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A B S T R A C T   

The evaluation of the uncertainty due to systematic dynamic effects is addressed. When high dynamic perfor
mance is required, they should be compensated, by solving the associated inverse dynamic problem. When 
instead they are considered compatible with the target uncertainty, they may be simply included in the uncer
tainty budget. Furthermore, even in the case of dynamic compensation, a residual uncertainty remains, due to 
the imperfect compensation, and should be evaluated. Therefore, simple formulas are presented here, applicable 
to many classes of dynamic phenomena, including periodic, harmonic, transitory impulsive and stochastic sta
tionary ones.   

1. Introduction 

Dynamic measurement, which is measurement where the measurand 
value varies over time, is the object of increasing attention today, due to 
its application importance and to the scientific and technological chal
lenges it still poses [1]. Dynamic measurement can be classified as either 
direct, where the property to be measured is the time history of the 
quantity of interest [2], or indirect, where some other characteristic of 
the quantity is sought such as, most frequently, the spectral distribution 
of the energy of the phenomenon [3]. Only the case of direct dynamic 
measurement will be considered here. 

In this regard, the scientific and technical debate has developed 
along four main lines, strictly related to each other, but with a focus on.  

• generic modelling [4,11],  
• dynamic calibration [12,13],  
• dynamic compensation [14–16],  
• uncertainty reduction and evaluation [17–20], 

where the list above includes just a few examples, among many 
others. 

Concerning generic modelling, dynamic measurement can be 
considered a part of a generic framework for measurement, which has 
been a key topic of measurement sciences, over the years. A major 
concern has been the possibility of developing a common approach 
between physical and social sciences [4,5,7,10,11]. The specific aspects 

of dynamic measurement have also been discussed [6–9], and the pos
sibility of a probabilistic framework common to static and dynamic 
measurement has been addressed [2]. 

In this context, systematic dynamic effects in the measurement sys
tem constitute an important point to improve the quality of the mea
surement process and to evaluate and declare its uncertainty. In linear 
measuring devices such effects include a possible amplification or 
attenuation, and phase shift of the spectral components of the indicated 
signal, with respect to the original phenomenon. When this effect is non- 
negligible, typically when operating outside the recommended band for 
the instrument, dynamic compensation should be applied, as discussed 
elsewhere [10,12]. When operating within the recommended band, 
uncertainty due to non-ideal behaviour of the measuring device should 
be evaluated anyway and included in the uncertainty budget. Such an 
evaluation should also be made even when dynamic compensation is 
applied, to account for residual uncertainty remaining after such 
compensation. Here a simple practical formula to do that is derived and 
presented. Preliminary results, for periodic and harmonic were proposed 
in Ref. [20]. Here the study is extended to other important classes of 
dynamic phenomena, namely transient impulsive and stochastic sta
tionary, thus covering a very wide class of practical applications. 
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2. Modelling dynamic effects in measuring devices 

2.1. The time varying error due to real operating conditions 

The dynamic behaviour of a linear measuring device can be modelled 
through its frequency response: 

H(f )= kα(f )exp(jφ(f )) (1)  

where f is the frequency, H(f) the (complex) frequency response (FR), k 
is the sensitivity, α(f) is the (dimensionless) modulus of the FR, φ(f) is its 
phase, and j denotes the imaginary unit. For example, in the case of a 
simple contact thermometer, the modulus is: 

α(f )=
(
1 + (2πfT)2)− 1/2

(2)  

and the phase is [15]: 

φ(f )= tan− 1(2πfT) (3)  

where T is the time constant of the thermometer. 
Suppose now that the measurand is a simple cosinusoidal process: 

x(t)= x0 cos(2πf0t+φ0), (4)  

where f0 = T− 1
p , and Tp is the period. 

Considering, for now, systematic effects only, i.e., neglecting the 
noise, the instrument indication will then be 

y(t)= kα(f0)x0 cos(2πf0t+φ0 +φ(f0)) (5) 

The measured signal, with no dynamic compensation [5], will then 
be: 

x̂(t)= k− 1y(t)= =α(f0)x0 cos(2πf0t+φ0 +φ(f0)) (6) 

Hence, the dynamic effect can be expressed by the error: 

e(t)= x̂(t) − x(t). (7) 

If the (ideal) non-distortion conditions hold true, i.e., if α(f) = 1 and 
φ(f) = 0 for all the frequencies of interest, x̂(t) = x(t), no systematic 
deviation occurs. Therefore, to discuss the actual behaviour of the sys
tem, it is convenient to assume α(f) = 1 + δα(f) and φ(f) = 0+ δφ(f). 
Yet, in a typical practical case the exact values of δα(f) and δφ(f) would 
be unknown, so it makes sense to model them as probabilistic variables. 
Lastly, since we do not know the “functions” δα(f) and δφ(f) but only 
some global figures about them, such as their standard deviations (i.e., 
σα and σφ), or their ranges (i.e., ±Δα and ±Δφ), we will neglect their 
dependence upon frequency, thus definitely setting: 

α(f )= 1 + δα  

φ(f )= 0 + δφ (8) 

It thus results, for the measured signal: 

x̂(t) = x0(1 + δα)cos(2πf0t + φ0 + δφ)

= x0(1+ δα)[cos(2πf0t+φ0)cos δφ − sin(2πf0t+φ0)sin δφ]

Since δφ is usually small, let us assume cos δφ ≅ 1 and sin δφ ≅ δφ. 
Then, after neglecting second order terms, we ultimately obtain for the 
error: 

e(t) = δαx0 cos(2πf0t + φ0)

− δφx0 sin(2πf0t+φ0) (9) 

Therefore, for any given dynamic process x(t), the error is a stochastic 
process, depending on the two random parameters δα and δφ, that can be 
modelled as probabilistic variables, that we will assume zero-mean and 
uncorrelated. Therefore, the error will also be zero-mean. 

Two approaches are then possible, for uncertainty evaluation, 
closely related to the two perspectives from which a stochastic process 
can be studied, namely the synchronic (along time) and the diachronic 
(across time) views, to be developed in the following [21]. 

2.2. The synchronic view 

Let us consider the “power” of the signal and of the error, that is their 
mean quadratic values. For any positive integer n, and for T being a 
generic time duration, for the signal we obtain: 

Px =
1
Tp

∫+Tp/2

− Tp/2

x2(t)dt =
1

nTp

∫+nTp/2

− nTp/2

x2(t)dt  

= lim
T→∞

1
T

∫+T/2

− T/2

x2(t)dt =
x0

2

2
(10) 

For the error, for each pair (δα,δφ), we obtain: 

Pe(δα, δφ) =
1
Tp

∫+Tp/2

− Tp/2

e2(t)dt

=
x0

2

Tp

∫+Tp/2

− Tp/2

[
δα2cos 2(2πf0t + φ0) + δφ2sin 2(2πf0t + φ0)

− 2δαδφcos(2πf0t + φ0)sin(2πf0t + φ0)
]
dt

=
x0

2
2(

δα2 + δφ2) = Px
(
δα2 + δφ2) (11) 

Then taking the expected value, E(⋅), with respect to the probabilistic 
parameters δα and δφ and remembering that they have been assumed 
zero-mean, we lastly obtain: 

Pe =E[Pe(δα, δφ)] =Px
(
σ2

α + σ2
φ

)
. (12) 

Finally, considering the usual notation for standard uncertainty, and 
denoting by ud the standard uncertainty due to dynamical effects in the 
measuring device, then u2

d = Pe and we obtain, noteworthily: 

ud

xrms
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

α + σ2
φ

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

α + u2
φ

√
. (13)  

2.3. The diachronic view 

We can also look for an expression of uncertainty another way round, 
i.e., by following the diachronic perspective. Here the error is regarded 
as a time dependent parametrical probabilistic variable, also depending 
on the parameters (δα, δφ). Let us now calculate the time dependent 
variance of the error, remembering that the two variables, δα and δφ, are 
zero-mean and uncorrelated. We obtain: 

σ2
e(t) = E

(
e2(t)

)

= E
[
δα2x2

0cos 2(2πf0t + φ0) + δφ2x2
0sin 2(2πf0t + φ0)

− 2δaδφx2
0 cos(2πf0t + φ0)sin(2πf0t + φ0)

]

= σ2
αx2

0cos 2(2πf0t + φ0) + σ2
φx0

2sin 2(2πf0t + φ0). (14) 

The variance is thus time dependent, and such is also the standard 
deviation due to dynamic effects. Yet, this is not practical, and a constant 
global value is rather of interest. To obtain that, time averaging over one 
period may be considered, yielding: 
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σ2
e =

1
Tp

∫+Tp/2

− Tp/2

σ2
e(t)dt

=
1
Tp

∫+Tp/2

− Tp/2

[
σ2

αx0
2cos 2(2πf0t + φ0) + σ2

φx0
2sin 2(2πf0t + φ0)

]
dt

=
x0

2

2
(
σ2

α + σ2
φ

)
= Px

(
σ2

α + σ2
φ

)
. (15) 

This result is in perfect agreement with Equation (12) and thus it also 
yields Equation (14). Therefore, the two approaches considered here 
yield the same, simple and compact, result. Equation (13) establishes a 
simple, elegant, and practical relation between the relative standard 
uncertainty due to dynamical effects and the uncertainty on the modulus 
and the phase of the frequency response of the measuring device. 

2.4. The measurand as a stochastic process itself 

Lastly, so far, the case of a single signal has been considered, which 
may be seen as a deterministic approach. Yet in a more general 
perspective, starting from the deterministic process presented in eq. (4), 
it is possible to introduce the stochastic stationary process: 

x(t)= x0 cos(2πf0t+φ′

), (16)  

where φ′ is a random variable in the range [ − π,+π]. This a nice 
“physical” meaning, it may be interpreted as the possibility of accessing 
at random at the process of eq. (4): if the time origin, t = 0, is set at the 
moment of access, the phase will vary at random, depending on that 
instant. In this perspective, the probability density of the variable φ is 
typically assumed as uniform in the range [ − π, + π]. 

The error is now: 

e(t) = δαx0 cos(2πf0t + φ’)

− δφx0 sin(2πf0t+φ′

), (17)  

which is a function of three probabilistic variables, δα, δφ and φ′ . Its 
expected value is null, since: 

E[e(t)] =
∫+Δα

− Δα

∫+π

− π

δαx0 cos(2πf0t+φ′

)p(δα)p(φ′

)dδαdφ′

−

∫+Δφ

− Δφ

×

∫+π

− π

δφx0 sin(2πf0t+φ′

)p(δφ)p(φ
′

)dδαdφ′

= 0, (18)  

and the variance is: 

E
[
e2(t)

]
=

∫+Δα

− Δα

∫+π

− π

δα2x0
2cos 2(2πf0t + φ’)p(δα)p(φ’)dδαdφ’

+

∫+Δφ

− Δφ

∫+π

− π

δφ2x0
2sin 2(2πf0t + φ’)p(δα)p(φ’)dδφdφ’

− 2
∫+Δα

− Δα

∫+Δφ

− Δφ

∫+π

− π

δαδφx2
0 cos(2πf0t + φ’)sin(2πf0t

+ φ’)p(δα)p(δφ)p(φ’)dδαdδφdφ’,

which in the end yields: 

σ2
e =

∫+Δα

− Δα

δα2

⎡

⎣ 1
2π

∫+π

− π

x0
2cos2(2πf0t + φ’)dφ’

⎤

⎦p(δα)dδα

+

∫+Δφ

− Δφ

δφ2

⎡

⎣ 1
2π

∫+π

− π

x0
2sin2(2πf0t + φ’)dφ’

⎤

⎦p(δφ)dδφ

=
x0

2

2

⎡

⎣
∫+Δα

− Δα

δα2p(δα)dδα +

∫+Δα

− Δα

δφ2p(δφ)dδφ

⎤

⎦ = Px
(
σ2

α + σ2
φ

)
. (19) 

It appears that this procedure, which is possibly the most elegant and 
complete of the three examined, yields the same result as the others. In 
the following, this approach will be applied to important classes of dy
namic phenomena, to check and assess its validity. 

3. Application of the method to stationary processes 

3.1. Periodic and harmonic processes 

Let us now consider application of the ideas above to several 
important classes of dynamic phenomena. Stationary processes are 
considered first, including periodic, harmonic, continuous-spectrum and 
mixed-spectrum stochastic stationary processes. Let us start from (zero- 
mean) periodic and harmonic processes. Periodic phenomena, can be 
modelled by the (limited) Fourier series expansion: 

x(t)=
∑n

i=1
ci cos(i2πf0t+φi), (20)  

where x(t) is (the time history of) the measurand and. 
f0 = T− 1

p is its fundamental frequency. 
Harmonic processes can instead be modelled as [22]: 

x(t)=
∑n

i=1
ci cos(2πfit+φi) (21)  

where the frequencies involved are no longer constrained to be integer 
multiples of a fundamental frequency, f0. Since eq. (21) is a general
ization of eq. (20), which can be obtained from (21) by putting 

fi = if0 (22)  

it is sufficient to discuss the latter. 
Firstly, let us calculate the “power” (mean quadratic value) of a 

harmonic process. Since there is not a fundamental frequency here, the 
third expression of eq. (10) is appropriate, yielding: 

Px = lim
T→∞

1
T

∫+T/2

− T/2

x2(t)dt =
∑n

i=1

ci
2

2
. (23) 

Then, following the approach outlined in Section 2.1, for the in
strument indication we obtain: 

y(t)= k
∑n

i=1
α(fi)ci cos(2πfit +φi +φ(fi)), (24)  

where k is the sensitivity of the measurement device. The measured 
signal can thus be derived as: 

G.B. Rossi et al.                                                                                                                                                                                                                                 



Measurement: Sensors 23 (2022) 100394

4

x̂(t)= k− 1y(t)=
∑n

i=1
α(fi)ci cos(2πfit+φi +φ(fi)), (25)  

and for the error due to dynamic effects, still accounting for assumptions 
(8), we obtain: 

e(t) = δα
∑n

i=1
ci cos(2πfit + φi)

− δφ
∑n

i=1
ci sin(2πfit+φi) (26) 

Then, the variance of the error is: 

σ2
e(t) = σ2

α

∑n

i=1
ci

2cos 2(2πfit + φi) + σ2
φ

∑n

i=1
ci

2sin 2(2πfit + φi). (27) 

Accounting for eq. (10), the average error variance is now: 

σ2
e = lim

T→∞

1
T

∫+T/2

− T/2

σ2
e(t)dt=Px

(
σ2

α + σ2
φ

)
(28)  

and, lastly, we still obtain eq. (13), recalled here for clarity: 

ud

xrms
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

α + u2
φ

√
(29) 

Therefore, this result, originally obtained for mono-tone processes 
also turns out to be applicable to the important classes of periodic and 
harmonic processes. 

3.2. Stochastic stationary processes 

Let us now consider the signal x(t) as a realisation of a stationary 
stochastic process, having a (continuous) power spectral density (PSD) 
Sxx(f). Then the signal indication, y(t), is again, neglecting any instru
ment insertion transient and remembering eq. (1), a stationary sto
chastic process, with PSD: 

Syy(f )= |H(f )|2Sxx(f ) (30) 

Let us now consider the dynamic error, e(t) = k− 1y(t) − x(t), and 
assume, to simplify notation,1 with no impact on the result, k = 1. Then 
e(t) = y(t) − x(t). Let us now consider the autocorrelation of the error: 

Ree(τ) = E[e(t)e(t + τ) ] = E[y(t)e(t + τ) − x(t)e(t + τ), ] = Rye(τ) − Rxe(τ).
(31) 

Taking the Fourier transform, we obtain: 

See(f ) = Sye(f ) − Sxe(f ) (32) 

Similarly, we obtain: 

Sye(f )= Syy(f ) − Syx(f ), (33)  

and: 

Sxe(f )= Sxy(f ) − Sxx(f ) (34) 

Therefore: 

See(f )= Syy(f ) − Syx(f ) − Sxy(f ) + Sxx(f ) (35) 

Now, remembering that [23]: 

Sxy(f )=H(f )Sxx(f ), Syx(f ) = H*(f )Sxx(f ) (36)  

where H*(f) is the complex conjugate of H(f), and accounting for eq. 
(35), we obtain:  

Now, recalling eq. (8): 

H(f )= (1+ δα)exp(jδφ) ≅ (1+ δα) + jδφ (38)  

for δα and δφ small, where j denotes the imaginary unit. 
By combining these two equations, we lastly obtain: 

See(f )=
(
δα2 + δφ2)Sxx(f ) (39)  

which, integrated on the frequency axis, yields the same result as eq. 
(11), and again, by taking the expected values of δα and δφ, the same 
result as in eq. (13) outcomes. 

Therefore, for stochastic stationary process, the same evaluation 
formula can be applied. 

3.3. Mixed-spectrum processes 

Another important class of processes include those that are the sum 
of a continuous-spectrum process with a harmonic process [22,24]. The 
associated PSD can be expressed as the sum of the two spectra, as 
(recalling eq. (23)): 

S(f )= Sc(f )+ Sd(f )= Sc(f ) +
∑n

i=1

c2
i

2
δ(f − fi) (40)  

where Sc(f) is the continuous part of the spectrum, and δ(Δ) denotes the 
Dirac delta function. For these processes it is possible to proceed as with 
the previous ones, by simply taking Sxx(f) as in eq. (40). Then eqs. 30–39 
are applicable, and the result, expressed by eq. (39) can be obtained. 

4. Application of the method to non-stationary processes 

4.1. Transient impulsive phenomena 

The class of non-stationary processes is wide and difficult to organise 
in a taxonomy. Here two main classes of processes are considered, 
transient impulsive [25] and those characterised by slowly varying 
evolutionary spectra [26,27]. 

Transient impulsive phenomena occur, for example in shock testing 
and in the measurement of transit noise. 

Signals arising from such phenomena are finite-energy, i.e., they 
have a finite integral square value: 

E=

∫+∞

− ∞

x2(t)dt < +∞ (41) 

Although x(t) may theoretically have an infinite duration, in practice 

See(f )=
[
|H(f )|2 − H(f ) − H*(f )+ 1

]
Sxx(f )=

{
[1 − Re(H(f ))]2 + [Im(H(f ))]2

}
Sxx(f ) (37)   

1 Since k is simply a multiplicative constant, its effect in this procedure is 
irrelevant. 
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data acquisition may be performed only for a finite time, in such a way 
as to capture the entire phenomenon. Therefore, a finite duration, T is 
assumed here. Let us then consider the energy spectral density (ESD): 

η(f )= |X(f )|2 (42)  

where X(f) is the Fourier transform of x(t): 

X(f )=
∫+∞

− ∞

x(t)exp(− j2πft)dt (43)  

which satisfies Parseval’s equality: 

E =

∫+∞

− ∞

η(f )df (44) 

For finite-energy processes, the ESD closely replaces the PSD that 
applies to finite-power processes, and eqs. 30–39 still hold, by simply 
replacing S(f) with η(f) [25]. Therefore, we obtain the equivalent to eq. 
(39), which now reads: 

ηee(f )=
(
δα2 + δφ2)ηxx(f ) (45)  

from which 

Ee =E[Ee(δα, δφ)] =Ex
(
σ2

α + σ2
φ

)
. (46)  

results. Yet, standard uncertainty is related to the standard deviation of 
the (dynamic) error, not directly to its energy. 

Thus, we may assume: 

Ee = σ2
eT (47) 

From which we lastly obtain: 

ud
̅̅̅̅̅̅̅̅̅̅̅
Ex/T

√ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

α + σ2
φ

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

α + u2
φ

√
. (48)  

which constitutes the equivalent of eq. (13) for finite-energy processes. 

4.2. Processes with evolutionary spectra 

Finally, let us briefly consider processes with slowly varying evolu
tionary spectra, although a thorough treatment of them is beyond the 
scope of this communication [28]. Such processes may be characterised 
by a time dependent evolutionary power spectral density (EPSD), S(f ,t), 
which is based on describing the behaviour of the process locally 
through an oscillatory process, in such a way that a local PSD can be 
estimated. The integral of the EPSD over the frequency domain provides 
the local power, P(t), of the process. 

Therefore, if we consider this local perspective, results like those 
expressed by eqs. 24–31 can be assumed and we obtain: 

ud(t)
xrms(t)

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

α + u2
φ

√
(49) 

Although standard uncertainty is time dependent here, relative 
standard uncertainty is not, and the same estimation formula as above 
can be applied. 

4.3. To sum up 

In the treatment above two main classes of signals have been 
considered: those of finite-power and those of finite-energy. 

Finite-power signals are those that satisfy: 

Px = lim
T→∞

1
T

∫+T/2

− T/2

x2(t)dt < +∞. (50) 

For them and for signals outcoming from processes slowly varying 
evolutionary spectra, the following formula can be used: 

ud

xrms
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

α + u2
φ

√
(51) 

Finite-energy signals instead satisfy: 

Ex =

∫+∞

− ∞

x2(t)dt < +∞ (52) 

For them, uncertainty evaluation can be based on: 

ud
̅̅̅̅̅̅̅̅̅̅̅
Ex/T

√ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

α + u2
φ

√
, (53)  

which differs from eq. (51) only in the way relative uncertainty is 
expressed. 

5. Verification by simulation 

In the treatment above the time dependence of δα and δφ on the 
frequency, f was neglected: see discussion before eq. (8). Although this 
assumption is based on considering the information typically available, 
– practical application examples will be provided in Section 6 – a 
simulation study was performed, to check the potential criticality of 
such an assumption. A (hypothetical) piezo-electric accelerometer with 
frequency response: 

H(f )= k
j2πfT

1 + j2πfT
1

(
jf
f0

)2
+ 2z jf

f0
+ 1

, (54)  

where k is the sensitivity, z = 35.5 × 10− 3 is the damping factor, f0 =

43 kHz is the natural frequency of the seismic sensor and T = 20 s is the 
time constant of the piezo-electric sensor, was considered for the 
simulation (Fig. 1). 

In this case, due to the (deterministic) behaviour of the frequency 
response, in the band B = (0.5 Hz, 10 kHz), Δα = 0.06 and Δφ = 1◦ =

0.0174 rad, as shown in Figs. 2–3. By applying eq. (51), we obtain a 
relative standard uncertainty ud/xrms = 0.036. 

In each simulation trial, N = 5000 signals of the form: 

Fig. 1. Accelerometer frequency response – Normalised modulus and phase.  
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xi(t)=
∑n

l=1
cl cos(2πflt+φl), (55)  

were simulated, with n = 5, fl in the band B, φl ∈ [− π, +π] and cl in the 
range from 0.1 m

s2 to 1 m
s2. To cover the whole band properly, B was 

divided in 5 sub-bands and each fl was selected from each sub-band. For 
each simulated signal, the error ei(t) and the corresponding ratio erms,i/

xrms,i were calculated. An example result for a test is shown in Fig. 4. 
From the probability distribution, the expected value for the ratio 

erms/xrms is 0.024. Result stability is confirmed by repeated tests in the 
same conditions giving a standard deviation for the expected erms/ xrms of 
0.13%. 

Therefore, it appears that the proposed formula yields a conservative 
evaluation of relative standard uncertainty, which is appropriate in view 
of the limited information typically available. 

6. Hints for practical uncertainty evaluation 

Let us now discuss the application of the method above to typical 

dynamic measurements, such as vibration measurement. Typical trans
ducers for such measurements are either piezo-electric accelerometers, 
for absolute motion monitoring, or eddy-current proximity probes, for 
relative motion. Let us then assume a more general model instrument 
indication, capable of accounting for other typical uncertainty sources, 
that is: 

y(t)= (k+ δk)
∑n

i=1
α(fi)ci cos(2πfit+φi +φ(fi))+ (h+ δh) + v(t), (56)  

where h is an additive term which accounts for a possible non-zero 
output, in correspondence with a zero input, which is typically the 
case with eddy-current proximity probes, δk and δh are multiplicative 
and additive deviations, and v(t) is additive noise that includes noise in 
the process, due to a non-perfectly harmonic phenomenon, and mea
surement noise. 

The corresponding expression for the error will then be: 

e(t) =
(

δk
k
+ δα

)
∑n

i=1
ci cos(2πfit + φi)

− δφ
∑n

i=1
ci sin(2πfit+φi) + k− 1(h+ v(t)) (57) 

It should be noted that the multiplicative systematic effect due to 
sensitivity (normalised) deviation δk/k behaves in a way very similar to 
δα therefore it is again convenient to average over time. Therefore, the 
final expression for relative standard uncertainty evaluation, accounting 
for all the uncertainty sources considered above, will be: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
α + u2

φ + k− 2
(
u2

k + x− 2
rms

(
u2

h + v2
rms

))√

(58) 

The relationship between relative standard uncertainty and signal- 
to-noise ratio (SNR), a common feature in dynamic measurement, can 
be noted. Indeed: 

SNR= 10log 10

(xrms

u

)2
= 20log 10

(xrms

u

)
(59) 

Let us then briefly discuss its practical application, leaving aside, for 
now, the evaluation of noise, to be treated at the end of this section. 

In the case of high quality piezo-electric accelerometers, explicit 
statements on the uncertainties of the modulus and of the phase, for a 
selected frequency range, in the form: 

Fig. 2. Accelerometer low frequency response, bandwidth tolerances and 
limit deviations. 

Fig. 3. Accelerometer high frequency response, bandwidth tolerances and 
limit deviations. 

Fig. 4. Probability distribution for the ratio erms/xrms with N = 5000 samples.  
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δα= ± Δα, δφ = ±Δφ. (60) 

The uncertainty on k is typically expressed as a percentage value, i.e., 
in the form ±Δk/k and the uncertainty on h are often not mentioned, 
which may be interpreted as that they are considered negligible as 
compared to the dynamic effects. Let us also assume that uncertainty 
related to environmental conditions is negligible as well. Then, apart 
from noise, relative standard uncertainty can be evaluated from: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δα2 + Δφ2 + (Δk/k)2

3

√

. (61)  

where uniform distributions have been assumed for the variable 
involved. For example, if, in the frequency range of the device, the un
certainty on the sensitivity is rated within ±10 %, that on the module 
also within ±10 %, and that on the phase within ±1◦, we obtain: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0.1)2
+ (0.0175)2

+ (0.1)2

3

√

= 0.082, (62)  

which corresponds to SNR = 22 dB. It may be noted that the phase ef
fect, in this case is negligible as compared to the modulus effect. 

In the case of eddy-current proximity probes, the dynamic behaviour 
may be documented by presenting typical frequency response curves for 
both modulus and phase. Such curves usually have a low-pass behav
iour, with deviation from the ideal behaviour asymmetrical with respect 
to zero, typically in a range (− Δα, 0) and ( − Δφ,0), respectively. Yet an 
asymmetrical distribution would imply some correction of the result, 
which, in this case, would mean performing dynamic compensation. Yet 
this is usually avoided, in practical applications. Hence, symmetrical 
ranges can be assumed, i.e., (− Δα,+Δα) and ( − Δφ, + Δφ). Concerning 
the other uncertainty sources, here both δk/k ad δh are present, usually 
denoted as (uncertainty on the) incremental scale factor (ISF) and de
viation from (best fit) straight line (DSL). Therefore, apart from noise, 
eq. (24) can be used. For example, in a given frequency range, viz. up to 
1 kHz, the maximum deviation of the modulus is − 0.25 dB, of the phase 
− 10◦, the ISF is rated within ±5 %, the DSL is ±0.025 mm, for xrms =

1.0 mm, we obtain: 

u
xrms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0.03)2
+ (0.175)2

+ (0.05)2
+ (0.025/1.0)2

3

√

= 0.11, (63)  

with SNR = 19. Here the uncertainty on the phase is the most important 
effect. 

Lastly, let us briefly discuss the evaluation of the rms value of the 
noise that directly affects the result as an additional uncertainty source. 
This can hardly be obtained from the data sheets of the devices, since it is 
strongly related to the experimental and environmental conditions. 

One possibility, when applicable, is to record the output of the 
measuring system, for a zero measurand input, and to compute the 
corresponding rms value. But zeroing the input is often impossible, 
especially in the field. 

Then, if the maximum frequency of interest for the phenomenon, call 
it fmax, is significantly smaller than fs/2, where fs is the sampling fre
quency, the noise in the band (fmax, fs /2) can be estimated as the dif
ference between the original signal and the signal low-pass filtered up to 
fmax. If v′

rms is its rms value, the rms value of the noise can be estimated 
as: 

vrms = v
′

rms

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
fs/2

fs/2 − fmax

√

. (64) 

Lastly, if that is not even possible, at least in the case of harmonic 
processes, the spectrum of the signal can be estimated and the noise can 
be estimated as the difference between the original signal and the signal 
reconstructed through eq. (20) or eq. (21), where only the significant 
spectral components are included. 

7. Conclusions 

Systematic dynamic effects in linear measuring devices have been 
considered and simple formulas have been obtained, applicable to many 
classes of dynamic phenomena, including periodic, harmonic, transitory 
impulsive and stochastic stationary ones. Their practical application, in 
the case of absolute or relative vibration, has been discussed and hints 
for practical uncertainty evaluation have been provided. 

CRediT authorship contribution statement 

Giovanni Battista Rossi: Conceptualization, Supervision, Method
ology, Writing – review & editing. Francesco Crenna: Methodology, 
Software, Validation, Writing – review & editing. Marta Berardengo: 
Methodology, Validation, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research was partially funded with grant FRA 2019, from the 
University of Genoa. 

The authors want to thank anonymous Reviewers, whose comments 
were useful to improve the paper. 

References 

[1] Bartoli, et al., Traceable Dynamic Measurement of Mechanical Quantities: 
Objectives and First Results of This European Project”, XX IMEKO World Congress, 
2012, pp. 628–636. 

[2] G.B. Rossi, Toward an interdisciplinary probabilistic theory of measurement, IEEE 
Trans. IM 61 (2012) 2097–2106. 

[3] G.B. Rossi, F. Crenna, V. Piscopo, A. Scamardella, Comparison of spectrum 
estimation methods for the accurate evaluation of sea state parameters, Sensors 20 
(2020) 1416, https://doi.org/10.3390/s20051416. 

[4] L. Narens, R.D. Luce, Measurement: the theory of numerical assignments, Psychol. 
Bull. 99 (2) (1986) 166–180. 

[5] B.D. Wright, A history of social science measurement, Educ. Meas. 16 (4) (1997) 
33–45. 

[6] K.D. Sommer, Modelling of measurement, system theory, and uncertainty 
evaluation, in: F. Pavese, A. Forbes (Eds.), Data Modeling for Metrology and 
Testing in Measurement Science, Birkhauser-Springer, Boston, 2009, pp. 275–298. 

[7] G.B. Rossi, Measurement and Probability, Springer, Dordrecht, 2014. 
[8] K.H. Ruhm, Dynamics and stability – a proposal for related terms in Metrology, 

from a mathematical point of view, Measurement 79 (2016) 311–320. 
[9] K.H. Ruhm, Measurement plus observation – a new structure in metrology, 

Measurement 126 (2017) 421–432. 
[10] L. Pendrill, Quality Assured Measurement Unification across Social and Physical 

Sciences, Springer, 2019. 
[11] L. Mari, M. Wilson, A. Maul, Measurement across the Sciences, Springer, 2021. 
[12] J.P. Hessling, Dynamic metrology, Meas. Sci. Technol. 19 (7p) (2008), 084008. 
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