝑖 𝜔𝑡𝑑𝑡 = ∫ 𝑥(𝑡)
𝑇/2

−𝑇/2

𝑒− 𝑖 𝜔𝑡𝑑𝑡 (3.39) 

and exists for any finite value of 𝑇, while 𝑥𝑇(𝑡) can be reconstructed by the formula: 

 𝑥𝑇(𝑡) =
1

2𝜋
∫ e𝑖 𝜔𝑡𝑥̂𝑇(𝜔)𝑑𝜔

∞

−∞

  (3.40) 

The energy of the function 𝑥𝑇(𝑡) is defined as 

 𝐸𝑛𝑟𝑔[𝑥𝑇(𝑡)] = ∫ 𝑥𝑇
2(𝑡)

∞

−∞

𝑑𝑡 = ∫ 𝑥2(𝑡)
𝑇/2

−𝑇/2

𝑑𝑡 (3.41) 

Since  𝑥𝑇(𝑡) is a realization of a random process, the energy can be interpreted as a random variable. 

The limit for 𝑇 → ∞ of the energy diverges when 𝑥(𝑡) is a realization of a stationary process. The 

power of the function 𝑥𝑇(𝑡) is defined as: 

 𝑃𝑤𝑟[𝑥𝑇(𝑡)] =
1

𝑇
∫ 𝑥𝑇

2(𝑡)
∞

−∞

𝑑𝑡 =
1

𝑇
∫ 𝑥2(𝑡)

𝑇/2

−𝑇/2

𝑑𝑡 (3.42) 

It can be observed that the limit of power for 𝑇 → ∞ coincides with the temporal mean square of 𝑥(𝑡): 

 𝑥2 = 𝑙𝑖𝑚
𝑇→∞

𝑃𝑤𝑟[𝑥𝑇(𝑡)] = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑥𝑇

2(𝑡)
∞

−∞

𝑑𝑡 (3.43) 

The variance of the process 𝑥(𝑡) corresponds to the expected value of the temporal mean square (𝑥(𝑡) 

is assumed as zero mean), thus it yields 

 𝜎𝑥
2 = 𝐸 [𝑥2] = 𝐸 [ 𝑙𝑖𝑚

𝑇→∞

1

𝑇
∫ 𝑥𝑇

2(𝑡)
∞

−∞

𝑑𝑡] (3.44) 

where, the integral of the process 𝑥𝑇(𝑡) can be interpreted as a random variable whose realizations 

are obtained by integrating the realizations of 𝑥𝑇(𝑡). The integral in Eq. (3.43) can be rewritten using 

the Parseval theorem: 

 ∫ 𝑥𝑇
2(𝑡)

∞

−∞

𝑑𝑡 =
1

2𝜋
∫ |𝑥𝑇(𝜔)|2

∞

−∞

𝑑𝜔 (3.45) 

Eq. (3.45) is valid for any realization of 𝑥𝑇(𝑡), thus can be applied to rewrite Eq. (3.44) in the form: 

 𝜎𝑥
2 = ∫ 𝑆𝑥𝑥(𝜔)𝑑𝜔

∞

−∞

 (3.46) 

where 
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 𝑆𝑥𝑥(𝜔) =
1

2𝜋
𝑙𝑖𝑚
𝑇→∞

1

𝑇
𝐸[|𝑥𝑇(𝜔)|2] (3.47) 

in which 𝑥𝑇(𝜔) is interpreted as the random process (as a function of frequency) whose realizations 

are the Fourier transform of the realizations of 𝑥𝑇; the function 𝑆𝑥𝑥(𝜔) is called Power Spectral 

Density (PSD). From Eq. (3.47) it is possible to deduce that the PSD is real-valued and non-negative. 

Eq. (3.47) can be used for estimation purpose. 

3.2. Phase locked ensemble average 

In the study of turbomachinery, the ensemble average technique is commonly used to reconstruct the 

flow in a rotor employing a stationary probe; information about the time structure of the signal in the 

rotating frame is lost. Samples related to different time instants are acquired at a fixed tangential 

position in the absolute frame. As for the present PIV measurements, this technique can be used to 

rebuild a periodic signal starting from a highly under-sampled one. Considering the relative frame of 

reference anchored to the rotor, the corresponding tangential position varies linearly with time due 

to rotation; this implies a relationship between the periodic part of the flow in the absolute frame and 

its tangential distribution in the rotating one. As a matter of fact, a velocity sample acquired at a 

certain time may also be assigned to a certain angular position of the rotor. The employ of optical 

measurement techniques, such as the LDV or PIV, drives further difficulty, as samples are not acquired 

evenly spaced in time (LDV) or the sampling rate is nearly one order of magnitude lower than the 

rotational speed (PIV), i.e. the samples are not evenly spaced in the tangential direction in the relative 

frame. Hence, a suitable ensemble averaging technique has been applied: A tachometer signal which 

shows the angular position of the rotor at each rotation can be considered here as a reference phase 

signal, and the instantaneous velocity samples are sorted into 𝐼 phase bins each representing a 

particular phase of the rotor revolution, i.e. a window in the rotating frame whose width equals 

360/𝐼 𝑑𝑒𝑔. This approach is depicted in Fig. 3.3 where a generic signal with a periodic part is 

considered; the tachometer reference signal is reported in the bottom part. The samples acquired at 

the same phase 𝛷, are assigned to the same bin 𝑖 representing a finite discretization of the cycle 𝜏. 

Moreover, the triple decomposition scheme proposed by Hussain and Reynolds [17] has been 

employed: 

 𝑣(𝑡) = 𝑣′(𝑡) + (𝑣̃(𝑡) − 𝑣̄) + 𝑣̄ (3.48) 

Or in a more compact formulation: 
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 𝑣(𝑡) = 𝑣′(𝑡) + 𝑣̃(𝑡) (3.49) 

Such a decomposition is suitable for the study of unsteady flows constituted by a periodic component  

𝑣̃(𝑡) and by a zero-average fluctuating component 𝑣′(𝑡) (turbulent and/or coherent) not correlated 

with the rotor position. 𝑣̃(𝑡) may be further decomposed in a time-mean component 𝑣̄ and in a zero-

average, periodic one (𝑣̃(𝑡) − 𝑣̄).  

The acquisition provides a time sequence of instantaneous samples 𝑣ℎ = 𝑣(𝑡ℎ),   ℎ = 1,2, … , 𝐻 which 

is rearranged based on the tacho signal: each sample is assigned to a window (bin 𝑖) within a rotor 

revolution (cycle 𝜏). Let the indexes k and 𝑖  be assigned to a revolution and to a window respectively; 

as the acquisition of LDV signals or PIV frames happens at random instants, the 𝑖 − 𝑡ℎ window 

contains 𝑘 = 1,2, … , 𝐾𝑖 samples 𝑣𝑖𝑘. 𝑣̃𝑖 is obtained by ensemble averaging the samples related to that 

window: 

 𝑣̃𝑖 =
1

𝐾𝑖
∑ 𝑣𝑖𝑘

𝐾𝑖

𝑘=1

,   𝑖 = 1,2, … , 𝐼 (3.50) 

The time-averaged velocity component 𝑣̄ is given by: 

 

Figure 3.3. Ensemble phase averages of a random signal, top, using a reference signal, bottom. 
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 𝑣̄ ≡ 𝑣̃ =
1

𝐼
∑ 𝑣̃𝑖

𝐼

𝑖=1

 (3.51) 

and the instantaneous non-periodic component is given by 𝑣𝑖𝑘
′ = 𝑣𝑖𝑘 − 𝑣̃𝑖 . 𝑣𝑖𝑘

′  is commonly referred 

to as “turbulent” component, but this definition is questionable since it presupposes that 𝑣𝑖𝑘
′  is related 

to turbulence, while unsteady parts not correlated with the rotor position but spatially coherent are 

often present, too. A proper definition is unresolved (by the measurement technique) unsteadiness. 

The number of bins 𝐼 must be chosen in the way that the number of samples per bin should be 

statistically significant and this aspect may be decided in the data post-processing phase by 

evaluating the statistical uncertainty.  

Then, a phase-averaged standard deviation (i.e. variance estimate) of 𝑣′ may be computed: 

 𝑣𝑖
′2̃

=
1

𝐾𝑖
∑ 𝑣𝑖𝑘

′ 2

𝐾𝑖

𝑘=1

,   𝑖 = 1,2, … , 𝐼 (3.52) 

as well as a time-averaged one: 

 𝑣′2̃̅̅ ̅̅
=

1

𝐼
∑ 𝑣𝑖

′2̃

𝐼

𝑖=1

,   𝑖 = 1,2, … , 𝐼 (3.53) 

Summing the time-averaged variance estimates of the three components of the velocity vector allows 

computing time-averaged kinetic energy associated with the unresolved unsteadiness: 

 𝑘̅̃ =
1

2
(𝑣𝑥

′ 2̃̅̅ ̅̅̅
+ 𝑣𝑦

′ 2̃̅̅ ̅̅̅
+ 𝑣𝑧

′2̃̅̅ ̅̅
) (3.54) 

which contains the turbulent kinetic energy and also the kinetic energy related to large coherent 

structures not periodic or at a period different from the considered one. 𝑘̃ may be typically made non-

dimensional, here by the peripheral speed of the blade (𝑢𝑡𝑖𝑝), in the way to extract the so-called 

turbulence intensity representative of the importance of the unresolved unsteadiness:   

 𝑇𝑢̃̅̅̅̅ =
√𝑘̅̃

𝑢𝑡𝑖𝑝
 (3.55) 
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For instance, the ensemble average of the meridional velocity measured downstream of the adopted 

fan is reported in Fig. 3.4, where both 𝑣̃ and 𝑣′2̃ (indicated as 𝑠𝑡𝑑̃(𝑣′) ) are depicted as a function of 

the phase bins as well as 𝜃 (angular position). In this case, 180 bins (2 degrees for each bin) are 

employed, such a scale could be replaced by the non-dimensional revolution period ranging from 0 

to 1. The blade wakes can be clearly identified by the dips present in the velocity trend as well as by 

the maxima present in the unresolved unsteadiness standard deviation.  

3.3. Double phase locked ensemble average 

As previously mentioned, the present work deals with the study of a fluttering fan where the flutter 

motion may be considered similar to a precession of the fan-motor assembly. Such a flutter motion is 

characterized by a specific frequency and hence it may be considered a periodic motion of the fan 

axis. Thus, taking into account, for instance, a velocity measurement carried out in front of the fan, 

close to the blade tip region, it is reasonable to state that the velocity signal should be characterized 

by two simultaneous periodic components, one related to the blade passing period (or the fan 

rotational period being the fan blades unevenly spaced) and the other related to the flutter 

phenomenon. 

 

Figure 3.4. Example of ensemble averaged meridional velocity downstream of the fan. 
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In Fig. 3.5 the meridional velocity measured in a generic point located close to the blade tip region is 

reported as a function of the sampling time. The red line (hand-sketched) in the left time trace 

represents a hypothetical periodic contribution due to the flutter oscillation, while in the right part 

of the figure, the enlarged time scale allows identifying the revolution period and the blade passing 

one.  

Hence, a single velocity sample may be assigned simultaneously to two bins: one related to the flutter 

period, and the other to the revolution one (indicated as Tacho-period). In other words, the sample 

is considered assigned to a very specific angular position of the rotor and of the flutter oscillation. 

Considering 𝐼 and 𝐽 the number of bins used to discretize the tacho-period and the flutter one 

(indicated as Vibro-period) respectively, then the periodic velocity may be defined as: 

 𝑣̃𝑖𝑗 =
1

𝐾𝑖𝑗
∑ 𝑣𝑖𝑗𝑘

𝐾𝑖𝑗

𝑘=1

,   𝑖 = 1,2, … , 𝐼,  𝑗 = 1,2, … , J (3.56) 

where 𝐾𝑖𝑗 represents the overall number of samples corresponding to the ij bin. 

As a result, 𝑣̃𝑖𝑗  depends on the variables and may not be represented as a standard x-y curve, but as 

a contour plot where the two axes refer to the Tacho-bin and Vibro-bin respectively, while the velocity 

 

Figure 3.5. Example of measured velocity in the proximity of the blade tip. 
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magnitude is indicated by the color scale. Similarly, a 3D surface may also be employed having the 

same x and y axes, but the velocity magnitude is reported on the z one. 

This technique, which to the best of the author’s knowledge, is original and has never been developed 

before it; may be referred to as double phase ensemble average.  

In Fig. 3.6 an example of this post-processing method is applied to the meridional velocity that has 

been measured previously. In this case, 70 Tacho-bins and 30 Vibro-bins (2100 bins in total) have 

been adopted. In the contour plot in Fig. 3.6b, a vertical cut at a fixed Vibro-bin describes the flow 

behavior in the measuring point as if the flutter oscillation could be frozen while the fan could keep 

on rotating. Conversely, a horizontal one at a fixed Tacho-bin describes the flow as if the fan could be 

stopped in a fixed angular position while the flutter oscillation is evolving. Even if the description of 

the flow field is not deputed to this chapter, it could be interesting to highlight some aspects: in Fig. 

3.6 the flutter oscillation seems to have a modulating effect on typical velocity trend (see for instance 

Fig. 3.4) and this effect is particularly clear taking in account the oscillations which are present in the 

maxima and minima values. As a matter of fact, since the flutter precession motion is inducing an 

axial oscillation of the fan, particularly of the shroud and of the tip of the blade, the trailing edge of 

the blade is moving axially in front of the measuring point, which is at a fixed position in the absolute 

frame of reference. Such a geometry modification must be taken into account when discussing the 

effects of the combined effect of flutter and fan rotation. 

 

Figure 3.6. Example of representation of the double phase ensembled averaged meridional 

velocity. 
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According to Eq. 3.51, the time-averaged velocity component 𝑣̄ may be computed as: 

 

 𝑣̄ ≡ 𝑣̃ =
1

𝐼

1

𝐽
∑ ∑ 𝑣̃𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 (3.57) 

Then, a phase-averaged standard deviation of 𝑣′ may be computed: 

 𝑣𝑖𝑗
′ 2̃

=
1

𝐾𝑖𝑗
∑ 𝑣𝑖𝑗𝑘

′ 2

𝐾𝑖𝑗

𝑘=1

,   𝑖 = 1,2, … , 𝐼,  𝑗 = 1,2, … , J (3.58) 

as well as a time-averaged one: 

 𝑣′2̃̅̅ ̅̅
=

1

𝐼

1

𝐽
∑ ∑ 𝑣𝑖𝑗

′ 2̃

𝐽

𝑗=1

𝐼

𝑖=1

,   𝑖 = 1,2, … , 𝐼,  𝑗 = 1,2, … , J (3.59) 

Another interesting feature of the double phase ensemble average technique may be obtained by 

analyzing Fig. 3.7 where the contour plot of the meridional velocity of Fig. 3.6 has been modified by 

changing the axes which now represents the non-dimensional time of each period. Assume that the 

rotational speed of the fan is 40 Hz, while the flutter frequency is 8 Hz. With this hypothesis, 

 

Figure 3.7. Contour plot of the double phase ensemble averaged meridional velocity with 

superposed the hypothetical time line (case 𝑇𝑣𝑖𝑏𝑟𝑜 = 5𝑇𝑡𝑎𝑐ℎ𝑜). 



 

34 

 

𝑇𝑣𝑖𝑏𝑟𝑜/𝑇𝑡𝑎𝑐ℎ𝑜  ∈  ℕ, which is unrealistic but simplifies the explanation of this method, 5 full fan 

revolutions are required to complete an oscillation period of the flutter precession. Hence, choosing 

a starting point in the 𝑖𝑗 domain, i.e. choosing an initial value for 𝑡/𝑇𝑡𝑎𝑐ℎ𝑜 and 𝑡/𝑇𝑣𝑖𝑏𝑟𝑜, then if the time 

is let to pass the next point should stay along an inclined line whose slope is 8/40. If the (0,0) initial 

point is chosen as in Fig. 3.7, as time passes the ensemble-averaged velocity values, which should be 

seen by the probe, lay on the black inclined line and after a full fan revolution, the 20% of the Vibro-

period has passed. In the second revolution of the fan, the starting point is going to be (0,0.2), leading 

to the saw-tooth trend which is visible in Fig. 3.7. It is important to underline that any 𝑖𝑗 point in the 

domain could be considered as the starting one, thus fixing the initial mutual position between the 

rotor, in terms of angular position, and the flutter precession one.  

Considering a realistic case when 𝑇𝑣𝑖𝑏𝑟𝑜/𝑇𝑡𝑎𝑐ℎ𝑜  ∉  ℕ; in this case, the fan rotational frequency is 

nearly 43 Hz, while the flutter one is 7.5, hence 5.67 fan revolutions are required to cover the 

precession period. If the meridional velocity is interpolated along the saw-tooth line representing the 

time evolution in Fig. 3.7, then it is possible to obtain the velocity distribution along an entire flutter 

period. The result is depicted in Fig. 3.8, where the ensemble-averaged meridional velocity time trace 

lasts for an entire flutter period.  

 

Figure 3.8. Time trace of the double phase ensemble averaged meridional velocity for an entire 

flutter period. 
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Finally, if this procedure is repeated for all the points constituting a radial traverse, it is possible to 

generate a contour plot representing the time evolution of double phase ensemble averaged 

meridional velocity for all the points, see Fig. 3.9. In this way, the simultaneous effects of the wakes 

and the flutter can be monitored.  

 

 

 

 

 

  

 

Figure 3.9. Contour plot of the time trace of the double phase ensemble averaged meridional 

velocity for a radial traverse. 
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4. MECHANICAL INVESTIGATIONS 

In this chapter, the dynamic and aeroelastic behavior of the fan is studied to characterize the high 

amplitude and low-frequency vibration. First, the general features of the fan including fan geometry 

and specifications, gap geometry, and characteristic curve of the fan are reported; then, the planarity 

of the ring is investigated since it may affect the vibrometers; after that, the dynamic behavior of the 

fan is analyzed using experimental and numerical (FEM) modal testing and the Campbell diagram 

obtained by FEM is discussed in detail. In the following, various vibrometric measurements are 

presented for the recognition and characterization of the aeroelastic flutter; the dependency of the 

flutter on the operating conditions is studied and the experimental Campbell diagram is obtained and 

compared to the FEM one; then, the origin of this aeroelastic flutter is discussed. Finally, different 

theoretical models for the dynamic and aeroelastic behavior of the fan are developed and presented. 

4.1. General characteristics of the fan 

In this section, the geometrical properties and the general characteristic of the fan will be presented. 

Figure 4.1 shows the studied cooling system, which includes a rotor and casing. The casing has an 

internal diameter of 520 mm, which is supported by the rods and rings to keep the electric motor 

fixed in the center and it will be mounted to the car body together with the radiator (Heat exchanger). 

In addition, an obstruction disk of 520-mm-diameter has been placed 80 mm downstream of the 

rotor to simulate the obstruction caused by the thermal engine. The rotor and casing are made of 

 

Figure 4.1. The cooling system. 
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PA6GF30 plastic; the rotor consists of seven unequally spaced blades that are connected by a 3-mm-

thick rotating ring (the rotating shroud). The deformation of the blades due to centrifugal force and 

aerodynamic load is usually limited by including such a ring connecting the blade tips [1]. This ring 

strengthens the rotor and also increases the volumetric efficiency of the fan, but results in peculiar 

phenomena: First, the flow recirculating in the gap between the rotating ring and the casing is 

reingested by the fan. This phenomenon yields blade thrust fluctuations, whose typically studied 

consequence is a strong, sub-harmonic noise; different explanations may be found for this flow, e.g. 

see [2-8]. Second, the ring has a high moment of inertia and is connected to the hub through blades 

that are relatively flexible and low-damped. From the mechanical point of view, this constitutes a 

rotating system prone to potentially large-amplitude vibration at low frequency. This represents a 

major modification since the stiffening is not sufficient to compensate for the moment of inertia of 

the ring, which is quite larger than the one of the usual unshrouded blades and introduces an 

important gyroscopic effect.  

Some of the features of the fan are listed as follows as well as Table 4.1: The blade chord 𝑐 ranges 

between 60 - 65 mm, the rotor tip radius is 𝑟𝑡𝑖𝑝 = 257 mm, and the hub-to-tip diameter ratio is 

𝑟ℎ𝑢𝑏 𝑟𝑡𝑖𝑝 = 0.374⁄ . Based on operating rotational speed, 𝑓𝑟 = 44 Hz, the blade tip speed 𝑢𝑡𝑖𝑝 =

71.2 m s⁄  and the related Reynolds and Mach numbers are 𝑅𝑒𝑐 = 𝑢𝑡𝑖𝑝𝑐𝑡𝑖𝑝 ν⁄ = 3.08 × 105 and 

𝑀𝑎𝑡𝑖𝑝 = 𝑢𝑡𝑖𝑝 𝑎0⁄ = 0.21 respectively. At the design point (DP), the volumetric flow rate is 𝑄 =

The number of blades: Seven unequally spaced 

Blade tip diameter: 514 mm 

Hub diameter: 192 mm 

Blade chord: 60 ÷ 65 mm 

Material: PA6GF30 plastic 

Design rotational speed: 2650 rev/min 

Design flow rate: 1.3 m3/s 

Design flow coefficient: 0.088 

Design pressure rise: 325 Pa 

Design pressure rise coefficient: 0.108 

Table 4.1. Fan specifications 
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1.30 m3/s, the flow coefficient is 𝜑𝐷𝑃 =
𝑄

𝑢𝑡𝑖𝑝 𝜋 𝑟𝑡𝑖𝑝
2 = 0.088, the fan pressure rise is Δ𝑝 = 325 Pa 

(outlet static pressure minus inlet total one), and the pressure rise coefficient is 𝜓𝐷𝑃 =
Δ𝑝

0.5 𝜌0 𝑢𝑡𝑖𝑝
2 =

0.108.  

The assembly of the studied fan mounted on the test rig and the details of the gap geometry between 

the stationary shroud and rotating ring have been presented in Fig 4.2; it can be seen that there is a 

big gap between these two rings, 9 mm. 

The characteristic curve of the fan is also shown in Fig 4.3.  

 

Figure 4.2. The tested fan with details of the gap geometry. 

 

Figure 4.3. Characteristic curves of the fan. 
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4.2. Planarity of the ring 

Low-speed fans are large-scale, low-cost products made of plastic material. The molding process and 

large tolerances lead to a final unperfect shape for the rotors. In the following chapters, 

measurements will be made on the hub and rotor's external ring to measure the hub and ring 

displacements and vibrations. To do so first it must be determined how are the shape of the ring and 

hub and how much planar those are. 

To measure the planarity of the ring a combination of a laser vibrometer, pointing to the ring and 

measuring the axial displacement, and an optical tachometer as a reference signal, which measures 

the time interval between each fan revolution, are used. In order to measure the planarity of the ring 

without the effect of vibration, data collection has been done at the lowest rotational speed of the fan 

(rigid motion). Using the ensemble average technique, the axial displacement data of the vibrometer 

signal has been averaged in phase, based on the fan revolution cycle. By doing so the average axial 

location of the fan’s ring is calculated for each angular position. The same procedure is applied for 

the hub and all the results are reported in Fig.4.4. In this figure the measurement locations on the 

rotor geometry are shown as black and magenta circles for the ring and the hub, respectively. The 

related plot shows the axial displacement at the hub is small and varies between ±0.2 𝑚𝑚 while this 

axial nonplanarity is larger in the ring which varies between ±1 𝑚𝑚. 

Also, the blades passing effect are recognizable as 7 peaks in this plot, which are marked with the 

number of each blade at the top. The presence of the effect of the blades is perhaps due to the 

manufacturing process as well. 

 

Figure 4.4. Planarity of the ring. 
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4.3. Dynamic behavior (Modal characteristics) 

As mentioned earlier in the introduction chapter, a high amplitude oscillation appears at the design 

point of the fan and the neighboring operating points. In the following of this chapter, using 

experimental measurements the characteristics of these vibrations will be discussed in detail. 

However before that, in this section, it is useful to perform a comprehensive realistic FEM modal 

analysis of the whole assembly. Such an analysis helps understand the dynamic behavior of the fan 

under different circumstances, e.g., when the fan is idle or at different rotational speeds. The general 

way of this modal analysis performs during a speed ramp from where the fan is idle to the design 

rotational speed. In this way, numerical Campbell plots of the fan will be obtained. 

The whole assembly of the fan is complicated and includes a rotor, casing, electric motor, bearings, 

shaft, etc; many parameters such as the standard material properties of the parts are necessary to 

perform the realistic FEM analysis of the whole assembly. 

Before performing this analysis, the dynamic properties of the rotor and casing have been separately 

investigated using experimental and numerical modal analysis. Then the numerical model will be 

updated according to the experimental data. 

Also, considering the mode shapes and their corresponding frequencies, the dynamic behavior of 

each component (here rotor and casing just be examined) can be investigated to maybe help find a 

connection between the natural frequency of the components and the high amplitude vibration of the 

fan at the design point. 

In the next step of this section, by using the updated numerical model of the rotor and casing, applying 

the characteristics of the bearings, and finally replacing the electric motor geometry with a point 

mass, the dynamic behavior of the fan at different rotational speeds up to the design rotational speed 

will be studied. Also, later in this chapter, the Campbell diagram will be calculated experimentally 

and will be compared with the one obtained by numerical analysis in this section. It is not possible to 

obtain the mode shapes for the rotating fan (e.g. at the design point) using the experimental 

investigations and this indicates the importance and necessity of numerical modal analysis of the 

system and Campbell diagram.  
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Modal testing is a common method for assessing the vibrations of a structure by applying a known 

force and measuring the structure's response. It is possible to determine the structure's frequency 

response by measuring both the input and the response. The dynamic response of the structure can 

be estimated by calculating the frequency response at various points, either simultaneously or one 

at a time. The method of excitation will depend on the size and geometry of the test structure. Impact 

testing with a modal hammer and response accelerometer is one of the most commonly used 

techniques.  

The impulse force that the impact hammer sends into the system is expected to excite a 

broad bandwidth. After data collection, the data are processed to identify the FRFs across the 

structure (modal frequencies and shapes). In most cases, mounting the accelerometer in a single spot 

and changing the impact location is simpler; this is known as a 'roving impact' modal test. 

The experimental modal testing has been done in this way when the rotor is idle: Rotor and casing 

elastically suspended to simulate the free-free condition, see Fig. 4.5. A roving impact test has been 

used for both parts by using just one accelerometer on the hub location due to not adding extra 

weight to the system by increasing the number of accelerometers. Then using an impact hammer the 

impulse force has been sent to the system at different points circumferentially close to the blade tips 

for the rotor and various points circumferentially on the casing as well. After analyzing the FRFs of 

the systems, the modal frequencies and mode shapes have been calculated for both parts. At the same 

time, two FEM modal analyses based on preliminary information about the parts' material have been 

conducted. The experimental and FEM modal frequencies of both parts have been reported in Table 

 

Figure 4.5. Casing elastically suspended to simulate the free-free condition for modal testing. 
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4.2. By updating the material properties of both parts, the FEM modal frequencies become very close 

to the experimental values. The experimental and FEM modal frequencies and mode shapes for the 

first 3 modes of the rotor and casing are shown in Figures 4.6 and 4.7, respectively.  

By looking at the mode shapes of the rotor, it can be seen that mode 1 is the first fundamental mode 

of a vibrating circular membrane, the (0,1)1 mode, since there are no nodal diameters, but one 

circular node (the outer edge). The next two modes are the (1,1) pair modes with one nodal diameter 

and one circular node (the outer edge) that are almost in the same frequency and shifted 90 degrees 

compare to each other. The exact location of the nodal diameter depends on the homogeneity of the 

membrane and the initial conditions when the vibration starts. The frequency of these two modes 

must be 1.593 times the frequency of mode one in the membrane [18], but here in this geometry, the 

difference is nearly twice.   

 
1 In the following descriptions of the mode shapes of a circular membrane, the nomenclature for labelling the 
modes is (number of nodal diameters, number of nodal circles). 

 Mode 1 Mode 2 Mode 3 

Rotor Experimental 52.4 102.3 102.5 

Rotor FEM 42.7 83.4 83.5 

Casing Experimental 27 65.1 84 

Casing FEM 22 53 68.3 

Table 4.2. Experimental and FEM modal frequencies of Rotor and Casing in Hz. 
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The casing geometry is a combination of several rings in a rectangular frame that in general can be 

considered as a rectangular membrane for modal analysis. Mode 1 is the (2,2)2 mode that vibrates at 

27 Hz with two antinodes and two nodal lines which is certainly not the first common fundamental 

 
2 In the following descriptions of the mode shapes of a rectangular membrane, the nomenclature for labelling 
the modes is (number of humps or antinodes, number of nodal lines). 

 

Figure 4.6. Mode shapes of the fan. Top: Experimental, Bottom: FEM (colorbar: deformation). 

 

Figure 4.7. Mode shapes of the casing. Top: Experimental, Bottom: FEM (colorbar: deformation). 
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mode of a rectangular membrane, the (1,1) mode, which appears in mode 3 with a higher frequency. 

Mode 2 looks like a saddle shape, and it is obtained by subtracting the two modes, (1,3) − (3,1).     

Using the updated FEM model, modal analysis can be performed for the entire fan assembly. In order 

to simplify the FEM model, the entire geometry of the electric motor has been replaced by a point 

mass. This point mass includes the main specifications of electric motor geometry such as mass, the 

center of mass, principal axes of inertia, and principal moments of inertia. In the Campbell diagram 

of Figure 4.8 obtained from the entire fan assembly FEM model, the variations in the modal 

frequencies with respect to the increase in rotational frequency up to mode 12 are calculated and 

illustrated. In this diagram, the red lines represent the harmonics of rotation frequency, 𝑓𝑟. 

Veering between pairs of coupled modes can be recognizable in the Campbell diagram. The 

phenomenon associated with the eigenvalue loci for a system with a changeable parameter is 

sometimes referred to as "mode veering": two branches come together, but instead of crossing, they 

veer away and separate. The veering is followed by mode coupling and fast eigenvector variations 

[19]. 

These 12 modes are divided into three family modes as follows: 

 

Figure 4.8. Campbell diagram obtained from the entire fan assembly FEM model. 
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• Family mode 1: hub and blade tips of the rotor are in the same phase (Those are displacing, 

deforming, and tilting in the same direction), also those are at the same phase of the casing, 

see Fig. 4.9. 

• Family mode 2: hub and blade tips of the rotor are out of phase, while the hub of the rotor 

and casing are at the same phase, see Fig. 4.10. 

• Family mode 3: hub and blade tips of the rotor are out of phase, also the hub of the rotor and 

casing are out of phase, also the blade tips and casing are at the same phase, see Fig. 4.11. 

On the sides of the Campbell diagrams for these three family modes, the mode shapes corresponding 

to each modal frequency are depicted. 

It should be noticed that the rotation and displacement of these modes overlap with the rotation 

caused by the rotor when the fan is operating. 

 

Figure 4.9. Family mode 1 Campbell diagram obtained from the FEM model (Includes modal 

frequencies and corresponding mode shapes). 
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In Figure 4.9 for family mode 1, three sets of modes are recognizable. At around 25 Hz when the fan 

is idle, there are two similar and coupled modes, the first set, with the same modal frequency and 

harmonic index 1 (HI-1, one nodal diameter), which have a 90-degree phase shift compared to each 

other. By increasing 𝑓𝑟 these two modes couple and begin to whirl in two opposite directions and at 

different frequencies, two red lines. One of these coupled modes decreases in frequency when 𝑓𝑟 

increases and reaches 𝑓 =  7 𝐻𝑧 at 𝑓𝑟 = 44 𝐻𝑧; the direction of rotation of this one is the opposite of 

the direction of rotation of the fan and it is the first backward-whirling mode (BW) of the system 

(precession motion around the axial axis of the fan), see mode shape HI-1 BW at Figure 4.9. On the 

other hand, another branch of the first set of coupled modes rises to 𝑓 =  64 𝐻𝑧 when 𝑓𝑟 gets to 𝑓𝑟 =

44 𝐻𝑧; this mode, which is labeled as mode HI-1 FW on the left side of Figure 4.9, is similar to the first 

Backward mode except that the direction of rotation of this mode is as same as the direction of 

rotation of the fan and it is the first forward-whirling mode (FW).  

 

Figure 4.10. Family mode 2 Campbell diagram obtained from the FEM model (Includes modal 

frequencies and corresponding mode shapes). 
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Also, the second set of modes consists of another two coupled two nodal diameters modes, HI-2, at 

about 𝑓 =  54 𝐻𝑧 when the fan is idle. These two modes are also similar in nature, just 90 degrees 

shifted in phase. Again, by increasing 𝑓𝑟 up to 44 𝐻𝑧, the second backward-whirling mode takes place 

at 𝑓 =  14 𝐻𝑧, HI-2 BW. In like manner, the second forward-whirling mode branches from the 

aforementioned modes around 𝑓 =  54 𝐻𝑧 and reaches 𝑓 =  190 𝐻𝑧 when 𝑓𝑟  =  44 𝐻𝑧; this mode, 

which is labeled as mode HI-2 FW, is also similar to the second Backward mode except that the 

opposite direction of rotation. The third set of modes is a non-rotation zero nodal diameter mode, 

HI-0, where the rotor and the casing axially displace at the same phase, Fig. 4.9. 

The second family mode includes a non-rotation zero nodal diameter mode, HI-0, which takes place 

at about 𝑓 =  43 𝐻𝑧. It can be seen that two HI-1 modes are coupled at about 𝑓 =  65 𝐻𝑧 when the 

fan is idle then it separates into third backward and forward modes; the backward mode is 

decreasing and reaches 𝑓 =  55 𝐻𝑧 when 𝑓𝑟  =  44 𝐻𝑧; while the forward modes end up at 𝑓 =

 92 𝐻𝑧. The modal frequencies and mode shapes of this family mode have been presented in Fig. 4.10. 

The third family mode is also a HI-1 coupled mode which starts approximately at 𝑓 =  104 𝐻𝑧 when 

the fan is idle; when 𝑓𝑟 increases, this coupled mode branches and creates the fourth backward and 

forward modes of the system; the backward mode decreases and ends up at around 𝑓 =  84 𝐻𝑧, 

while the forward mode rises and reaches about 𝑓 =  147 𝐻𝑧 when 𝑓𝑟  =  44 𝐻𝑧. This family mode is 

reported in Fig. 4.11. 

Finally, there is a distinct casing torsional mode that is not related to the other family modes. This 

mode is constant around 𝑓 =  70 𝐻𝑧, see Fig. 4.11.  

By evaluating and recognizing almost all the important frequency modes it can be concluded that the 

natural frequencies of the fan are almost similar to a rotary system on coupled anisotropic supports. 

In this study, the asymmetric casing which acts as a support for the electric motor and the rotor is 

not rigid and deforms and vibrates at its natural frequencies. This allows the system to have different 

family modes for rotor and casing in-phase and out-of-phase with each other. 

The most important frequency modes are related to the family mode 1 as those happen in the 

frequencies lower than the 𝑓𝑟. The first backward-whirling mode can be the reason for the high 

amplitude and low-frequency vibration of the fan. In the next section using vibrometric 

measurements, this idea will be examined.  
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4.4. Aeroelastic behavior 

4.4.1. Recognition of flutter 

As said, the present work stems from the observation of a large-amplitude, low-frequency vibration 

of the ring connecting the blades that, to the best knowledge of the author, has never been observed 

before. The vibration consists of a several-millimeters axial displacement 𝑥1 of the ring. Based on 

vibrometric measurements, a vibration amplitude of 8 mm or even more has been found at design 

condition (𝜑 = 0.108, 𝜓 = 0.088) and 𝑓𝑟 = 44 Hz; although the structural integrity of the fan is not 

affected, such large values are not compatible with the operation in an underhood compartment and 

may even be a frightening result.  

In order to measure the magnitude of this axial displacement oscillation, two laser vibrometers 

(VIBRO 1 and VIBRO 2) 90 degrees shifted are located in front of the rotating ring where the 

maximum displacement is observed along the rotor radius. In addition, three accelerometers are 

 

Figure 4.11. Family mode 3 Campbell diagram obtained from the FEM model (Includes modal 

frequencies and corresponding mode shapes). 
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mounted on the hub with equal angular spacing able to measure the vibration at the hub and the axial 

displacement of the whole assembly. The locations of these probes are shown in Fig. 4.12.  

Some preliminary tests have shown that the features of the vibration depend on both the rotational 

frequency 𝑓𝑟 and the operating point, which is identified in the present work by the head coefficient 

𝜓. Namely, the behavior may range from a very important, stationary vibration to no perceived 

vibration, but also lower amplitude and intermittent ones. 

In the characteristic curves of Figure 4.13, all the investigated points are listed in this manner: The 

measurements have been done at different flow rates and pressure rises for 6 rotational speeds, 𝑓𝑟, 

which varies from 30 Hz to 44 Hz and these investigated points at different rotational speeds are 

labeled by the letters F to A; where F refers to the minimum investigated rotational speed and A to 

the maximum; ∆𝑝 increases from point 1 at free discharge condition to point 13 at 560 Pa for each 𝑓𝑟. 

In the following, these preliminary tests will be presented in two sets: The first set is measured by 

the vibrometer (VIBRO 1 at the ring) at the fixed rotational speed, 𝑓𝑟 = 44, and increasing pressure 

rise for operating points A7 (𝜓 = 𝜓𝐷𝑃 = 0.088) with very large vibration (Flutter), A10 (𝜓 = 0.138) 

with an intermittent condition, and A12 (𝜓 = 0.156) with no perceived vibration (No-Flutter); the 

second set of the measurements is related to the design operating point at different rotational speeds 

(points from D7 to A7, 𝑓𝑟 = 37.4 ÷ 44 Hz) that will be reviewed later in this section; the signals 

amplitude 𝑥1 of these measured points are shown in the small windows in the characteristic curve of 

Figure 4.13; the duration of measurements is 240 s for each operating point. 

 

Figure 4.12. Location of vibrometers and accelerometers. 
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The PSD of two extreme cases, Flutter (A7, in red) and No-Flutter (A12, in black) are calculated, and 

the main features of the spectra are listed in the following. The most interesting part is the low-

frequency one which includes 𝑓𝑟, i.e. below 55 Hz, see Fig. 4.14a; then, considering that the rotor has 

𝑍𝑅 = 7 blades, the range that includes 7𝑓𝑟 = 308 Hz, i.e. below 8𝑓𝑟 = 352 Hz, provides useful 

information about the behavior at the neighboring frequencies, see Fig. 4.14c and Fig. 4.14d. Finally, 

the trend up to 10 kHz provides an overall picture of the involved phenomena, see Fig. 4.14b. 

The vibration is related to the very prominent low-frequency peak (𝑓𝑣 = 7.3 Hz at point A7); such a 

peak is also present at point A12, but it is rather lower (more than three orders of magnitude, which 

means that the amplitude of the vibration is almost 40 times smaller) and the frequency is also 

slightly smaller.  

In case A7, peaks at 2nd, 3rd, and 4th harmonics of 𝑓𝑣 are present; no such peaks are present in case 

A12. In both cases, peaks are present at the harmonics of 𝑓𝑟 with a small difference in frequency 

between the two cases. In both cases, four narrowband humps are present between (1) 𝑓𝑣 and 𝑓𝑟 , (2) 

𝑓𝑟 and 2𝑓𝑟, (3) 2𝑓𝑟 and 3𝑓𝑟, and (4) 4𝑓𝑟 and 5𝑓𝑟. They are higher in case A12. In case A7 only, side 

 

Figure 4.13. Measured points as black dots along the characteristic curve for different 𝑓𝑟, 𝑄, and 

∆𝑃 with time traces of 𝑥1. 
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peaks are present beside the ones at the 𝑓𝑟 harmonics. Such peaks are shifted of ±𝑓𝑣 multiples, i.e. at 

𝑓𝑟 ± 𝑓𝑣, 𝑓𝑟 ± 2𝑓𝑣, and generally at 𝑛𝑓𝑟 ± 𝑘𝑓𝑣.  

Fig. 4.14.b shows that the observed peaks at the 𝑓𝑟 harmonics, with side peaks shifted of 𝑓𝑣 multiples 

in case A7, extends beyond 2 kHz. The broadband part of the spectrum has a regular, slightly 

decreasing trend up to about 1 kHz; then, a steeper decrease takes place.  

This short survey indicates that an explanation should also be provided for the peaks at the 𝑓𝑟 

harmonics with the side peaks system and for the narrowband humps; the 𝑓𝑟 peaks are explained in 

this section and the side peaks system will be presented at the end of this chapter using a theoretical 

model. 

The peaks at the 𝑓𝑟 harmonics may be due to a residual static unbalance of the rotor, but as shown in 

section 4.2, such peaks surely receive an important contribution from the non-planarity of the ring 

due to the employed molding process: seven humps are present, see Fig. 4.4, that is perceived by the 

vibrometer as a one-per-revolution displacement. The side peaks at multiples of 𝑓𝑣 observed in case 

A7 resemble the frequency modulation effect, as if a carrier wave at 𝑓 = 𝑓𝑟 were modulated by a wave 

 

Figure 4.14. PSD of the axial displacements of the ring that are measured by the vibrometer for 

two operating points A7 and A12 at different frequency ranges. 
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at 𝑓 = 𝑓𝑣. It will be experimentally shown that, in the presence of vibration, rotational speed 

oscillations take place with fundamental frequency 𝑓𝑣; then an analytic analysis will be provided that 

shows this is consistent with side peaks in the PSD of the rotational speed. As a result, such 

oscillations also affect the hump passing in front of the vibrometer, eventually yielding the 

modulation effect which is observed in the vibrometer signal. The relation between the side peaks’ 

shift and 𝑓𝑣 is apparent in Fig. 4.15, where the PSD of the second set of the measurements related to 

the design operating point at different rotational speeds are reported (points from D7 to A7, 𝑓𝑟 =

37.4 ÷ 44 Hz, Fig. 4.13). In the two plots, the PSD is plotted either versus 𝑓 or versus 𝑓 𝑓𝑟⁄ ; the first 

plot shows that if the peaks are disregarded, the trend of the spectra is generally independent of 

𝑓𝑟while 𝑓𝑣 decreases with 𝑓𝑟: 𝑓𝑣 = 8.24 Hz at 𝑓𝑟 = 37.4 Hz and 𝑓𝑣 = 7.3 Hz at 𝑓𝑟 = 44 Hz; this is 

consistent with a backward whirling mode of vibration of a rigid disk; the peak at 𝑓 = 𝑓𝑟 may not be 

easily detected, due to the presence of the side peaks. On the contrary, when the PSD is plotted versus 

𝑓 𝑓𝑟⁄ , see Fig. 4.15b, all of the peaks at 𝑓 = 𝑓𝑟 collapse at 𝑓 𝑓𝑟⁄ = 1, while the side peaks shift to 

different values of 𝑓 𝑓𝑟⁄ , i.e. to 𝑓 𝑓𝑟⁄ ≅ ±0.78 to 𝑓 𝑓𝑟⁄ ≅ ±0.83. Namely, the distance from the main 

peak decreases from about 0.22 for point D7 to about 0.17 for point A7; these values are consistent 

with the ones of 𝑓𝑣 𝑓𝑟⁄ : 𝑓𝑣 𝑓𝑟⁄ = 7.3 44⁄ = 0.166 at point A7 and 𝑓𝑣 𝑓𝑟⁄ = 8.24 37.4 = 0.22⁄  at point D7.  

It will also be shown in the following that the narrowband humps are related to a random, broadband 

excitation of rotor ring vibration, but for the order higher than the one related to the vibration at 𝑓 =

𝑓𝑣. 

The fact a low-frequency peak is always present suggests that the vibration is caused by a resonance; 

at certain operating conditions (e.g. point A12), it may be due to a broadband excitation similarly to 

the other narrowband humps, while at other operating conditions (e.g. point A7) a strong driving 

mechanism arises. The peaks at the 2nd, 3rd, and 4th 𝑓𝑣 are clearly apparent, but their order of 

 

Figure 4.15. Effect of 𝑓𝑟 changes at the PSD of the axial displacements of the ring. 
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magnitude is 5 to 6 times smaller, which means that the amplitude of the vibration is almost 100 to 

500 times smaller; those could have a counterpart in other involved quantities, but such a large 

difference implies that they may be due to and may not be distinguished from nonlinear effects. The 

decrease in 𝑓𝑣 from case A7 (7.3 Hz, strong vibration) to case A12 (7 Hz, no perceived vibration) is 

consistent with an aeroelastic nature of the phenomenon, as it may be ascribed to the aerodynamic 

stiffening effect. 

4.4.2. Signals from different measuring devices 

In these aforementioned investigations, the VIBRO1 signal has been used because the signals of other 

measuring devices (two vibrometers and three accelerometers, see Fig. 4.12) have similar 

characteristics. PSDs of one of the vibrometers and an accelerometer have been compared in Fig. 4.16 

for two operating points B2 (No-Flutter) and B7 (Flutter). Characteristics such as low-frequency 

vibration peak, 𝑓𝑣, and rotational speed, 𝑓𝑟, are visible in all signals. As expected, due to the nature of 

the backward whirling motion of the rotor around the axial axis of the electric motor’s shaft at 𝑓𝑣, the 

axial displacement at the tip of the blades where the vibrometer is located (rotating ring) is much 

greater, almost two orders of magnitude in the PSD, than the displacement at the hub where the 

accelerometer is mounted. This difference is shown in Fig. 4.17 for the Flutter case by filtering the 

two signals at 𝑓𝑣 ± 0.5 𝐻𝑧 frequency band; the vibration amplitude for the vibrometer is more than 

10 times the accelerometer; the phase difference between these two measuring devices is due to the 

installation location. 

 

Figure 4.16. PSD comparison of vibrometer and accelerometer for two working points. a) No-

Flutter (Point B2). b) Flutter (Point B7). 
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In Fig. 4.16, side peaks are present beside the ones at the 𝑓𝑟 harmonics for both signals. Such peaks 

are shifted of ±𝑓𝑣 multiples. For the accelerometer signal, there is a narrowband hump in the range 

of 15 to 20 Hz in both Flutter and No-Flutter cases. Such a hump is not present for the vibrometer 

signal. Considering the slight differences between the measuring devices, it can be concluded that the 

reiteration of the analysis using other devices will produce similar results.  

4.4.3. Dependency on the operating condition 

The observation of the classic Campbell plots for stiff rotating disks, suggests that the observed low-

frequency, subharmonic vibration could be related to a backward whirling one-nodal diameter mode. 

In order to confirm such an assumption, a number of tests, both experimental and numerical, have 

been done that include vibrometric measurements at different rotational speeds, and experimental 

and numerical modal analysis; the numerical modal analysis has been studied in section 4.3 while 

the experimental one will be present here. Then, the phase difference between the signal from 

vibrometers located at different angular positions has been employed to verify that the identified 

mode is in fact counter-rotating. 

In order to build an experimental Campbell plot, the fan has been operated at different rotational 

speeds while keeping the plenum valve at a fixed opening, namely at design values of 𝜑 and 𝜓 as 𝑓𝑟 

varied and the ring axial position has been measured by means of a vibrometer, see the signal plot in 

Fig. 4.18a where the gray signal is the acquired signal while the overlapped blue one is the filtered 

 

Figure 4.17. The vibration amplitude obtained by vibrometer and accelerometer at working 

point B7. 
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signal (bandpass filter: 𝑓𝑣 ± 2 𝐻𝑧) which this filtered signal is supposed to be representative of the 

vibration. First, the fan has been excited by means of a compressed air jet impinging in the blade tip 

region and 𝑓𝑟 has been slowly varied along a linear ramp from 11 Hz (minimum operational 𝑓𝑟) to 45 

Hz (maximum operational 𝑓𝑟) in 135 s, then, for the next 15 s, the 𝑓𝑟 has been kept constant at the 

maximum rotational speed.  

 

Figure 4.18. Experimental Campbell diagram of an 𝑓𝑟 ramped signal. 
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The probability density function (PDF) of the acquired signal (dashed line) and the filtered signal 

(solid line) for two time periods, low (green) and high (red) amplitude is calculated, see Fig. 4.18b. 

In low amplitude fluctuations, the probability distribution appears as a distinct peak at the zero 

mean, on the contrary for high amplitude fluctuations, this probability distribution is bimodal, with 

peaks of nearly 8 mm, corresponding to a feature typical of reciprocating oscillating motion. 

In Figs. 4.18c and 4.18d, the wavelet plot of the vibrometer signal is reported where 𝑓𝑟 has been 

reported in the abscissas instead of 𝑡, due to proportionality between 𝑓𝑟 and 𝑡 during the linear speed 

ramp; as said, it should be kept in mind that this proportionality exists only up to the maximum 

rotational speed when the rotor’s rotational frequency reaches 45 Hz; after 45 Hz the rotational 

velocity is constant. Straight lines at the 1st, 2nd, and 3rd harmonics of 𝑓𝑟 are apparent with pairs of 

side crests at 𝑓𝑟 > 40 Hz. These crests correspond to the side peaks in the PSD of Figs. 4.14 and 4.15 

and appear when the vibration becomes evident. Furthermore, some crests may also be identified 

that are related to two narrowband humps out of the four observed in the PSD. 

First of all, the vibration at 𝑓 = 𝑓𝑣 = 7.3 Hz is related to a crest at a frequency that decreases with 𝑓𝑣 

from about 16 Hz at 𝑓𝑟 = 11 Hz to 7 Hz at 𝑓𝑟 = 45 Hz; such a decreasing trend is typical of the first 

backward-whirling mode of a rotating disk. However, although it is rather stiff, the ring is not a disk 

and is connected to the hub by means of the blades, which are rather compliant. Therefore, before 

accepting that the kind of mode has been identified, a confirmation is necessary that it is one-nodal-

diameter and counter-rotating. To identify the direction of rotation of backward whirling mode, the 

phase difference between the signal from two vibrometers located at almost 90 degrees angular 

positions has been computed. By calculating the phase at 𝑓𝑟 and 𝑓𝑣 for the signal from two 

vibrometers, it can be seen that the direction of rotation at 𝑓𝑣 is in the opposite direction of 𝑓𝑟. The 

phases for vibrometers 1 and 2 at 𝑓𝑟 are equal to 92° and 1° respectively yielding a phase difference 

of +91°; while at 𝑓𝑣 phases are equal to 125° and −146° for vibrometers 1 and 2 respectively yielding 

a phase difference of −89°. These phase differences are shown in Fig. 4.19.    

So far, the nature of observed low-frequency, subharmonic vibration has been identified. In order to 

study the relationship between the excitation of this frequency mode and the parameters of  𝑓𝑟, 𝑄 (or 

𝜑), and ∆𝑃 (or 𝜓), comprehensive measurements have been done for the entire characteristic curve 

of the fan. Figure 4.13 shows the investigated points as black dots along the characteristic curve for 

different 𝑓𝑟, 𝑄, and ∆𝑃. 
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The oscillating behavior for all the studied points is investigated by time averaging the amplitude of 

the oscillations related to the low-frequency vibration 𝑓𝑣, obtained by calculating the Hilbert 

envelope of the vibrometer signal at each point and is denoted by 𝑥𝑓𝑣
. First, the amplitude of 

oscillations in logarithmic scale versus 𝜓 is presented in Fig. 4.20a. Second, in a different illustration 

as a contour plot, Fig. 4.20b, 𝑥𝑓𝑣
 is plotted in logarithmic scale versus 𝑄 and ∆𝑃. As 𝜓 increases or 

decreases and approaches the design point 𝜓𝐷𝑃 = 0.108, the oscillation amplitude enhances sharply. 

Also, in the contour plot, which is divided into three zones of Flutter, No-Flutter, and Intermittent 

vibrational behavior, it can be clearly seen that by approaching point A7 (design point), either by 

increasing 𝑓𝑟 or by opening and closing the inlet valve and changing 𝑄 and ∆𝑃, the amplitude of 

oscillations increases significantly. For 𝑓𝑟 less than 35 𝐻𝑧 as well as 𝑄 and ∆𝑃 outside the Flutter zone, 

the amplitude of oscillations is significantly reduced and its value is very close to zero. Also, the 

narrow area between the two zones of Flutter and No-Flutter indicates that the intermittent behavior 

is similar to the small window of point A10 in Fig 4.13.  

Investigating experimentally the vibrational behavior of the fan during a rotational speed ramp 

which is presented by the Campbell diagram, shows that a low-frequency mode of the system causes 

high amplitude vibration; this decreasing frequency by increasing the rotational frequency of the 

rotor to the design point has the highest vibrational amplitude; the direction of rotation of this low-

frequency mode is verified and it has been observed that it is a backward-whirling mode. Also, it has 

been found that the experimental results are compatible with the FEM model. 

Finally, comprehensive measurements showed the relationship between the vibrational behavior of 

the fan and the parameters of  𝑓𝑟, 𝑄 (or 𝜑), and ∆𝑃 (or 𝜓). By approaching the design point high 

 

Figure 4.19. Direction of rotation of backward whirling mode. 
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amplitude oscillations take place and it has been found that this vibrational behavior can be divided 

into three zones: Flutter, No-Flutter, and Intermittent behavior.  

4.4.4. The nature of the spectral peaks and the excitation mechanism  

The first indication about the nature of the excitation mechanism comes from the intermittency 

observed at point A10, Fig. 4.13. The wavelet maps of three distinct cases of points A7, A10, and 

A12 represent Flutter, Intermittent, and No-Flutter conditions respectively as illustrated in Figure 

4.21. It can be clearly seen that for point A10 at a certain time window, the amplitude of 𝑥1 

frequently decreases and increases. The amplitude of these oscillations in the maximum and 

 

 

Figure 4.20. a) Vibration amplitude for the investigated points. b) Vibration amplitude for all the 

studied points presented in three zones of Flutter, No-Flutter, and Intermittent behavior. 
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minimum parts of the signal is almost close to the case with high amplitude oscillations A7 and the 

case with very low amplitude oscillations A12, respectively. The corresponding wavelet maps 

clearly show this effect; considering that the these maps show the peak at 𝑓𝑣 region between the 

frequency range of 6 to 9 Hz. In the Flutter case, the peak at 𝑓𝑣 has the maximum amplitude, and its 

frequency along the measuring time window is almost constant. On the contrary, In the No-Flutter 

case, the PSD peak at 𝑓𝑣 is barely visible and has the minimum amplitude, and its frequency 

decreases as it has been investigated by the PSD plots. All things considered and by exploring these 

two extreme points it can be seen that the vibrational behavior of the fan at 𝑓𝑣 peak for the 

Intermittent case is a combination of these two, Flutter and No-Flutter cases. In the way that during 

the time the amplitude of the oscillation is high, the value of 𝑆𝑥 is similar to the Flutter case, and in 

contrast, during the time the amplitude of the oscillation declines, the value of 𝑆𝑥 and 𝑓𝑣 are also 

decreasing analogous to the No-Flutter case. This slight 𝑓𝑣 modification is visible in the A10 wavelet 

map. 

The intermittent behavior at point A10 may provide information about the excitation mechanism but 

what causes this iterative behavior over time seems to be a relatively complex issue. Such an 

intermittent behavior is typical of aeroelastic phenomena and, namely, of flutter. Flutter is related to 

the existence of aerodynamic forces whose amplitude depends on the displacement and velocity of 

the rotor with respect to its rotating reference system. For their nature, these forces are called self-

 

Figure 4.21. Wavelet plots and time traces for three sample cases A7, A10, and A12. 
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excited or motion-induced forces. When the relationship between force and motion is linearized, the 

proportionality factor between displacement and force identifies the aerodynamic stiffness, while 

the proportionality factor between velocity and force is idealized as aerodynamic damping. In flutter, 

the aerodynamic stiffness has usually a minor role, producing a slight shift of the vibration frequency 

(the variation of 𝑓𝑣 observed in the experiment is compatible with this phenomenon). On the other 

hand, the role of aerodynamic damping is dominant when its value is negative and large enough to 

cancel the mechanical damping. In this case, the negative total damping produces an increment of the 

vibration amplitude until some non-linearity lets the aeroelastic system saturate on a stable limit 

cycle. Random events, e.g. the ingestion of large-scale turbulence, may produce a temporary phase 

shift of the motion-induced forces and interrupt the aeroelastic feedback, resulting in an intermittent 

behavior. 

The confirmation that the excitation is aeroelastic arrived fortuitously, by observing that positioning 

a thin bar downstream of the fan close to the gap, Fig. 4.22a, immediately suppresses the large-

amplitude vibration, and removing the bar re-onsets the vibration rapidly [20]. Such behavior is 

documented in Fig. 4.22b by the measurements taken while the bar is present (point B7 in Fig. 4.13). 

When the bar is present the basic features of the vibration (time trace, amplitude, and frequency) are 

quite close to the ones related to the points at which the vibration is weak, see Fig. 4.23. The bar may 

suppress the vibration, even without any contact with the mounting panel. This indicates that the 

 

Figure 4.22. Placing a bar downstream of the fan adjacent to the gap. a) Details of the bar and 

gap geometry. b) Wavelet plot and time trace [20]. 
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excitation is not purely mechanical since the bar may act on the system only changing the flow field. 

The average axial gap size is independent of the presence of the bar, also according to the fact that 

the vibration amplitude does not change the operating point; this shows that the gap size does not 

univocally determine the characteristics of the vibration, e.g. 𝑥𝑓𝑣
 and 𝑓𝑣. However, aerodynamic 

disturbances are typically convective, i.e. they are transported streamwise by the mean flow.  

Upstream influence is possible but requires an obstacle located in the main flow at a short distance. 

In the present case, none of these conditions are apparently verified, as the bar is located in the 

downstream region, but outside the rotor outflow. Hence, the assumption that the bar acts on the 

leakage flow is reasonable due to the typical trend of the leakage flow streamlines, Fig. 4.22a. The 

vibration makes the gap non-axisymmetric as its size periodically varies at the frequency 𝑓𝑣, 

consistently with a counter-rotating mode shape, see Fig. 4.24. This produces a change in the gap 

flow, which, in turn, generates a variation of the aerodynamic load, resulting in aeroelastic feedback.  

The hypothesis that the aeroelastic coupling occurs due to the leakage flow is further confirmed by 

tests carried out after increasing the roughness of the external surface of the rotor ring by means of 

a Velcro tape which has a negligible mass, Fig.4.22a. This yields a higher drag, which inhibits the 

possible counter-rotating flow in the gap. While this modification only slightly decreased the fan 

efficiency, the large-amplitude vibration observed at 𝑓𝑣 completely disappeared. The corresponding 

𝑥𝑓𝑣
 trends (Fig. 4.23) show a decrease larger than with the bar, thus confirming that the leakage flow 

is involved in the vibration.  

 

 

Figure 4.23. Vibration amplitude at 𝑓𝑟 = 41 𝐻𝑧 for general case, with Velcro tape, and with bar. 
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4.5. Theoretical models 

The present section regards the frequency content of the aerodynamic excitation of a 

turbomachinery rotor constituted by 𝑚 = 1,2, … , 𝑧𝑅 blades and is based on a kinematic model of both 

flow and rotor ring. An extension of the rotor interference theory employed in Aeroacoustics, e.g. see 

[21], and an application of the frequency modulation theory are reported.  

First, it is assumed that deformations or vibrations are absent; hence, in the relative frame, the blades 

are stationary and are located at the circumferential positions 𝜗𝑟𝑒𝑙,𝑚 = 𝜗𝑚
0  with 𝜗1

0 = 0. Then the 

possibility of vibration and of rotational speed fluctuation is considered. 

The evenly spaced rotor, for which 

 𝜗𝑚
0 = (𝑚 − 1)

2𝜋

𝑧𝑅
 (4.1) 

is the most common one, but the present rotor has uneven blades, i.e. a generic distribution 𝜗𝑚
0 . The 

only constraint that the 𝜗𝑚
0  distribution has to respect is that the rotor is statically balanced, which 

requires that ∑ cos 𝜗𝑚
0𝑧𝑅

𝑚=1 = 0 and ∑ sin 𝜗𝑚
0𝑧𝑅

𝑚=1 = 0; such a condition may be synthesized as  

 ∑ exp(𝑖𝜗𝑚
0 )

𝑧𝑅

𝑚=1

= 0 (4.2) 

 

Figure 4.24. The direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four 

schematic positions and a circular black and white contour strip illustrating the gap opening for 

one revolution of 𝜔𝑣. 
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Such a solution is often employed in fan rotors in order to reduce the tonal noise components at the 

blade passing frequency (BPF) and harmonics, at the cost of generating noise at the harmonics of the 

rotational frequency which are usually absent in evenly spaced rotors. As the harmonic content of 

the received noise is determined by the interference between acoustic waves generated by each 

blade, the key quantity that governs the phenomenon is called the rotor interference function and 

depends on both the harmonic order and the blades' angular positions. 

4.5.1. The rotor interference function 

In the following sections, it will be shown that the summation of the forces acting on the blades 

involves the quantity 

 𝐹𝑖𝑛𝑡(𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp(𝑖𝑛𝜗𝑚

0 )

𝑧𝑅

𝑚=1

 (4.3) 

 

Figure 4.25. The rotor assembly. 
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that, in fan Aeroacoustics, is called the rotor interference function. The purpose of the present section 

is to show some interesting properties of 𝐹𝑖𝑛𝑡: 

1) For any rotor 

 𝐹𝑖𝑛𝑡(−𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = 𝐹𝑖𝑛𝑡(𝑛, 𝜗1

0, 𝜗2
0, … , 𝜗𝑧𝑅

0 )
∗
 (4.4) 

where * denotes the complex conjugate value. Hence 

 |𝐹𝑖𝑛𝑡(−𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 )| = |𝐹𝑖𝑛𝑡(𝑛, 𝜗1

0, 𝜗2
0, … , 𝜗𝑧𝑅

0 )| (4.5) 

2) For any rotor 

 𝐹𝑖𝑛𝑡(0, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = 𝑧𝑅 (4.6) 

If 𝑛 = 0, exp(𝑖𝑛𝜗𝑚
0 ) = exp(0) = 1 for any value of 𝜗𝑚

0 . Hence 

 𝐹𝑖𝑛𝑡(0, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp(0)

𝑧𝑅

𝑚

= ∑ 1

𝑧𝑅

𝑚

= 𝑧𝑅 (4.7) 

3) For any statically balanced rotor 

 𝐹𝑖𝑛𝑡(1, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = 0 (4.8) 

as 𝐹𝑖𝑛𝑡(1, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp(𝑖𝜗𝑚

0 )𝑧𝑅
𝑚 = 0 constitutes the static balancing condition. This means 

that no fluctuation may be present at 𝑓 = 𝑓𝑝 (i.e. at 𝑛 = 1), no matter whether a statically balanced 

rotor is evenly spaced or not. 

4) For an evenly spaced rotor, i.e. 𝜗𝑚
0 = (𝑚 − 1)

2𝜋

𝑧𝑅
, only fluctuations at 𝑧𝑅 multiples are present (for 

a stationary disturbance, 𝑓𝑝 = −𝑓𝑟, and these are harmonics of the BPF), and the fluctuations at all of 

the other 𝑓𝑝 harmonics are canceled. Namely 

𝐹𝑖𝑛𝑡(𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp(𝑖𝑛𝜗𝑚

0 )

𝑧𝑅

𝑚=1

= ∑ exp [𝑖𝑛(𝑚 − 1)
2𝜋

𝑧𝑅
]

𝑧𝑅

𝑚=1

= {
𝑧𝑅 𝑖𝑓 𝑛 = 𝑘𝑧𝑅

0 𝑖𝑓 𝑛 ≠ 𝑘𝑧𝑅
 (4.9) 
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with any integer 𝑘. Namely, all of the harmonics of 𝑧𝑅𝑓𝑝 are amplified by a factor of 𝑧𝑅 (perfect 

constructive interference), while all of the remainders are completely canceled (perfect destructive 

interference). This may be demonstrated by posing 𝑧 = exp (𝑖
2𝜋𝑛

𝑧𝑅
) = cos (

2𝜋𝑛

𝑧𝑅
) + 𝑖 sin (

2𝜋𝑛

𝑧𝑅
): 

𝐹𝑖𝑛𝑡(𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp (𝑖𝑛(𝑚 − 1)

2𝜋

𝑧𝑅
)

𝑧𝑅

𝑚=1

= ∑ exp (𝑖
2𝜋𝑛

𝑧𝑅
)

𝑚−1
𝑧𝑅

𝑚=1

= ∑ 𝑧𝑚−1

𝑧𝑅

𝑚=1

= 1 + 𝑧 + 𝑧2 + ⋯ + 𝑧𝑧𝑅−1 

(4.10) 

The two cases 𝑛 = 𝑘𝑧𝑅  and 𝑛 ≠ 𝑘𝑧𝑅 with any integer 𝑘 have to be considered: 

• if 𝑛 = 𝑘𝑧𝑅 , 𝑧 = exp (𝑖
2𝜋𝑛

𝑧𝑅
) = exp (𝑖

2𝜋𝑘𝑧𝑅

𝑧𝑅
) = exp(𝑖2𝜋𝑘) = 1 for any 𝑘. Then 

𝐹𝑖𝑛𝑡(𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp (𝑖𝑛(𝑚 − 1)

2𝜋

𝑧𝑅
)

𝑧𝑅

𝑚=1

= ∑ exp (𝑖
2𝜋𝑘𝑧𝑅

𝑧𝑅
)

𝑚−1
𝑧𝑅

𝑚=1

= ∑ 1

𝑧𝑅

𝑚=1

= 𝑧𝑅 (4.11) 

• if 𝑛 ≠ 𝑘𝑧𝑅 , the algebraic identity ∑ 𝑧𝑛𝑁
𝑛=0 =

𝑧𝑁+1−1

𝑧−1
 has to be considered that yields 

∑ 𝑧𝑚−1

𝑧𝑅

𝑚=1

= ∑ 𝑧𝑚′−1

𝑧𝑅−1

𝑚′=1

=
𝑧𝑧𝑅 − 1

𝑧 − 1
=

exp (𝑖
2𝜋𝑛
𝑧𝑅

)
𝑧𝑅

− 1

exp (𝑖
2𝜋𝑛
𝑧𝑅

) − 1
=

exp (𝑖2𝜋𝑛
𝑧𝑅
𝑧𝑅

) − 1

exp (𝑖
2𝜋𝑛
𝑧𝑅

) − 1
 (4.12) 

in this case, exp(𝑖2𝜋𝑛) = 1 for any 𝑛, which indicates that the numerator is null, while the 

denominator cannot be null since 
𝑛

𝑧𝑅
 is not an integer. Hence 

𝐹𝑖𝑛𝑡(𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ) = ∑ exp (𝑖𝑛(𝑚 − 1)

2𝜋

𝑧𝑅
)

𝑧𝑅

𝑚=1

=
exp(𝑖2𝜋𝑛) − 1

exp (𝑖
2𝜋𝑛
𝑧𝑅

) − 1
= 0 (4.13) 
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Notice that, in the following, the blade spacing 𝜗𝑚
0  is fixed. Hence, for the sake of space, when referring 

to 𝐹𝑖𝑛𝑡(𝑛, 𝜗1
0, 𝜗2

0, … , 𝜗𝑧𝑅
0 ), the angles 𝜗1

0, 𝜗2
0, … , 𝜗𝑧𝑅

0  will be omitted and it will be simply referred to as 

𝐹𝑖𝑛𝑡(𝑛). 

Summarizing, it has been shown that 

• For any rotor, the constant part (𝑛 = 0) of the blade force sum as there is no possibility of 

cancellation; hence, the force due to a blade simply multiplies by 𝑧𝑅; 

• As the rotor is statically balanced, no fluctuation may be present at 𝑓 = 𝑓𝑝 (𝑛 = 1), no matter 

whether the rotor is evenly spaced or not; 

• For an evenly spaced rotor, fluctuations at the harmonics of 𝑧𝑅𝑓𝑝 are amplified of a factor 𝑧𝑅; 

• For an evenly spaced rotor, no fluctuation may be present at the remainder of the 𝑓𝑝 harmonics, 

while for unevenly spaced ones these may appear;  

 

Figure 4.26. The rotor interference function. 

n (𝑛 + 1)𝑓𝑟 + 𝑛𝑓𝑣 |𝐹𝑖𝑛𝑡(𝑛 + 1)| (𝑛 − 1)𝑓𝑟 + 𝑛𝑓𝑣 |𝐹𝑖𝑛𝑡(𝑛 − 1)| 

0 1𝑓𝑟 = 44 𝐻𝑧 |𝐹𝑖𝑛𝑡(1)| = 0 −1𝑓𝑟 = −44 𝐻𝑧 |𝐹𝑖𝑛𝑡(−1)| = 0 

1 2𝑓𝑟 + 𝑓𝑣 = 95.5 𝐻𝑧 |𝐹𝑖𝑛𝑡(2)| = 0.15 1𝑓𝑣 = 7.5 𝐻𝑧 |𝐹𝑖𝑛𝑡(0)| = 𝑧𝑅 = 7 

2 3𝑓𝑟 + 2𝑓𝑣 = 147 𝐻𝑧 |𝐹𝑖𝑛𝑡(3)| = 0.67 1𝑓𝑟 + 2𝑓𝑣 = 59 𝐻𝑧 |𝐹𝑖𝑛𝑡(1)| = 𝑧𝑅 = 0 

3 4𝑓𝑟 + 3𝑓𝑣 = 198.5 𝐻𝑧 |𝐹𝑖𝑛𝑡(4)| = 0.91 2𝑓𝑟 + 3𝑓𝑣 = 110.5 𝐻𝑧 |𝐹𝑖𝑛𝑡(2)| = 𝑧𝑅 = 0.15 

 

Table 4.3. The present rotor interference function for 𝑛 = 0,1,2, 𝑎𝑛𝑑 3. 
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• However, if the spacing is only mildly uneven as in the present case, 𝐹𝑖𝑛𝑡 is large at 𝑧𝑅𝑓𝑝 and at it 

is lower harmonics, while it should be small at the intermediate ones.  

4.5.2. Kinematic analysis of the rotor speed oscillation 

The present analysis stems from the observation of the vibrometer signal PSD, see Fig. 4.14; namely, 

a peak at 𝑓 = 𝑓𝑟 is present with and without flutter, i.e. no matter the peak at 𝑓 = 𝑓𝑣 is present. But, 

with flutter, further peaks (in the following side peaks) appear at 𝑓 = 𝑓𝑟 ± 𝑓𝑣. The peak at 𝑓 = 𝑓𝑟 may 

be explained considering that the ring is not perfectly planar due to the molding process, see Fig. 4.4, 

which reports the shape of the ring in terms of axial position 𝑥0 = 𝑥0(𝜗𝑟𝑒𝑙), with 𝜗𝑟𝑒𝑙  the angular 

position in the relative frame. As will be seen in the next section, the instantaneous absolute angular 

position 𝜗𝑎𝑏𝑠 of a point of the ring identified by a 𝜗𝑟𝑒𝑙  value is  

 𝜗𝑎𝑏𝑠 = 𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡 (4.14) 

hence, in the absence of vibration, the axial position 𝑥𝑟𝑖𝑛𝑔
0 (𝑡) of the ring at the location 𝜗𝑎𝑏𝑠 = 𝜗𝑣𝑖𝑏𝑟𝑜 

where the vibrometer is located is given by  

 𝑥𝑟𝑖𝑛𝑔
0 (𝑡) = 𝑥0(𝜗𝑣𝑖𝑏𝑟𝑜 − 2𝜋𝑓𝑟𝑡) (4.15) 

having considered that 𝜗𝑟𝑒𝑙 = 𝜗𝑎𝑏𝑠 − 2𝜋𝑓𝑟𝑡. 

𝑥0(𝜗𝑟𝑒𝑙) may be expressed in terms of the Fourier series: 

 𝑥0(𝜗𝑟𝑒𝑙) = ∑ 𝑥̃𝑛
0 exp(𝑖𝑛𝜗𝑟𝑒𝑙)

∞

𝑛=−∞

 (4.16) 

which, in the absolute frame, becomes 

 𝑥𝑟𝑖𝑛𝑔
0 (𝑡) = 𝑥0(𝜗𝑎𝑏𝑠, 𝑡) = ∑ 𝑥̃𝑛

0 exp[𝑖𝑛(𝜗𝑣𝑖𝑏𝑟𝑜 − 2𝜋𝑓𝑟𝑡)]

∞

𝑛=−∞

 (4.17) 

This shows that, even in the absence of vibration, the rigid motion of a non-planar ring results in a 

periodic axial displacement with fundamental frequency 𝑓𝑟. The present section aims at showing that 

the side peaks are due to a fluctuation in the rotational speed combined with the rotor non-planarity. 

It is assumed that the ring is stiff and of negligible radial size. As already said, a point on the ring is 

identified by its relative position 𝜗𝑟𝑒𝑙  and the ring is not planar, i.e. the axial position of a point on it 
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is given by 𝑥 = 𝑥0(𝜗𝑟𝑒𝑙). It is assumed that the ring rotates at an average rotational speed 𝜔𝑟 = 2𝜋𝑓𝑟 

with superposed oscillations of the position given by 𝜗𝑟𝑖𝑛𝑔(𝑡) that result in a rotational speed 

fluctuation 𝜗̇𝑟𝑖𝑛𝑔(𝑡). Then, the instantaneous absolute position 𝜗𝑎𝑏𝑠 of the point identified by 𝜗𝑟𝑒𝑙  is 

given by 

 𝜗𝑎𝑏𝑠(𝜗𝑟𝑒𝑙 , 𝑡) = 𝜗𝑟𝑒𝑙 + 𝜔𝑟𝑡 + 𝜗𝑟𝑖𝑛𝑔(𝑡) (4.18) 

The rotational speed is measured by a stationary optical tachometer located at 𝜗𝑎𝑏𝑠 = 𝜗𝑡𝑎𝑐ℎ𝑜 that, 

ideally, emits a Dirac pulse 𝛿(𝑡 − 𝑡𝑛) each time that a reflecting element is located at 𝜗𝑟𝑒𝑙 = 𝜗𝑟𝑒𝑓𝑙  

passes in front of the tachometer probe. This happens once per revolution, at the time 𝑡 = 𝑡𝑛, 𝑛 =

−∞, … , −1,0,1, … , +∞ ; hence, a sequence  

 𝑦(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑛)

+∞

𝑛=−∞

 (4.19) 

is generated. If the rotational speed is constant, i.e. 𝜗𝑟𝑖𝑛𝑔(𝑡) = 0, the problem is trivial: the period of 

revolution is 

 𝑇𝑟 =
1

𝑓𝑟
 (4.20) 

and  

 𝑡𝑛 = 𝑛𝑇𝑟 (4.21) 

In case 𝜗𝑟𝑖𝑛𝑔(𝑡) ≠ 0, one has to consider the instantaneous absolute position of the reflecting 

element: 

 𝜗(𝑡) = 𝜗𝑎𝑏𝑠(𝜗0, 𝑡) = 𝜗𝑟𝑒𝑓𝑙 + 𝜔𝑟𝑡 + 𝜗𝑟𝑖𝑛𝑔(𝑡) (4.22) 

and a pulse is generated each time 𝑡 = 𝑡𝑛 when 𝜗(𝑡) = 𝜗𝑡𝑎𝑐ℎ𝑜 + 2𝜋𝑛, that is 

 𝜗𝑡𝑎𝑐ℎ𝑜 = 𝜗𝑟𝑒𝑓𝑙 + 𝜔𝑟𝑡 + 𝜗𝑟𝑖𝑛𝑔(𝑡) − 2𝜋𝑛 (4.23) 

For the sake of simplicity but without any loss of generality, one assumes that 𝜗𝑡𝑎𝑐ℎ𝑜, 𝜗𝑟𝑒𝑓𝑙 = 0. Then, 

𝑡𝑛 is the solution of the equation 
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 𝜔𝑟𝑡𝑛 + 𝜗𝑟𝑖𝑛𝑔(𝑡𝑛) − 2𝜋𝑛 = 0 (4.24) 

It is also assumed that 

 𝜗𝑟𝑖𝑛𝑔(𝑡) = Θ cos(2𝜋𝑓𝜗𝑡 + 𝜙) (4.25) 

with Θ ≪ 2𝜋, under the assumption of small oscillations, and with 𝑓𝜗 being the frequency at which 

the rotor oscillates. Then, a transcendental equation in 𝑡𝑛 yields 

 𝜔𝑟𝑡𝑛 + Θ cos(2𝜋𝑓𝜗𝑡𝑛 + 𝜙) − 2𝜋𝑛 = 0 (4.26) 

Then, one poses 

 𝑡𝑛 = 𝑛𝑇𝑟 + ∆𝑡𝑛 (4.27) 

where, consistently with the small oscillation assumption, ∆𝑡𝑛 ≪ 𝑇𝑟 and ∆𝑡𝑛 ≪ 𝑇𝜗 =
1

𝑓𝜗
; this is a 

consequence of Θ ≪ 2𝜋 and, overall, it means that the fluctuation in the period of revolution is small.  

Substituting in 𝜔𝑟𝑡𝑛 and considering that 𝜔𝑟𝑇𝑟 = 2𝜋, one obtains 𝜔𝑟𝑡𝑛 = 𝜔𝑟(𝑛𝑇𝑟 + ∆𝑡𝑛) = 2𝜋𝑛 +

𝜔𝑟∆𝑡𝑛 = 2𝜋𝑛 + 2𝜋𝑓𝑟∆𝑡𝑛. Then, the equation  

 2𝜋𝑛 + 2𝜋𝑓𝑟∆𝑡𝑛 + Θ cos[2𝜋𝑓𝜗(𝑛𝑇𝑟 + ∆𝑡𝑛) + 𝜙] − 2𝜋𝑛 = 0 (4.28) 

yields whose solution is 

 ∆𝑡𝑛 = −
Θ cos[2𝜋𝑓𝜗(𝑛𝑇𝑟 + ∆𝑡𝑛) + 𝜙]

2𝜋𝑓𝑟
 (4.29) 

but  

cos[2𝜋𝑓𝜗(𝑛𝑇𝑟 + ∆𝑡𝑛) + 𝜙]

= cos(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙) cos(2𝜋𝑓𝜗∆𝑡𝑛) − sin(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙) sin(2𝜋𝑓𝜗∆𝑡𝑛) 
(4.30) 

Having assumed that ∆𝑡𝑛 ≪ 𝑇𝑟 and ∆𝑡𝑛 ≪ 𝑇𝜗 allows writing  

a) cos[2𝜋𝑓𝜗(𝑛𝑇𝑟 + ∆𝑡𝑛) + 𝜙] ≅ cos(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙) − sin(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙)2𝜋𝑓𝜗∆𝑡𝑛 (4.31) 

b) cos[2𝜋𝑓𝜗(𝑛𝑇𝑟 + ∆𝑡𝑛) + 𝜙] ≅ cos(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙) (4.32) 

and hence 
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a) ∆𝑡𝑛 ≅ −
cos(2𝜋𝑓𝜗𝑛𝑇𝑟+𝜙)

2𝜋𝑓𝑟
+

𝑓𝜗

𝑓𝑟
sin(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙)∆𝑡𝑛 

∆𝑡𝑛 (1 −
𝑓𝜗

𝑓𝑟
sin(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙)) ≅ −

cos(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙)

2𝜋𝑓𝑟
 

 ∆𝑡𝑛 ≅ −
1

(1 −
𝑓𝜗
𝑓𝑟

sin(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙))

cos(2𝜋𝑓𝜗𝑛𝑇𝑟 + 𝜙)

2𝜋𝑓𝑟
 (4.33) 

b) 
𝑓𝜗

𝑓𝑟
≪ 1 ∆𝑡𝑛 ≅ −

Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟+𝜙)

2𝜋𝑓𝑟
 (4.34) 

Then (b) 

𝑡𝑛 = 𝑛𝑇𝑟 + ∆𝑡𝑛 =≅ 𝑛𝑇𝑟 −
Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙)

2𝜋𝑓𝑟
= 𝑇𝑟 [𝑛 −

Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙)

2𝜋
] (4.35) 

The Fourier transform of the signal 𝑦(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑛)+∞
𝑛=−∞  generated by the tachometer is 

𝑦̃(𝜔) = ∫ ∑ 𝛿(𝑡 − 𝑡𝑛)

+∞

𝑛=−∞

exp(−𝑖𝜔𝑡)

+∞

−∞

𝑑𝑡 = ∑ exp(−𝑖𝜔𝑡𝑛)

+∞

𝑛=−∞

= ∑ exp {−𝑖𝜔𝑇𝑟 [𝑛 −
Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙)

2𝜋
]}

+∞

𝑛=−∞

 

 = ∑ exp(−𝑖𝜔𝑛𝑇𝑟) exp {𝑖𝜔𝑇𝑟 [
Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙)

2𝜋
]}

+∞

𝑛=−∞

 (4.36) 

The Bessel series of exp(𝑖𝐵 cos(𝛽)) is 

 exp[𝑖𝐵 cos(𝛽)] = ∑ 𝑖𝑘𝐽𝑘(𝐵)𝑒𝑖𝑘𝛽

+∞

𝑘=−∞

 (4.37) 

where 𝐽𝑘(𝐵) is the Bessel function of first kind and order 𝑘. Substituting exp {𝑖𝜔𝑇𝑟 [
Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟+𝜙)

2𝜋
]} 

to exp[𝑖𝐵 cos(𝛽)], one obtains 

 exp {𝑖𝜔𝑇𝑟 [
Θ cos(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙)

2𝜋
]} = ∑ 𝑖𝑘𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) exp(𝑖𝑘(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙))

+∞

𝑘=−∞

 (4.38) 
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that yields 

𝑦̃(𝜔) = ∑ [exp(−𝑖𝜔𝑛𝑇𝑟) ∑ 𝑖𝑘𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) exp(𝑖𝑘(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙))

+∞

𝑘=−∞

]

+∞

𝑛=−∞

= 

= ∑ [𝑖𝑘𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) ∑ exp(−𝑖𝜔𝑛𝑇𝑟)exp(𝑖𝑘(2𝜋𝑛𝑓𝜗𝑇𝑟 + 𝜙))

+∞

𝑛=−∞

]

+∞

𝑘=−∞

= 

 = ∑ {[𝑖𝑘𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) exp(𝑖𝑘𝜙)] ∑ exp[−𝑖(𝜔 − 𝑘2𝜋𝑓𝜗)𝑛𝑇𝑟]

+∞

𝑛=−∞

}

+∞

𝑘=−∞

 (4.39) 

∑ exp[−𝑖(𝜔 − 𝑘2𝜋𝑓𝜗)𝑛𝑇𝑟]+∞
𝑛=−∞  may be further rearranged by means of the Poisson formula 

 ∑ exp(−𝑖2𝜋𝛼′𝑛𝑇𝑟)

+∞

𝑛=−∞

=
1

𝑇𝑟
∑ 𝛿 (𝛼′ −

𝑛

𝑇𝑟
)

+∞

𝑛=−∞

= 𝑓𝑟 ∑ 𝛿(𝛼′ − 𝑛𝑓𝑟)

+∞

𝑛=−∞

 (4.40) 

Where 2𝜋𝛼′ = (𝜔 − 𝑘2𝜋𝑓𝜗), i.e. 

 ∑ exp(−𝑖𝛼𝑛𝑇𝑟)

+∞

𝑛=−∞

=
1

𝑇𝑟
∑ 𝛿 (

𝛼

2𝜋
−

𝑛

𝑇𝑟
)

+∞

𝑛=−∞

= 𝑓𝑟 ∑ 𝛿 (
𝛼

2𝜋
− 𝑛𝑓𝑟)

+∞

𝑛=−∞

 (4.41) 

and posing 𝜔 − 𝑘2𝜋𝑓𝜗 = 𝛼: 

 

∑ exp[−𝑖(𝜔 − 𝑘2𝜋𝑓𝜗)𝑛𝑇𝑟]

+∞

𝑛=−∞

= 𝑓𝑟 ∑ 𝛿 (
𝜔 − 𝑘2𝜋𝑓𝜗

2𝜋
− 𝑛𝑓𝑟)

+∞

𝑛=−∞

= 𝑓𝑟 ∑ 𝛿 (
𝜔

2𝜋
− (𝑛𝑓𝑟 + 𝑘𝑓𝜗))

+∞

𝑛=−∞

 

(4.42) 

Hence 

 𝑦̃(𝜔) = 𝑓𝑟 ∑ {[𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) exp (𝑖𝑘 (𝜙 +

𝜋

2
))] ∑ 𝛿 (

𝜔

2𝜋
− (𝑛𝑓𝑟 + 𝑘𝑓𝜗))

+∞

𝑛=−∞

}

+∞

𝑘=−∞

 (4.43) 

This shows that  

1) In case no rotational speed fluctuations take place (Θ = 0), the PSD of the tachometer signal 

contains peaks at the harmonics of 𝑓𝑟 only (e.g. ±𝑓𝑟, ±2𝑓𝑟,…, 𝑛𝑓𝑟), and 
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2) in case of rotational speed fluctuations (Θ, 𝑓𝜗 ≠ 0), beside peaks at the harmonics of 𝑓𝑟, side peaks 

appear at a frequency shifted of the harmonics of 𝑓𝜗 (e.g. ±𝑓𝑟, ±(𝑓𝑟 ± 𝑓𝜗), ±(𝑓𝑟 ± 2𝑓𝜗), ±(2𝑓𝑟 ± 𝑓𝜗), 

±(2𝑓𝑟 ± 2𝑓𝜗),…, 𝑛𝑓𝑟 + 𝑘𝑓𝜗). This is a typical effect of frequency modulation. 

Proof: 

1) In case no rotational speed fluctuations take place (Θ = 0) 

 𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) = 𝐽𝑘(0) = {

1 𝑘 = 0
0 𝑘 ≠ 0

 (4.44) 

hence, only the term with 𝑘 = 0 is not null and the summation reduces to: 

∑ {[𝐽𝑘 (𝜔𝑇𝑟

Θ

2𝜋
) exp (𝑖𝑘 (𝜙 +

𝜋

2
))] ∑ 𝛿 (

𝜔

2𝜋
− (𝑛𝑓𝑟 + 𝑘𝑓𝜗))

+∞

𝑛=−∞

}

+∞

𝑘=−∞

= 𝐽0(0) exp(0) ∑ 𝛿 (
𝜔

2𝜋
− (𝑛𝑓𝑟 + 0𝑓𝜗))

+∞

𝑛=−∞

= ∑ 𝛿 (
𝜔

2𝜋
− 𝑛𝑓𝑟)

+∞

𝑛=−∞

 

(4.45) 

which shows that only harmonics of 𝑓𝑟 are present. 

2) in case of rotational speed fluctuations (Θ, 𝑓𝜗 ≠ 0), the Dirac pulse centered at 𝜔 = 2𝜋(𝑛𝑓𝑟 + 𝑘𝑓𝜗) 

(i.e. at all of the harmonics of 𝑓𝑟 and shifted of all of the harmonics of 𝑓𝜗) is multiplied by, i.e. weighted 

by, the Bessel function 𝐽𝑘 (𝜔𝑇𝑟
Θ

2𝜋
) computed in 

 𝜔𝑇𝑟

Θ

2𝜋
= 2𝜋(𝑛𝑓𝑟 + 𝑘𝑓𝜗)𝑇𝑟

Θ

2𝜋
= (𝑛𝑓𝑟 + 𝑘𝑓𝜗)𝑇𝑟Θ = (𝑛 + 𝑘𝑓𝜗𝑇𝑟)Θ = (𝑛 + 𝑘

𝑇𝑟

𝑇𝜗
) Θ (4.46) 

In order to evaluate the effect of the Bessel function weighting, three properties are of interest: (1) 

|𝐽𝑘(𝑥)| < 1 for any 𝑥, (2) for any 𝑥 < 1.5, |𝐽𝑘(𝑥)| is strongly decreasing with 𝑘 and (3) 𝐽𝑘(𝑥) has an 

oscillating trend with an envelope decreasing as 𝑥−
1

2. 

In the present case, the oscillation is small, i.e. Θ ≪ 1, and 𝑓𝜗 = 𝑓𝑣 with 𝑓𝑣 ≅
1

6
𝑓𝑟 (𝑓𝑟 = 44 𝐻𝑧 and 𝑓𝑣 =

7.5 𝐻𝑧). Hence, 
𝑇𝑟

𝑇𝜗
=

𝑓𝑣

𝑓𝑟
≅

1

6
 and (𝑛 + 𝑘

𝑇𝑟

𝑇𝜗
) Θ ≪ 1 at low values of 𝑛 and 𝑘. As a result, the side peaks’ 

height is expected to decrease quickly. 

The presence of side peaks with a frequency shift of 𝑓𝑣 in the PSD of the tachometer signal constitutes 

the evidence of the rotational speed fluctuation at 𝜔𝑣 = 2𝜋𝑓𝑣. 
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A numerical model based on Eq. 4.43 has been calculated for the present model by considering 𝑘 =

−2, … ,2, then the results are compared with the experimental tachometer signal (point A7 of Fig. 

4.13) in Fig. 4.27. 

Assuming that the ring is stiff and considering that 𝜗𝑎𝑏𝑠(𝜗𝑟𝑒𝑙 , 𝑡) = 𝜗𝑟𝑒𝑙 + 𝜔𝑟𝑡 + 𝜗𝑟𝑖𝑛𝑔(𝑡), the 

instantaneous position of the point of the ring that is in front of the vibrometer, i.e. the vibrometer 

signal, is given by 

 𝑥𝑟𝑖𝑛𝑔
0 (𝑡) = 𝑥0 (𝜗𝑣𝑖𝑏𝑟𝑜 − 2𝜋𝑓𝑟𝑡 − 𝜗𝑟𝑖𝑛𝑔(𝑡)) (4.47) 

𝑥0(𝜗𝑟𝑒𝑙) may be expressed in terms of the Fourier series: 

𝑥0(𝜗𝑟𝑒𝑙) = ∑ 𝑥̃𝑛
0 exp(𝑖𝑛𝜗𝑟𝑒𝑙)

∞

𝑛=−∞

= ∑ 𝑥̃𝑛
0 exp [𝑖𝑛 (𝜗𝑣𝑖𝑏𝑟𝑜 − 2𝜋𝑓𝑟𝑡 − 𝜗𝑟𝑖𝑛𝑔(𝑡))]

∞

𝑛=−∞

 (4.48) 

Recalling that 𝜗𝑟𝑖𝑛𝑔(𝑡) = Θ cos(2𝜋𝑓𝑣𝑡 + 𝜙) yields 

 

Figure 4.27. Analytic model for the side peaks compares to the experimental Tachometer signal 

(point A7 of Fig. 4.13). 
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𝑥𝑟𝑖𝑛𝑔
0 (𝑡) = ∑ 𝑥̃𝑛

0 exp{𝑖𝑛[𝜗𝑣𝑖𝑏𝑟𝑜 − 2𝜋𝑓𝑟𝑡 − Θ cos(2𝜋𝑓𝑣𝑡 + 𝜙)]}

∞

𝑛=−∞

= ∑ 𝑥̃𝑛
0 exp{𝑖𝑛[𝜗𝑣𝑖𝑏𝑟𝑜 − 2𝜋𝑓𝑟𝑡]} exp[𝑖𝑛Θ cos(2𝜋𝑓𝑣𝑡 + 𝜙)]

∞

𝑛=−∞

 

(4.49) 

Based on the Bessel series expansion, exp[𝑖𝑛Θ cos(2𝜋𝑓𝑣𝑡 + 𝜙)] may be expressed as  

 exp[𝑖𝑛 cos(2𝜋𝑓𝑣𝑡 + 𝜙)] = ∑ 𝑖𝑘𝐽𝑘(𝑛)𝑒𝑖𝑘(2𝜋𝑓𝑣𝑡+𝜙)

+∞

𝑘=−∞

 (4.50) 

which justifies the presence of side peaks in the vibrometer signal generated by a non-planar ring 

that rotates at the rotational speed 2𝜋𝑓𝑟 with a superposed precession motion at 𝑓 = 𝑓𝑣. 

4.5.3. Kinematic analysis of the flow field 

As the rotor rotates at the average rotational speed 𝜔𝑟 = 2𝜋𝑓𝑟, absolute and relative angular 

coordinates are related by  

 𝜗𝑎𝑏𝑠 = 𝜗𝑟𝑒𝑙 + 𝜔𝑟𝑡 = 𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡 (4.51) 

Then, the instantaneous position of the 𝑚 − 𝑡ℎ blade tip in the absolute frame is 𝜗𝑎𝑏𝑠,𝑚(𝑡) = 𝜗𝑚
0 +

𝜔𝑟𝑡 + 𝜗𝑚(𝑡) where 𝜗𝑚(𝑡) accounts for possible rotational speed fluctuations associated with the 

vibration. As the ring connecting the blade tips is very stiff, it is assumed that, for low-order modes 

such as the studied one, 𝜗𝑚(𝑡) is independent of the blade. Hence 𝜗𝑚(𝑡) = 𝜗𝑟𝑖𝑛𝑔(𝑡) and 

 𝜗𝑎𝑏𝑠,𝑚(𝑡) = 𝜗𝑚
0 + 𝜔𝑟𝑡 + 𝜗𝑟𝑖𝑛𝑔(𝑡) (4.52) 

This also means that the instantaneous angular speed 𝜗̇𝑎𝑏𝑠,𝑚(𝑡) of each blade is the same. It is also 

assumed that the blades are subjected to an external action, typically an aerodynamic thrust, that is 

the origin of the vibration. It is related to a perturbation 𝐯′(𝜗𝑎𝑏𝑠, 𝑡) of the absolute velocity 𝐯 at the 

gap outlet/rotor inlet that, in the absolute frame, rotates at an angular speed 𝜔𝑣 = −2𝜋𝑓𝑣 (a 

stationary disturbance, e.g. the wake from an upstream strut or a stator blade, would be 

characterized by 𝜔𝑣 = 0). In turn, the periodic variation of the gap geometry results in a fluctuation 

𝐯′ synchronous with the vibration. The observed vibration is a one-nodal-diameter counter-rotating 

mode of frequency 𝑓𝑣 ≅ 7.5 Hz that results in an axial displacement 𝑥(𝜗𝑎𝑏𝑠, 𝑡) of the ring given by 
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 𝑥(𝜗𝑎𝑏𝑠, 𝑡) = 𝑥(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡) = 𝑥0 + ∆𝑥 cos(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 + 𝜑𝑥) (4.53) 

with 𝑥0 the average axial position that depends on the blade loading and centrifugal force (in the 

following, it is posed 𝑥0 = 𝑥̃0
0), but might be considered constant in the present analysis. In fact, the 

molding process yields a non-perfectly planar ring; hence 

 𝑥0 = 𝑥0(𝜗𝑟𝑒𝑙) = ∑ 𝑥̃𝑛
0 exp(𝑖𝑛𝜗𝑟𝑒𝑙)

∞

𝑛=−∞

 (4.54) 

which, in the absolute frame, becomes 

 𝑥0(𝜗𝑎𝑏𝑠, 𝑡) = ∑ 𝑥̃𝑛
0 exp [𝑖𝑛 (𝜗𝑎𝑏𝑠 − 2𝜋𝑓𝑟𝑡 − 𝜗𝑟𝑖𝑛𝑔(𝑡))]

∞

𝑛=−∞

 (4.55) 

as the instantaneous angular position of a point of the ring is given by 𝜗𝑎𝑏𝑠 = 𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡 + 𝜗𝑟𝑖𝑛𝑔(𝑡). 

Thus, the instantaneous position observed by a stationary sensor should be given by 

 𝑥(𝜗𝑎𝑏𝑠, 𝑡) = 𝑥0(𝜗𝑎𝑏𝑠, 𝑡) + ∆𝑥 cos(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 + 𝜑𝑥) (4.56) 

that is 

𝑥(𝜗𝑎𝑏𝑠, 𝑡) = ∑ 𝑥̃𝑛
0 exp [𝑖𝑛 (𝜗𝑎𝑏𝑠 − 2𝜋𝑓𝑟𝑡 − 𝜗𝑟𝑖𝑛𝑔(𝑡))]

∞

𝑛=−∞

+ ∆𝑥 cos(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 + 𝜑𝑥) (4.57) 

For the moment, the non-planarity of the ring is neglected, i.e. 𝑥̃𝑛
0 = 0 for any 𝑛 ≠ 0 and 𝑥̃0

0 depends 

on blade loading and centrifugal force only: 

 𝑥(𝜗𝑎𝑏𝑠, 𝑡) = 𝑥̃0
0 + ∆𝑥 cos(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 + 𝜑𝑥) (4.58) 

However, it seems useful to disclose that rotational speed fluctuations due to the vibration may result 

in a modulation of 𝑥(𝜗𝑎𝑏𝑠, 𝑡), i.e. in the appearance of a complicated and unexpected pattern of the 

PSD of 𝑥(𝜗𝑎𝑏𝑠, 𝑡). 

𝐯′(𝜗𝑎𝑏𝑠, 𝑡) has to be consistent with the vibration and it could be assumed that |𝐯′(𝜗𝑎𝑏𝑠, 𝑡)| ∝

cos(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡). However, the non-linearity of the relation between velocity and gap size suggests 

that the harmonics of 𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 may be present in the 𝐯′ expression although 𝑥(𝜗𝑎𝑏𝑠, 𝑡) only 

contains the fundamental one. 
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𝐯′ is superposed to the time-averaged absolute velocity vector 𝐯𝟎(𝜗𝑎𝑏𝑠) that is steady in the absolute 

frame: 

 𝐯(𝜗𝑎𝑏𝑠, 𝑡) = 𝐯𝟎(𝜗𝑎𝑏𝑠) + 𝐯′(𝜗𝑎𝑏𝑠, 𝑡) (4.59) 

although present, the dependence on 𝑟 is neglected as it is not involved in the present analysis. The 

most general structure for 𝐯𝟎 is given by 

 𝐯𝟎(𝜗𝑎𝑏𝑠) = ∑ 𝐯̃𝒏
𝟎 exp(𝑖𝑛𝜗𝑎𝑏𝑠)

∞

𝑛=−∞

 (4.60) 

In order to be consistent with the observed mode of vibration, the most general structure for 𝐯′ is 

given by a regressive wave (i.e. counter-rotating) propagating at the angular speed −2𝜋𝑓𝑣 in the 

absolute frame: 

 𝐯′(𝜗𝑎𝑏𝑠, 𝑡) = 𝐯′(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡) = ∑ 𝐯̃𝒏
′ exp[𝑖𝑛(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡)]

∞

𝑛=−∞

 (4.61) 

with 𝐯̃𝟎
′ = 𝟎.  

Neglecting the blade velocity fluctuation 𝜗𝑟𝑖𝑛𝑔(𝑡) and considering that 𝜗𝑎𝑏𝑠 = 𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡, the 

following structure results for 𝐯𝟎 in the relative frame:  

 𝐯𝟎(𝜗𝑟𝑒𝑙 , 𝑡) = 𝐯𝟎(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡) = ∑ 𝐯̃𝒏
𝟎 exp[𝑖𝑛(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡)]

∞

𝑛=−∞

 (4.62) 

the dependence on 𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡 shows that a disturbance that is steady in the absolute frame results 

in a regressive wave in the relative one, i.e. that it propagates at a negative angular speed −2𝜋𝑓𝑟. It 

may excite the rotor at all of the rotational frequency harmonics 𝑛𝑓𝑟 . Hence, as expected, steady 

disturbances may not excite subharmonic vibrations.  

As for 𝐯′, in the relative frame (i.e. substituting 𝜗𝑎𝑏𝑠 = 𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡) one obtains  
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𝐯′(𝜗𝑟𝑒𝑙 , 𝑡) = ∑ 𝐯̃𝒏
′ exp{𝑖𝑛[(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡) + 2𝜋𝑓𝑣𝑡]}

∞

𝑛=−∞

= ∑ 𝐯̃𝒏
′ exp{𝑖𝑛[𝜗𝑟𝑒𝑙 + 2𝜋(𝑓𝑟 + 𝑓𝑣)𝑡]}

∞

𝑛=−∞

 

(4.63) 

which shows that, in the relative frame, a perturbation counter rotating at the angular speed −2𝜋𝑓𝑝 

with 𝑓𝑝 = 𝑓𝑟 + 𝑓𝑣 is present: 

 𝐯′(𝜗𝑟𝑒𝑙 , 𝑡) = ∑ 𝐯̃𝒏
′ exp[𝑖𝑛(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑝𝑡)]

∞

𝑛=−∞

 (4.64) 

this indicates that, in the relative frame, the perturbation is co-rotating resulting in excitation at a 

frequency 𝑓𝑝 > 𝑓𝑣; e.g., at the speed of 2640 rev/min that corresponds to 𝑓𝑟 = 44 Hz, the frequency 

of the disturbance is 𝑓𝑝 ≅ 51.5 Hz. The combination of the two motions (rotation of both blades and 

flow structures) may result in a modulation of the excitation. 

Based on such a model of the rotor inlet flow, a model has to be developed for the aerodynamic 

excitation of the blades. As the blade thrust is related to the relative velocity 𝐰, the flow has to be 

observed from the relative system, i.e. the perturbation 𝐰′(𝜗𝑟𝑒𝑙 , 𝑡) has to be determined based on the 

fundamental kinematic relation  

 𝐯 = 𝐰 + 𝐮 (4.65) 

where 𝐮 = 𝐮𝟎 + 𝐮′ is the instantaneous blade velocity, 𝐮𝟎 being the time average blade speed 

 𝐮𝟎 = 𝐫 × 𝛚𝒓
𝟎 = 𝑢0𝐞𝝑 = 𝜔𝑟𝑟0𝐞𝝑 = 2𝜋𝑓𝑟𝑟0𝐞𝝑 (4.66) 

that yields the instantaneous mean relative velocity 

 𝐰𝟎(𝜗𝑟𝑒𝑙 , 𝑡) = 𝐯𝟎(𝜗𝑟𝑒𝑙 , 𝑡) − 𝐮𝟎 = ∑ 𝐯̃𝒏
𝟎 exp[𝑖𝑛(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡)]

∞

𝑛=−∞

− 2𝜋𝑓𝑟𝑟0𝐞𝝑 (4.67) 

For the sake of simplicity, it has been assumed that the involved part of the blade is the blade tip 

region at a radius 𝑟0 ≅ 𝑟𝑡𝑖𝑝, since the leakage flow is restricted to that zone.    
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Opposite to 𝐮𝟎, not only the fluctuating blade velocity 𝐮′ has a tangential component, but it also has 

an axial one. For low order vibrations, the ring is very stiff, then it may be assumed that the tangential 

component of 𝐮′ is independent of 𝜗𝑟𝑒𝑙  and equals 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡). Being the positive direction for the 

rotor displacement opposite to the axial component 𝑣𝑎 of the flow velocity, the ring vibration results 

in an axial component of the blade velocity 𝐮′ given by −𝑥̇(𝜗𝑎𝑏𝑠, 𝑡) = −[−2𝜋𝑓𝑣∆𝑥 sin(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 +

𝜑𝑥)]. (Notice that with a 5-mm-amplitude of the vibration (∆𝑥 = 5 mm), the maximum axial velocity 

fluctuation is 2𝜋𝑓𝑣∆𝑥 = 2𝜋 × 7.5 ×  5 ∙ 10−3 ≅ 0.24 m/s, i.e. about 2.5% of the mean axial velocity of 

the flow at the design operating point, an order of magnitude not negligible even under the small 

oscillation assumption.) Hence 

 𝐮′(𝜗𝑎𝑏𝑠, 𝑡) = 2𝜋𝑓𝑣∆𝑥 sin(𝜗𝑎𝑏𝑠 + 2𝜋𝑓𝑣𝑡 + 𝜑𝑥)𝐞𝒂 + 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡)𝐞𝝑 (4.68) 

And 

 𝐮′(𝜗𝑟𝑒𝑙 , 𝑡) = 2𝜋𝑓𝑣∆𝑥 sin[(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑟𝑡) + 2𝜋𝑓𝑣𝑡 + 𝜑𝑥]𝐞𝒂 + 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡)𝐞𝝑 (4.69) 

i.e. 

 

Figure 4.28. Velocity triangles. a) steady condition. b) vibration. 
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 𝐮′(𝜗𝑟𝑒𝑙 , 𝑡) = 2𝜋𝑓𝑣∆𝑥 sin(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑝𝑡 + 𝜑𝑥)𝐞𝒂 + 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡)𝐞𝝑 (4.70) 

Then, the instantaneous perturbation sensed by the rotor in the relative frame is given by  

 𝐰′(𝜗𝑟𝑒𝑙 , 𝑡) = 𝐯′(𝜗𝑟𝑒𝑙, 𝑡) − 𝐮′(𝜗𝑟𝑒𝑙 , 𝑡) (4.71) 

i.e. 

𝐰′(𝜗𝑟𝑒𝑙 , 𝑡) = ∑ 𝐯̃𝒏
′ exp[𝑖𝑛(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑝𝑡)]

∞

𝑛=−∞

− 2𝜋𝑓𝑣∆𝑥 sin(𝜗𝑟𝑒𝑙 + 2𝜋𝑓𝑝𝑡 + 𝜑𝑥)𝐞𝒂 − 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡)𝐞𝝑 

(4.72) 

This indicates that the instantaneous blade thrust contains the harmonics of 𝑓𝑝 = 𝑓𝑟 + 𝑓𝑣 (it may be 

expected that the fundamental harmonic provides the major contribution, i.e. only 𝑛 = −1 and 1 are 

relevant) and it may also be influenced by the rotor speed fluctuations, fluctuations 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡).  

𝐯′ fluctuations at 𝑓𝑣 in the absolute frame are a necessary consequence of the observed vibration and 

have also been observed experimentally; fluctuations at 𝑓𝑝 in the relative frame are a kinematic 

consequence. The structure of 𝜗̇𝑟𝑖𝑛𝑔(𝑡) is unknown at the present level of discussion, but the presence 

of modulation (side peaks) in the PSD of the measured rotational speed indicates that fluctuations at 

𝑓𝑣 are present.  

4.5.4. Dynamic analysis 

Due to the angular distance between the blades, there is a time delay 𝜏𝑚 between the force 𝐅𝑚(𝑡) 

acting on the 𝑚 − 𝑡ℎ blade and 𝐅1(𝑡) = 𝐅(𝑡), the force that acts on blade 1:  

 𝐅𝑚(𝑡) = 𝐅1(𝑡 − 𝜏𝑚) = 𝐅(𝑡 − 𝜏𝑚) (4.73) 

With 

 𝜏𝑚 =
𝜗1

0 − 𝜗𝑚
0

2𝜋𝑓𝑝
= −

𝜗𝑚
0

2𝜋𝑓𝑝
 (4.74) 

𝜏𝑚 < 0 as 𝜗1 = 0 and 𝜗𝑧𝑅
> 𝜗𝑧𝑅−1 > ⋯ > 𝜗2 > 𝜗1; 𝜏𝑚 < 0 is also in agreement with the fact that 

blades with larger 𝑚 encounter the disturbance earlier.  
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The 𝐅 components 𝐹𝑎(𝑡), axial, 𝐹𝜗(𝑡), tangential, and 𝐹𝑟(𝑡), radial, have the same frequency content 

as the relative velocity disturbance 𝐰′(𝜗𝑟𝑒𝑙 , 𝑡). Neglecting for the moment the term 𝑟0𝜗̇𝑟𝑖𝑛𝑔(𝑡) that is 

unknown at the present level of the discussion, they may be expressed in terms of the Fourier series 

of unknown coefficients 𝐹̃𝑎𝑛
 and 𝐹̃𝜗𝑛

: 

 𝐹𝜗1
(𝑡) = 𝐹𝜗(𝑡) = ∑ 𝐹̃𝜗𝑛

exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

∞

𝑛=−∞

 (4.75) 

For the 𝑚 − 𝑡ℎ  blade, one obtains 

 𝐹𝜗𝑚
(𝑡) = 𝐹𝜗1

(𝑡 − 𝜏𝑚) = 𝐹𝜗(𝑡 − 𝜏𝑚) = ∑ 𝐹̃𝜗𝑛
exp[𝑖2𝜋𝑛𝑓𝑝(𝑡 − 𝜏𝑚)]

∞

𝑛=−∞

 (4.76) 

Considering that 𝜏𝑚 = −
𝜗𝑚

0

2𝜋𝑓𝑝
 yields 

𝐹𝜗𝑚
(𝑡) = ∑ 𝐹̃𝜗𝑛

exp [𝑖2𝜋𝑛𝑓𝑝 (𝑡 +
𝜗𝑚

0

2𝜋𝑓𝑝
)]

∞

𝑛=−∞

= ∑ 𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚

0 )

∞

𝑛=−∞

 (4.77) 

And 

 

Figure 4.29. Blade forces. 
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 𝐹𝑎𝑚
(𝑡) = ∑ 𝐹̃𝑎𝑛

exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚
0 )

∞

𝑛=−∞

 (4.78) 

(An analogous expression yields for 𝐹𝑟(𝑡), which is usually negligible for axial rotors, and is thus not 

considered. ) The further step consists in highlighting the main features of the excitations (forces 

acting on each blade and forces and related moments transmitted to the shaft and to the casing).  

4.5.4.1. Resultant axial component of the blade force 

The summation of the axial forces due to all of the blades yields a resultant force 𝐹𝑎(𝑡) that apparently 

has a fundamental frequency 𝑓𝑝. However, such a summation shows that, although the force acting 

on each blade is the same, some harmonics may be canceled (as the fundamental one) and other ones 

may be amplified (e.g. the blade passing frequency one) due to the time delay between forces acting 

on different blades. 

𝐹𝑎(𝑡) = ∑ 𝐹𝑎𝑚
(𝑡)

𝑧𝑅

𝑚=1

= ∑ [ ∑ 𝐹̃𝑎𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚

0 )

∞

𝑛=−∞

]

𝑧𝑅

𝑚=1

= ∑ [𝐹̃𝑎𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡) ∑ exp(𝑖𝑛𝜗𝑚

0 )

𝑧𝑅

𝑚=1

]

∞

𝑛=−∞

 

(4.79) 

that is 

 𝐹𝑎(𝑡) = ∑ [𝐹̃𝑎𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡) 𝐹𝑖𝑛𝑡(𝑛)]

∞

𝑛=−∞

 (4.80) 

The property that 𝐹𝑖𝑛𝑡(1) = 0 for statically balanced rotors, implies that no axial force fluctuation 

may be present at 𝑓 = 𝑓𝑝 (𝑛 = 1), no matter whether the rotor is evenly spaced or not. The property 

that 𝐹𝑖𝑛𝑡(𝑘𝑧𝑅) is large for mildly unevenly spaced rotors shows that the axial force fluctuation should 

mainly excite the rotor and the casing at 𝑧𝑅𝑓𝑝 and higher harmonics, which in the present case are 

rather large (as 𝑧𝑅=7, important vibration may be expected at 751.4 Hz  360 Hz and 1451.4 Hz  

720 Hz). On the contrary, the contribution at the lower 𝑓𝑝 harmonics should be negligible, see the 

interference function plot. 
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4.5.4.2. Resultant torque due to the axial force 

This component of the torque is a vector 𝐌𝑚(𝑡) that lays in the rotational plane. For the sake of 

simplicity, it may be assumed that 𝐹𝑎𝑚
(𝑡) is applied in the blade tip region at a radius 𝑟0 ≅ 𝑟𝑡𝑖𝑝, since 

the leakage flow is restricted to that zone. The instantaneous point of application on the 𝑚 − 𝑡ℎ  blade 

is given by the vector 

𝐫𝑚(t) = 𝑟0[𝐞1 cos 𝜗𝑎𝑏𝑠,𝑚(𝑡) + 𝐞2 sin 𝜗𝑎𝑏𝑠,𝑚(𝑡)]

= 𝑟0[𝐞1 cos(𝜗𝑚
0 + 𝜔𝑟𝑡) + 𝐞2 sin(𝜗𝑚

0 + 𝜔𝑟𝑡)] 
(4.81) 

and the 𝑚 − 𝑡ℎ blade yields a torque 

 𝐌𝑚(𝑡) = 𝐫𝑚(t) × 𝐞3𝐹𝑎𝑚
(𝑡) (4.82) 

as the line of action of 𝐹𝑎𝑚
(𝑡) is parallel to the rotational axis 𝑥3. Hence 

𝐌𝑚(𝑡) = 𝑟0[𝐞1 cos(𝜗𝑚
0 + 𝜔𝑟𝑡) + 𝐞2 sin(𝜗𝑚

0 + 𝜔𝑟𝑡)] × 𝐞3𝐹𝑎𝑚
(𝑡) = 

= 𝑟0[𝐞1 × 𝐞3 cos(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡) + 𝐞2 × 𝐞3 sin(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)]𝐹𝑎𝑚
(𝑡) = 

 = 𝑟0[−𝐞2 cos(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡) + 𝐞1 sin(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)]𝐹𝑎𝑚
(𝑡) (4.83) 

Then the resultant torque is given by  

𝐌(𝑡) = ∑ 𝐌𝑚(𝑡) =

𝑧𝑅

𝑚=1

 

 = ∑ 𝑟0𝐹𝑎𝑚
(𝑡)[−𝐞2 cos(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡) + 𝐞1 sin(𝜗𝑚
0 + 2𝜋𝑓𝑟𝜔𝑟𝑡)]

𝑧𝑅

𝑚=1

 (4.84) 

It is necessary to analyze the terms ∑ 𝐹𝑎𝑚
(𝑡) cos(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)𝑧𝑅
𝑚=1  and ∑ 𝐹𝑎𝑚

(𝑡)𝑧𝑅
𝑚=1 sin(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡): 

∑ 𝐹𝑎𝑚
(𝑡) cos(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)

𝑧𝑅

𝑚=1

= ∑ [ ∑ 𝐹̃𝑎𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚

0 )

∞

𝑛=−∞

cos(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡)]

𝑧𝑅

𝑚=1

= 

= ∑ [ ∑ 𝐹̃𝑎𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

∞

𝑛=−∞

exp(𝑖𝑛𝜗𝑚
0 ) cos(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)] =

𝑧𝑅

𝑚=1
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= ∑ 𝐹̃𝑎𝑛
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

𝑧𝑅

𝑚=1

exp(𝑖𝑛𝜗𝑚
0 )

exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡)) + exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))

2
] =

∞

𝑛=−∞

 

= ∑
𝐹̃𝑎𝑛

2
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚

0 ) exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡))

𝑧𝑅

𝑚=1

∞

𝑛=−∞

+ exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚
0 ) exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))] = 

= ∑
𝐹̃𝑎𝑛

2
{ ∑ exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

+ exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]}

∞

𝑛=−∞

= 

= ∑
𝐹̃𝑎𝑛

2
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

+ exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]

𝑧𝑅

𝑚=1

}

∞

𝑛=−∞

= 

= ∑
𝐹̃𝑎𝑛

2
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) + exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)}

∞

𝑛=−∞

 

∑ 𝐹𝑎𝑚
(𝑡)

𝑧𝑅

𝑚=1

sin(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡) = ∑ [ ∑ 𝐹̃𝑎𝑛

exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚
0 )

∞

𝑛=−∞

sin(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡)] =

𝑧𝑅

𝑚=1

 

= ∑ [ ∑ 𝐹̃𝑎𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

∞

𝑛=−∞

exp(𝑖𝑛𝜗𝑚
0 ) sin(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)] =

𝑧𝑅

𝑚=1

 

= ∑ 𝐹̃𝑎𝑛
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

𝑧𝑅

𝑚=1

exp(𝑖𝑛𝜗𝑚
0 )

exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡)) − exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))

2𝑖
] =

∞

𝑛=−∞

 

= ∑
𝐹̃𝑎𝑛

2𝑖
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚

0 ) exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡))

𝑧𝑅

𝑚=1

∞

𝑛=−∞

− exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚
0 ) exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))] = 

= ∑
𝐹̃𝑎𝑛

2𝑖
{ ∑ exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

− exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]}

∞

𝑛=−∞

= 
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= ∑
𝐹̃𝑎𝑛

2𝑖
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

− exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]

𝑧𝑅

𝑚=1

}

∞

𝑛=−∞

= 

= ∑
𝐹̃𝑎𝑛

2𝑖
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) − exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)}

∞

𝑛=−∞

 (4.85) 

The interesting feature of the obtained expressions is that the Fourier component 𝐹̃𝑎𝑛
 at harmonic 

order 𝑛 and oscillating at 𝑓 = 𝑛𝑓𝑝, results in excitation at frequencies shifted of ±𝑓𝑟, that is at 𝑓 =

𝑛𝑓𝑝 ± 𝑓𝑟 = (𝑛 ± 1)𝑓𝑟 + 𝑛𝑓𝑣. Furthermore, the presence of the interference function 𝐹𝑖𝑛𝑡(𝑛 ± 1), 

shifted of ±1, may have any consequence, e.g. leading to full cancellation (case 𝑛 = 0, 𝐹𝑖𝑛𝑡(±1) = 0) 

or to a strong amplification case 𝑛 = ±1, 𝐹𝑖𝑛𝑡(𝑛 ∓ 1) = 𝐹𝑖𝑛𝑡(0) = 𝑧𝑅 . Limiting the analysis to the most 

important components, i.e. to 𝐹̃𝑎0
 and the pair 𝐹̃𝑎−1

 and 𝐹̃𝑎1
, it results that: 

1. 𝐹̃𝑎0
, the steady axial force (𝑛 = 0), does not result in any torque in the rotational plane. This is a 

consequence of the fact that it is multiplied by 𝐹𝑖𝑛𝑡(𝑛 ± 1) = 𝐹𝑖𝑛𝑡(±1) that is null as the rotor is 

statically balanced. In other terms, the system of (steady) forces results in a null torque on the 

rotor shaft. 

2. 𝐹̃𝑎1
, the component at the fundamental frequency (𝑛 = 1), results in torques at 𝑓 = 𝑓𝑝 + 𝑓𝑟 =

2𝑓𝑟 + 𝑓𝑣 (about 95.5 Hz) and at 𝑓 = 𝑓𝑝 − 𝑓𝑟 = 𝑓𝑣 (about 7.5 Hz).  

From the plot of 𝐹𝑖𝑛𝑡(𝑛, 𝜗𝑚
0 ), one finds that the torque component at 𝑓 = 2𝑓𝑟 + 𝑓𝑣 is small since it 

is multiplied by 𝐹𝑖𝑛𝑡(𝑛 + 1) = 𝐹𝑖𝑛𝑡(2), which is small as |𝐹𝑖𝑛𝑡(2)| ≅ 0.15; on the contrary, the 

component at 𝑓 = 𝑓𝑣 is relevant because it is multiplied by 𝐹𝑖𝑛𝑡(𝑛 − 1) = 𝐹𝑖𝑛𝑡(0) = 𝑧𝑅 , which is 

the largest 𝐹𝑖𝑛𝑡(𝑛, 𝜗𝑚
0 ) value. 

3. 𝐹̃𝑎−1
, the other component at the fundamental frequency (𝑛 = −1), has a dual behavior: it results 

in torques at  𝑓 = −𝑓𝑝 + 𝑓𝑟 = −𝑓𝑣, and at 𝑓 = −𝑓𝑝 − 𝑓𝑟 = −2𝑓𝑟 − 𝑓𝑣.  

From the plot of 𝐹𝑖𝑛𝑡(𝑛), one finds that the torque component at 𝑓 = −2𝑓𝑟 − 𝑓𝑣 is small since 

|𝐹𝑖𝑛𝑡(−2)| = |𝐹𝑖𝑛𝑡(2)| ≅ 0.15 is small; on the contrary, the component at 𝑓 = −𝑓𝑣 is relevant 

because 𝐹𝑖𝑛𝑡(0) = 𝑧𝑅 , which is the largest 𝐹𝑖𝑛𝑡(𝑛) value. 
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All this shows that the frequency shift causes a blade force oscillating at the frequency 𝑓 = 𝑓𝑝 = 𝑓𝑟 +

𝑓𝑣 that excites the rotor at the frequency 𝑓 = 𝑓𝑝 − 𝑓𝑟 = 𝑓𝑣 that is subharmonic. These forces act close 

to the blade tips and the blades are rather compliant; as a result, the moment is transmitted to the 

ring that vibrates. 

𝐌(𝑡) requires further analysis in order to study the excitation at 𝑓 = 𝑓𝑣. Grouping all of the terms, 

one obtains 

𝐌(𝑡) = ∑ 𝑟0𝐹𝑎𝑚
(𝑡)[−𝐞2 cos(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡) + 𝐞1 sin(𝜗𝑚
0 + 𝜔𝑟𝑡)]

𝑧𝑅

𝑚=1

= 

= −𝐞2𝑟0 ∑
𝐹̃𝑎𝑛

2
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) + exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)}

∞

𝑛=−∞

+ 

+𝐞1𝑟0 ∑
𝐹̃𝑎𝑛

2𝑖
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) − exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)}

∞

𝑛=−∞

 

 

Figure 4.30. Sketch of the coordinate system and forces on the fan. 
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= 𝑟0 ∑ 𝐹̃𝑎𝑛
[−

exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) + exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)

2
𝐞2

∞

𝑛=−∞

+
exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) − exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)

2𝑖
𝐞1] 

(4.86) 

The 𝐌(𝑡) components resulting from 𝑛 = ±1 (𝑓 = 𝑓𝑝 ± 𝑓𝑟 = 𝑓𝑣 , 2𝑓𝑟 + 𝑓𝑣) are 

𝑟0𝐹̃𝑎1
[−

exp[𝑖2𝜋(𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(2) + exp[𝑖2𝜋(𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0)

2
𝐞2

+
exp[𝑖2𝜋(𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(2) − exp[𝑖2𝜋(𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0)

2𝑖
𝐞1] + 

𝑟0𝐹̃𝑎−1
[−

exp[𝑖2𝜋(−𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0) + exp[𝑖2𝜋(−𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(−2)

2
𝐞2

+
exp[𝑖2𝜋(−𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0) − exp[𝑖2𝜋(−𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(2)

2𝑖
𝐞1] 

(4.87) 

The terms acting at 𝑓 = 𝑓𝑣 may be obtained by eliminating the ones containing 𝐹𝑖𝑛𝑡(±2) and 

considering that 𝑓𝑝 − 𝑓𝑟 = 𝑓𝑣 and 𝐹𝑖𝑛𝑡(0) = 𝑧𝑅: 

𝑟0𝐹̃𝑎1
[−

exp[𝑖2𝜋(𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0)

2
𝐞2 −

exp[𝑖2𝜋(𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0)

2𝑖
𝐞1] + 

𝑟0𝐹̃𝑎−1
[−

exp[𝑖2𝜋(−𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0)

2
𝐞2 +

exp[𝑖2𝜋(−𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(0)

2𝑖
𝐞1] = 

= 𝑟0𝐹̃𝑎1
[−

exp(𝑖2𝜋𝑓𝑣𝑡) 𝐹𝑖𝑛𝑡(0)

2
𝐞2 +

− exp(𝑖2𝜋𝑓𝑣𝑡) 𝐹𝑖𝑛𝑡(0)

2𝑖
𝐞1] + 

𝑟0𝐹̃𝑎−1
[−

exp(−𝑖2𝜋𝑓𝑣𝑡) 𝐹𝑖𝑛𝑡(0)

2
𝐞2 +

exp(−𝑖2𝜋𝑓𝑣𝑡) 𝐹𝑖𝑛𝑡(0)

2𝑖
𝐞1] = 

= 𝑧𝑅𝑟0 {𝐹̃𝑎1
[−

exp(𝑖2𝜋𝑓𝑣𝑡)

2
𝐞2 −

exp(𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐞1] + 𝐹̃𝑎−1

[−
exp(−𝑖2𝜋𝑓𝑣𝑡)

2
𝐞2 +

exp(−𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐞1]} = 

= 𝑧𝑅𝑟0 {[−
exp(𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐹̃𝑎1

+
exp(−𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐹̃𝑎−1

] 𝐞1 − [
exp(𝑖2𝜋𝑓𝑣𝑡)

2
𝐹̃𝑎1

+
exp(−𝑖2𝜋𝑓𝑣𝑡)

2
𝐹̃𝑎−1

] 𝐞2} = 

= −𝑧𝑅𝑟0 {[
exp(𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐹̃𝑎1

−
exp(−𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐹̃𝑎−1

] 𝐞1 − [
exp(𝑖2𝜋𝑓𝑣𝑡)

2
𝐹̃𝑎1

+
exp(−𝑖2𝜋𝑓𝑣𝑡)

2
𝐹̃𝑎−1

] 𝐞2} = 



 

87 

 

as 𝐹̃𝑎1
= |𝐹̃𝑎1

| exp(𝑖𝜑𝑎1
) and and 𝐹̃𝑎−1

= 𝐹̃𝑎1
∗ = |𝐹̃𝑎1

| exp(−𝑖𝜑𝑎1
) 

 

= −𝑧𝑅𝑟0 {[
exp(𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐹̃𝑎1

−
exp(−𝑖2𝜋𝑓𝑣𝑡)

2𝑖
𝐹̃𝑎−1

] 𝐞1 + [
exp(𝑖2𝜋𝑓𝑣𝑡)

2
𝐹̃𝑎1

+
exp(−𝑖2𝜋𝑓𝑣𝑡)

2
𝐹̃𝑎−1

] 𝐞2} = 

= −𝑧𝑅𝑟0|𝐹̃𝑎1
| {[

exp(𝑖2𝜋𝑓𝑣𝑡)

2𝑖
exp(𝑖𝜑𝑎1

) −
exp(−𝑖2𝜋𝑓𝑣𝑡)

2𝑖
exp(−𝑖𝜑𝑎1

)] 𝐞1

+ [
exp(𝑖2𝜋𝑓𝑣𝑡)

2
exp(𝑖𝜑𝑎1

) +
exp(−𝑖2𝜋𝑓𝑣𝑡)

2
exp(−𝑖𝜑𝑎1

)] 𝐞2} = 

= 

= −𝑧𝑅𝑟0|𝐹̃𝑎1
| {[

exp(𝑖2𝜋𝑓𝑣𝑡 + 𝑖𝜑𝑎1
)

2𝑖
−

exp(−𝑖2𝜋𝑓𝑣𝑡 − 𝑖𝜑𝑎1
)

2𝑖
] 𝐞1

+ [
exp(𝑖2𝜋𝑓𝑣𝑡 + 𝑖𝜑𝑎1

)

2
+

exp(−𝑖2𝜋𝑓𝑣𝑡 − 𝑖𝜑𝑎1
)

2
] 𝐞2} = 

= −𝑧𝑅𝑟0|𝐹̃𝑎1
|[sin(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1

) 𝐞1 + cos(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1
) 𝐞2] = 

= 𝑧𝑅𝑟0|𝐹̃𝑎1
|[− sin(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1

) 𝐞1 − cos(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1
) 𝐞2] = 

𝐌𝑓𝑣
(𝑡) = 𝑧𝑅𝑟0|𝐹̃𝑎1

| {cos [2𝜋𝑓𝑣𝑡 + (𝜑𝑎1
+

𝜋

2
)] 𝐞1 − sin [2𝜋𝑓𝑣𝑡 + (𝜑𝑎1

+
𝜋

2
)] 𝐞2} (4.88) 

as − sin(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1
) = cos [2𝜋𝑓𝑣𝑡 + (𝜑𝑎1

+
𝜋

2
)] and cos(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1

) = sin [2𝜋𝑓𝑣𝑡 + (𝜑𝑎1
+

𝜋

2
)] 

This shows that the torque 𝐌𝑓𝑣
(𝑡) has a constant amplitude that equals 𝑧𝑅𝑟0|𝐹̃𝑎1

| and counter rotates 

at the angular speed 𝜔𝑣 = 2𝜋𝑓𝑣 with a phase shift of 
𝜋

2
 with respect to the force 𝐹𝑎𝑓𝑣

(𝑡) =

|𝐹̃𝑎1
| cos(2𝜋𝑓𝑣𝑡 + 𝜑𝑎1

). 

4.5.4.3. Resultant tangential force 

In order to compute the resultant tangential force, the force 𝐅𝜗𝑚
(𝑡) acting on the 𝑚 − 𝑡ℎ blade has to 

be projected in the Cartesian directions. 𝐅𝜗𝑚
(𝑡) is given by 

 𝐅𝜗𝑚
(𝑡) = 𝐹𝜗𝑚

(𝑡)𝐞𝝑𝑚
(𝑡) (4.89) 

and yields the resultant force 𝐅𝜗(𝑡) in the rotational plane: 
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 𝐅𝜗(𝑡) = ∑ 𝐅𝜗𝑚

𝑧𝑅

𝑚=1

= ∑ 𝐹𝜗𝑚
(𝑡)𝐞𝝑𝑚

(𝑡)

𝑧𝑅

𝑚=1

 (4.90) 

where 𝐞𝝑𝑚
(𝑡) is the versor of the 𝜗 direction at the point of application of the force on the 𝑚 − 𝑡ℎ 

blade. Since 𝐞𝝑𝑚
(𝑡) = − sin (𝜗𝑎𝑏𝑠,𝑚(𝑡)) 𝐞1 + cos (𝜗𝑎𝑏𝑠,𝑚(𝑡)) 𝐞2, the instantaneous components along 

the 𝑥1 and 𝑥2 axes are given by 

 𝐹𝜗𝑚,1(𝑡) = −𝐹𝜗𝑚
(𝑡) sin (𝜗𝑎𝑏𝑠,𝑚(𝑡)) (4.91) 

And 

 𝐹𝜗𝑚,2(𝑡) = 𝐹𝜗𝑚
(𝑡) cos (𝜗𝑎𝑏𝑠,𝑚(𝑡)) (4.92) 

The Cartesian components of 𝐅𝜗(𝑡) are 

𝐹𝜗,1(𝑡) = − ∑ 𝐹𝜗𝑚
(𝑡) sin (𝜗𝑎𝑏𝑠,𝑚(𝑡))

𝑧𝑅

𝑚=1

= − ∑ [ ∑ 𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚

0 )

∞

𝑛=−∞

sin (𝜗𝑎𝑏𝑠,𝑚(𝑡))] =

𝑧𝑅

𝑚=1

 

= − ∑ [ ∑ 𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

∞

𝑛=−∞

exp(𝑖𝑛𝜗𝑚
0 ) sin(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)] =

𝑧𝑅

𝑚=1

 

= − ∑ 𝐹̃𝜗𝑛
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

𝑧𝑅

𝑚=1

exp(𝑖𝑛𝜗𝑚
0 )

exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡)) − exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))

2𝑖
] =

∞

𝑛=−∞

 

= − ∑
𝐹̃𝜗𝑛

2𝑖
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚

0 ) exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡))

𝑧𝑅

𝑚=1

∞

𝑛=−∞

− exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚
0 ) exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))] = 

= ∑
𝐹̃𝜗𝑛

2𝑖
{ ∑ exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

− exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]}

∞

𝑛=−∞

= 
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= ∑
𝐹̃𝜗𝑛

2𝑖
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

− exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]

𝑧𝑅

𝑚=1

}

∞

𝑛=−∞

= 

= ∑
𝐹̃𝜗𝑛

2𝑖
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) − exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)}

∞

𝑛=−∞

 (4.93) 

𝐹𝜗,2(𝑡) = ∑ 𝐹𝜗𝑚
(𝑡) cos (𝜗𝑎𝑏𝑠,𝑚(𝑡))

𝑧𝑅

𝑚=1

= − ∑ [ ∑ 𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚

0 )

∞

𝑛=−∞

cos (𝜗𝑎𝑏𝑠,𝑚(𝑡))] =

𝑧𝑅

𝑚=1

 

= ∑ [ ∑ 𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

∞

𝑛=−∞

exp(𝑖𝑛𝜗𝑚
0 ) cos(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡)] =

𝑧𝑅

𝑚=1

 

= ∑ 𝐹̃𝜗𝑛
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡)

𝑧𝑅

𝑚=1

exp(𝑖𝑛𝜗𝑚
0 )

exp(𝑖(𝜗𝑚
0 + 𝜔𝑟𝑡)) + exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))

2
] =

∞

𝑛=−∞

 

= ∑
𝐹̃𝜗𝑛

2
[ ∑ exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚

0 ) exp(𝑖(𝜗𝑚
0 + 2𝜋𝑓𝑟𝑡))

𝑧𝑅

𝑚=1

∞

𝑛=−∞

+ exp(𝑖2𝜋𝑛𝑓𝑝𝑡) exp(𝑖𝑛𝜗𝑚
0 ) exp(−𝑖(𝜗𝑚

0 + 2𝜋𝑓𝑟𝑡))] = 

= ∑
𝐹̃𝜗𝑛

2
{ ∑ exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

+ exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]}

∞

𝑛=−∞

 

= ∑
𝐹̃𝜗𝑛

2
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 + 1)𝜗𝑚

0 ]

𝑧𝑅

𝑚=1

+ exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] ∑ exp[𝑖(𝑛 − 1)𝜗𝑚
0 ]

𝑧𝑅

𝑚=1

}

∞

𝑛=−∞

= 

= ∑
𝐹̃𝜗𝑛

2
{exp[𝑖2𝜋(𝑛𝑓𝑝 + 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 + 1) + exp[𝑖2𝜋(𝑛𝑓𝑝 − 𝑓𝑟)𝑡] 𝐹𝑖𝑛𝑡(𝑛 − 1)}

∞

𝑛=−∞

 (4.94) 

𝐹𝜗,1(𝑡) and 𝐹𝜗,2(𝑡) lay in the rotational plane and apply a resultant force to the shaft, eventually 

yielding a torque on the motor supports and a deformation of the casing. Their expression is very 

similar to the one of the torque due to 𝐹𝑎(𝑡), namely, frequency shift and effect of the interference 



 

90 

 

function are the same. The analysis is not repeated here, but it is clear that 𝐅𝜗(𝑡) has a resultant that 

excites the system at the frequency 𝑓 = 𝑓𝑣 (for 𝑛 = −1, 𝑛𝑓𝑝 + 𝑓𝑟 = −𝑓𝑣 and for 𝑛 = 1, 𝑛𝑓𝑝 − 𝑓𝑟 = 𝑓𝑣). 

However, the line of action of such component of the tangential force is rather close to the supports: 

roughly speaking one half of the motor length, i.e. a lever arm of about 25 mm. The blade force 

fluctuations are due to the gap flow that is concentrated in the blade tip region (𝑟 ≅ 250 mm); hence, 

the lever arm of the axial component is about ten times larger and it may be expected that the related 

torque is more important. Furthermore, due to the large blade stagger angle typical of axial fans, it is 

expected that |𝐹𝑎| > |𝐹𝜗|, which further indicates that the torque due to the axial component has a 

major effect. 

4.5.4.4. Resultant axial torque 

The summation of the axial torque components forces due to all of the blades yields a resultant torque 

𝑀𝑎(𝑡) that apparently has a fundamental frequency 𝑓𝑝. However, such a summation shows that, 

although the force acting on each blade is the same, some harmonics may be canceled (as the 

fundamental one) and other ones may be amplified (e.g. the blade passing frequency one) due to the 

time delay between forces acting on different blades. 

The torque due to the 𝑚 − 𝑡ℎ blade is given by  

 𝑀𝑎𝑚
(𝑡) = 𝑟0𝐹𝜗𝑚

(𝑡) (4.95) 

and the resultant axial torque is given by 

𝑀𝑎(𝑡) = ∑ 𝑀𝑎𝑚
(𝑡)

𝑧𝑅

𝑚=1

= ∑ 𝑟0𝐹𝜗𝑚
(𝑡)

𝑧𝑅

𝑚=1

= 𝑟0 ∑ [ ∑ 𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚

0 )

∞

𝑛=−∞

]

𝑧𝑅

𝑚=1

= 𝑟0 ∑ [𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡) ∑ exp(𝑖𝑛𝜗𝑚

0 )

𝑧𝑅

𝑚=1

]

∞

𝑛=−∞

 

(4.96) 

that is 

 𝑀𝑎(𝑡) = 𝑟0 ∑ [𝐹̃𝜗𝑛
exp(𝑖2𝜋𝑛𝑓𝑝𝑡) 𝐹𝑖𝑛𝑡(𝑛)]

∞

𝑛=−∞

 (4.97) 

This shows that 𝑓𝑝 = 𝑓𝑟 + 𝑓𝑣 is the resulting fundamental frequency of the axial component of the 

torque and that, based on this model of the force acting on the blade, no excitation at subharmonic 
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frequencies, namely 𝑓𝑣, may yield; hence, no aerodynamic cause for the observed rotational 

frequency fluctuation has been identified. The property that 𝐹𝑖𝑛𝑡(1) = 0 for statically balanced rotors 

implies that no axial force fluctuation may be present at 𝑓 = 𝑓𝑝 (𝑛 = 1), no matter whether the rotor 

is evenly spaced or not. The property that 𝐹𝑖𝑛𝑡(𝑘𝑧𝑅) is large for mildly unevenly spaced rotors shows 

that the axial torque fluctuation should mainly excite the rotor and the shaft at 𝑧𝑅𝑓𝑝 and higher 

harmonics, which in the present case are rather large (as 𝑧𝑅=7, important vibration may be expected 

at 751.4 Hz  360 Hz and 1451.4 Hz  720 Hz). On the contrary the contribution at the lower 𝑓𝑝 

harmonics should be negligible, see the interference function plot. It may be concluded that the 

fluctuations in 𝐅𝜗 cannot excite subharmonic oscillations in the axial torque and, hence, in the 

rotational speed. This term holds as long as the 𝐹𝜗𝑚
(𝑡) = ∑ 𝐹̃𝜗𝑛

exp(𝑖2𝜋𝑛𝑓𝑝𝑡 + 𝑖𝑛𝜗𝑚
0 )∞

𝑛=−∞ , i.e. its 

fundamental frequency is 𝑓𝑝 = 𝑓𝑟 + 𝑓𝑣. 

 

 

 

 

 

 

 

 

 

 

  



 

92 

 

5. AERODYNAMIC INVESTIGATIONS AND RESULTS 

In the previous chapters, the elastic behavior of the fan has been studied experimentally, analytically, 

and numerically and the flutter aeroelastic phenomenon has been identified as a precession of the 

fan axis which generates high amplitude vibration at low frequencies, basically around 7 to 8 Hz with 

a peak to trough amplitude of the axial movement of the rotating shroud of almost 8 mm. A complete 

series of aerodynamic measurements have been carried out, employing complementary techniques, 

with the aim of supplying general information on the evolving flow as well as trying to deepen the 

unsteady phenomena which can set on the flutter phenomenon. As a matter of fact, since no 

information about similar phenomena has been found in the literature review, the employ of a certain 

measuring technique has been chosen to fill up a piece of knowledge about the flow characteristics 

and, if possible, to highlight some details of the aeroelastic phenomenon. Thus, it is possible to 

subdivide the results into the following points: 

• Mean flow field (investigated by means of PIV and LDV measurements); 

• Unsteady flow field (investigated by means of LDV measurements). 

5.1.  Mean flow field characteristics 

5.1.1. PIV measurements 

The flow field upstream and downstream of the fan has been surveyed in a vertical meridional plane 

using the 2D-PIV system previously described in chapter 2, see Fig. 2.8. The upstream investigated 

region is a rectangular area located at x = -25 mm from the tip of the fan ring with an axial and radial 

extension equal to 𝐿𝑥 = 114 mm  𝐿𝑟 = 39 mm, i.e. r/𝑟𝑡𝑖𝑝 = 0.91-1.07 and 𝑥/𝑟𝑡𝑖𝑝 = 0.1-0.54. The 

downstream one is a rectangular area located at x = 1.6 mm from the tip of the ring with the following 

axial and radial extensions: 𝐿𝑥 = 74 mm  𝐿𝑟 = 199 mm, i.e. r/𝑟𝑡𝑖𝑝 = 0.57-1.35 and 𝑥/𝑟𝑡𝑖𝑝 = 0.006-

0.29, see Fig. 5.1. 

The upstream investigation region has been covered by one camera, while for the downstream 

investigation region two cameras have been mounted radially shifted in order to expand the radial 

extension of the investigated area without diminishing the spatial resolution. A 25-mm overlapping 

region in the radial direction between the snapshots from the two cameras has been used in order to 

combine smoothly the resulting instantaneous vector fields. A suitable algorithm has been employed 

for this purpose. Because the corner of the upstream investigated region is overlapped by the 

geometry, a masked zone is introduced for future post-processing. Therefore, just the green zone 

contains information. 
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Using an adaptive spatial cross-correlation function, the velocity fields (the axial and radial velocity 

components 𝑣𝑎 and 𝑣𝑟) in the meridional plane have been acquired, providing instantaneous vector 

fields with 11439 points for the upstream region as well as 74199 points for the downstream 

region on a square grid of steps x = r = 1.5 mm. In the downstream case 800 instantaneous 

flowfields have been collected, which are sufficient for a mean flow survey, while in the upstream 

case the number has been increased to 1200 since some reflections from the casing and blades could 

reduce the statistical reliability of the ensemble.  

The time-averaged velocity is obtained by averaging the instantaneous velocity components 𝑣𝑎 and 

𝑣𝑟: 

 𝑣̅ =

1
𝐼

∑ 𝑣(𝑖)𝐼
𝑖=1

𝑢𝑡𝑖𝑝
 (5.1) 

Where 𝑖 = 1, … , 𝐼 is the index of each velocity sample during the time. 

The time-averaged turbulence intensity can be expressed as 𝑇𝑢̅̅̅̅  but contains all of the velocity 

fluctuations, i.e., periodic components related to the BPF and harmonics: 

 
𝑇𝑢̅̅ ̅̅ =

√(𝑣𝑎
′̅̅ ̅)

2
+ (𝑣𝑟

′̅̅ ̅)
2

2
𝑢𝑡𝑖𝑝

 
(5.2) 

 

Figure 5.1. PIV investigation regions upstream and downstream of the fan. 
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Where 𝑣 ′̅ is the standard deviation of velocity: 

 𝑣′̅ = 𝑠𝑡𝑑(𝑣) = √
1

(𝐼 − 1)
∑[𝑣(𝑖) − 𝑣̅]2

𝐼

𝑖=1

 (5.3) 

All the aforementioned variables are normalized by 𝑢𝑡𝑖𝑝. As the 2D-PIV system does not allow to 

measure 𝑣𝜃, 𝑇𝑢̅̅̅̅  only provides qualitative information about the flow unsteadiness. 

Based on the PIV error studies of Grant [22] and Prasad et al. [23], the experimental uncertainty for 

the instantaneous velocity in the current study is approximated to be 3%. This estimate gives a rough 

evaluation of the whole examined domain and the selected operating points, see Canepa et al. [3]. 

The cross-plane velocity component 𝑣𝜃 is the main source of systematic bias in the present 

investigations and because 𝑣𝜃has not been measured, a proper estimation is difficult. This effect rises 

near the domain's boundaries thereafter it can result in a spatially varying uncertainty. 

The statistical errors have been calculated using a 20% 𝑇𝑢̅̅̅̅  value. For the time-averaged velocity 

components, 𝑣𝑎 and 𝑣𝑟, the statistical uncertainty is 1.5% and 5% for 𝑇𝑢̅̅̅̅ .  
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The time-averaged axial velocity, 𝑣𝑎, and radial velocity, 𝑣𝑟, contours are reported in Figures 5.2 and 

5.3 respectively. In all three working conditions, 𝑣𝑎 and 𝑣𝑟 have the maximum values when the flow 

leaves the fan close to the tip, i.e., in the range 𝑟/𝑟𝑡𝑖𝑝 = 0.8 − 1 and 𝑥/𝑟𝑡𝑖𝑝 = 0 − 0.1 for 𝑣𝑎 and 

𝑟/𝑟𝑡𝑖𝑝 = 1 − 1.3 and 𝑥/𝑟𝑡𝑖𝑝 = 0.1 − 0.3 for 𝑣𝑟. While 𝑣𝑎 and 𝑣𝑟 are positive almost all over the flow 

field, it is negative in some regions. Generally speaking, the presence of the downstream panel, which 

simulates the presence of the engine and is a common requirement for automotive cooling unit 

testing, constitutes a very strong boundary condition that is able to modify largely flow field at the 

Flutter (A7) No-Flutter (A2) 

  

Free Discharge (A1) 

 

Figure 5.2. The time averaged axial velocity fields for three cases upstream and downstream of 

the fan.  
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rotor outlet even for largely different fan working points. In fact, it is well known that the flow 

downstream of an axial fan may assume a large radial velocity component, as a result of the tangential 

one since the flow is not confined. Such a behavior is typical of low mass flow rate and high-pressure 

rise working points. But a free discharge condition is expected to generate an axial jet-like flow 

pattern. Differently, in the present case, such a difference is not present and even in the free discharge 

condition, the flow is forced by the panel to become centrifugal at a very short axial distance from the 

fan outlet section. The contour plots of 𝑣𝑎 and 𝑣𝑟 confirm this effect and the difference between the 

Flutter (A7) No-Flutter (A2) 

  

Free Discharge (A1) 

 

Figure 5.3. The time averaged radial velocity fields for three cases upstream and downstream of 

the fan. 
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three cases are very limited. In the free discharge condition 𝑣𝑎 shows larger values than in the other 

two cases from the mid-blade region to the tip, and this is consistent with the larger flow rate. As a 

consequence, also the radial component becomes larger than the other cases close to the wooden 

panel. In all three cases, as the flow becomes radial, a separation bubble is generated in the zone 

which is close to the upstream panel, i.e. 𝑥/𝑟𝑡𝑖𝑝 = 0 − 0.05 and 𝑟/𝑟𝑡𝑖𝑝 = 1 − 1.35, where the flow is 

characterized by a centripetal motion, and probably a part is feeding the leakage flow passing 

through the gap.  

Flutter (A7) No-Flutter (A2) 

  

Free Discharge (A1) 

 

Figure 5.4. The time averaged turbulence for three cases upstream and downstream of the fan. 

The time averaged velocity vectors are superimposed on the contour plot. 
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The velocity vector plots, which are superposed to the turbulence contours and represented in 

Fig. 5.4, confirm this aspect. Moreover, the Tu distributions suggest that the largest unresolved 

unsteadiness is present in the shear layer between the fan jet and the recirculating flow which moves 

toward the gap. It is interesting to highlight that in the flutter condition the high turbulence spot, 

present slightly downstream on the blade tip, has the same magnitude as in the no-flutter condition, 

indicating thus that the shear layer is the major source of turbulence. 

Flutter (A7) No-Flutter (A2) 

  

Free Discharge (A1) 

 

Figure 5.5. The time averaged standard deviation of axial velocity fields for three cases upstream 

and downstream of the fan. 
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Another interesting feature that can be seen in Fig. 5.4 is the high turbulence spot in the region  

𝑥/𝑟𝑡𝑖𝑝 = 0 − 0.20  and 𝑟/𝑟𝑡𝑖𝑝 = 0.6 − 0.65 which is present in all the cases and probably indicates a 

large separation zone close to the fan hub.  

Flutter (A7) No-Flutter (A2) 

  

Free Discharge (A1) 

 

Figure 5.6. The time averaged standard deviation of radial velocity fields for three cases 

upstream and downstream of the fan. 
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For sake of completeness, the contours of the standard deviation of the axial component and the 

radial one have been represented in Figs 5.5 and 5.6. 

If the zone close to the gap is enlarged the result is represented in Fig. 5.7, in this way it is possible to 

evaluate in a more detailed way the behavior of the shear layer zone between the jet and the 

recirculating flow. The strong resemblance between the flutter and no-flutter case is confirmed apart 

from a certain difference due to a greater elongation of the high turbulence zone at high radii for the 

no-flutter case. Such an aspect may be related to the enhanced mixing process which takes place in 

the flutter case due to the axial oscillating movement of the fan shroud and blades. In this way, the 

interface between the jet and the recirculating flow becomes, in mean terms, less steady and well-

defined. In this set of PIV measurements, it has not been possible to study the flow very close to the 

gap inlet and blade tip, 𝑥/𝑟𝑡𝑖𝑝 = 0, due to the reflected light of laser beams which are problematic for 

the images recorded by the cameras; in the next sections, this region very close to the gap inlet will 

be studied by means of LDA measurements and the return flow to the gap will be clearly visible in 

that region.  

So far, comprehensive information on the time-mean flow behavior upstream and downstream of the 

fan has been obtained. In order to have more information on the unsteady characteristics, the 

instantaneous snapshots have been analyzed. Four selected snapshots, related to the flutter case, are 

illustrated in Fig. 5.8, by examining the velocity field frame by frame, hidden information about flow 

Flutter (A7) No-Flutter (A2) Free Discharge (A1) 

 

  

Figure 5.7. The time averaged turbulence for three cases upstream and downstream of the fan 

(enlarged zone close to the gap). The time averaged velocity vectors are superimposed to the 

contour plot. 
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behavior will be revealed. In all the instantaneous snapshots the flow is highly perturbated and large-

scale vortices can be individuated. In Fig. 5.8a as the flow is leaving the tip of the blade is suddenly 

changing direction to radial, a vortex centered just above the gap is present and the flow keeps on 

being radial close to the panel in such a way that the separated centripetal flow is non-recognizable 

in the snapshot. In Fig 5.8b, c, and d at the interface between the jet and the recirculating flow, large-

scale eddies (red color vectors) are present, as a matter of fact, the instantaneous interface is 

extremely curly in a way that could not be foreseen from the mean trends. Moreover, in Fig 5.8c and 

d the flow entering the gap is coming from two different regions (blue color vectors), the first source 

of the flow entering the gap is arriving directly from the blade tip region, while the second is from the 

separated region. The reverse flow entering the gap, which can be seen in all three studied cases 

(Flutter, No-Flutter, Free discharge), will be investigated in detail in later sections by LDA 

measurements in the region close to the gap. 

The presence of the aforementioned large-scale turbulent structures suggested the need to 

statistically analyze the vector fields in order to eventually identify the ones which may have a 

deterministic presence. The proper orthogonal decomposition (POD) method has been used for this 

aim. In this method, repetitive patterns are ranked based on energy, which is the repeatability of that 

pattern in the flow. Here, by performing this technique on two distinct cases, Flutter and No-Flutter, 

separately for velocity components 𝑣𝑎 and 𝑣𝑟, and also both velocity components, 𝑣𝑎𝑣𝑟 

(simultaneously), the dominant modes are obtained. 

    

Figure 5.8. Downstream velocity vector snapshots for different cases. 
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In Figure 5.9, the amount of energy of each mode as a percentage of the total energy of all modes has 

been presented. In this graph, the black line and symbols are related to the Flutter case and the red 

line and symbols are related to the No-Flutter case. The corresponding spatial modes are illustrated 

in Figures 5.10 to 5.12. Figures 5.10 and 5.11 show the spatial modes of velocity components 𝑣𝑎 and 

𝑣𝑟 for the Flutter and No-Flutter cases, respectively; additionally, mean velocity streamlines have 

been added to these contour figures to clarify the direction of the velocity field leaving the fan and 

the location of the recirculating bubble. The contour plot of Figure 5.12 also refers to the spatial 

modes of both velocity components, 𝑣𝑎𝑣𝑟, along with vectors of spatial components 𝑣𝑎 and 𝑣𝑟 related 

to that mode for Flutter and No-Flutter cases, respectively. The following equation is used to calculate 

the spatial mode of both velocity components, 𝑣𝑎𝑣𝑟: 

 𝑣𝑎𝑣𝑟 = √𝑣𝑎
2 + 𝑣𝑟

2 (5.4) 

Therefore, the contour of both components is always positive. 

Before reviewing the modes, it is worth mentioning the type of modes is analogous to the variance. 

Because in this method, first the average of the data is deducted from them and the covariance matrix 

consisting of variance and covariance elements is formed on this basis; in the next step, the spatial 

and temporal modes are computed based on the covariance matrix and ranked according to the 

amount of energy. Therefore, these spatial modes can be compared with the previously mentioned 

time-averaged standard deviation and turbulence contours. 
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In the graph of Figure 5.9, by looking at the energy of the first 10 modes of the POD, the important 

point for most of these modes is that the energy of the velocity component 𝑣𝑟 is greater than 

component 𝑣𝑎, and this is a fact for both cases under study, Flutter and No-Flutter. This indicates that, 

firstly, the velocity component 𝑣𝑟 in the primary modes contains more energy, which means that the 

impact and pattern iteration of these modes are more than other low-energy modes compare to the 

component 𝑣𝑎. Secondly, the effect of this velocity component in the initial modes of combining both 

velocity components, 𝑣𝑎𝑣𝑟, is greater than component 𝑣𝑎. 

In both Flutter and No-Flutter cases, the amount of energy for the first two modes is higher than the 

next modes; the energy levels from mode 3 to the higher modes are gradually decreasing and are 

very close to each other. Considering the role of each velocity component separately, the energy of 

the velocity component 𝑣𝑟 in mode 1 is almost 26% of the total energy, while this value is less than 

16% for component 𝑣𝑎; this indicates that the impact of component 𝑣𝑟 is more dominant in mode 1 

of both velocity components, 𝑣𝑎𝑣𝑟. This can be easily detected by comparing the spatial mode shape 

1 for the components 𝑣𝑎, 𝑣𝑟, and 𝑣𝑎𝑣𝑟 in Figures 5.10, 5.11, and 5.12, respectively. The dominance of 

the radial component decreases drastically by moving to the higher modes. 

To some extent, the first and second modes can be related to the general big structure, recirculating 

bubble, of the leaving flow of the fan, which has been reported in the time-averaged velocity vector 

plots in Figures 5.4 and 5.7.  

 

Figure 5.9. The relative energy of POD eigenvalues for the two velocity components 𝑣𝑎, 𝑣𝑟 

separately, and for both components 𝑣𝑎𝑣𝑟 together. Black: Flutter, Red: No-Flutter. 
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By examining the spatial modes one by one and comparing them with the contours of time-averaged 

standard deviation, Figs. 5.5 and 5.6, time-averaged turbulence, Fig. 5.4, as well as velocity field 

snapshots, Fig. 5.8, a better understanding of the flow behavior especially after leaving the blade tip 

and the gap region can be obtained. For this purpose, some examples of these comparisons and 

connections are mentioned here: Due to the shape of higher spatial modes, these modes can be 

related to the small vortices which are developing and following the recirculating bubble.  As the local 

maxima and minima in these modes in the area between 𝑥/𝑟𝑡𝑖𝑝 = 0 − 0.2 and 𝑟/𝑟𝑡𝑖𝑝 = 1 − 1.3 are 

very similar to the red vortices in the snapshots examined in Figure 5.8. However, due to the 

limitations of measuring devices and low data acquisition frequency (non-time resolved), it is not 

possible to truly study the modes related to vortices and the relationship between them, 

nevertheless, hypotheses such as other studies conducted by Canepa et al. [3] and Lengani et al. [24] 

can be expressed here. In these studies, modes with approximately the same energy that the maxima 

and minima between two spatial modes are shifted with a spatial wavelength can be considered as 

vortices in pair modes that convect with a specific frequency. Based on these hypotheses in the flutter 

case, due to the proximity of the energy of modes 3 and 4, these two modes can be considered pair 

modes. The maxima and minima of these two spatial modes represent vortices that move within the 

recirculating bubble from the tip of the blade to a higher radius and oscillate at an arbitrary frequency 

that cannot be measured here. The peaks of these pairs of spatial modes can be considered analogous 

to the red vortices in snapshot B of Figure 5.8. Taking into account the assumptions made, there is a 

possibility of the existence of a link between the oscillation frequency of the vortices of these two 

modes and the fan vibration frequency, 𝑓𝑣, which was investigated in the previous chapter. But the 

proof of this claim is beyond the scope of this study.  

No-Flutter case has almost similar energy rank for each mode; also in this case spatial modes are 

similar to the Flutter case but with some minor differences. One of these differences is related to the 

center location of the recirculating bubble. In the spatial modes plots, it is clear that the dominant 

flow structures and vortices are following this bubble and recirculating around that. Hence, in the 

Flutter case compared to the No-Flutter case, as the bubble center is located in higher radii and it is 

axially a bit wider, therefore most of the flow structures are developing at the wider axial locations. 

These differences are easily recognizable by comparing all the first 5 spatial modes of Flutter and No-

Flutter cases for both velocity components, see Figs. 5.10 and 5.11. 

So far, the overall flow structure upstream and downstream of the fan has been investigated by PIV 

measurements. It has been found that the flow leaving the fan at the tips of the blades creates a 

recirculating bubble structure and it enters the gap as backflow from the higher radii close to the 
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aluminum panel. By investigating snapshots and using the POD method it has been also observed that 

inside this recirculating bubble structure, small vortex structures are formed and move from the tip 

of the blades to the higher radii. It is important to note that in these studies, the entering backflow to 

the gap was observed from two sides, one after leaving the tip of the blades and immediately rotating 

back into the gap, and the other one entering the gap from the higher radii carried by the recirculating 

bubble. In the following sections, in order to characterize the flow pattern and behavior upstream 

and downstream of the fan close to the gap region, a set of LDA radial traverse measurements will be 

done. 
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                 Flutter: Mode 1 Flutter: Mode 2 Flutter: Mode 3 Flutter: Mode 4       Flutter: Mode 5 

     

              No-Flutter: Mode 1 No-Flutter: Mode 2 No-Flutter: Mode 3 No-Flutter: Mode 4    No-Flutter: Mode 5 

     

Figure 5.10. POD spatial Modes for velocity component 𝑣𝑎, Flutter and No-Flutter case 

downstream of the fan. Streamlines are for mean velocity. 
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                 Flutter: Mode 1 Flutter: Mode 2 Flutter: Mode 3 Flutter: Mode 4       Flutter: Mode 5 

     

              No-Flutter: Mode 1 No-Flutter: Mode 2 No-Flutter: Mode 3 No-Flutter: Mode 4    No-Flutter: Mode 5 

     

Figure 5.11. POD spatial Modes for velocity component 𝑣𝑟, Flutter and No-Flutter case 

downstream of the fan. Streamlines are for mean velocity. 
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                 Flutter: Mode 1 Flutter: Mode 2 Flutter: Mode 3 Flutter: Mode 4       Flutter: Mode 5 

     

              No-Flutter: Mode 1 No-Flutter: Mode 2 No-Flutter: Mode 3 No-Flutter: Mode 4    No-Flutter: Mode 5 

     

Figure 5.12. POD spatial Modes for velocity components 𝑣𝑎𝑣𝑟, Flutter and No-Flutter case 

downstream of the fan. Streamlines are for. 



 

109 

 

5.1.2.  LDV measurements 

The LDV measurements have been operated in radial traverses placed upstream and downstream of 

the fan as well as the gap entrance, see Fig. 5.13. The upstream traverse starts radially from 𝑟/𝑟𝑡𝑖𝑝 =

0.8 (point U1) and extends to the gap zone 𝑟/𝑟𝑡𝑖𝑝 = 1 (point U12) with 5 mm radial steps with an 

exception point at U11 which is 3 mm below point U12 and 2 mm above point U11. The measuring 

points have been positioned in a way to be as closer as possible in the axial direction to the blade in 

order to survey the gap flow in an optimal way. The downstream one starts from 𝑟/𝑟𝑡𝑖𝑝 = 0.87 (point 

D1) and finishes at 𝑟/𝑟𝑡𝑖𝑝 = 1.15 (point D15) with 5 mm radial steps and it is axially located 5 mm 

downstream of the aluminum panel which has been the minimum distance that allowed measuring 

in the shroud region in flutter condition. In addition, to complete this survey, 7 points have been 

measured at the gap entrance with 2 mm radial steps (points G1 to G5) also 2 points in the middle of 

the gap with 2 mm axial steps (points G6 and G7). 

These mean trends have been obtained with the double phase average technique that is explained in 

chapter 3. Basically, the effects of blade passing perturbation and flutter vibration are identified and 

subtracted from the mean values. 

The double phase average technique requires a very large amount of samples to yield a good 

statistical uncertainty, due to the highly increased number of bins compared to the standard 

ensemble average one. Besides, it has to be considered that the data rate, i.e. the number of samples 

 

Figure 5.13. LDV measuring points: Upstream (U1-U12), Downstream (D1-D15), and Gap 

entrance (G1-G7). 
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per second that are acquired, is highly variable between the point. Therefore, it has been decided to 

fix the acquisition duration to 360 s, in this way the total amount of collected data is variable per 

point, and generally, it varies between 800000 and 1500000.  

The three velocity components’ mean values, evaluated according to Eq. 3.51, and mean turbulence 

intensity, evaluated according to Eq. 3.55, are depicted in Figs. 5.14 and 5.15 respectively in both 

 

Figure 5.14. Mean velocity components upstream and downstream of the fan in flutter and no-

flutter conditions (dashed lines refer to No-flutter case). 

 

 

Figure 5.15. Mean turbulence intensity upstream and downstream of the fan in flutter and no-

flutter conditions (No-flutter with dashed lines). 
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traverses upstream and downstream of the fan for both Flutter (operating point A7 in Fig. 4.13) and 

No-Flutter (operating point E7 in Fig. 4.13) cases. In Figs. 5.14 and 5.15 the solid lines and filled 

symbols are indicating the Flutter case while the dashed lines and hollow symbols are referring to 

the No-Flutter case. The red dots are the measuring points. All the mean velocity components and 

turbulence intensity are normalized by 𝑈𝑡𝑖𝑝. 

Tangential velocity, 𝑣̅𝜃, upstream of the fan is almost equal to zero from 𝑟/𝑟𝑡𝑖𝑝 = 0.8 to 𝑟/𝑟𝑡𝑖𝑝 = 0.94, 

while in the higher radii it increases rapidly to 𝑣̅𝜃/𝑈𝑡𝑖𝑝 = 0.14 when it reaches 𝑟/𝑟𝑡𝑖𝑝 = 1, highlighted 

as a green zone in Figs. 5.14. Downstream of the fan for the flutter case, 𝑣̅𝜃 is constant when it leaves 

the fan at the front of the blades, 𝑟/𝑟𝑡𝑖𝑝 = 0.86 ÷ 0.96. When it reaches the blade tip increases to 

𝑣̅𝜃/𝑈𝑡𝑖𝑝 = 0.19 and it lasts along the gap region and after that decreases to 𝑣̅𝜃/𝑈𝑡𝑖𝑝 = 0.125. These 

trends happen for turbulence intensity, 𝑇𝑢̃̅̅̅̅ , as well as the tangential velocity, see Fig. 5.15. To some 

extent, tangential velocity and turbulence intensity upstream of the fan are tracers of the backflow 

entering the gap. An increase in tangential velocity as well as turbulence intensity in the higher radii 

(𝑟/𝑟𝑡𝑖𝑝 = 0.94 ÷ 1) close to the gap (highlighted green zone in Figs. 5.14) indicates a backflow that 

has entered the gap downstream of the fan exits at the outlet of the gap upstream of the fan and 

interacts with the main flow entering the fan. The gap entrance, the gap outlet, and the streamline 

passing through the gap are illustrated in Fig. 5.13. For the turbulence intensity, the value at the gap 

outlet, point U12, is almost equal to the gap entrance, e.g., point D9, which is 𝑇𝑢̃̅̅̅̅ /𝑈𝑡𝑖𝑝 = 0.11. For the 

tangential velocity, this difference is around 70% (𝑣̅𝜃/𝑈𝑡𝑖𝑝 = 0.14/0.19 = 70%). Considering that 

the measuring points downstream of the fan are axially 5 mm downstream of the aluminum panel 

and are not exactly at the gap entrance. 

Radial velocity, 𝑣̅𝑟, upstream of the fan is incrementally negative (pointing down) by moving to higher 

radii. It is almost zero at 𝑟/𝑟𝑡𝑖𝑝 = 0.8 and it gradually decreases up to the lower boundary of the 

highlighted green zoon at 𝑟/𝑟𝑡𝑖𝑝 = 0.94, then it sharply decreases to almost 𝑣̅𝑟/𝑈𝑡𝑖𝑝 = −0.2 at 

𝑟/𝑟𝑡𝑖𝑝 = 1. It indicates that also radial velocity is affected by the backflow jet leaving the gap outlet, 

which causes the main entering flow to be more centripetal at the higher radii. Axial velocity, 𝑣̅𝑎, 

upstream of the fan is almost constant and positive below the highlighted green zone while when it 

mixes with the backflow from the gap outlet it decreases almost 40% form 𝑣̅𝑎/𝑈𝑡𝑖𝑝  = 0.15 to 

𝑣̅𝑎/𝑈𝑡𝑖𝑝  = 0.085. 

Downstream of the fan, 𝑣̅𝑟 shows when the flow is either centrifugal or centripetal. Due to the 

presence of the wooden panel, when flow leaves the fan at the front of the rotor from 𝑟/𝑟𝑡𝑖𝑝 = 0.86 
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up to the blade tip it is always positive with the value increasing from 𝑣̅𝑟/𝑈𝑡𝑖𝑝  = 0.1 to 𝑣̅𝑟/𝑈𝑡𝑖𝑝  =

0.15 for the flutter case. By moving to the higher radii first it decreases along the gap entrance and 

becomes zero at 𝑟/𝑟𝑡𝑖𝑝 = 1.045 for the flutter case, then the sign changes and flow is centripetal along 

the aluminum panel, 𝑟/𝑟𝑡𝑖𝑝 = 1.045 ÷ 1.15. The trend of axial velocity downstream of the fan is 

almost similar to the radial one except that it is always positive below the blade tip and by moving to 

the higher radii at the gap region it decreases and becomes zero along the aluminum panel.  

These results are consistent with the PIV measurements downstream of the fan which for ease of 

understanding this consistency, velocity streamlines added to the turbulence contour are illustrated 

in Fig. 5.16 with red dots indicating the measured LDV radial traverse. By looking at the streamlines, 

measured LDV points located below the blade tip are at the path of leaving flow jet which immediately 

becomes centrifugal. At the higher radii along the aluminum panel, 𝑟/𝑟𝑡𝑖𝑝 = 1.045 ÷ 1.15, measured 

LDV points located at the edge of recirculating bubble which is fully centripetal with almost zero axial 

velocity, and it is why the sign of radial velocity in the LDA trend becomes negative. 

In this set of LDA measurements downstream of the fan it was expected to see negative axial velocity 

entering the gap but because the measured points are axially located 5 mm downstream of the 

aluminum panel, axial velocity along the gap region is positive. Due to this reason to measure flow 

 

Figure 5.16. Velocity streamlines added to the turbulence contour measured by PIV downstream 

of the fan. Red dots indicating the measured LDV radial traverse. 
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entering the gap a new set of LDA measurements has been operated exactly at the gap entrance as 

shown in Fig. 5.13 (points G1 to G5). 

Gap entrance three velocity components’ mean values and mean turbulence intensity traverse are 

depicted in Figs. 5.17 and 5.18 respectively for both Flutter and No-Flutter cases. Here also the solid 

lines and filled symbols are indicating the Flutter case while the dashed lines and hollow symbols are 

referring to the No-Flutter case. The red dots are the measuring points. All the mean velocity 

components and turbulence intensity are normalized by 𝑈𝑡𝑖𝑝. 

Tangential velocity and turbulence intensity along the gap entrance (points G1 to G5) are almost 

equal to the gap outlet value upstream of the fan. Tangential velocity decreases by moving to the 

higher radii from point G1 (𝑣̅𝜃/𝑈𝑡𝑖𝑝 = 0.2) to G5 (𝑣̅𝜃/𝑈𝑡𝑖𝑝 = 0.15) while at the gap outlet (point U12) 

it is equal to 0.14. Furthermore, turbulence intensity increases by moving to the higher radii from 

point G1 (𝑇𝑢̃̅̅̅̅ /𝑈𝑡𝑖𝑝 = 0.09) to G5 (𝑇𝑢̃̅̅̅̅ /𝑈𝑡𝑖𝑝 = 0.12) while at the gap outlet (point U12) it is equal to 

0.11. 

Radial and axial velocity were positive downstream of the fan along the gap region (points D8 to D10) 

at 5 mm axially far from the aluminum plate, while at the gap entrance radial velocity starts from 

almost zero at point G1 (𝑣̅𝑟/𝑈𝑡𝑖𝑝 = −0.02) and reaches −0.16 at higher radii (point G5). Meanwhile, 

axial velocity also turns to the negative and varies between 𝑣̅𝑎/𝑈𝑡𝑖𝑝 = −0.15 ÷ −0.1. It means at the 

gap entrance backflow enters the gap which is not present in a few millimeters (Here 5 mm) axially 

far from the gap entrance. In other words, the backflow may enter the gap from the lower radii, from 

the blade's tip, or from the upper radii, the recirculating bubble flow close to the aluminum panel, 

which will be discussed in the next sections. But whatever the origin of the backflow is, it is observed 

that this backflow moves in a thin layer near the gap entrance and enters it. 
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Figure 5.18. Mean turbulence intensity downstream of the fan (Gap region) for flutter and no-

flutter conditions (no-flutter with dashed lines). 

 

Figure 5.17. Mean velocity components downstream of the fan (Gap region) for flutter and no-

flutter conditions (no-flutter with dashed lines). 
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5.2. Double phase ensemble averaged periodic flow filed 

In section 5.1, a complete survey has been done upstream and downstream of the fan and the mean 

flow field has been characterized close to the gap region. It has been found that a recirculating flow 

takes place downstream of the fan right after the flow leaves the fan from the blade tip to the higher 

radii then it enters the gap as a backflow, after passing through the gap at the gap outlet it mixes with 

the entering flow close to the blade tip upstream of the fan. The mean flow of LDA measurements was 

calculated by the double phase locked ensemble average technique. In this technique which is 

introduced in Chapter 3, the velocity signal is characterized by two simultaneous periodic 

components, one related to the blade passing period or the fan rotational period which is measured 

by a Tachometer and here it is called Tacho-periodicity, and another periodic component is related 

to the flutter phenomenon which is measured by a Vibrometer and here it is called Vibro-periodicity. 

In order to better interpret the velocity contours upstream and downstream of the fan, the schematic 

of the fan is depicted in Fig 5.19a. In the figure the fan’s direction of rotation (𝜔𝑟), precession motion 

(𝜔𝑣), and the axial position of the rotor within the stationary shroud is illustrated. This axial position, 

which is calculated with regard to the precession motion, is shown by a black and white contour 

stripe around the rotor. 

As explained in previous chapters, precession motion tilts the rotor in the stationary shroud, in a way 

that for instance at 0° in the plot, the rotor’s ring axially leans toward upstream of the fan and closes 

 

Figure 5.19. Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four 

schematic positions and a circular black and white contour strip illustrating the gap opening.  
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the outlet gap (the small schematic figure of 0° position) which for simplicity from now this position 

will be named closed-gap. 

At the same time, in the opposite direction at 180°, the rotor’s ring axially leans toward downstream 

of the fan and opens the gap outlet (the small schematic figure of 180° position) which for simplicity 

from now this position will be named open-gap. 

However, at the angular positions of 90° and 270°, the axial position of the rotor’s ring is in the neutral 

state without any movement (the small schematic figures of 90° and 270° position). 

To have a better understanding of the following contour plots, this contour strip and the four 

schematic figures related to the rotor’s precession motion and axial position of the rotational ring 

within the stationary shroud are combined with the contours of the phase average of all velocity 

components, turbulence intensity, and 𝛽 angle based on Vibro-periodicity. 

This section is divided into two subsections: the first subsection will be studied the LDA radial 

traverse measurements upstream (points U1 to U12) and downstream (points D1 to D15) of the fan; 

in the second subsection, the LDA radial traverse measurements at the gap entrance (points G1 to 

G5) will be discussed. 

5.2.1. Double phase ensemble averaged periodic flow field upstream and downstream of the 

fan 

1. Upstream of the fan (points U1 to U12), Tacho-periodicity: 

The typical effect of the potential field of the blade is present in all the velocity components and 

turbulence intensity, see Figs. 5.19 and 5.21. Generally, at the upstream of the axial fans the absolute 

flow field must be only axial, while here due to the shape of the casing which is playing as a 

convergent duct, the flow has a negative radial component at the range of 𝑟/𝑟𝑡𝑖𝑝 = 0.8 ÷ 1 carrying 

from the higher radii which is reported (mean velocity) in Fig. 5.14. Furthermore, at the gap outlet, 

backflow exits the gap and mixes with the axial main flow entering the fan in the range of 𝑟/𝑟𝑡𝑖𝑝 =

0.94 ÷ 1; due to this reason at this range close to the blade tip, flow is not purely axial and it has 

tangential and additional radial components which are carried by the backflow through the gap to 

the main inflow upstream of the fan. Similar to mean velocity this effect is evident as a presence of a 

periodic pattern of high positive 𝑣𝑟 and negative (centripetal) 𝑣𝜃 in the range of 𝑟/𝑟𝑡𝑖𝑝 = 0.94 ÷ 1 in 

Figs. 5.19 and 5.21. The presence of non-zero tangential velocity surely needs evaluation of the angle 

of attack in this range. This evaluation can be done by analyzing the 𝛽 angle (angle between relative 
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and blade linear velocities) which is presented in Fig. 5.22. The 𝛽 angle is consistent with the flow 

periodicity and the effect of backflow mixes the main inflow which has been characterized already 

for velocity components. 

Evaluating turbulence in Fig. 5.21 also shows a high turbulence zone at 𝑟/𝑟𝑡𝑖𝑝 = 0.94 ÷ 1 which has 

been carried by the backflow through the gap and released from the gap outlet with a certain 

periodicity. Such a periodicity may be due to the pressure field of the blade which is reorienting or 

changing flow leaving the gap, or it is also possible this periodicity has been carried by the backflow.  

Below this range, where the backflow affects the main inflow, at lower radii (𝑟/𝑟𝑡𝑖𝑝 < 0.94) the 

presence of the blade is inducing acceleration, deceleration, and the reorientation of the incoming 

flow according to the pressure field in the way to generate a periodic pattern in velocity components. 

The amplitude of periodicity is strictly related to the aerodynamic field of the blades, e.g., angle of 

attack, and also the axial distance from the blades. In this case, it is even more complicated to discuss 

this periodic distribution because the blade is not radially stacked; it means the axial distance of each 

measuring point to the blade’s surface changes at different radii. 

Comparing No-Flutter and Flutter cases it can be seen that apart from minor differences there is no 

apparent dissimilarity between these two cases. 

2. Upstream of the fan (points U1 to D12), Vibro-periodicity: 

Figures 5.23 and 5.24 show velocity components and turbulence intensity which has driven by the 

double phase ensemble average base on Vibro-periodicity. Unlike double phase ensemble average 

base on Tacho-periodicity, using the Vibro-periodicity makes it possible to lock the flow in the period 

of the vibration and see the effect of the precession motion of the rotor when the rotor is in the 

position of open- or closed-gap.  

The most noticeable point among all the velocity components is the difference between Flutter and 

No-Flutter cases. In all the Flutter contour plots a kind of circumferential disuniformity related to the 

precession motion of the rotor is present while in the No-Flutter case, velocity components are 

axisymmetric and without any periodicity; it shows the presence of flutter completely changes the 

flow field. The effect of flutter can change the behavior of the blades, introducing an increase or 

decrease in turbulence production due to different angles of attack on the blade. 

In all three velocity components for the Flutter case, there is a maximum velocity region that takes 

place at almost the angular range of 90° ÷ 160° and its center is at 120°; also a minimum velocity 

region with 180° shift to the maximum and its center is around 300°; it means when the rotor is 
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vibrating (fluttering) and whirling counterclockwise around its axis it tilts, and at 180° where it is at 

the open-gap position or in other words the rotor’s ring is axially moved downstream of the fan, an 

increase for all the velocity components is present with a certain delay of almost 60° (180° − 120°). 

Also, it should be considered that when the rotor is at the open-gap position at 180° as the measuring 

point is a fixed point in space, data are measured axially closer to the rotor's ring than the neutral 

position of the rotor when the fan is not fluttering. On the contrary, at the closed-gap position at 0° 

data are measured axially farther from the rotor's ring than the neutral position of the rotor. 

These changes in the velocity components are consistent with the change in 𝛽 angle because this 

angle also has a maximum variation at the same angular position (around 120°), see Fig. 5.25 

To make a comparison, contours of velocity components, turbulence, and 𝛽 angle in angular positions 

of maximum and minimum for flutter and no flutter cases are sliced radially, Figs. 5.23, 5.24, and 

5.25.  Slice line 1 in black is representing the radial cut at maxima peaks, 120°, and slice line 2 in 

magenta is associated with the radial cut at minima peaks, 300°.  

In Fig 5.26a and Fig 5.26b, which are showing Flutter and No-Flutter cases respectively, the black and 

magenta lines are representing the radial traverse of three velocity components at slice lines 1 and 

2, respectively, and the dashed grey lines are associated with the mean profiles which were 

introduced previously in Fig 5.14 and Fig 5.15. 

Focusing on the range 𝑟/𝑟𝑡𝑖𝑝 = 0.94 ÷ 1 (green zone) where flow leaving the gap outlet mixes with 

flow entering the fan; in slice line 1 which is associated with the open-gap position, considering the 

gap outlet is increased and more open, flow in comparison to the mean profile is more axial and less 

radial, while, tangential velocity and turbulence are the same; on the other hand, in slice line 2 which 

is associated with the closed-gap position, due to a decrease in gap outlet area, the flow compared to 

the mean profile is more radial and less axial; here again, the tangential velocity and turbulence 

remain constant. 

Knowing that the tangential velocity is not changing in any of the cases while axial, radial, and 

subsequently, meridional velocities are changing, it can be seen that the affected 𝛽 angle by backflow 

in the green zone is changing accordingly. This change in 𝛽 angle is evidence of a change in the angle 

of attack at the blade’s tip. 

For the No-Flutter case, since there is no axial displacement in the rotating ring also, no change in the 

gap outlet area, the whole velocity components, turbulence, and 𝛽 are axisymmetric, hence all the 

radial traverse values in slice lines 1 and 2 are equal to the mean profile. 
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3. Downstream of the fan (points D1 to D15), Tacho-periodicity: 

Considering measuring LDA traverse on the PIV mean velocity streamlines in Fig. 5.16, similar to the 

mean velocity for points D1 to D15 which has been discussed in section 5.1 here the flow field can be 

radially separated into three zones: Zone 1, from the lower radii to the blade tip (𝑟/𝑟𝑡𝑖𝑝 = 0.86 ÷ 1) 

where the flow leaves the fan and becomes centrifugal; Zone 2, the gap region (𝑟/𝑟𝑡𝑖𝑝 = 1 ÷ 1.045); 

Zone 3, from the point D10 to the higher radii (𝑟/𝑟𝑡𝑖𝑝 = 1.045 ÷ 1.15) where the flow is fully 

centripetal along the aluminum panel (almost zero axial velocity). 

Looking in Figs. 5.27 and 5.28, in zone 1, the presence of the wake is easily recognizable at the trailing 

edge of the blades where the turbulence and tangential velocity are high; due to the shape of the 

blades highlighting the wake for radial and axial velocities are not so easy; however, both radial and 

axial components are positive, it means flow leaving the gap and it is centrifugal; high and low axial 

velocities take place in the position of the blades and the middle pitch of the blades, respectively. 

It is worth mentioning that at the blade tip when the flow is passing along the inner surface of the 

rotating ring which has a speed 𝑢𝑡𝑖𝑝 = 71.2 m s⁄  for the flutter case, the tangential velocity rapidly 

increases due to the skin friction drag; it is present as a high amplitude red region from the mid chord 

of the blade to the leading edge; this effect is also can be recognizable in the turbulence plot in the 

same region. 

In zone 2 or the gap region, the backflow enters the gap from the two sides (lower radii or blade tip 

and higher radii or along the aluminum panel) and passes along the outer surface of the rotating ring 

inside the gap. This backflow has a certain large tangential velocity and turbulence intensity due to 

different origins; one of the important origins can be carried from the blade tip to the gap which is 

recognizable as a high amplitude red region from the mid chord of the blade to the leading edge close 

to the inner and outer surface of the rotating ring; another important origin is due to the skin friction 

drag inside the gap between the backflow and the outer surface of the rotating ring; the minor origin 

maybe is due to the tangential velocity that is carried by the backflow entering from the higher radii 

(the edge of recirculating flow along the aluminum panel). 

In zone 3, axial velocity is almost zero, radial velocity is centripetal, and tangential velocity is small 

because this zone is located at the edge of recirculating flow coming back from higher radii, see Figs. 

5.27 and 5.28. 
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Similar to the upstream of the fan, by comparing No-Flutter and Flutter cases it can be seen that apart 

from minor differences there is no dissimilarity between these two cases. Also, for sake of 

completeness 𝛽 angle is added here, Fig. 5.29. 

4. Downstream of the fan (points D1 to D15), Vibro-periodicity: 

It can be hypothesized that, if there is a kind of Vibro-periodicity that has been found upstream of the 

fan due to the precession motion of the rotor then this periodicity should be present downstream of 

the fan as well, even if it is not always granted. 

Figures 5.30 and 5.31 are showing velocity components and turbulence intensity which has driven 

by the double phase average base on Vibro-periodicity. 

Using the same determined radial zones, for the Flutter case at zone 1 in the range of 𝑟/𝑟𝑡𝑖𝑝 = 0.86 ÷

0.94 where the backflow is not effected the main inflow, there is a low tangential velocity region, 

𝑉̃𝜃/𝑈𝑡𝑖𝑝 ≅ 0.098, spread around 0° angular position when the gap is close and the flow is less 

deflected by the fan, while on the other side, 180° angular position, when the gap is open the 

tangential velocity is slightly higher, 𝑉̃𝜃/𝑈𝑡𝑖𝑝 ≅ 0.116; at the higher radii up to the blade tip, 𝑟/𝑟𝑡𝑖𝑝 =

0.94 ÷ 1, where the backflow mixes with the main inflow there is an augmentation of high tangential 

velocity attached to the inner surface of the rotating ring due to the skin friction drag at the angular 

range of 20° ÷ 150°. Radial velocity is always positive in this zone and the maximum takes place 

around 120° angular position while the minimum is shifted 180° from the maxima; the position of 

these maximum and minimum are similar to the radial velocity upstream of the fan. The axial velocity 

is a bit peculiar because the maximum is located at the angular position of 180° where the gap is open 

and it extends with a small decrease to 0°, while the minimum is at the angular position of 90°. 

Furthermore, it is hard to talk about the turbulence intensity in this zone as it has different maxima 

and minima. 

In zone 2 or the gap region, an augmentation of tangential velocity and turbulence intensity is present 

as confirmed by the mean profile in Fig 5.14. Tangential velocity in the gap region has two maxima 

and perhaps two origins, one is coming from the blade tip and is started from the angular position of 

150° continuous to 220° and it is close to the lower radii of the gap; another one that is close to the 

upper radii of the gap and located in the angular range of 260° ÷ 330° has a different unknown origin 

(it may come from the higher radii by backflow). In the continuation of the radial velocity in zone 1, 

also in the gap region, the maximum velocity takes place around 120° angular position. Axial velocity 
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is always positive as it is axially 5 mm downstream of the fan. Similar to zone 1 again it is difficult to 

characterize the origin of the two high turbulence regions in this zone. 

In zone 3 where the flow is centripetal and comes from the recirculating bubble, the tangential 

velocity is minimum at the angular range of 90° ÷ 220°; to some extent, this is in contrast to zones 1 

and 2 where the maxima are located in this angular range. Radial velocity is centripetal in this zone 

but it has the same angular position of maximum and minimum regions as inner radii where the flow 

is centrifugal. Axial velocity is almost zero in this zone but similar to the radial component it has the 

same angular position of minimum and maximum comper to the lower radii where the flow leaves 

the fan as a jet. It seems at angular positions where the flow is more axial it is less radial and vice 

versa. The turbulence distribution in this zone with two high angular spots is again very complex. 

In the No-Flutter case, velocity components and turbulence intensity are axisymmetric and without 

any periodicity. Also, for sake of completeness 𝛽 angle is added here, Fig. 5.32. 

5.2.2. Double phase ensemble averaged periodic flow field at gap entrance 

In the previous section by studying the mean flow field characteristic it has been found that by 

moving the measuring LDA points to the gap entrance the flow pattern behaves differently and in this 

location, more complete and accurate information about the backflow entering the gap has been 

obtained. Due to this reason, the double phase ensemble average analysis has been applied to the 

velocity components data collected by LDA measurements at the gap entrance. This kind of analysis 

again can provide a better view of the flow entering the gap. 

1. The gap entrance (points G1 to G5), Tacho-periodicity: 

By looking in Figs. 5.33 and 5.34, as expected and analogous to the mean velocity profiles the axial 

component in the Flutter case is always negative; at the blade presence as well as the higher radii 

(close to the stationary shroud) it has the maximum negative value and in the middle pitch of the 

blades it has the minimum negative; the presence of maxima and minima close to the stationary 

shroud shows that in this radius the flow is more affected by blade passing than the radii close to the 

rotating ring. 

For the radial velocity in the Flutter case also the effect of blades passing is present; it is almost 

always negative, which means it is centripetal; the most interesting fact is that the maximum negative 

velocity is close to the stationary shroud while it is close to the zero and perhaps sometimes positive 

(centrifugal) at lower radii near to the ring. It proves that the flow enters the gap from two opposite 
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radial directions: higher radii along the aluminum panel and lower radii at the front of the blade tip 

leading edge. 

Comparing No-Flutter and Flutter cases for axial and radial velocity components it can be seen that 

apart from minor differences there is no dissimilarity between these two cases. 

It has been discussed previously for the tangential velocity at radial traverse of points D1 to D15 

specifically close to the gap entrance (D7 to D11), the backflow has a certain large tangential velocity 

and turbulence intensity due to different origins. By moving axially to the gap entrance almost the 

same pattern happens. Here is also important tangential velocity in the Flutter case comes from the 

blade tip as it can be seen in Fig. 5.34, the high tangential zone is close to the ring. This effect is 

partially related to the skin friction drag inside the gap between the backflow and the outer surface 

of the rotating ring. 

As for the turbulence intensity in the Flutter case, the high turbulence flow comes from the higher 

radii and it has the maximum value close to the stationary shroud. By approaching lower radii (close 

to the ring) the turbulence decreases to its minimum value where the tangential velocity is maximum. 

It means the flow entering the gap from the higher radii is already more turbulent than the flow 

coming from the blade tip. 

In the No-Flutter case, tangential velocity and turbulence intensity decrease but those follow the 

same pattern as in the Flutter case. Also, for sake of completeness 𝛽 angle is added here, Fig. 5.35. 

2. The gap entrance (points G1 to G5), Vibro-periodicity: 

Investigating entering backflow to the gap at the gap entrance by considering the vibration 

periodicity can provide interesting information related to the precession motion of the rotor and gap 

size, and this information can be compared with the flow leaving the gap at the gap outlet upstream 

of the fan; when comparing these two, it has to be considered that at the gap outlet just a point at the 

middle of gap outlet has been measured, point U12. 

Similar to the velocity components at the gap outlet the most perceptible point among all the velocity 

components at the gap entrance is the difference between Flutter and No-Flutter cases. In all the 

Flutter contour plots a kind of periodicity related to the precession motion of the rotor is present 

while in the No-Flutter case, velocity components are almost axisymmetric and without any 

periodicity. 
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In all three velocity components, turbulence intensity, and 𝛽 angle for the Flutter case, there is a 

maximum or minimum that takes place at almost the angular range of 70° ÷ 130° with a center in 

100° which is almost 20° (120° − 100°) shifted as a center of velocities peaks compared to the flow 

leaving the gap outlet; these minima and maxima peaks happen with a certain delay (180° − 100° =

80°) relative to the gap fully open condition at 180°, see Figs. 5.36, 5.37, and 5.38. 

For the three velocity components when the rotor is vibrating (fluttering) and whirling 

counterclockwise around its axis, by monitoring the gap size the following points are noteworthy: 

By moving from 0° where the gap is close and axially more upstream of the fan and before reaching 

the gap fully open condition (180°), the gap opens and at a certain angular position (100°) the axial 

distance of the ring relative to the stationary shroud is such a way that lets the backflow coming from 

the higher radii along the aluminum panel enter the gap axially with the maximum speed; it means 

that at this condition (angular position) the most flow suction to the gap happens. At the same time 

and same angular position, the radial velocity at the radii close to the ring is slightly centrifugal 

(positive) which means at this condition flow enters the gap directly from the blade tips. 

Tangential velocity is also maximum at this condition specifically at the radii close to the ring due to 

the skin friction drag and also the flow that comes from the blade tips has more tangential velocity. 

Furthermore at this angular position from the higher radii flow carries the tangential velocity from 

the recirculating bubble but with a smaller value than the lower radii origin. 

Turbulence intensity follows the same pattern; at the same angular position (100°) turbulence 

increases specifically at the higher radii where the flow that comes from the recirculating bubble is 

more turbulent. 

The 𝛽 angle is consistent with the velocity components and it has the maximum at the higher radii 

and the minimum close to the ring at the aforementioned angular position. 
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Fig. 5.20. Double phase average (Tacho periodicity) of LDV radial traverse measurements upstream 

of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four schematic 

positions and a circular black and white contour strip illustrating the gap opening. b) Axial velocity 

(Flutter). c) Radial velocity (Flutter). d) Axial velocity (No-Flutter). e) Radial velocity (No-Flutter).  

a) 

b) c) 

d) e) 
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Fig. 5.21. Double phase average (Tacho periodicity) of LDV radial traverse measurements upstream 

of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four schematic 

positions and a circular black and white contour strip illustrating the gap opening. b) Tangential 

velocity (Flutter). c) Turbulence intensity (Flutter). d) Tangential velocity (No-Flutter). e) 

Turbulence intensity (No-Flutter).  

a) 

b) c) 

d) e) 
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Fig. 5.22. Double phase average (Tacho periodicity) of LDV radial traverse measurements upstream 

of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four schematic 

positions and a circular black and white contour strip illustrating the gap opening. b) 𝛽 angle 

(Flutter). c) 𝛽 angle (No-Flutter).  

a) 

b) 

c) 
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Fig. 5.23. Double phase average (Vibro periodicity) of LDV radial traverse measurements upstream 

of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four schematic 

positions and a circular black and white contour strip illustrating the gap opening. b) Axial velocity 

(Flutter). c) Radial velocity (Flutter). d) Axial velocity (No-Flutter). e) Radial velocity (No-Flutter).  

a) 

b) c) 

d) e) 
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Fig. 5.24. Double phase average (Vibro periodicity) of LDV radial traverse measurements upstream 

of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four schematic 

positions and a circular black and white contour strip illustrating the gap opening. b) Tangential 

velocity (Flutter). c) Turbulence intensity (Flutter). d) Tangential velocity (No-Flutter). e) 

Turbulence intensity (No-Flutter).   

a) 

b) c) 

d) e) 
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Fig. 5.25. Double phase average (Vibro periodicity) of LDV radial traverse measurements upstream 

of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus four schematic 

positions and a circular black and white contour strip illustrating the gap opening. b) 𝛽 angle 

(Flutter). c) 𝛽 angle (No-Flutter).  

a) 

b) 

c) 
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Fig. 5.26. The radial traverse of three velocity components at slice lines 1 (black line) and 2 

(magenta line) compared to the mean velocity profile (dashed gray line). a) Flutter case. b) No-

Flutter case. 

 

 

  

a) 

b) 
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Fig. 5.27. Double phase average (Tacho periodicity) of LDV radial traverse measurements 

downstream of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus 

four schematic positions and a circular black and white contour strip illustrating the gap opening. 

b) Axial velocity (Flutter). c) Radial velocity (Flutter). d) Axial velocity (No-Flutter). e) Radial 

velocity (No-Flutter).  

a) 

b) c) 

d) e) 



 

132 

 

 

  

  

  
Fig. 5.28. Double phase average (Tacho periodicity) of LDV radial traverse measurements 

downstream of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus 

four schematic positions and a circular black and white contour strip illustrating the gap opening. 

b) Tangential velocity (Flutter). c) Turbulence intensity (Flutter). d) Tangential velocity (No-

Flutter). e) Turbulence intensity (No-Flutter).  

a) 

b) c) 

d) e) 
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Fig. 5.29. Double phase average (Tacho periodicity) of LDV radial traverse measurements 

downstream of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus 

four schematic positions and a circular black and white contour strip illustrating the gap opening. 

b) 𝛽 angle (Flutter). c) 𝛽 angle (No-Flutter).  

a) 

b) 

c) 
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Fig. 5.30. Double phase average (Vibro periodicity) of LDV radial traverse measurements 

downstream of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus 

four schematic positions and a circular black and white contour strip illustrating the gap opening. 

b) Axial velocity (Flutter). c) Radial velocity (Flutter). d) Axial velocity (No-Flutter). e) Radial 

velocity (No-Flutter).  

a) 

b) c) 

d) e) 
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Fig. 5.31. Double phase average (Vibro periodicity) of LDV radial traverse measurements 

downstream of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus 

four schematic positions and a circular black and white contour strip illustrating the gap opening. 

b) Tangential velocity (Flutter). c) Turbulence intensity (Flutter). d) Tangential velocity (No-

Flutter). e) Turbulence intensity (No-Flutter).  

a) 

b) c) 

d) e) 
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Fig. 5.32. Double phase average (Vibro periodicity) of LDV radial traverse measurements 

downstream of the fan. a) Direction of rotation of the rotor (𝜔𝑟) and whirling motion (𝜔𝑣), plus 

four schematic positions and a circular black and white contour strip illustrating the gap opening. 

b) 𝛽 angle (Flutter). c) 𝛽 angle (No-Flutter).  

a) 

b) 

c) 
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Fig. 5.33. Double phase average (Tacho periodicity) of LDV radial traverse measurements at gap 

entrance. a) Axial velocity (Flutter). b) Radial velocity (Flutter). c) Axial velocity (No-Flutter). e) 

Radial velocity (No-Flutter).  

a) b) 

c) d) 



 

138 

 

 

 

 

 

 

 

 

 
  

Fig. 5.34. Double phase average (Tacho periodicity) of LDV radial traverse measurements at gap 

entrance. a) Tangential velocity (Flutter). b) Turbulence intensity (Flutter). c) Tangential velocity 

(No-Flutter). e) Turbulence intensity (No-Flutter).  

a) b) 

c) d) 
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Fig. 5.35. Double phase average (Tacho periodicity) of LDV radial traverse measurements at gap 

entrance. a) 𝛽 angle (Flutter). b) 𝛽 angle (No-Flutter).  

a) 

c) 
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Fig. 5.36. Double phase average (Vibro periodicity) of LDV radial traverse measurements at gap 

entrance. a) Axial velocity (Flutter). b) Radial velocity (Flutter). c) Axial velocity (No-Flutter). e) 

Radial velocity (No-Flutter).  

a) b) 

c) d) 
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Fig. 5.37. Double phase average (Vibro periodicity) of LDV radial traverse measurements at gap 

entrance. a) Tangential velocity (Flutter). b) Turbulence intensity (Flutter). c) Tangential velocity 

(No-Flutter). e) Turbulence intensity (No-Flutter).  

a) b) 

c) d) 
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Fig. 5.38. Double phase average (Vibro periodicity) of LDV radial traverse measurements at gap 

entrance. a) 𝛽 angle (Flutter). b) 𝛽 angle (No-Flutter).  

a) 

c) 
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6. CONCLUSIONS 

Throughout this thesis, an experimental study of the high-amplitude and low-frequency vibration of 

a low-speed fan provided with a rotating shroud is reported. This vibration, which takes place at a 

frequency 𝑓𝑣 ≅ 7.3 Hz when the fan approaches the design speed of 𝑓𝑟 = 42.5 Hz, has been identified 

as the first backward whirling mode of the rotor that, consistenly, counterrotates at the same 

frequency 𝑓𝑣. It may be classified as an aeroelastic problem.  

In order to measure and characterize this vibration, various mechanical and aerodynamic 

measurements have been performed. To this aim, a new test stand has been designed which is 

suitable for simultaneous mechanic and aerodynamic measurements on fans. 

Mechanical investigations have been taken by means of both accelerometers and optical vibrometers. 

The latter has allowed a preliminary measure of the axial position of the ring at a very low rotational 

speed, confirming the visual observation that the ring is axially nonplanar due to the presence of 

bumps whose origin is the molding process employed for manufacturing the fan. As a result, peaks 

in the power spectral density of the ring axial displacement signal are expected at the 𝑓𝑟 harmonics 

could be due to a residual static unbalance but such peaks surely receive an important contribution 

from to the periodic passage of the ring bumps in front of the vibrometer probe. 

The dynamical behavior of the fan assembly has been preliminarily characterized by means of FEM 

and experimental modal analysis, which have provided consistent results and have shown that the 

modal frequencies of rotor and casing are much larger than 𝑓𝑣. Then, the Campbell diagram of the fan 

has been obtained by means of both FEM and experimental; the analysis of modal shapes and 

frequencies proved that the observed low-frequency vibration is related to the first backward mode 

of the system, consisting of a precession motion superposed to the revolution about the rotational 

axis. In addition, all the other important modes, e.g., first and second backward and forward ones, 

have been analyzed. The assumed backward direction of rotation of the low-frequency whirling mode 

has been experimentally confirmed by measuring the phase difference between the signal from two 

vibrometers located at almost 90 degrees angular positions. 

Then, the low-frequency aeroelastic behavior of the fan has been investigated. In order to study the 

axial oscillation of the rotor, vibrometric measurements have been performed on the rotor ring at 

different operating points along the characteristic curves of the fan. Then, a map of vibration 

amplitude has been plotted together with the characteristic curves of the fan, showing the 

dependency of the vibration amplitude on the operating condition (flow rate, head, and rotational 
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speed). Based on the visual observation of the vibration, three typical behaviors have been 

considered: High amplitude vibration (Flutter), no perceived vibration (No-Flutter), and intermittent 

vibration. It has been found that, at the design point, the high-amplitude oscillation onsets when 𝑓𝑟 

increases and approaches the design rotational speed; the same happens at the design rotational 

speed operation approaching the design point from the both high and low head. 

The analysis of the PSD plots related to two extreme cases, Flutter and No-Flutter, has shown that 

although those have different heights, a low-frequency peak is always present, thus suggesting that 

the vibration is caused by resonance. In the former case, it has been observed that 𝑓𝑣 decreases when 

𝑓𝑟 increases; such an observation has been confirmed by the Campbell diagram obtained by wavelet 

analysis of a vibrometer signal acquired during a low-acceleration rotational speed ramp. 

Furthermore, it has been found that, in the Flutter case, peaks at 2nd, 3rd, and 4th harmonics of 𝑓𝑣 

are present, opposite to the No-Flutter case. In the Flutter case only, side peaks shifted of ±𝑓𝑣 

multiples are present besides the ones at the 𝑓𝑟 harmonics, a feature typical of frequency modulation. 

. By comparing the two signals of the vibrometer at the rotor ring and accelerometer at the motor 

which have been measured simultaneously it has been discovered that in the Flutter case the 

amplitude of the vibration at the rotor ring is more than 10 times higher than at the motor. 

The confirmation that the excitation is aeroelastic arrived by observing that positioning a thin bar 

downstream of the fan close to the gap but without any contact immediately suppresses the large-

amplitude vibration and removing the bar the vibration rapidly re-onsets. This indicates that the 

excitation is not purely mechanical, since the bar may act on the system only by changing the flow 

field, specifically, both recirculating and leakage flows. Furthermore, it has been observed that 

increasing the roughness of the external surface of the rotor ring has the same effect as positioning 

the bar. This indicates that the leakage flow is involved in the vibration, suggesting that the feedback 

loop is as follows: the vibration yields a rotating variation of the gap size, which in turn yields a 

fluctuation in the leakage flow, which impacts the blades, eventually resulting in a fluctuating 

aerodynamic load that causes the vibration. 

Theoretical models for structural dynamics and aerodynamic forces have been developed. Such 

models confirm that a counterrotating flow pattern may yield a rotating aerodynamic force pattern 

at frequencies observed in the vibrometer signal PSD and that fluctuations in the rotational speed 

may yield the apparent frequency modulation effect due to ring non-planarity combined with the 

vibration. 
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A complete series of aerodynamic measurements have been carried out, employing complementary 

techniques (PIV and LDA), to supply general information on the flow as well as deepen the unsteady 

flow involved in the flutter phenomenon. 

The PIV measurements have shown there is no relevant difference in the time mean flow between 

Flutter and No-Flutter cases; the obstruction disk mounted downstream of the rotor forces the fan 

outflow to become centrifugal at a very short distance, but a centripetal flow close to the mounting 

panel is present, which may be considered a recirculating one. Such a recirculating flow merges with 

the rotor outflow and results in the backflow entering the gap between the rotating ring and the 

stationary shroud (the leakage flow). By analyzing the instantaneous PIV snapshots, it has been 

found that at the interface between the rotor outflow and the recirculating flow, large-scale eddies 

are present, an observation confirmed by the performed POD analysis. 

The mean flow field has also been measured in radial traverses close to the gap region by means of 

an LDA system, confirming that the leakage flow enters from the gap downstream of the fan and 

mixes with the rotor inflow upstream of the fan when it leaves the gap. This affects all of the three 

velocity components upstream of the fan at radial positions close to the gap outlet; in this radial 

position, the flow has a tangential velocity component and it is more centripetal than the lower radii 

inflow due to the leakage flow leaving the gap outlet. 

A new double phase ensemble average technique has been developed to distinguish the effects of two 

periodic parts (rotation and vibration periodicity, detected by tachometer and vibrometer signals) 

of the flow; to the author’s knowledge, such a technique has never been employed. Using this novel 

technique, periodic parts of velocity profiles of the flow field upstream and downstream of the fan 

have been studied.  

Analyzing the ensemble average flow based on Tacho-periodicity has shown the expected effect of 

the periodic blade passage present in velocity profiles; comparing No-Flutter and Flutter cases shows 

that apart from minor differences there is no dissimilarity between the two time-mean flow fields. 

Analyzing the ensemble average flow based on Vibro-periodicity has shown the effect of the 

precession motion of the rotor. In the Flutter case, a periodicity related to the precession motion of 

the rotor is present in all of the velocity components, while in the No-Flutter case, velocity 

components are axisymmetric without any periodicity. The Vibro-periodicity ensemble average 

shows that the flutter also affects the relative flow angle at the rotor inlet, and consequently the angle 

of attack at the blade tips, which finally causes the aeroelastic phenomenon: unsteady flow excites 

vibration, and vibration generates unsteady flow; this change in the flow field is periodic and links to 
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the gap outlet area size and precession motion; another interesting finding is that the maxima and 

minima in the velocity field are located at angular positions different from the ones at which the gap 

outlet area is maximum and minimum, but a certain delay exists. This phase delay of all of the relevant 

quantities needs a deeper future study as it plays a crucial role in creating the negative feedback that 

allows aeroelastic vibrations to onset and self-sustain. 

A few important limitations inherent to the aerodynamic studies need to be considered. First, 

problems due to optical access and reflections during the PIV and LDA measurements. Second, in this 

study, a non-time-resolved PIV system has been used, resulting in a slow acquisition for collecting a 

sufficiently large data set for the double phase ensemble average technique to be applicable. Third, 

the instantaneous blade force should be known in order to study all of the physical quantities 

involved in the phenomenon; to this aim, the instantaneous pressure on the blades should be 

measured, but this requires a special setup including pressure transducers flush mounted on the 

blade and data transmission from the rotor. 

Summarizing, this research answered many issues about the observed flutter but it also raised many 

questions in need of further investigation. More research is needed to deepen the aerodynamic 

analysis: for instance joint vibrometric, anemometric, and instantaneous surface pressure 

measurements. Several attempts have been done using the Hot-Film measurements to study the 

instantaneous flow inside the gap, with the aim of identifying vortical structures inside the gap but 

non-conclusive, partially contradictory results were obtained; this difficulty in analyzing the leakage 

flow development inside the gap could be circumvented by means by CFD analysis.  
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