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Introduction

Quantum Optics (QO) is a branch of physics dealing with light and light-matter in-
teraction at the quantum level. The striking ability in generating, manipulating and
measuring quantum states of the electromagnetic field achieved in the last decades has
provided some simple yet fundamental tests for the quantum mechanical behavior of
single-photon states [1].

In a similar fashion, the progresses in the experimental control of individual elec-
tronic degrees of freedom ballistically propagating in mesoscopic devices led to the
birth of a new branch of condensed-matter physics known as Electron Quantum Optics
(EQO) [2]. It aims at reproducing quantum-optical experiments and set-ups in solid
state devices. Major achievements in this context were the realization of the electronic
equivalent of the Hanbury-Brown and Twiss (HBT) interferometer [3], which allows to
access the granular nature of the particles, and of the Hong-Ou-Mandel (HOM) exper-
iment [4], able to provide information about the statistical properties of the colliding
particles.

The full correspondence between QO and EQO is built on few but necessary in-
gredients: fermionic waveguides, electronic beamsplitters and single electron sources.
The first ones are provided by one-dimensional topological edge states emerging in the
Quantum Hall (QH) effect [5, 6], both in the integer and in the fractional regimes. By
applying a strong perpendicular magnetic field to a Two-Dimensional Electron Gas
(2DEG), bulk conduction is suppressed but metallic states appear at the edge of the
Hall bar. Chirality of edge states, forced by the direction of the magnetic field, for-
bids electronic backscattering, thus providing efficient waveguides of electrons. In QO
experiments, photon beams are manipulated with the help of beamsplitters. In QH
systems, a negative gate voltage can partially deplete the underlying 2DEG, deviating
the path of the edge states. This constriction is called Quantum Point Contact (QPC)
and allows to control the reflection and transmission of the fermionic beam impinging
on the barrier. Finally, two main recipes have been proposed to add a single electron
on top of the filled Fermi sea in fermionic systems. First, the so-called driven meso-
scopic capacitor [7], which consists of a quantum dot subjected to a rectangular drive
and connected to 2DEG through an additional QPC, allows to inject separately an
electron and a hole into the system. Alternatively, one can excite a single electron
above the Fermi sea by applying a well defined voltage pulses to a quantum conductor
as suggested by L. Levitov and coworkers [8, 9, 10].

Despite evident similarities with conventional QO, EQO brings into play new fea-
tures that are inherently characteristic of electronic system. Firstly, single-photon
states are usually created on a real quantum mechanical vacuum (i.e. zero-particle
state), while single-electron states are always generated on top of the filled Fermi sea.
Therefore, the contribution of the Fermi sea to the dynamics of the system have to
be carefully taken into account in the framework of EQO. Nevertheless, a fermionic
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analogue of R. J. Glauber’s theory of optical coherence [11] has been developed cir-
cumventing this complication through correlation functions [12] and leading to a better
understanding of the experimental results [13, 14, 15].

Even more importantly, electrons strongly differ from photons due to their statistics
and their charged nature. These lead to many-body effects which strongly affect the
dynamics of excitations and play a major role in various experimental situations. Due
to their One-Dimensional (1D) nature, QH edge channels are prone to emphasize
interaction effects. In one dimensional systems, the motion of an electron interacting
with its neighbors strongly affects the latter, so that the Fermi liquid paradigm does
not hold. Contrary to two and three dimensional systems, the picture of quasi-free
quasi-particles is not accurate. It is replaced by the Luttinger liquid theory, that relies
on bosonic collective excitations. For example, in the Integer Quantum Hall (IQH)
effect, at filling factor higher than one, transport occurs along several co-propagating
channels on each edge. As they are very close by one another, they are coupled by
interchannel Coulomb interaction, which leads to the appearance of new collective
propagation modes. Various experiments have been carried out to investigate the
coupling between edge channels and their effect on the relaxation and decoherence of
electronic excitations. This coupling has been shown to be responsible for the loss of the
visibility of the interference pattern in Mach-Zehnder interferometers at filling factor
ν = 2 [16]. Indeed, at ν > 1, interactions dramatically change the nature of excitations,
leading to energy exchange between the channels and to charge fractionalization [17,
18]. Proceeding even further, the Fractional Quantum Hall (FQH) effect is another
paradigmatic example of the consequences of electron-electron interactions since it
takes its roots in the strong correlations among electrons [19]. From these statements,
we immediately understand that the electronic interactions in QH edge channels cannot
be neglected and must inevitably be added to the EQO puzzle.

An open problem of the EQO field with respect to conventional QO is the real
time detection of the signal, which is still out of reach for nowadays electronics and
only recently has been addressed [20, 21]. The more reliable experimental strategy to
overcome this problem consists in measuring current-current correlations (i.e. noise)
over a wide range of frequencies, in such a way to reconstruct the time evolution
through Fourier transform [22]. Moreover, noise is an inescapable ingredient of any
electronic device. While at first it may be regarded as a nuisance, it has now been
accepted as a key tool to improve our understanding of nanoscale conductors and their
dynamics. Electronic noise is typically broken down into two contributions associated
with different underlying physical phenomena. Thermal (or Johnson-Nyquist) noise
is an equilibrium property, arising at a finite temperature from the thermal motion
of electrons [23, 24]. Shot noise manifests itself in a non-equilibrium situation, when
current flows through a conductor, as a consequence of electrons being transmitted or
reflected predominantly on a given side of the device [25]. Moreover, using atomic-
scale metallic junctions [26], it was recently showed that under a temperature rather
than a voltage bias, a finite non-equilibrium noise signal could be measured paving
the way toward new properties of strongly interacting systems. Then, its analysis
allows to access the out-of-equilibrium properties of the considered mesoscopic system.
Furthermore, the study of finite frequency noise reveals even more interesting in the
light of recent experiments [27, 28, 29] underlying the deep connections between this
quantity and the quantum fluctuations of the microwave radiation emitted by driven
mesoscopic devices.

The main purpose of this Thesis is to understand what are the consequences of un-
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avoidable electronic interactions in edge channels of the QH effect, both in the integer
and fractional regimes, on current-current fluctuations. This theoretical analysis can
pave the way to new experimental EQO applications. The present Thesis is divided
in five Chapters.

In Chapter 1 we present the field of EQO carefully discussing its building blocks.
Starting from the electronic waveguides guaranteed by the QH effect and we describe
the action of a the QPC. Two types of single electron sources are then discussed, both
from a theoretical and an experimental point of view. A particular attention is devoted
to minimal excitation states of quantum conductors, usually called levitons. In the
second part of this Chapter, we discuss the physics of noise in mesoscopic systems
introducing the scattering formalism which allow us to deal with different types of
noise in non-interacting systems.

In Chapter 2 we present interacting 1D fermionic systems. After a general intro-
duction to the bosonization precedure, we exploit the hydrodynamical model following
the seminal work of X. G. Wen. This allows us to deal with a large class of interact-
ing QH states in both the integer and the fractional regime. In the former case, we
will phenomenologically consider possible dissipative effects observed in recent exper-
iments.

Chapter 3 is devoted to the theoretical investigation of HOM interferometry in a
QH system with filling factor ν = 2, namely the physics of colliding identical excita-
tions. We show that the injected electronic wavepackets fractionalize before partition-
ing at a QPC due to interactions. Moreover, we demonstrate that, when the injection
occurs through time-dependent voltage pulses arbitrarily shaped, the HOM noise al-
ways vanishes for a symmetric device. In addition, we propose a direct measurement
of the strength of interactions.

Electron-electron interactions naturally leads to non-linearities in the current-voltage
characteristic in a QPC geometry. The main task of Chapter 4 is to understand
the consequences of these peculiar correlations on the quantum properties of the mi-
crowaves emitted by a QH device in presence of interactions. We connect the quantum
features of the emitted radiation, such as squeezing, to the current fluctuations and
we compare two different periodic drives, respectively a cosine pulse and a Lorentzian
one. Interestingly, we observe that the Lorentzian drive is characterized by a more
robust squeezing effect even in presence of interaction. Furthermore, we report recent
experimental results along this direction.

Finally, in Chapter 5 we originally investigate the current fluctuations due to
a temperature bias, instead of a voltage one. We study the noise associated to the
flowing between two different FQH edge states, with filling factors belonging to the
Laughlin sequence, coupled through a QPC and connected to two reservoirs placed
at different temperatures. We solve exactly the problem for all couplings and for all
temperatures in the case of a specific combination of filling factors. Moreover, we gen-
eralize our approach to a generic junction and we derive a universal expression which
connects the out-of-equilibrium noise to the equilibrium one up to the first order in
the temperature mismatch. Starting from recent theoretical result, this analysis allows
to better understand the transport properties of strongly interacting systems and to
move toward more involved investigation concerning the statistics of their emergent
excitations.

This Thesis is based on the following publications co-authored by myself:

1. G. Rebora, M. Acciai, D. Ferraro and M. Sassetti, Collisional interferometry of
levitons in quantum Hall edge channels at ν = 2, Phys. Rev. B 101, 245310
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(2020).

2. G. Rebora, D. Ferraro, R.H. Rodriguez, F.D. Parmentier, P. Roche and M. Sas-
setti, Electronic wave-packets in integer quantum Hall edge channels: relaxation
and dissipative effects, Entropy 23, 138 (2021).

3. G. Rebora, D. Ferraro and M. Sassetti, Suppression of the radiation squeezing in
interacting quantum Hall edge channels, New J. Phys. 23, 063018 (2021).

4. G. Rebora, J. Rech, D. Ferraro, T. Jonckheere, T. Martin and M. Sassetti, Delta-
T noise between fractional quantum Hall edge states at different filling factor,
arXiv:2207.00454 (2022).

The other work not included in this Thesis is:

5. G. Rebora, M. Acciai, D. Ferraro and M. Sassetti, Radiation squeezing in inter-
acting quantum Hall edge channels, Il Nuovo Cimento C 6, 178 (2022).
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Chapter 1

Electron Quantum Optics

In this Chapter, we discuss the field of EQO with a particular insight on the neces-
sary ingredients to develop it and on the typical quantity investigated in experiments,
namely the current flucuations (noise). We will focus on the QH effect in the integer
and fractional regimes where topologically protected chiral edge channels behave as
electronic waveguides. By introducing the QPC, we present the electronic counterpart
of the photonic beamsplitter. Then we discuss the physics of single-electron sources,
which represents a fundamental building block to make EQO possible. We conclude
discussing the noise as a tool to extract information about the dynamics of mesoscopic
systems, with an overview of the different sources of fluctuation. Here, we focus on
the scattering matrix formalism valid for non-interacting systems that will allow us to
deal with some notable examples in EQO experiments.

1.1 From Quantum Optics to Electron Quantum Optics

Quantum transport is a central topic of mesoscopic physics that deals with electronic
transport in a regime where the effects of quantum mechanics cannot be neglected.
Here, the wave nature of electrons cannot be ignored: transport is influenced by elec-
tronic phase coherence. This requires that the inelastic scattering length ℓ, which
characterizes the distance over which an electron can propagate without experiencing
an inelastic collision, is larger than the sample size L.

As suggested by the name, EQO is inspired to a great deal by conventional quantum
optics with photons. The essential tools to build a quantum optic set-up are coherent
sources to generate single-photon states, waveguides to control their propagation and
beamsplitters that can be used to partition incoming waves and recombine them to
perform interferometric experiments. QO is a well established field started in the 60s,
with the seminal works of Glauber [11, 30], that has reached such a maturity level
that it is now possible to generate, manipulate and probe states of the quantum elec-
tromagnetic field involving one to few photons per mode. The experimentalists were
able to build single photon sources and to prove the coherence of single photon wave
packets. In this framework, the well-known HBT interferometer [3] intended to study
the intensity correlations of a photon beams received by two detectors. Moreover, the
famed HOM experiment [4] probed the bunching behavior of two photons impinging on
a half silvered mirror, as a function of the time delay between the two photonic pulses.
This HOM experiment has now become a paradigm of modern quantum mechanics.

Since the birth of mesoscopic physics in the early eighties [31, 32, 33], scientists tried
to make parallels between electron flow in solid state devices and photon beams in QO.
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1.2. Edge channels in the quantum Hall effect

The electronic analog of a beamsplitter is the so-called QPC, which has been originally
developed as a way to create 1D electronic systems starting from a 2DEGs [34, 35]. If
an electron is created in the channel and sent towards the constriction, the QPC will
act as a beamsplitter. Indeed, the excitation will be transmitted or reflected with a
certain probability. Moreover, in the ballistic regime, there are systems where electrons
can propagate along veritable waveguides. Such waveguides are naturally provided by
topologically protected edge channels in the QH effect [5].

This has inspired R. Landauer [36], M. Büttiker [37] and many other to develop a
scattering approach to quantum transport in which a quantum conductor is seen as
a scatterer, thus exploiting the analogy with optics. However, many problems related
to the difficulty of mapping photons to electrons come out. First of all, electrons are
fermions while photons are bosons and this difference in the particles statistics can
strongly affect the dynamics. Moreover, whereas photons are emitted in vacuum, we
always have to remember the presence of the underlying Fermi sea when we think of
electrons propagating in solid-state devices. Last but not least, electrons do interact
with each other and this can lead to new and interesting effects and produce a richer
phenomenology. This is still not the end of the story since, until fifteen years ago, the
quantum electronics relied on sources, such as constant voltage bias, that send contin-
uous streams of electrons in which no quasi-particle could be singularized. Therefore,
the quantum transport appear as a complicated many-body problem from the start.

Things changed when technological progress made it possible to access the GHz
frequency range in quantum transport experiments [38]. This allowed to probe the
dynamical timescales of the quantum conductor itself such as the electronic ballistic
time of flight across the conductor1. In 2007, a source able to inject coherent single-
electron excitations within a quantum Hall edge channel was realized [7]. This opened
a new era for quantum electronics based on the study of quantum electrical currents
carrying one to few electronic excitations per period. Single electron sources together
with quantum point contacts and topological edge channels are then fundamental
ingredients in order to build up the EQO and we will address them in the first part of
this Chapter.

In the second part of the Chapter, we point out the importance of noise measure-
ments by showing that quantum fluctuations contains information which cannot be
extracted from simpler quantities, such as the average electrical current. Through the
scattering matrix formalism, we will deal with different sources of noise, concluding
with some notable examples of experiments in the EQO framework.

1.2 Edge channels in the quantum Hall effect

In this Section, we introduce the main ideas behind the discovery of the quantum
Hall effect. In the first part, the phenomenology of the IQH effect is presented. This
peculiar physical phenomenon can be explained in terms of a quantum mechanical
treatment of non-interacting electrons in a magnetic field. Then, we take into account
the FQH effect, limitedly to the Laughlin sequence, which can be explained by taking
into account electron-electron interactions. These two effects are crucial for the second
EQO’s building block since they allow to obtain actual waveguides for electrons in
solid state devices.

1Typically of the order of tens to hundreds of pico-seconds for a micrometer-long ballistic conductor.
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1.2. Edge channels in the quantum Hall effect

1.2.1 Integer quantum Hall effect

Figure 1.1: Measurements of longitudinal resistivity ρxx and Hall resistivity ρxy as a
function of the magnetic field for the states of the IQH effect. The Hall resistance
shows well defined plateaus. Taken from Ref. [39].

A very convenient platform for electronic rails can be exploited when a 2DEG is
exposed to a high magnetic field at low temperature: it enters the IQH effect regime
and conducting edge channels arise at the boundary of the 2DEG. This so-called IQH
regime was discovered by K. von Klitzing in 1980 [5]. He was awarded the Nobel prize
five years later. The most striking manifestation of this effect is that the transverse
conductance of the sample becomes quantized in units of e2/h, displaying plateaus at
the values

GH =
1

RH
= n

e2

h
, n ∈ N, (1.1)

and the longitudinal conductance vanishes (see Fig. 1.1). Then, the bulk of the 2DEG
becomes insulating and electronic transport occurs only along 1D channels located at
the edges of the sample. Here h is the Planck’s constant, −e the electron charge and
the integer number n is called filling factor and counts the number of the filled Landau
levels (see below).

Transport in the IQH effect can be understood semi-classically by considering the
cyclotron motion of electrons in the 2DEG in presence of a perpendicular magnetic
field. This semi-classical motion of electrons is depicted in Fig. 1.2: electrons in the
bulk move in closed cyclotron orbits with a fixed center of motion, and therefore cannot
travel from one end of the sample to the other. The cyclotron orbits of electrons near
the edges, on the other hand, are interrupted by the edges, so that electrons bounce
forward along the so-called skipping orbits. Because of the fixed direction of rotation
imposed by the magnetic field, all electrons on one edge propagate in the same direction
(in Fig. 1.2 electrons in the upper edge propagate from left to right), whereas electrons
near the other edge propagate in the opposite direction: electronic transport in the IQH
regime is therefore chiral. Due to chirality, these channels have the notable property
of being topologically protected in such a way that backscattering is forbidden. The
word topological is borrowed from mathematics, where it denotes global properties
which are insensitive to local details. It is used in this context to emphasize that the

7



1.2. Edge channels in the quantum Hall effect

edge states protection is very robust and independent of the sample’s details such as
disorder and impurities. The discovery of the IQH effect has been a real revolution in
condensed matter physics: it was indeed the first example of a topological state and
changed our understanding of the phases of matter, paving the way to the search for
topological materials [40, 41, 42].

Figure 1.2: Semi-classical picture of the IQH effect: electrons move in cyclotrons orbits.
These orbits are interrupted on the edges and electrons bounce forward, all in the same
direction. Transport occurs at the edge of the sample and is chiral.

The above semi-classical argument can be made rigorous and there are different
ways of quantitatively discussing the edge channels. In the following we just sketch
one of them and refer the reader to the literature for further details [43, 44, 45, 46]. We
assume to work in the continuum limit, neglecting the lattice potential2. Therefore
we can consider free electrons moving in the xy plane (Lx and Ly being the sizes
of the sample in the two directions), under a perpendicular magnetic field B⃗ = Bẑ.
The Hamiltonian is H = (p⃗ + eA⃗)2/(2me), with p⃗ = −iℏ(∂x, ∂y, 0), A⃗ the magnetic
vector potential and me the electron mass. The spectrum of the system is given by
the Landau levels [48]

En = ℏωc

(
n+

1

2

)
(1.2)

where 0 ≤ n ∈ N and ωc = eB/me is the cyclotron frequency. These levels are highly
degenerate and can accomodate Ndeg = φ/φ0 electrons, with φ = BLxLy the magnetic
flux through the sample and φ0 = h/e the flux quantum. In order to prove this, we
have to compute the wavefunctions of the problem. Unlike the energy spectrum in
Eq. (1.2), they do depend on the particular gauge choice for the vector potential A⃗,
which needs to be specified. In the Landau gauge A⃗ = −By ŷ, suitable to study
translationally invariant systems, the wavefunctions must have the form

ϕn,k(x, y) = eikxYn,k(y) (1.3)

because the Hamiltonian does not depend on x. By assuming periodic boundary
conditions in the x̂ direction, the momentum k is quantized in the usual way

k =
2πr

Lx
, r ∈ Z. (1.4)

2This approximation works if the lattice spacing u is smaller with respect to the magnetic length
ℓB [47]. The typical lattice spacing is of the order of few nanometers and the magnetic length is
ℓB ≈ 26 nm. Therefore the condition u < ℓB is quite well satisfied for all possible experimentally
accessible magnetic fields. Indeed, the maximum value for the magnetic field in non-destructive
experiments is B ≈ 45T in the continuous regime and B ≈ 80T in the pulsed regime.
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1.2. Edge channels in the quantum Hall effect

By using the expression in Eq (1.3), the Hamiltonian becomes

H =
p2y
2me

+
1

2
ωc(y − kℓ2B), (1.5)

where ℓB =
√
ℏ/eB is called the magnetic length. The above result describes a

harmonic oscillator, whose potential is centered at the position yk = kℓ2B. Therefore,
the wavefunctions Yn,k(y) in Eq. (1.3) are given by [49]

Yn,k(x, y) = N exp

[
−

(y − kℓ2B)
2

2ℓ2B

]
Hn(y − kℓ2B) (1.6)

where N is a normalization factor and Hn are the Hermite polynomials [50]. The
important thing to notice about this expression is that the spatial localization of the
states depends on k: each wavefunction is localized around yk = kℓ2B. Thus, by
imposing that |yk| < Ly/2 (meaning that the center of each harmonic oscillator has
to be inside the sample) and using Eq. (1.4), one finds |r| < LxLy/(4πℓ

2
B). Thus, the

number of states in each Landau level is given by Ndeg = φ/φ0, as stated above. An
important quantity in the QH effect is the filling factor3 ν, defined as the fraction of
filled Landau levels. If we denote by N the total number of electron in the system, the
filling factor is clearly given by

ν =
N

Ndeg
=
hne
eB

(1.7)

with ne the electron density in the system. The last ingredient we need in order to
explain edge states is a confining potential in the ŷ direction to describe the finiteness
of the sample. Thus we add to the Hamiltonian a term Uc(yk), with the properties of
being zero inside the sample and increasing at its edges (i.e. at y = ±Ly/2) to keep the
electrons confined. By recalling that the wavefunctions without the confining potential
are localized around yk , the confining potential can be adiabatically approximated as

Uc = Uc(yk) +O(|∂yUc(y)|) (1.8)

and the energy of each eigenstate in Eq. (1.6) will be raised by the quantity Uc(yk).
As a consequence, Landau levels corresponding to states close to the edges are bent,
so that the spectrum as a function of k assumes the structure sketched in Fig. 1.3.

From this picture we can finally understand the conductance quantization from an
edge perspective: when the Fermi energy lies in the gap between the first and second
Landau levels, it intersects the bent spectrum in two points, roughly at k ≈ ±Ly/(2ℓ

2
B).

The group velocity is given by

vg =
1

ℏ
∂E

∂ky
=

1

ℏ
∂E

∂yk

∂yk
∂k

=
ℓ2B
ℏ
∂E

∂yk
. (1.9)

This let us state that
vg(yk) = −vg(−yk) (1.10)

which means that in the bulk the group velocity is zero while the group velocities on
the edge are non vanishing and opposite: a right-moving state has a positive group

3Here we use the letter ν for the filling factor, differently from the letter n used in Eq. (1.1). The
reason for this is that the filling factor ν in (1.7) can also assume fractional values.
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1.2. Edge channels in the quantum Hall effect

Figure 1.3: Bending of the Landau levels of Eq. (1.2) at the edge of the sample due to
the confining potential Uc(y). When n Landau levels are filled (i.e. the filling factor is
ν = n ), the Fermi energy intersects the spectrum in n couples of points and n chiral
channels emerge at each edge of the Hall bar (the cases n = 1 and n = 2 are shown
here).

velocity and a left-moving one has a negative group velocity. Moreover, given the
proportionality between k and y, we know that those states are located at the edges
of the sample (near y = ±Ly/2) and, therefore, spatially separated. The situation
at filling factor ν = 1 we have just described is represented in Fig. 1.3 (top left),
where it can be seen that a conduction channel appears at the edges of the Hall bar,
while the bulk is insulating. The right-moving channel is located on the upper edge
of the sample, because the state with positive group velocity in the bent spectrum
is at k = +Ly/(2ℓ

2
B). Conversely, for the same reason, the left-moving channel is

located on the lower edge of the sample. The bottom part of Fig. 1.3 shows the
case of filling factor ν = 2. Here, the Fermi level intersects the spectrum four times
and consequently four edge states are formed, two right-moving and two left-moving.
Therefore, two copropagating channels emerge at each edge of the sample. The spatial
separation of edge edge states with different chiralities has the important consequence
that backscattering between them is exponentially suppressed with the transverse size
of the sample Ly and in practice is forbidden; therefore, electrons move chirally along
the edges in perfectly transmitting channels. From the Landauer picture of quantum
transport [51, 52], we know that each of such channels bears a conductance quantum
GQ = e2/h. Moreover, from Fig. 1.3, it is obvious that when an integer number of
Landau levels is filled, i.e. ν = n ∈ N, the Fermi energy intersects the spectrum n
times and therefore n channels emerge at each edge. On the whole, the conductance
of the system is then nothing but the Hall conductance of Eq. (1.1). Remarkably,
disorder effects unavoidably present in realistic samples, actually help (if they are not
too strong) stabilizing the edge channels [45] leading to better defined plateaus.

In conclusion, we have seen that the IQH effect naturally provides chiral edge chan-
nels which are real one-way waveguides for electrons and, as such, a perfect playground
for EQO purposes. Moreover, they have been known almost since the discovery of the
IQH effect [5] and the systems where they emerge are experimentally well mastered.

10



1.2. Edge channels in the quantum Hall effect

For this reason, the majority of EQO experiments have indeed been performed in IQH
edge channels.

1.2.2 Fractional quantum Hall effect

In the previous Section, the main theoretical arguments describing the quantization of
quantum Hall resistance at multiple integer values of h/e2 were presented. Neverthe-
less, in 1982 D. C. Tsui, H. L. Stormer and coworkers reported an unusual behavior
of the Hall resistance [19] (see Fig. 1.4). For a sample with higher mobility and sub-
jected to a more intense magnetic field than those used by von Klitzing, they observed
the appearance of a plateau at a fractional filling factor ν = 1/3. Later on, plateaus
were measured in correspondence to many other fractional values of Landau level fill-
ing: this peculiar phenomenology, which cannot be explained in terms of the physical
picture given for the IQH, has been called FQH effect. This new effect gives the possi-
bility to deal with another kind of edge states presenting a fractionally quantized Hall
conductance GH = νe2/h, with ν ∈ Q (see Fig. 1.4).

Figure 1.4: FQH states. (Left panel) First observation of a plateau at ν = 1/3 in the
Hall resistivity ρxy. Taken from [19]. (Right panel) Plateaus in the Hall resistance in
correspondence of fractional values of filling factors. Taken from [53].

Due to the need of including Coulomb interaction among electrons, the theoretical
explanation of the FQH effect is by far harder than for the IQH effect. Nevertheless,
a subset of fractional filling factors received an insightful interpretation due to R.
Laughlin in 1983, who won the Nobel Prize in 1998 together with D. C. Tsui and H.
L. Stormer for his theoretical contribution [39, 54, 55]. The subsequence, of value of
filling factor he theoretically described, was named Laughlin sequence and contains all
the filling factors of the form

ν =
1

2p+ 1
, p ∈ N, (1.11)

which includes ν = 1/3, the first observed FQH state. Since in the last Chapter of this
Thesis we will deal with the FQH effect, we briefly present these states.

The theoretical framework that successfully explained the IQH regime has been
entirely presented in terms of a single-particle picture. The great physical intuition of
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1.2. Edge channels in the quantum Hall effect

Laughlin was that the main element which gives rise to the FQH phenomenology is
the Coulomb repulsion between electrons and that one should abandon the physical
picture in terms of independent electrons used for the IQH effect [43].

A system of N interacting electrons in a magnetic field can be described by the
following Hamiltonian4

H =

N∑
i=1

(pi +
e
cA(ri))

2

2m
+

N∑
i ̸=k

e2

ϵ|ri − rk|
, (1.12)

where ε is the dielectric constant of the material where the FQH state is realized. To
deal with this additional contribution, one might think to proceed with a standard
perturbative analysis. For a state like ν = 1/3, the degeneracy of the ground state
would be Ndeg = 3N . All the possible combination to fill the lowest Landau levels
with N electrons are given by (

3N
N

)
=

(3N)!

N !(2N)!
, (1.13)

which for macroscopicN reaches really huge values. In the framework of the degenerate
perturbation theory, one should diagonalize a macroscopically large matrix, which is
a task out of reach even for numerical algorithms.

Nevertheless, a qualitative understanding for the stability of states at fractional
filling factor can be drawn resorting to a simple picture of interacting electrons. In
partially filled Landau levels, there is a huge freedom to fill the Hall bar with elec-
trons. In the presence of repulsion between electrons, our freedom to distribute them is
reduced. Let us start focusing on the ideal case of an infinite magnetic field. The mag-
netic length goes to zero and states are localized: electrons behave like point charge
and tend to crystallize by minimizing their interaction energy. A unique ground state
is formed, called Wigner crystal [56], which is radically distinct from the FQH phase5.
When the magnetic field is lowered to finite values, wavefunctions of electron overlap
and they cannot form anymore a crystalline structure. For some magic filling factors,
they form a strongly correlated quantum liquid, which can be described in terms of an
unique many-body wavefunction.

The form of the ground state wavefunction of Laughlin sequence states can be
guessed based on generical considerations such as the symmetry of the problem and
the Fermi statistics of electrons. The ansatz of Laughlin for the wavefunction of the
ground states is the following [58]

ψ2p+1 = M
N∏
i<j

(zi − zj)
me−

∑N
k=1 |zk|2 (1.14)

where M is a normalization factor and z = x + iy is a complex spatial coordinate.
This many-body wavefunction is built from angular momentum eigenstates ϕm(z) ∼
zme−|z|2 , in accordance with rotational invariance of Coulomb interaction. Moreover,
it satisfies transational invariance with respect to the origin.

The Laughlin wavefunction thus obtained has not been derived mathematically
diagonalizing an hamiltonian. Actually, it is a variational wavefunction that satisfy

4We neglect the role of lattice potential and disorder, which turn out to be marginal in the de-
scription of the FQH effect.

5It can be obtained more realistically for sample with a very low density [57].
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1.3. Quantum point contact

the symmetry and the constraints of the problem. The variational parameter is given
by the integer number m, which is the only elements in Eq. (1.14) not already fixed.
The variational wavefunction efficiently approximates the ground state of a Laughlin
state with filling factor ν when the value of m is chosen such that

m = 2p+ 1, p ∈ N, (1.15)

which means that m = 1/ν. For such specific value of m, Laughlin wavefunction sat-
isfies Pauli exclusion principle: indeed, when two coordinates zi and zj are exchanged,
the many-body wavefunction acquires a minus sign, in accordance with Fermi statis-
tics.

The presence of zeros with order 2p + 1 enforce a separation between electrons,
which induces a strong correlation in the system ground state. This correlation in-
creases for higher values of p, meaning that a lower filling factor corresponds to a
stronger Coulomb interaction among electrons.

Before concluding this part, it is instructive to point out a relation between the
order of zeros in the Laughlin wavefunctions at filling factor ν and the corresponding
degeneracy since the zeros are related to the flux quanta. The highest order zero in
zi in Eq. (1.14) has an exponent (2p+ 1)(N − 1), which in the thermodynamic limit,
(N − 1) ≈ N , gives

(2p+ 1)N = Ndeg → N

Ndeg
= ν =

1

2p+ 1
. (1.16)

We have seen that the FQH effect is a peculiar phase of matter whose description
involves necessarily a many-body picture, in contrast with the IQH one, which can
be completely understood in terms of free electrons. However, similarly to the IQH
regime, the edge states of the FQH provides an interesting alternative to the electronic
waveguides needed for EQO as will be clear in the following.

1.3 Quantum point contact

The electronic analog of a beamsplitter can be implemented in a 2DEG in the form
of a QPC which consists of a pair of electrostatic gates deposited on the surface of
the sample. For our purpose, we assume from now on that the sample shows the QH
effect. When a negative voltage is applied on the gates, a constriction is created in
the 2DEG between them due to electrostatic repulsion (see Fig. 1.5 where the metallic
gates (brown) are polarized by the gate voltage Vg). This constriction gives rise to
a potential barrier, the shape of which can be determined from the geometry of the
gates. By tuning the gate voltage, one can selectively transmit or reflect each edge
channel. In particular, when large negative gate voltages are applied, the potential
barrier becomes very large, and no electron can be transmitted. The influence of the
gate voltage for a system at filling factor ν = 2 is well illustrated by Fig. 1.5.

At high magnetic field, the description of the transmission through the QPC in
terms of spin-degenerate electronic modes is replaced by the description in terms of
edge channels following equipotential lines, which are reflected one by one as the QPC
gate voltage is swept towards large negative values. This effect was first experimentally
demonstrated in [35], see Fig. 1.6 where the conductance at magnetic fields below
B = 1T presents steps in units of 2e2/h. At high magnetic field, the height of the
conductance steps is equal to e2/h, reflecting the removal of spin-degeneracy. The
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1.3. Quantum point contact

Figure 1.5: QH bar at filling factor ν = 2 in presence of gate voltages. (Left) Set-up
1: the inner channels are fully reflected, and the outer ones are partially transmitted
or reflected. (Right) Set-up 2: because of the smaller gate voltage, the outer channels
are fully transmitted and the inner ones are partially transmitted or reflected.

number of conductance steps n decreases with the magnetic field, and corresponds to
the number of edge channels. Between two conductance plateaus, the conductance G
of the QPC is proportional to the transmission probability T:

G = T
e2

h
. (1.17)

This equation is known as Landauer’s formula [59]. R. Landauer has been a pioneer
in mesoscopic transport, since he has developed a theory based on the scattering
properties of the sample only, as we will see in next Sections. Figure 1.6 therefore
demonstrates that one can tune the transmission of a QPC by changing its gate voltage;
in particular, when set at the exact half of the opening of the first conductance plateau,
the outer edge channel is partially transmitted with a probability T = 1/2, while all
other edge channels are fully reflected. The QPC therefore acts as a tunable, channel-
selective beamsplitter.

Figure 1.6: Conductance of a QPC as a function of gate voltage: it exhibits steps of
value 2e2/h, corresponding to the progressive transmission of spin-degenerate edge-
states. As the magnetic field is increased, the number of edge states decreases. For
high fields, steps at e2/h start appearing as the spin-degeneracy of Landau levels is
lifted. Figure is taken from [35].

QPCs are crucial elements in EQO experiments as they allow to put into evidence
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1.4. Single electron sources

striking phenomena through noise measurements as we will see in the next Sections.

1.4 Single electron sources

It was not until recently, though, that coherent on-demand single-electron sources
became available and well established. There are nowadays a few ways of generating
and controlling single-electron wavepackets in quantum conductors and they are nicely
reviewed in Ref. [60]. In summary, the state of the art concerning single-electron
sources is the following.

Mesoscopic capacitor This source is based on a driven Quantum Dot (QD), coupled
to a 2DEG in the IQH effect regime and is able to inject single electrons with
well defined energy above the Fermi sea. It was the first single-electron source
to be implemented.

Leviton source It is based on the application of a properly engineered voltage pulse
to a 1D quantum conductor. It has the advantage that it can inject multiple
electrons at the same time and its implementation does not require complex
nanolithography design.

Dynamical quantum dots This source exploits a QD whose confining potential can
be modulated in order to trap and release electrons in a cyclic way. It is typically
implemented by relying on two parallel electrostatic gates deposited on top of
a 2DEG, with a small opening between them that defines the QD region. This
source generates electrons with energy far above the Fermi sea (the typical energy
of electrons ejected from the QD is 100 meV, while the Fermi energy is about 10
meV) [61, 62, 63].

Surface acoustic waves Like in the previous case, electrons are first trapped in a
QD and then emitted by the application of a surface acoustic wave, generated
via the piezo-electric effect, which kicks electrons out of the QD [64, 65]. This
source is difficult to implement, but was shown to be very accurate and allows
for single shot detection of electrons.

In the following, we will briefly introduce the mesoscopic capacitor [7] and present
in more detail the Leviton source [13], the latter being the most relevant one for the
purpose of the present Thesis. We refer to the review [60] for further information
about the last two entries of the previous list.

1.4.1 Mesoscopic capacitor

In 2007, G. Fève and coworkers at Laboratoire Pierre Aigrain in Paris realized the
first on-demand single-electron source. This emitter is based on a driven mesoscopic
capacitor [7, 66]. The system is sketched in Fig. 1.7 and is realized in a GaAs/AlGaAs
2DEG in the IQH effect regime. By means of metallic gates a part of the 2DEG is
confined and a QD is created, whose transmission is controlled by a gate voltage Vg.
A coupling between the QD and the edge states of the 2DEG is therefore present. In
particular, the gate potential Vg is set in such a way that inner edge states6 are fully
reflected so that only one edge mode couples to the QD. Finally, an additional top gate

6The experiment was performed at filling factor ν = 2, thus two edge channels are present in the
Hall bar.
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1.4. Single electron sources

(yellow region above the QD in Fig. 1.7) can be used to shift the chemical potential of
the QD with respect to the Fermi level of the 2DEG.

Figure 1.7: Set-up and operating mechanism of a single electron source based on a
driven mesoscopic capacitor source. Image taken from [7].

Due to confinement, the spectrum of the QD is made of discrete energy levels,
spaced by a characteristic scale ∆. Typical experimental values are ∆ ≈ (2÷ 4)K [7],
in temperature unit. By acting on the top gate with a rectangular voltage eVexc(t)
of amplitude ∆/2, these energy levels are shifted in such a way that the uppermost
occupied level of the QD is abruptly brought above the Fermi level (step 1); thus the
electron tunnels into the edge state of the 2DEG (step 2), with a typical time scale
τ , which is controlled by the transmission D between the dot and the edge mode [67].
Finally, the QD levels are brought back to their original position and an electron
tunnels from the edge mode into the dot, i.e. a hole is emitted in the 2DEG (step 3).
By cyclically repeating this precedure, the periodic emission of single electrons and
holes into the edge channel is achieved.

Figure 1.8: Real-time average current describing the emission of single electrons and
holes from the mesoscopic capacitor into the edge channel of the 2DEG. Image taken
from [7].

Real-time measurements in Fig. 1.8 show an exponentially decreasing average cur-
rent of the form [7]

⟨I(t)⟩ = ± e
τ

e−t/τ

1 + e−T /2τ
, (1.18)
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where T is the period of the cycle and the plus (minus) sign in front of the previous
expression applies in the first (second) half of the cycle. Provided that τ ≪ T , the
integral per half-period of the previous relation gives precisely an elementary charge,
thus suggesting that a veritable emission of single electrons and single holes is achieved
during every period. In order to be completely sure of this statement, one has to go
beyond average current measurements, so as to rule out the possibility that the above
mentioned quantization is just an average effect (for instance an electron is emitted
in the first half period, no electrons in the third, two electrons in the fifth, thus
compensating for the missing emission in the third). This can be done by considering
current correlations [68, 69]. In particular, it has been shown that the accuracy of
the mesoscopic capacitor as a single-electron source strongly depends on its operating
regime [70]. In order to fix the ideas, the two extreme conditions are represented
in Fig. 1.9. The left panel is the so-called optimal regime, where the energy of the
uppermost occupied level of the QD is at ∆/2 below the Fermi level of the 2DEG.
In this regime the mesoscopic capacitor operates as a perfect single-electron emitter.
This is not the case when the situation is the one represented in the right panel, i.e.
the so-called resonant regime. Here, there is always a QD level at resonance with the
Fermi energy and the device can be shown to produce unwanted electron-hole pair
excitations, visible in the noise spectrum [68].

Figure 1.9: Two different operating conditions of the driven mesoscopic capacitor.
Left: optimal regime. Right: resonant regime. Image taken from [68].

As a final remark, we emphasize that the mesoscopic capacitor is an emitter pro-
viding single electrons with a well defined energy, which is clearly related to the level
spacing ∆ in the QD. In particular, in the optimal emission regime, the energy of the
injected electron is centered at ε0 = ∆/2 and distributed as a Lorentzian in energy
domain. This leads to the electronic wavefunction

φ̃(ε) = Nε
1

ε− ε0 + iγ
θ(ε). (1.19)

For high enough emission above the Fermi sea it is exponential in the time domain,
namely

φ(t) = Nt e
−iℏ/ε0e−γt θ(t). (1.20)

Here, Nε/t ensures normalization and γ = 1/τ denotes the electron escape rate from
the QD. From the above equation and from Fig. 1.8 it is transparent that the emission
cannot be well localized in time. We will see in Section 1.4.2 that a complementary
source exists, providing a localized emission in time and, consequently, an energy which
is not well defined.
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1.4.2 Voltage pulse source

A perhaps conceptually simpler way to generate excitations in a 1D quantum conductor
exploits the application of a voltage pulse to the system. As the conductance of
a ballistic quantum channel is given by (neglecting spin) the conductance quantum
GQ = e2/h, it follows that the charge carried by the excitation generated by V (t) is
simply given by

Q =
e2

h

∫ +∞

−∞
V (t)dt. (1.21)

Equivalently, the number q of electrons associated with this excitation is

q =
Q

−e
= − e

h

∫ +∞

−∞
V (t)dt. (1.22)

However, this does not mean that any voltage drive such that the previous integral
gives q = n ∈ N actually injects n electrons into the system. This is because, while on
average it is certainly true that n electrons are injected, the integral in Eq. (1.22) tells
us nothing about the possible creation of neutral particle-hole pair excitations.

The goal is then to find a shape of V (t) ensuring that no such neutral excitations
are created. This seemingly very complicated task has a quite simple solution, first
found by L. Levitov and coworkers [8, 9] well before the birth of EQO. The answer
is that the voltage pulse has to be a superposition of quantized Lorentzian functions
such that

V (t) = ∓2ℏ
e

n∑
j=1

τj
τ2j + (t− tj)2

. (1.23)

Here, τj is a parameter describing the temporal extension of each Lorentzian pulse and
tj is their emission time. When the negative (positive) sign in Eq. (1.23) is chosen, this
drive generates n electrons (holes), without any particle-hole pair excitations. After
Levitov, such excitations have been dubbed Levitons [13].

We will prove this result in the next Section, which is dedicated to a quite de-
tailed analysis of Levitons in a non-interacting system. At this stage, we just show in
Fig. 1.10 a sketch of the experimental implementation [13] which confirmed the theo-
retical prediction, together with a schematic representation of the main properties of a
single-Leviton wavefunction. The experiments considered a periodic train of quantized
Lorentzian pulses, applied to a contact connected to a 2DEG. The 1D conductor is
created by means of a QPC, with tunable transmission D, as depicted in Fig. 1.10(a).
The current fluctuations due to the presence of the QPC are measured in the right
contact and allow to probe the cleanness of the produced excitations [9, 10]. From
Fig. 1.10(b) we observe that the temporal profile of the current is a Lorentzian, while
the energy distribution of the excitation is a decreasing exponential which leaves the
Fermi sea untouched. Thus a Leviton with, n = 1, is a single-electron excitation on
top of the Fermi sea. By referring to Fig. 1.10, the form of the wavefunction associated
to the resulting time-resolved minimal excitation is

ψ(t) = N ′
t

1

t+ iτ0
(1.24)

while the energy-resolved form is an exponential

ψ̃(ε) = N ′
ε e

− τ0
h
ε θ(ε). (1.25)
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Figure 1.10: (a) Sketch of the experimental set-up: a periodic train of Lorentzian
pulses is applied to the left contact. A stream of single electrons is generated in a
1D channel, created in a 2DEG by means of a QPC with tunable transmission D. (b)
Sketch of the temporal profile of a Leviton wavefunction and its energy distribution. As
we can observe, the Fermi sea is untouched. The temporal extension of the Lorentzian
excitation is W which correspond to τj of Eq. (1.23) for the j-th electron (i.e. τ0 =W
if we have only one electron). Both images are taken from [13].

1.4.3 Levitons as purely electronic excitations

In this Section, we prove that Lorentizan pulses with quantized area do indeed generate
minimal electronic excitations. In this Section, we choose units in which ℏ = 1.

As stated at the beginning of the Chapter, here the analysis will be limited to non-
interacting electrons. For this reason, we consider the simplest possible 1D conductor,
i.e. a single QH chiral edge channel. By setting the chemical potential to zero, the
Hamiltonian of this system is

H0 =

∫ +∞

−∞
dxψ†(x)(−ivF∂x)ψ(x) (1.26)

where ψ(x) is the fermionic annihilation field operator, destroying an electron at po-
sition x, and vF is the Fermi velocity along the edge. Note that this Hamiltonian has
a linear spectrum

ω(k) = vFk (1.27)

and that its propagation is chiral. Even if the dispersion relation along the edge
could deviate from this behavior, it is always possible to assume the linear relation of
Eq. (1.27) if we are interested in the low-energy behavior of the system.
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In order to find the voltage drive generating minimal excitations, we have first to
understand how a generic V (t) influences the time evolution ψ(x, t) of the electron field
operator. We consider the situation depicted in Fig. 1.11, where a the time-dependent
potential V (t) is applied to the edge channel in the region x ∈ (−∞, 0). We describe
this with the function U(x, t) = Θ(−x)V (t), where Θ(x) is the Heaviside step function.
The voltage couples to the charge density on the edge via the Hamiltonian

HU = −e
∫ +∞

−∞
dxU(x, t)ψ†(x)ψ(x). (1.28)

Before finding the time evolution ψ(x, t), we want to better specify the setting of the
problem with some general remarks. We assume that at t = −∞ the system is in

Figure 1.11: Voltage pulse source applied to a chiral edge channel. The potential V (t) is
applied uniformly in the spatial region (−∞, 0) and generates excitations propagating
to the right, due to the chirality of the edge mode.

thermal equilibrium, with no applied drive, and thus is characterized by the time-
independent equilibrium density matrix ρ0, stemming uniquely from the Hamiltonian
H0. Then, at t = −∞ + κ (with κ an infinitesimal time), the drive V (t) is switched
on. In the remainder of this Section, we adopt the Heisenberg picture, so that the time
evolution is entirely attributed to operators. As a result, the quantum average of any
operator O(x, t) will be performed as

⟨O(x, t)⟩0 = Tr[ρ0O(x, t)], (1.29)

where the time evolution O(x, t) has to be determined with the full Hamiltonian H =
H0 +HU .

Let us now return to the time evolution of the fermionic field. It is easy to derive
the following Heisenberg equation of motion from the Hamiltonian H = H0 +HU :

i(∂t + vF∂x)ψ(x, t) = −eU(x, t)ψ(x, t). (1.30)

Consider first the simple case of equilibrium, where U(x, t) = 0. In this situation, the
solution to the above equation is simply

ψ(x, t) = ψ(x− vF t, 0) = ψ

(
0, t− x

vF

)
(1.31)

where we have make explicit the chirality of the propagation. Thanks to the chirality
in the time evolution of the equilibrium solution, we can use interchangeably ω and k
as conjugate variables. In particular, the usual Fourier representation of the fermionic
field as an integral over momenta can also be written as

ψ(x− vF t, 0) =
1√
2πvF

∫ +∞

−∞
dω e

−i
(
t− ωx

vF

)
c(ω), (1.32)
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where c(ω) is the operator annihilating an electron at energy ω. These operators satisfy
the equilibrium average

⟨c†(ω)c(ω′)⟩0 = Tr[ρ0c
†(ω)c(ω′)] = δ(ω − ω′)f(ω) (1.33)

where
f(ω) =

1

1 + e
ω

kBT

(1.34)

is the Fermi function, T is the temperature and kB is the Boltzmann constant.
We now come to the general solution of Eq. (1.30) in the presence of the driving

term U(x, t). It can be shown that the time evolution ψ(x, t) in this case is given by
(see A for details)

ψ(x, t) = ψ(x− vF t, 0)e
ie

∫ t
−∞ dt′U [x−vF (t−t′),t′]. (1.35)

By taking into account the spatial dependence of U(x, t), the previous result can be
further written, for x > 0, as

ψ(x, t) = ψ(x− vF t, 0)e
iα
(
t− x

vF

)
(1.36)

with
α(τ) = e

∫ τ

−∞
dt′V (t′). (1.37)

Notice that, even in presence of the drive V (t) the time evolution of the fermionic
operator is chiral. This is indeed an inherent property of quantum Hall edge states.
As a consequence, we can write

ψ(x, t) =
1√
2πvF

∫ +∞

−∞
dω e

−iω
(
t− x

vF

)
C(ω), (1.38)

where C(ω) is again a fermionic operator. Its explicit expression can be obtained in
this way. We define the Fourier transform

p(ω) =

∫ +∞

−∞
dτ eiα(τ)eiωτ (1.39)

and replace Eq. (1.32) to Eq. (1.36), arriving at

C(ω) =
1

2π

∫ +∞

−∞
dω′p(ω′)c(ω − ω′). (1.40)

Thus, we see that C(ω) is built as a superposition of operators c(ω), shifted at all
possible energies ω′ and weighted by the (complex) coefficient p(ω′) which depends on
the voltage drive. Notice that when V (t) = 0 we have from Eq. (1.39) p(ω) = 2πδ(ω)
and therefore C(ω) = c(ω), as expected.

This discussion shows that the effects of the drive can be included in the new
operators C(ω), which define a modified occupation number distribution

F (ω) = ⟨C†(ω)C(ω)⟩0 = Tr[ρ0C
†(ω)C(ω)]. (1.41)

By using Eq. (1.40) and the equilibrium average (1.33), we find

F (ω) =

∫ +∞

−∞

dω′

(2π)2
|p(ω)|2f(ω − ω′). (1.42)
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This result tells us that the new occupation number distribution is obtained as a
superposition of equilibrium Fermi functions, shifted at all possible energies ω′ and
weighted by the probability density that the drive creates an excitation at energy ω′.
This interpretation of the Fourier transform |p(ω)|2/(2π)2 as a probability density is
supported by the normalization condition∫ +∞

−∞

dω

(2π)2
|p(ω)|2 = 1, (1.43)

which can be obtained from the definition in Eq. (1.39).
We now have all we need to formalize the request that no holes are generated by

the drive V (t). Since a finite temperature naturally generates particle-hole pairs, let
us consider the zero temperature limit, where any additional hole is due only by the
drive (no holes are present at equilibrium). We can understand how to achieve our
goal in two different ways. The first one is to notice that, if p(ω′) = 0 for ω′ < 0, then
from Eq. (1.42) we observe that only upward shifts of the Fermi function f(ω) are
allowed and, since at T = 0 we have f(ω − ω′) = θ(ω′ − ω), it is impossible to modify
the occupation number at negative energies ω < 0. As a consequence, the Fermi sea
remains untouched and no holes are generated. We can arrive at the same conclusion
by calculating the number of holes Nh in the system, given by

Nh =

∫ 0

−∞
dω⟨C(ω)C†(ω)⟩0 =

∫ 0

−∞
dω F (ω) (1.44)

A straightforward calculation yields

Nh =
1

(2π)2

∫ 0

−∞
dω

∫ ω

−∞
dω′|p(ω′)|2 (1.45)

and shows that Nh = 0 ⇐⇒ p(ω) = 0 for ω < 0, as stated above.
By looking back at the definition (1.39), is it clear that this imposes a constraint

on the functional form of eiα(t). In particular, this function must be analytic in the
lower complex plane (when t is regarded as a complex variable) and must have at least
one pole in the upper part of it to prevent p(ω) from vanishing everywhere. Finally,
being a phase, |eiα(t)| = 1. Thus we can consider [10]

eiα(t) =
t− t0 + iτ0
t− t0 − iτ0

, t0 ∈ R, τ0 > 0. (1.46)

From this we arrive at the final result

V (t) = − i

e

d

dt
lneiα(t) = −2

e

τ0
τ20 + (t− t0)2

(1.47)

which is precisely what reported in Eq. (1.23), for n = 1 (recall that here ℏ = 1).
The generalization to more electrons is straightforward. We simply have to add more
poles in the upper complex plane when constructing the function eiα(t), together with
corresponding zeros in the lower plane in order to have a unitary modulus:

eiα(t) =
n∏

j=1

t− tj + iτj
t− tj − iτj

, tj ∈ R, τj > 0. (1.48)

This leads to the complete Eq. (1.27), with the minus sign. Finally, by following the
same steps, it is now easy to show that a single-hole excitation is obtained by requiring
that eiα(t) has a pole in the lower complex plane, which amounts to reverse the sign of
each τj .
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1.5. The noise is the signal

1.5 The noise is the signal

The conductance G of a sample is an interesting quantity, however, it is only re-
lated to the averaged properties of electronic transport. The Landauer’s formula (see
Eq. (1.17)) is indeed obtained by computing the average current. In this context the
time fluctuations of the current around its average value cannot be addressed. These
fluctuations are quantified by the so called noise, which is physically very rich, as it
encodes properties about the particles correlations and statistics.

Pioneering works on current fluctuations in mesoscopic systems by M. Büttiker,
R. Landauer and T. Martin [71, 72, 73, 74] have shown that current noise contains
information about the dynamics of charge carriers. On the experimental side, the
measurement of partitioned current noise after a quantum point contact has shown that
the statistics of electrical current in an ideal quantum conductor is sub-Poissonian [75],
as a direct consequence of the Pauli exclusion principle. Current noise measurements
in an HBT configuration has also allowed, for example, to measure the charge of
fractional excitations in the ν = 1/3 regime [76, 77]. The extraction of the charge
of quasiparticle from shot noise measurements illustrated in a spectacular way the
relevance of studying the noise to obtain information on the current carriers. The idea
behind the sentence "The noise is the signal" [73], expressed by Landauer, is central in
the EQO framework and we will refer, for the rest of this thesis, to the current noise
as one of the most interesting physical quantities.

Throughout this thesis, we will characterize these fluctuations in terms of the
current-current correlation function. Let us consider a conducting system through
which a current I(t) flows from the source to the drain electrode. The fluctuations of
this current around the expectation value ⟨I(t)⟩ are described by the quantity

∆I(t) = I(t)− ⟨I(t)⟩. (1.49)

The characterization of these fluctuations in the time domain is usually done by using
the autocorrelation function of the current fluctuations

C(t, τ) = ⟨∆I(t)∆I(t+ τ)⟩ = ⟨I(t)I(t+ τ)⟩ − ⟨I(t)⟩⟨I(t+ τ)⟩. (1.50)

In the case of a stationary current the statistical properties of the fluctuations are
time-translational invariant and the noise only depends on τ , namely

C(τ) = ⟨∆I(t)∆I(t+ τ)⟩ = ⟨∆I(0)∆I(τ)⟩. (1.51)

Since the real time detection of the current correlations is extremely difficult in nowa-
days experiments, techniques based on finite frequency current noise have been de-
veloped in order to reconstruct the time behavior of the signals. Therefore, tipically
experiments address the noise spectral density which is the Fourier transform of C(τ),
namely7

S(ω) = 2

∫ +∞

−∞
dτ eiωτ ⟨∆I(τ)∆I(0)⟩. (1.52)

1.5.1 An introduction to scattering formalism

In this Section we present the scattering matrix formalism, which is a very powerful
method allowing to tackle a variety of problems regarding transport in mesoscopic

7We consider an additional factor 2 in front of the Fourier transform for normalization purposes,
as usually done in literature [74].
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physics when the interaction between electrons can be neglected. The scattering ap-
proach relates transport properties of the system, in particular current and its fluctu-
ations, to its scattering properties, which are assumed to be known from a quantum
mechanical calculation. To describe this approach, we’ll mainly rely on Ref. [74] and
the original paper on the scattering matrix method in the operator formalism by Büt-
tiker [78] although other excellent reviews and books are available in the literature [79,
80, 81].

To fix the ideas, we consider a sample, see Fig. 1.12, connected to two electronic
reservoirs by a coherent waveguide (or lead). Electronic reservoirs contain a very large
number of particles and are assumed to be described by an equilibrium state with well
defined chemical potential µL/R and temperature TL/R. Electrons in the reservoirs
thus are characterized by the Fermi distribution (we recall Eq. (1.34))

fα(E) =

[
e(E−µα)/(kBTα) + 1

]−1

, α = L, R. (1.53)

Driving the system out of equilibrium corresponds to setting different chemical poten-
tials and/or temperatures in the different terminals. Inside the conductor we assume
that only elastic scattering events take place leading to an overall conservation of
the energy. Note, however, that there must be some inelastic mechanism inside the
reservoirs in order to achieve an equilibrium distribution.

Figure 1.12: Example of two-terminal scattering problem for the case of one transverse
channel. The system consists of two reservoirs at different temperatures TL/R and
chemical potentials µL/R connected to a sample S. The electrons entering the central
region from reservoirs (blue) are mixed by the scattering matrix of the system and
emerge as new outgoing ones (red).

We assume, without loss of generality, that the transverse (across the leads) and
the longitudinal (along the leads) motion of electrons are separable. Due to strong
confinement, motion in the transverse directions x, y is quantized and described by
the index n (corresponding to the set of orthonormal functions χL/R,n(x, y)). Let
us introduce operators aα,n(E) that annihilate an electron with total energy E in
the n-th channel going from terminal α to the central scattering region8. They obey
conventional anticommutation relations{

aα,n(E), a†β,m(E′)
}
= δα,βδn,mδ(E − E′). (1.54)

Note that the total energy E is determined by the sum of energies in the longitudinal
and transverse channels, with the transverse energy in n-th channel given by EL,n.

8To avoid confusion, we label terminals with Greek indices {α, β, ...} and use Roman indices
{n,m, ...} for transverse channels.
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Similarly, operators bα,n(E) annihilate an electron with energy E in the n-th channel
going in the opposite direction. The operators a and b are related via the scattering
matrix of the system. Due to the presence of two terminals and N conduction channels
per side, the full system is described by the 2N × 2N matrix s. Indeed, one has

bα,i =
∑

β=L,R

N∑
j1

sαβ,ijaβ,j . (1.55)

However, collecting incoming and outgoing operators in vectors aα = (aα,1, ..., aα,N )
and bα = (bα,1, ..., bα,N ) with i = L,R allows for a compact expression of the scattering
matrix in terms of a four blocks matrix(

bL

bR

)
=

(
r t′

t r′

)(
aL

aR

)
= s

(
aL

aR

)
. (1.56)

This structure is peculiar of the considered case but it can be generalized. Here, each
block r, t, t′ and r′ is a N × N matrix. Coefficients for r are given by rij = sLL,ij
and similar relations hold for the remaining three blocks. Blocks on the diagonal
account for the reflection back to the left and right reservoirs respectively, while off-
diagonal blocks describe the transport, respectively, from left to right and from right
to left. The scattering matrix is in general unitary and additional symmetries (such as
time reversal, if present) further constrain the block component of s. If N transverse
channels are accessible, the field operator in the left waveguide reads

ψL(r, t) =
∫ +∞

0
dE e−iEt/ℏ

N∑
n=1

χL,n(x, y)√
2πℏvL,n(E)

[
aL,n(E)eikL,nz + bL,n(E)e−ikL,nz

]
(1.57)

with vL,n(E) = (ℏ/m)kL,n(E) and kL,n(E) =
√

2m(E − EL,n)/ℏ for a quadratic dis-
persion9. Note that an analogous relation holds for the right waveguide. However,
current conservation allows us to focus solely on the left side of the conductor.

We now give the general results for current and noise in the scattering formalism
focusing on the main passages and referring the reader interested in a more detailed
discussion to the literature [74, 80, 81]. The 1D current operator in the left lead is
obtained by integrating the quantum-mechanical three-dimensional current density [49,
82] in the transverse directions x and y

IL(z, t) =
eℏ
2im

∫
dx dy

[
ψ†
L(z, t)∂zψL(z, t)− ∂zψ

†
L(z, t)ψL(z, t)

]
. (1.58)

Let us insert the field operator Eq. (1.57) into Eq. (1.58). After some algebra, and ne-
glecting the energy depencence of vL,n(E)10, one gets the following position-independent
result for the current operator

IL(t) =
e

h

N∑
n=1

∫
dE1dE2 e

i(E1−E2)t/ℏ
[
a†L,n(E1)aL,n(E2)− b†L,n(E1)bL,n(E2)

]
. (1.59)

9The integral in Eq. (1.57) runs from 0 to +∞, as we are dealing with electrons with parabolic
dispersion E = ℏ2k2/(2m). Different dispersion relations may lead to different limits of integration.

10This is a reasonable assumption in most cases, since only energies in a narrow window around the
Fermi level play a relevant role, while vL,n(E) typically varies significantly on a much bigger scale.
Therefore, we can safely assume the velocity vL,n(E) = vL,n(EF ) constant.
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The expectation value for IL is found by recalling that particles going from the reser-
voirs to the scattering region are in an equilibrium state described by Eq. (1.53). Then
the operators aα,n obey

⟨a†α,n(E1)aβ,n′(E2)⟩ = δα,βδn,n′δ(E1 − E2)fα(E1). (1.60)

We now write Eq. (1.59) solely in terms of the operators aα,n, a†α,n thanks to Eq. (1.56)
and we find

⟨IL⟩ =
e

h

N∑
n=1

∫
dE

[
fL(E)−

∑
β=L,R

N∑
m=1

s∗Lβ,nmsLβ,nmfβ(E)

]
=

=
e

h

N∑
n=1

∫
dE

{[
1−

N∑
m=1

|rnm|2
]
fL(E)−

N∑
m=1

|tnm|2fβ(E)

}
=

=
e

h

∫
dE Tr(t†t)

[
fL(E)− fR(E)

]
,

(1.61)

where the last passage follows from the unitarity of the scattering matrix. Indeed from
s†s = I one finds r†r + t†t = I which leads to

∑
m(|rnm|2 + |tnm|2) = 1. We note that

Eq. (1.61) is a basis invariant expression. The matrix t†t can be diagonalized and it has
a set of eigenvalues (transmission probabilities) Tn(E). Then the expression for the
current in a mesoscopic two-terminal system, as long as electron-electron interactions
do not play a prominent role, is

⟨IL⟩ =
e

h

N∑
n=1

∫
dE Tn(E)

[
fL(E)− fR(E)

]
. (1.62)

Notice that, in an equilibrium configuration with µL = µR and TL = TR, Fermi
distributions in the reservoirs are exactly the same and no current flows though the
sample. For the following, to avoid notational confusion, we would like to point out
the difference between the transmission coefficient T and the temperature T .

Consider now an out of equilibrium situation, where a voltage bias V is applied on
the mesoscopic system. The electrochemical potential in the left reservoir is brought
below the Fermi level, namely µL = EF − eV while µR = EF , with equal temperature
T on both sides. As the energy scale set by eV is usually much smaller than EF , the
integral in Eq. (1.62) is dominated by a small energy window of width ∼ eV around
the Fermi level. Thus, we can neglect the energy dependence of Tn(E) in this short
interval and perform the integration over the Fermi distributions, getting

⟨IL⟩ ≈
e

h

N∑
n=1

Tn(EF )

∫
dE [fL(E)− fR(E)] =

e2

h
V

N∑
n=1

Tn(EF ), (1.63)

where the last passage holds for EF ≫ {eV, kBT}. Thus, the conductance G = ⟨IL⟩/V
for a two-terminal mesoscopic system in presence of N conduction channels is generally
given by11

G =
e2

h

N∑
n=1

Tn. (1.64)

11In the following, the notation Tn without the energy argument stands for the n-th transmission
eigenvalue evaluated at the Fermi level, i.e. Tn = Tn(EF ).
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Equation (1.64) is known as a multi-channel generalization of the Landauer formula
of Eq. (1.17). It relates the conductance of a quantum conductor to the transmission
eigenvalues of the available conduction channels.

We are concerned with fluctuations of the current with respect to their average
value. We focus on the autocorrelation spectrum of ∆IL = IL − ⟨IL⟩, which is given
by

S(ω) = 2

∫ +∞

−∞
dτ eiωτ ⟨∆IL(0)∆IL(τ)⟩ (1.65)

and we calculate it through the scattering matrix formalism introduced above. Differ-
ently from ⟨IL⟩, to find the noise power, we need the four-operator average

⟨a†α1,n1
aα2,n2a

†
α3,n3

aα4,n4⟩ (1.66)

which can be evaluated recalling Wick’s theorem [83]. This leads to

S(ω) = 2
e2

h

∫
dE Tr(tt†tt†)

{
fL(E)[1− fL(E − ℏω)]+

+ fR(E)[1− fR(E − ℏω)]
}
+

+ 2
e2

h

∫
dE Tr(rr†tt†)

{
fL(E)[1− fR(E − ℏω)]+

+ fR(E)[1− fL(E − ℏω)]
}
.

(1.67)

The general result for the zero frequency noise power in a two-terminal conductor is

S(ω = 0) = 2
e2

h

N∑
n=1

∫
dE T2

n(E)
{
fL(E)

[
1− fL(E)

]
+ fR(E)

[
1− fR(E)

]}
+

+2
e2

h

N∑
n=1

∫
dE Tn(E)

[
1− Tn(E)

][
fL(E)− fR(E)

]2
.

(1.68)

In Eq. (1.68), the first two terms are referred to the equilibrium noise since they depend
on the Fermi distribution of left and right reservoirs separately. Conversely, the third
one can be regarded as the non-equilibrium contribution to the power spectrum since
this term never appear in the equilibrium situation when fL = fR.

From Eq. (1.68), we are then able to evaluate the zero frequency noise S(0) ≡ S.
Usually it has been investigated in presence of a dc voltage drop of the form µR = EF =
µL + eV and no temperature gradient. In this configuration, through the Landauer
framework, the noise can be described as [74, 84]

S = 4
e2

h
kBT

N∑
n=1

T2
n + 2

e2

h
eV coth

(
eV

2kBT

) N∑
n=1

Tn(1− Tn). (1.69)

Instead of a voltage bias, it is possible to consider the system connected to two reser-
voirs placed at different temperatures TR and TL. Then, when a non-zero temperature
difference ∆T defined as

∆T = TL − TR (1.70)

is applied across the conductor, a similar approximate expression for the current noise
can be derived based on the Landauer formalism [26]

S ≈ 4kBT̄
e2

h

N∑
n=1

Tn + 2
e2

h

kB(∆T )
2

T̄

(
π2

9
− 2

3

) N∑
n=1

Tn(1− Tn) (1.71)
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where the average temperature

T̄ =
TR + TL

2
(1.72)

between the hot and cold reservoirs has been introduced.
Let’s focus on particular cases to fully appreciate the physics contained in Eqs. (1.69)

and (1.71) and to highlight the differences between equilibrium and non-equilibrium
contributions to the noise.

1.5.2 Equilibrium thermal noise

At finite temperature, electrons are subject to thermal agitation. Consequently, an
equilibrium noise arises, as established in the classical regime by J. B. Johnson [23]
and H. Nyquist [24] in 1928. It is observed for a zero voltage bias between the leads
(µL = µR) and a non-zero temperature (T ̸= 0), or as long as the voltage is much
lower than the temperature (eV ≪ kBT ). Then, from Eq. (1.69), we find

S = 4
e2

h
kBT

N∑
n=1

Tn = 4kBTG, (1.73)

which is the famous Johnson-Nyquist relation for the thermal noise. It states that the
equilibrium noise S is proportional to the electrical conductance G and this propor-
tionality is given by the temperature T . Notice that the same result can be obtained
from Eq. (1.71) when no temperature difference is taken into account.

Thermal noise is an equilibrium statistical property of the system, while the con-
ductance tells us how the conductor reacts and dissipates energy when is driven out
of equilibrium by applying a non-zero voltage bias. Therefore, Eq. (1.73) emphasizes
a very important relation between equilibrium and non-equilibrium properties of the
system. Indeed it shows, in the linear response regime, a remarkably profound link
between equilibrium fluctuations and dissipative properties of a system. It was indeed
demonstrated that the Johnson-Nyquist formula is nothing but a particular manifes-
tation of the more general relation known as fluctuation-dissipation theorem [85].

Equation (1.73) is a first example of what we can learn from noise measurements.
For example, we can measure the electronic temperature of a mesoscopic device by
looking at the ratio S/G which is the essence of the noise thermometry technique [86,
87, 88]. However, it is by moving onto non-equilibrium noise in quantum conductor
that we can fully appreciate the power behind the Landauer’s statement.

1.5.3 Shot noise

Contrary to the Johnson-Nyquist noise, shot-noise is due to an out of equilibrium
situation created by a voltage imbalance. It can only be probed when a voltage bias is
applied between the leads: µL − µR = −eV . Shot noise in an electrical conductor is a
consequence of the granularity of the charge. Indeed, an electric current is nothing but
the flow of discrete particles with quantized charge which can be different depending
on the system we consider. At zero temperature, the auto-correlation noise reads [72,
78, 89, 90]

S = 2
e2

h
e|V |

N∑
n=1

Tn(1− Tn) (1.74)
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which is obtained by exploiting the limit

lim
x→±∞

coth(x) = ±1 (1.75)

in Eq. (1.69).
This expression reflects the fact that the non-equilibrium shot noise is not simply

determined by the conductance of the sample. Instead, it is determined by a sum of
products of transmission and reflection probabilities of the channels. When considering
a sample with one channel at zero temperature, the average current reads: ⟨IL⟩ =
(2e/h)eV T. Thus Eq. (1.74) can be written as

S = 2e⟨IL⟩(1− T). (1.76)

It is clear that zero-temperature shot noise is always suppressed in comparison with
the Poissonian value in which S = 2e⟨IL⟩. The noise is then said to be sub-Poissonian.
In fact, for both open (T = 1) or close (T = 0) channels the particles can only
be transmitted, or oppositely reflected, through the mirror and shot noise completely
vanishes. Moreover, knowing both the current and the zero-frequency noise gives access
to the charge of the carriers. In this way, the fractional charge of the quasi-particles
in the FQH effect was measured [76, 91].

Let us remark that the origin of shot noise is much different from the thermal one.
The latter is a property of an equilibrium system caused by fluctuations in the occu-
pation number. The former is instead an intrinsically non-equilibrium characteristic
which only emerges when we drive a current through the system.

1.5.4 Delta-T noise

Instead of a voltage bias, one can in principle consider the conductor connected to
two reservoirs at different temperatures. The presence of a temperature gradient gives
rise to an out of equilibrium noise dubbed as delta-T noise which is different from
the previous shot noise. It is worth noticing that delta-T noise is purely thermal in
origin but it is only generated in a non-equilibrium situation. In recent years, systems
connected to reservoirs kept at different temperatures have been experimentally [26,
92, 93, 94] and theoretically considered [95, 96, 97, 98, 99, 100, 101].

When a temperature difference ∆T is applied across the conductor at zero voltage
bias, a new expression for the current noise can be derived through the scattering
formalism. In order to obtain Eq. (1.71), we recall Eq. (1.68) for the zero frequency
noise S = S1 + S2 with the two components

S1 = 2
e2

h

N∑
n=1

T2
n

∫
dE

{
fL(E)

[
1− fL(E)

]
+ fR(E)

[
1− fR(E)

]}
S2 = 2

e2

h

N∑
n=1

Tn

[
1− Tn

] ∫
dE

{
fL(E)

[
1− fR(E)

]
+ fR(E)

[
1− fL(E)

]}
,

(1.77)

where we have taken the channels’ transmission function as energy independent for
sake of simplicity. Based on this approximation, we evaluate S1 exactly by using
identities for the Fermi function

S1 =2
e2

h

N∑
n=1

T2
n

∫
dE

[
− kBTL

∂fL(E)

∂E
− kBTR

∂fR(E)

∂E

]

=2
e2

h
kBT̄

N∑
n=1

T2
n

(1.78)
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with the average temperature being T̄ = (TR + TL)/2. Since we are considering an
out-of-equilibrium situation induced by a temperature bias, the second term S2 can
be evaluated by considering the difference

S2 = S2(∆µ = 0,∆T )− S2(∆µ = 0,∆T = 0). (1.79)

Here in Eq. (1.79), the first term includes all contributions that depend on the tem-
perature difference while the second term, which is the equilibrium one, is subtracted
in order to deal with the out-of-equilibrium contribution. It is worth noticing that in
presence of a energy dependent transmission a new term appears and it depends on the
derivative of the transmission function at the vicinity of the Fermi energy [97]. With-
out entering into analytical details which can be found in Ref. [26], the equilibrium
contribution is

S2(∆µ = 0,∆T = 0) = 4
e2

h
kBT̄

N∑
n=1

Tn(1− Tn) (1.80)

and the temperature-induced term, before the integration, is

S2(∆µ = 0,∆T ) = 2
e2

h

∫
dE
[
fL(E)− fR(E)

]
×

× coth

(
∆T

2kBTLTR
(E − EF )

) N∑
n=1

Tn(1− Tn).

(1.81)

Notice that the equilibrium contribution is the thermal noise obtained in Eq. (1.73).
Equation (1.81) can be simplified by Taylor-expanding the coth(x) function and the
difference (fL−fR) in terms of the temperature gradient. The solution of this integral
depends on the symmetry of the system. If the junction conducts symmetrically in the
forward and backward direction, odd powers in ∆T do not contribute and the final
result, for non-interacting electronic systems, reads

S ≈ 4
e2

h
kBT̄

N∑
n=1

Tn + 2
e2

h

kB(∆T )
2

T̄

(
π2

9
− 2

3

) N∑
n=1

Tn

(
1− Tn

)
. (1.82)

This symmetrical set-up has been recently studied for FQH systems in a QPC geometry
and it was found that the tunneling of quasiparticles is associated with negative values
of the delta-T noise [96]. If the system is no longer symmetric, such as if the system is
made by different samples, then odd ∆T powers will appears, affecting the final result.
This problem will be addressed in the last Chapter.

1.6 Noise in interferometric set-up

1.6.1 Single particle interferometry

We have already seen that thermal and shot noise provide information about the
dissipative properties of a system, the temperature, and the charge of the carriers.
Furthermore, it is possible to extrapolate the statistical properties of particles from the
study of a particular kind of shot noise, called partition noise. In order to understand
the origin of this type of noise, we consider a typical experiment where particles are
incident on a target at which they are scattered and then conducted in some sort of
optical table, as shown in Fig. 1.13. For the following, we will consider our particles
as both bosons or fermions, specifying their nature when necessary.
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1.6. Noise in interferometric set-up

Figure 1.13: Optical like set-up for two particle interferometry. Incoming particles,
traveling in input channels 1 and 2, impinge on the beamsplitter in the middle (thin
blue layer). They are either reflected (with probability R) or transmitted (with prob-
ability T = 1− R) into the output channels 3 and 4.

The particles coming from input channels 1 and 2 collide on a central scatter and
exit in output 3 and 4. At the barrier the particle is either transmitted with probability
T or reflected with probability R = 1− T. In the EQO framework, the central scatter
is nothing than the QPC introduced in Section 1.3.

We describe incoming particles in second quantization with annihilation ai and
creation a†i operators (with i = 1, 2) while operators bj and b†j (j = 3, 4) describe the
outgoing particles. Due to the probabilistic nature of the scattering processes, the
relation between input and output operators in a matrix form reads(

b3
b4

)
=

(√
R i

√
T

i
√
T

√
R

)(
a1
a2

)
(1.83)

where R and T are, respectively, the reflection and transmission coefficients. The
occupation number of input and output arms are ni = a†iai (i = 1, 2) and nj = b†jbj
(j = 3, 4). The occupation numbers of output channels are given by:

n3 = Rn1 + Tn2 + i
√
RT(a†1a2 − a†2a1)

n4 = Tn1 + Rn2 − i
√
RT(a†1a2 − a†2a1).

(1.84)

The probabilistic scattering of particles induce fluctuations in the occupation number
of output arms. For instance, by using Eq. (1.84) and applying repeatedly Wick’s theo-
rem, one can compute the auto-correlators and cross-correlator of number occupations
in the output arms, which are

⟨∆n23⟩ = ⟨∆n24⟩ = −⟨∆n3∆n4⟩ = RT (1.85)

where we have introduced the notation ∆ni = ni − ⟨ni⟩.
Fluctuations in the detected number of particles described by Eq. (1.85) are called

partition noise since they are due only to random partition occuring at the central
scatterer. In particular, for the simple case of single particle injection from only one
arm, the partition noise is proportional to RT and vanishes both for a completely
transparent or reflecting barrier. This can be intuitively understood since there is
no partition for the incoming particle as only one output arm is accessible and the
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1.6. Noise in interferometric set-up

occupation number of the output states cannot fluctuate. However, from these obser-
vations no differences between bosons and fermions arise. We then move to the more
interesting case of two-particle interferometry.

1.6.2 Two particle interferometry

Consider now a situation where the injection of a particle, either a boson or a fermion,
occurs in both channels of the set-up in Fig. 1.13. We must assume that the colliding
particles reach the mirror simultaneously, i.e. at the same time, in order to observe the
effect of multi-particle physics. In this case the average number of particles, detected at
both outputs, are ⟨n3⟩ = R⟨n1⟩+T⟨n2⟩ = 1 and ⟨n4⟩ = R⟨n2⟩+T⟨n1⟩ = 1. Regardless
of the statistics and of the transmission coefficient of the mirror, each detector measures
exactly one particle on average. Let’s focus on the average ⟨n23⟩

⟨n23⟩ = R2⟨n21⟩+ T2⟨n22⟩+ 2RT⟨n1n2⟩+ RT⟨a†1a2a
†
2a1 + a†2a1a

†
1a2⟩

= 1 + RT(2± 2)
(1.86)

where the upper sign accounts for the bosonic case, while the lower one for fermions.
The difference in the sign is due to the fact that aia

†
i = 1 ± a†iai depending on the

statistics. Furthermore if we exchange R with T we obtain the same result meaning
that ⟨n23⟩ = ⟨n24⟩. From the conservation relation n1 + n2 = n3 + n4 we obtain the
average value

⟨n3n4⟩ = RT[⟨n21⟩+ ⟨n22⟩ − ⟨n1⟩ − ⟨n2⟩ − (2± 2)⟨n1n2⟩] + ⟨n1n2⟩
= 1− RT(2± 2).

(1.87)

The final relation about average fluctuations then reads

⟨∆n23⟩ = ⟨∆n24⟩ = −⟨∆n3∆n4⟩ = RT(2± 2). (1.88)

According to this analysis, a very different behavior for bosons and fermions emerges.
If we compare the above result with twice the partition noise of a single source, we
see that the fluctuations are doubled for the bosonic case and completely suppressed
for fermions. Physically, Equation (1.87) is a concise statement of the Pauli princi-
ple. For bosons, the probability that the two particles exit on opposite sides, namely
P (1, 1) = 1− 4RT, depends on the transmission and reflection coefficient of the scat-
terer and vanishes for an ideal barrier with T = R = 1/2. Then, the two particles are
preferentially scattered into the same output branch. This effect, which states that
photons in a symmetric beamsplitter exits on the same side, is called photon bunching.
Differently, for fermions P (1, 1) is insensitive to the transmission and reflection prob-
ability and it is given by P (1, 1) = 1. Thus fermions are scattered with probability
one into the different output branches. This effect is known as antibunching. Similar
considerations also comes from the probabilities of the two particles to be scattered
in the same channels P (2, 0) = P (0, 2) = 2RT for bosons or P (2, 0) = P (0, 2) = 0 for
fermions.

Cross- and auto-correlated noise

In the following we will provide some complementary details about noise calculation
in electronic interferometers realized in solid state devices. We consider a QH bar
at filling factor ν = 1 (see Fig. 1.14) in a two terminal QPC geometry. Two time-
dependent potential VR/L are applied to the reservoirs. In this Section, we will deal
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1.6. Noise in interferometric set-up

Figure 1.14: Quantum Hall bar at filling factor ν = 1 in a two-terminal QPC geometry.
Two time-dependent potentials VR and VL are applied to left and right reservoirs, re-
spectively, playing the role of electron sources on demand. The incoming field particles
are labelled with 1 and 2 while the outgoing ones with 3 and 4.

with free electrons while in the next Chapters we will study the effects of interactions
in such kind of systems. By recalling Eq. (1.36), the fermionic fields incoming into
edge states from the two reservoirs are given by

ψ
(in)
R/L(x, t) ≡ ψR/L(x, t) = eie

∫ t∓ x
vF

−∞ dt′VR/L(t
′)ψR/L(x∓ vF t, 0). (1.89)

Electronic fields outgoing from the QPC are termed ψ(3/4)
L/R (x, t) whether they enter into

reservoir as right- or left-movers. They are connected to fermionic fields in Eq. (1.89) by
the scattering matrix of Eq. (1.83) which model the QPC between the two edge states.
In this way, the fermionic fields ψ(3/4)

L/R are expressed as a simple linear combination of

ψ
(1/2)
R/L , weighted by the appropriate probability transmission and reflection, T and R,

determined by the voltage gate of the QPC. Thus, one has(
ψ
(3)
R

ψ
(4)
L

)
=

(√
R i

√
T

i
√
T

√
R

)(
ψ
(1)
R

ψ
(2)
L

)
. (1.90)

As argued before, we are interested in using this scattering matrix approach to compute
the current noise in single-electron interferometric set-up. We consider a periodic
injection of particles so that, the zero-frequency current noise, from Eq. (1.52), is
written as

Sα,β = 2

∫ +T
2

−T
2

dt

∫ +∞

−∞
dt′⟨∆Iα(xα, t)∆Iβ(xβ, t′)⟩ =

= 2

∫ +T
2

−T
2

dt

∫ +∞

−∞
dt′⟨∆Iα(0, t− ξα

xα
vF

)∆Iβ(0, t
′ − ξβ

xβ
vF

)⟩
(1.91)

where in the second line we have taken into account the chirality. Notice that α and
β can assume the value 3 or 4 and ξ3/4 = ±1. The chiral current operator Iα(xα, t)
enters into the reservoir associated to the label α and xα indicates the position of such
reservoir. It can be easily expressed as a balance of fermionic operators entering or
exiting reservoirs as

I3(x, t) = −evF
[
: ψ

†(3)
L (x, t)ψ

(3)
L (x, t) : − : ψ

†(1)
R (x, t)ψ

(1)
R (x, t) :

]
I4(x, t) = −evF

[
: ψ

†(4)
R (x, t)ψ

(4)
R (x, t) : − : ψ

†(2)
L (x, t)ψ

(2)
L (x, t) :

]
,

(1.92)
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where the notation : ... : stands for the normal ordering with respect to the Fermi sea.
The current fluctuations associated to the same reservoir (α = β) are called auto-

correlators, while for different reservoirs (α ̸= β) they are called cross-correlators. The
current operator can be recast using Eq. (1.90) thus obtaining

I3(x, t) = −evF
[
T
(
: ψ

†(2)
L (x, t)ψ

(2)
L (x, t) : − : ψ

†(1)
R (x, t)ψ

(1)
R (x, t) :

)
+

− i
√
RT
(
: ψ

†(1)
R (x, t)ψ

(2)
L (x, t) : − : ψ

†(2)
L (x, t)ψ

(1)
R (x, t) :

)]
I4(x, t) = −evF

[
T
(
− : ψ

†(2)
L (x, t)ψ

(2)
L (x, t) : + : ψ

†(1)
R (x, t)ψ

(1)
R (x, t) :

)
+

+ i
√
RT
(
: ψ

†(2)
L (x, t)ψ

(1)
R (x, t) : − : ψ

†(1)
R (x, t)ψ

(2)
L (x, t) :

)]
.

(1.93)

Let us notice that the two current are related as I3(x, t) = −I4(x, t), which is consistent
with the charge conservation. As a consequence, the auto-correlators are related to
the cross-correlators according to

S33 = S44 = −S34 = −S43. (1.94)

In the following, for definiteness we focus on the cross-correlator of reservoirs 3 and 4,
namely S34, and we use the shorthand notation S = S34.

By using the definition of current noise in Eq. (1.91) and the expression for the
current I4 just derived, one finds for the zero-frequency auto-correlator

S = −2(evFT)
2

∫ +T
2

−T
2

dt

∫ +∞

−∞
dt′

∑
r=L,R

G(e)
F,r(t, t

′)G(h)
F,r(t, t

′)+

− 2(evF )
2RT

∫ +T
2

−T
2

dt

∫ +∞

−∞
dt′
[
G(e)
R (t, t′)G(h)

L (t, t′) + G(e)
L (t, t′)G(h)

R (t, t′)
]
,

(1.95)

where we eliminate the dependence on xα by using the chirality of fermionic fields and
we define the Green’s functions

G(e)
R/L(t, t

′) = ⟨ψ†,(1/2)
R/L (0, t)ψ

(1/2)
R/L (0, t′)⟩

G(h)
R/L(t, t

′) = ⟨ψ(1/2)
R/L (0, t)ψ

†,(1/2)
R/L (0, t′)⟩.

(1.96)

Let us comment, that, in analogy with Glauber’s coherence theory of photons [11],
the first line of Eq. (1.96) can be also termed first order electronic coherence function.
This object is the central quantity of EQO [12, 102, 103]. While for photons a single
coherence functions is sufficient, in mesoscopic systems one needs two types of coher-
ence functions, respectively, for electrons and holes. Therefore, in addition to first line
we have the second one in Eq. (1.96). At equilibrium (i.e. when no voltage is applied)
these coherence functions are

G(e)
F,R/L(t, t

′) =

∫ +∞

−∞

dE

2πvF
eiE(t−t′)fR/L(E)

G(h)
F,R/L(t, t

′) =

∫ +∞

−∞

dE

2πvF
e−iE(t−t′)

[
1− fR/L(E)

]
.

(1.97)

where the fR/L(E) is the Fermi distribution given in Eq. (1.53) for the right and left
movers respectively.

The first contribution in Eq. (1.95) is given by fluctuations of current in each single
channel, while the second one encodes the effects of interplay between the two edge
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channels. By exploiting both lines in Eq. (1.97), a straightforward calculation shows
that this last contribution is given by

2(evFT)
2

∫ +T
2

−T
2

dt

∫ +∞

−∞
dt′

∑
r=L,R

G(e)
F,r(t, t

′)G(h)
F,r(t, t

′) = 4T2 e
2

2π
(kBT ). (1.98)

The second contribution is strongly dependent on the type of configurations chosen
for the voltage drive. In the following, we focus on the situation where a single voltage
drive is turned on, namely

VR(t) = V (t), VL(t) = 0. (1.99)

here V (t) = VDC + VAC(t), with VAC a generic function satisfying
∫ +T /2
−T /2

dt
T VAC(t) = 0

with period

T =
2π

Ω
(1.100)

where Ω is the frequency of the drive. This configuration is called Hanbury-Brown-
Twiss (HBT) set-up, in analogy with the HBT experiment performed with photons [104].
In this case, when a source of Levitons is applied to the reservoir, a stream of single
electrons is partitioned against the QPC. The first experimental evidence of the ex-
istence of Levitons were reported by performing noise measurements in this kind of
set-up [13]. A second configuration is given by the Hong-Ou-Mandel (HOM) set-up
which will be studied in more details in the third Chapter. Here, we qualitatively
describe the HOM set-up providing a comparison with its photonic counterpart. In
this case, two identical trains of Levitons are generated and delayed by a tunable time
shift δ, satisfying

VR(t) = V (t) VL(t) = V (t+ δ). (1.101)

1.6.3 Hanbury-Brown-Twiss set-up

In the HBT set-up, the noise in Eq. (1.95) becomes

SHBT = −4T2 e
2

2π
(kBT )+

− (evF )
2 RT

∫ +T
2

−T
2

dt

∫ +∞

−∞
dt′
[
G(e)
R (t, t′)G(h)

F,L(t, t
′) + G(e)

F,L(t, t
′)G(h)

R (t, t′)
]
.

(1.102)

In this configuration, the Green’s functions for right-movers are

G(e/h)
R (t, t′) = e±ie

∫ t′
t dτV (τ)⟨ψ†,(1)

R (0, t)ψ
(1)
R (0, t′)⟩. (1.103)

In order to conveniently deal with voltage phases, we introduce the following Fourier
decomposition [105]

e−iφAC(t) =
+∞∑

l=−∞
ple

−ilΩt (1.104)

where φAC(t) = e
∫ t
0 dt

′VAC(t
′) is a function with period T . Here, we have introduced

the Fourier coefficients

pl =

∫ +T
2

−T
2

dt eilΩte−iφAC(t) =

∫ +T
2

−T
2

dt ei(l+q)Ωte−φ(t) (1.105)
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where we defined q the number of particle emitted by V (t) in a period as12

q = − e

h

∫ +T
2

−T
2

dt

T
V (t) = −eVDC

ℏΩ
. (1.106)

Equation (1.105) is the probability amplitude for particles to absorb (l > 0) or emit
(l < 0) an energy lℏΩ. This allows to interpret the discretization of energy shifts in
terms of photons of the electromagnetic field generated by VAC. This kind of energy
transfers due to an AC drive are called photo-assisted processes and the coefficients
are known as photo-assisted coefficients [105, 106].

By expressing G(e/h)
R in the Fourier space, one has

G(e)
R (t, t′) =

∑
l,k

p∗kple
−i(l+q)Ωt′ei(k+q)Ωt

∫ +∞

−∞

dE

2πvF
eiE(t−t′)fR(E)

G(h)
R (t, t′) =

∑
l,k

pkp
∗
l e

i(l+q)Ωt′e−i(k+q)Ωt

∫ +∞

−∞

dE

2πvF
eiE(t−t′)fR(E),

(1.107)

one can further simplify the expression in Eq. (1.102). The zero-frequency noise at
finite temperature T due to a QPC with transmission T is

SHBT = −4T2 e
2

2π
(kBT )− 2

e2

2π
RT
∑
l

|pl|2(l + q)ℏΩcoth

(
(l + q)ℏΩ
2kBT

)
. (1.108)

The second contribution is called photo-assisted shot noise and carries information
about the properties of the driving voltage due to the presence of the coefficients pl.
At zero temperature, the noise in Eq. (1.108) becomes

SHBT = −S0
∑
l

|pl|2|l + q| (1.109)

where we introduced S0 = 2(e2/T )RT.
The noise in the HBT geometry was used by the group of D. C. Glattli at CEA

Saclay in 2013 to provide the first experimental signatures of the correctness of Lev-
itov’s theoretical prediction [13] about the cleaness of the Lorentzian voltage pulses.
In particular, they defined an excess noise

∆S = SHBT − SDC (1.110)

where SDC is the noise due solely to VDC (equivalent to set pl = δl,0) whose expression
at finite temperature is

SDC = −2
e2

2π
RT(eVDC)coth

(
eVDC

2kBT

)
. (1.111)

At zero temperature, the excess noise reads

∆S = −S0
∑
l<−q

|pl|2|l + q|. (1.112)

This quantity can be experimentally probed and is actually connected to the number
of unwanted particle-hole pairs generated by the drive. The key result is the following:

12Notice that this notation is the natural extension of Eq. (1.22) to the periodic case.
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in a non-interacting system at zero temperature, the number of extra electron-hole
pairs is directly proportional to the excess noise ∆S [9, 10]. Therefore, the excess
noise ∆S has to vanish for Lorentzian pulses with integer q. From a mathematical
point of view, this happens because the Lorentzian drive is the only possible pulse for
which pl = 0 for l < −q. It is worth noticing that all these considerations are the
periodic equivalent of what described in Section 1.4.3 for a Lorentzian single pulse.

A vanishing excess noise was measured in the experiment, whose result is shown in
Fig. 1.15. The plots show the excess noise as a function of q, for three kind of signals:
a sine, a square wave and a Lorentzian drive. Since the experiment has been done
at finite temperature, particle-hole pairs can also be thermally excited and this effect
must be taken into account, as here we want to investigate whether such pairs are
created as a consequence of the applied drive and not by thermal effect. It is possible
to have an estimate of the thermally-excited pairs by generalizing Eq. (1.112) to finite
temperatures. The dashed lines in the plots show the expected thermal contribution
obtained in such a way. As we can see, the Lorentzian drive is the only one whose
excess noise at integer q is entirely due to thermal contributions, this guarantees that
no particle-hole pair is generated as an effect of the drive, thus confirming the minimal
character of Levitons. The experiment also shows a clear hierarchy between the three
different drives, with the square wave being the noisiest one.

Figure 1.15: Experimental evidence for Levitons. Both panels show excess noise mea-
surements for different kind of drives, as a function of the number of charges per period
q. Dashed lines indicate the finite-temperature contribution to the excess noise and
show that for a Lorentzian drive this is actually the only contribution, thus confirming
the expected behavior of Levitons. Image taken from [13].

1.6.4 Hong-Ou-Mandel set-up

The historical HOM set-up consists in sending two photons on the two input channels
of a beamsplitter, and measuring the coincidence rate at the two outputs. Referring
to Fig. 1.13, the two outputs arms are 3 and 4 and n3(4) is the number of particles on
arms 3 (4). When the time delay δ between arrivals of the photons at the beamsplitter
is large, they are transmitted or reflected independently, and the coincidence rate
reaches a steady value corresponding to the HBT result. However, when the photons
arrive simultaneously at the splitter, they become sensitive to their exchange statistics.
As photons are bosons, they tend to bunch and thus exit in the same output of the
splitter. Consequently, the coincidence rate between the two outputs drops down to
zero according to Eq. (1.88). Its measurement as a function of the time delay between
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arrivals at the splitter, or equivalently the difference between the propagation lengths
of the input arms, exhibits a so-called HOM dip (see Fig. 1.16 second column).

In the electronic analog of the HOM set-up, two electrons are aimed at a QPC
through edge channels of the QH effect. When the time delay between arrivals at the
QPC is large, the electrons are partitioned independently and exit in either one or the
other output channel. But, when they reach the QPC simultaneously, their fermionic
nature forbids them to be superimposed in the same state, in agreement with the
Pauli principle. Indistinguishable electrons antibunch: the only possible outcome is
to measure one electron in each output arm. For fermions, the coincidence count
for indistinguishable particles would thus be doubled compared to the classical case.
However, as single shot detection is not available yet for electrons, this antibunching
is not probed by coincidence counts but rather by the low frequency fluctuations of
the electrical current transmitted in the outputs. Indeed, the number of particles
fluctuations ⟨∆n23⟩ = ⟨∆n24⟩ directly reflect the electronic antibunching. In analogy
with the HOM dip observed for bosons, a Pauli dip is expected for fermions (see
Fig. 1.16 third column), albeit on a different quantity. According to this, the HBT
experiment can be viewed as a peculiar case of HOM interferometry.

Figure 1.16: Sketch of an HOM experiment. Two indistinguishable particles are par-
titioned on a splitter. Coincidence counts ⟨n3n4⟩ and number of particles fluctuations
⟨∆n23⟩ are recorded as a function of the tunable delay δ. Indistinguishable bosons al-
ways exit in the same output, which results in the suppression of the coincidence rate
(HOM dip) and the doubling of the fluctuations. An opposite behavior is expected
for indistinguishable fermions: antibunching results in the doubling of the coincidence
counts and the suppression of the number of particles fluctuations (Pauli dip).

Recalling the set-up in Fig. 1.14: two counter-propagating edge states meet at a
QPC. A single electron emitter is connected to each incoming edge state, and single
electrons can be injected with a controlled time difference δ in the two edge states.
Each source can be alternatively switched off, so that the HBT noise produced by the
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1.6. Noise in interferometric set-up

other source can be measured. In the HOM set-up, when both sources are on, the
current correlations are measured at the two outputs of the QPC, as a function of
the time difference between the two injections. The emission of a single electron and
then a single hole is repeated periodically and consequently, by properly detuning one
source with respect to the other, not only can the interference between two electrons
be considered, but also the interference between one electron and one hole. This last
case has no counterpart with photons: positive interferences (a peak rather than a dip)
are obtained, which depend on the energy overlap between the electrons and holes, and
which are strongly affected by temperature [107, 108].
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Chapter 2

Switching on interactions

In the previous Chapter, we introduced the field of EQO in a regime where electron-
electron interactions have been neglected, insofar as the propagation along the channels
was assumed to be interaction free and dissipationless. However, due to their one-
dimensional nature, quantum Hall edge channels are prone to emphasize interaction
effects. This thesis aims at extending EQO studies to regimes where interaction effects
are important. This Chapter is therefore dedicated to a presentation of interacting
fermionic systems in 1D. After a general introduction to the bosonization procedure,
we exploit the hydrodynamical Wen model. This allows us to deal with a large class
of interacting QH states in both the integer and fractional regime. In particular, we
will focus on two interacting QH edge channels and, finally, we will move towards a
phenomenological approach to describe possible dissipative effects observed in recent
experiments. From this Chapter to the end of the following thesis, we choose units in
which ℏ = kB = 1.

2.1 Introduction

Usually, in two and three dimensions, metals are well described by the Fermi liquid
theory elaborated by L. Landau in the fifties [109, 110]. In this model the bare electrons
are dressed by interactions and the problem can be described in terms of quasi-particles
with renormalized parameters, which constitute the stable low-energy excitations of the
system. These quasi-particles are essentially electrons dressed by density fluctuations
around them and they interact very weakly with each other, even when the electron-
electron Coulomb interaction is intense. This explains the success of Fermi liquid
theory in describing several different materials.

However, in interacting 1D systems the Landau’s theory fails. For example, in an
1D spinless lattice, with one electron on each site, the hopping of an electron from one
site to the neighboring site forces every electron to jump forward. The Pauli principle
forbids two electrons to be in the same state, thus each site can be at maximum singly
occupied. Due to Coulomb repulsion, one electron hopping thus causes every other
electrons hopping. Consequently, the only possible excitations in such a system are
collective modes, which differ drastically from the original fermions.

During the fifties and sixties, new models to describe a 1D interacting electron gas
were suggested by Tomonaga [111] and then Luttinger [112]. These models were then
solved by Mattis and Lieb [113]. The underlying idea of those models is to linearize the
spectrum in the vicinity of the Fermi energy. The new spectrum is then made out of
two branches, corresponding to the electrons propagating towards opposite directions
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2.2. Tomonaga Luttinger liquid

along the 1D system.
The most striking feature of these models is that the elementary collective electron-

hole excitations have a bosonic character. The Hamiltonian can then be expressed in
terms of bosonic fields instead of the original fermionic ones. The point is that in this
formulation the Hamiltonian is quadratic, which strongly simplifies the calculation of
physical quantities. This technique is called bosonization. Later on, Haldane [114]
showed that these models are way more general and can describe any 1D interacting
fermions1, as long as the spectrum respects a few conditions. Their validity has been
verified in several instances, by observing exotic phenomena such as anomalous tun-
neling effects [115], spin-charge separation [116, 117] and charge fractionalization [118,
119, 120, 121] and the Tomonaga Luttinger Liquid (TLL) theory has been applied to
a variety of systems, among which are carbon nanotubes, some organic conductors,
or the edge states of the IQH and the FQH effects. In this latter examples, a direc-
tion of propagation is assigned to each edge state due to the magnetic field, and the
Hamiltonian has only one branch. The TLL is then called chiral.

First, we will give a very brief introduction on the TLL theory, as many reviews are
available [114, 122, 123, 124, 125]. The bosonization technique, which enables one to
solve that model, will also be introduced. Finally, we will turn to the hydrodynamical
model we use to describe the quantum Hall edge states.

Figure 2.1: Comparison between interacting electrons in 1D and in higher dimensions.
Left: in two or three dimensions, individual quasi-particle excitations are possible.
Right: in 1D, the motion of an individual electron has an effect on all the others, thus
resulting in a collective excitation. Image adapted from [125].

2.2 Tomonaga Luttinger liquid

Let us consider N spinless interacting fermions in a system of length L, subject to
periodic boundary conditions. The Hamiltonian describing the system

H = H0 +Hint (2.1)

is composed of a free part

H0 =

∫ +L
2

−L
2

dxψ†(x)ε(−i∂x)ψ(x), (2.2)

associated with the single particle spectrum ε(k), and an interaction term

Hint =

∫ +L
2

−L
2

dx

∫ +L
2

−L
2

dy ψ†(x)ψ†(y)U(x− y)ψ(y)ψ(x), (2.3)

1For sake of clarity, the bosonization can be used to describe both 1D bosonic and fermionic
interacting systems [114].
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2.2. Tomonaga Luttinger liquid

U(x − y) being the two-body interaction potential. In both previous formulas, ψ(x)
is a fermionic field operator annihilating an electron at position x as introduced in
Section 1.4.3.

Figure 2.2: Linearization of the spectrum around the Fermi points k = ±kF . Starting
from a generic dispersion (green curve), right (blue curve) and left (red curve) energy
branches are obtained. Dashed lines indicate the addition of unphysical states, which
naturally emerge in the bosonization technique.

2.2.1 Linearization of the spectrum

The explicit form of the dispersion relation ε(k) is not very important, because the first
key approximation of the Luttinger liquid model is to linearize the spectrum around
the Fermi energy EF , which is perfectly consistent in order to describe the low-energy
physics of the system. The linearization procedure is sketched in Fig. 2.2 and defines
the following two energy branches:

εr(k) = EF + vF (ξrk − kF ), vF =
dε

dk

∣∣∣∣
k=kF

, (2.4)

with r = R,L, ξR,L = ±1 and kF the Fermi momentum. In this way, two distinct
fermionic species: right-moving electrons, with positive group velocity, and left-moving
ones, with opposite group velocity. This is similar to what described in Section 1.2.1
however, for a generic 1D system, right and left movers are not spatially separated.
At this stage the momentum k for the right (left) branch is restricted to positive
(negative) values. However, in order for the bosonization technique to be applicable,
the spectrum has to be unbounded [123]. Therefore, the second approximation of the
model consists in extending the range of the momentum to k ∈ (−∞,+∞) for both
branches εr(k). This operation introduces an infinite number of unphysical states,
which are represented by the dashed lines in the spectrum of Fig. 2.2.

After the described procedure, the linearized free Hamiltonian becomes

H0 = vF
∑

r=R,L

∫ +L
2

−L
2

dxψ†
r(x)ε(−iξr∂x)ψr(x), (2.5)
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2.2. Tomonaga Luttinger liquid

where the fields ψr(x) annihilate an electron at position x on the branch r. These
fields satisfy the canonical fermionic anticommutation relations

{ψr(x), ψ
′
r(x

′)} = {ψ†
r(x), ψ

†
r′(x

′)} = 0

{ψr(x), ψ
†
r′(x

′)} = δr,r′δ(x− x′)
(2.6)

and have the following plane-wave decomposition

ψr(x) =
1√
L

+∞∑
k=−∞

eiξrkxck,r, (2.7)

where the operator ck,r annihilates an electron with momentum ξrk on the branch r.
By exploiting this relation, H0 is rewritten as

H0 = vF
∑

r=R,L

+∞∑
k=−∞

kc†k,rck,r, (2.8)

from which we immediately recognize that the expectation value of this operator on its
ground state (all levels with energy below EF filled) is divergent. This is an unphysical
effect due to the introduction of an infinite number of negative-energy states and we
can deal with this issue by considering normal ordered operators, obtained from the
bare ones by subtracting their expectation value on a reference state, which is usually
the ground state |GS⟩. For instance, the normal ordered number operator is

Nr =

+∞∑
k=−∞

: c†k,rck,r :=

+∞∑
k=−∞

[
c†k,rck,r − ⟨GS|c†k,rck,r|GS⟩

]
(2.9)

and counts the number of electrons on the branch r, with respect to the ground state.
In the same way, the expression for H0 has to be normal ordered to obtain meaningful
results in calculations.

2.2.2 Bosonization

The bosonization procedure consists in expressing the Hamiltonian and all other op-
erators in terms of newly introduced bosonic operators. These operators will obey
bosonic statistics, even though they are originally written using fermionic fields. Ac-
cording to this, the free Hamiltonian H0 in Eq. (2.5) can be converted in a different
but completely equivalent language, by using the bosonization identity [114, 123, 126],
which expresses fermionic operators in terms of bosonic ones:

ψr(x) =
Fr√
2πa

eiξrkF xe−iϕr(x). (2.10)

Here, a ∼ k−1
F is a short length cut-off, Fr are called Klein factors2 and bosonic fields

ϕr(x) are represented as3

ϕr(x) =
i√
L

∑
q>0

e−aq/2

√
q

(
bq,re

iqξrx − b†q,re
−iqξrx

)
= ϕ†r(x) (2.11)

2We are going to discuss their role in the following.
3From the exponential factor e−aq/2 in Eq. (2.11), we see that the inverse of the cutoff, a−1, plays

the role of an upper bound to the momentum q associated with particle-hole pairs created by operators
b†q,r; see also Eq. (2.13).
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2.2. Tomonaga Luttinger liquid

with creation and annihilation operators satisfying

[bq,r, bq′,r′ ] = [b†q,r, b
†
q′,r′ ] = 0

[bq,r, b
†
q′,r′ ] = δq,q′δr,r′ .

(2.12)

They are related to the fermionic operators by

b†q,r =

√
2π

Lq

+∞∑
k=−∞

c†k+q,rck,r

bq,r =

√
2π

Lq

+∞∑
k=−∞

c†k−q,rck,r

(2.13)

which show that b†q,r creates a superposition of particle-hole pairs with momentum q
on the branch r. From the definition (2.11) and the commutators (2.12), the following
commutation rules for fields ϕr(x) can be obtained

[ϕr(x), ϕr′(x
′)] = iξrπδr,r′sgn(x− x′). (2.14)

We now discuss the role of Klein factors Fr appearing in the bosonization iden-
tity (2.10). They are essential for a proper representation of fermionic fields in terms of
bosonic ones. As a matter of fact, ψr(x) removes an electron from the system, whereas
ϕr(x) cannot modify the particle number because

[b†q,r, Nr] =

√
2π

Lq

∑
k,k′

[c†k+q,rck,r : c
†
k′,rck′,r :] =

=

√
2π

Lq

∑
k,k′

(
c†k+q,r[ck,r, c

†
k′,r]ck′,r + c†k′,r[c

†
k+q,r, ck′,r]ck,r

)
=

=

√
2π

Lq

∑
k

(
c†k+q,rck,r − c†k+q,rck,r

)
= 0.

(2.15)

This is why Klein factors are needed in (2.10). They are unitary operators, F †
rFr =

FrF
†
r = 1, which obey the algebra [125]{

Fr, F
†
r′
}
= 2δr,r′{

Fr, Fr′
}
=
{
F †
r , F

†
r′
}
= 0 for r ̸= r′

(2.16)

and ensure that the canonical anticommutation relations (2.6) are satisfied. Moreover,
Klein factors commute with operators bq,r, b

†
q,r and[

F †
r , Nr′

]
= −δr,r′F †

r [Fr, Nr′ ] = δr,r′Fr, (2.17)

showing that F †
r (Fr) adds (remove) a particle to (from) the branch r. Notice, however,

that they are not fermionic operators because F 2
r ̸= 0. By using the above introduced

machinery, we can rewrite all fermionic operators in a bosonized form. In what follows
we focus on three of them which are particularly relevant.
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2.2. Tomonaga Luttinger liquid

Density operator The particle density operator of the branch r is defined as4

ρr(x) =: ψ†
r(x)ψr(x) : (2.18)

By using Eq. (2.7) we can write

ρr(x) =
1

L

∑
k,k′

: c†k′,rck,r : e
iξr(k−k′)x =

=
Nr

L
+

1

L

∑
q>0

∑
k

(
c†k+q,rck,re

−iqξrx + c†k−q,rck,re
iqξrx

)
.

(2.19)

Thus, from Eqs. (2.11) and (2.13), follows the representation in terms of the
bosonic field ϕr(x)

ρr(x) =
Nr

L
− ξr

2π
∂xϕr(x) (2.20)

which describes density fluctuations on top of a constant background term.

Free Hamiltonian The bosonization identity provides a new representation in terms
of the Luttinger bosonic fields. It allows to re-write the kinetic Hamiltonian given
by Eq. (2.22) in this new representation. But first, we compute the commutators
of H0 with the density operators on each branch[

H0, ρr(k)
]
= ξrvFkρr(k). (2.21)

Then, the free Hamiltonian H0 can be written as [124, 125]

H0 = vF
∑

r=R,L

∫ +L
2

−L
2

dx : ψ†
r(x)(−iξr∂x)ψr(x) :=

=
vF
4π

∑
r=R,L

∫ +L
2

−L
2

dx : [∂xϕr(x)]
2 : +

vFπ

L

∑
r=R,L

Nr(Nr + 1).

(2.22)

The second term is usually referred to as the zero-mode contribution, while the
first one is associated with bosonic excitations at fixed particle number. In the
zero-mode part, the linear term in Nr can be reabsorbed in a shift of the chemical
potential and will thus be dropped, yielding

H0 =
vF
4π

∫ +L
2

−L
2

dx
[
(∂xϕR)

2 + (∂ϕL)
2
]
. (2.23)

Thus, the kinetic part of the Hamiltonian is both quadratic and diagonal in terms
of the bosonic fields. The problem becomes more interesting when interactions
are taken into account.

Interaction Hamiltonian The purpose of the TLL theory is to deal with electron-
electron interactions. The great advantage of the bosonization technique is that
it allows to express the four-fermion-operator Hamiltonian (2.3) as a quadratic
form of the bosonic fields. In particular, by assuming a point-like interaction
potential

U(x− y) = U0δ(x− y), (2.24)
4We use the notation ρr(x) for the particle density operator in order to distinguish it from the

charge density operator ρ′r(x) = −eρr(x).
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2.2. Tomonaga Luttinger liquid

it can be shown that the only terms, for the present spinless case, are such
that Eq. (2.3) becomes Hint = H2 + H4, where H2 and H4 are density-density
couplings [123, 124, 125]:

H2 = g2

∫ +L
2

−L
2

dx : ρR(x)ρL(x) :,

H4 =
g4
2

∑
r=R,L

∫ +L
2

−L
2

dx : [ρr(x)]
2 : .

(2.25)

Here, the notation for the coupling constants is chosen according to the conven-
tional classification of interaction processes knows as the g-ology [125]. The two
terms H2 and H4 describe inter- and intra-channel interactions respectively. By
using the relation (2.20) into (2.25) and taking (2.22) into account, the complete
Hamiltonian assumes the form

H = H0 +H2 +H4 = HN +HB (2.26)

with
HN =

vFπ

L

[(
1 +

g4
2πvF

) ∑
r=R,L

N2
r +

g2
vFπ

NRNL

]
(2.27)

and

HB =

∫ +L
2

−L
2

dx

[(
vF
2

+
g4
4π

) ∑
r=R,L

: [∂xϕr(x)]
2 : +

g2
2π

: ∂xϕR(x)∂xϕL(x) :

]
.

(2.28)
Here, HB describes bosonic excitations, while HN is the zero-mode Hamiltonian.
As we can see, the intra-channel coupling g4 simply results in a renormalization
of the Fermi velocity and, in the absence of g2, the model describes a system of
free fermions with a velocity vF + g4/(2π).

Just as the kinetic Hamiltonian in Eq. (2.23), the total Hamiltonian is quadratic in
terms of the bosonic fields. This property is absolutely essential, insofar as it guarantees
that it is diagonalizable. This can be done through a Bogoliubov transformation(

ϕR(x)
ϕL(x)

)
=

(
cosh γ sinh γ
sinh γ cosh γ

)(
ϕ+(x)
ϕ−(x)

)
. (2.29)

This is a canonical transformation and preserves the commutation rules of bosonic
fields. By substituting Eq. (2.29) into (2.28), one finds that the condition for the
Hamiltonian HB to be diagonal with respect to the new fields ϕ± is given by

tanh 2γ =
g2

2πvF + g4
→ γ = −1

2
lnK, (2.30)

where we introduced the Luttinger parameter

K =

√
2πvF − g2 + g4
2πvF + g2 + g4

(2.31)

which measures the inteaction strength. Notice that in the case of free fermions one
has K = 1, while for repulsive (attractive) interactions K < 1 (K > 1).

46



2.3. Wen’s hydrodynamical model

The Hamiltonian HB in diagonal form reads

HB =
u′

2

∑
η=±

∫ +L
2

−L
2

dx :
[
∂xϕη(x)

]
: (2.32)

where u′ is a renormalized velocity

u′ =
1

2π

√
(2πvF + g4)2 − g22 (2.33)

which simplifies to u′ = vF /K if g2 = g4. For completeness, we also diagonalize the
zero mode term HN in Eq. (2.27), even if it will be not considered for the forthcoming
analysis. This is achieved by introducing the operators N± = NR ±NL, such that

HN =
πu′

2L

(
1

K
N2

+ +KN2
−

)
. (2.34)

2.3 Wen’s hydrodynamical model

Until now, we have understood how to deal with TLL theory and, subsequently, how
bosonization procedure works. However, throughout this thesis, we will consider the
edge channels of the QH effect. Here, a simpler but equivalent way to understand
the dynamics of the edge excitations is to use the hydrodynamical approach. In this
approach, one use the fact that QH (IQH or FQH) states are incompressible irrota-
tional liquid that contain no low energy bulk excitations. Therefore the only low lying
excitations (below the bulk energy gap) are surface waves of the HQ droplet. These
surface waves are identified as edge excitations of the QH state. This empirical model
was developed by X.G. Wen in 1992 [127]. We will see that it can be mapped onto a
TLL, with the peculiarity that its spectrum is only composed of one branch, instead
of two.

Figure 2.3: A quantum Hall fluid droplet. It undergoes deformations which propagate
along the 1D boundary of the droplet.

In the hydrodynamical approach we first study the classical theory of the surface
wave on the QH droplet. Then we quantize this model to obtain the quantum descrip-
tion of the edge excitations. It is amazing that the simple model obtained from the
classical theory provides a complete description of the edge excitations at low energies.

47



2.3. Wen’s hydrodynamical model

2.3.1 Incompressibility of the QH fluid

Let us consider a QH liquid droplet. It is an incompressible fluid which has a fixed bidi-
mensional electronic density ne. In such a system, excitations are deformation waves
which propagate along the edge in one direction (see Fig. 2.3). Thus the propagation
is both one-dimensional and chiral. Let us note h(x) the height of the deformation.
The linear density along the edge is then defined as ρ(x) = neh(x). Propagation is
finally ruled by the continuity equation

∂tρ− v ∂xρ = 0 (2.35)

with v the propagation velocity of the excitations along the edge. The only contribution
to the Hamiltonian is then the electrostatic term, that is to say the potential times
the total charge

H =
1

2

∫ +L
2

−L
2

dxV (x)eρ(x). (2.36)

When subject to the Hall effect, the electric field of a system is linked to the magnetic
field by the relation

E =
B

ene
J (2.37)

with J the current density. On the edge, one has J = enev, and the previous relation
becomes E = vB. Finally, the energy can be written as

H =
ev

2
B

∫ +L
2

−L
2

dxh(x)ρ(x)

=
1

2

evB

ne

∫ +L
2

−L
2

dx ρ2(x).

(2.38)

This Hamiltonian is quadratic in terms of the electronic density. It is useful to recall the
flux quantum, carried by each electron by surface unit, φ0 = h/e and that the filling
factor ν is defined as the ratio between the electronic density and the flux quanta
density from Eq. (1.7). Consequently, the Hamiltonian can be written using the filling
factor rather than the electronic density, as

H =
1

2

hv

ν

∫ +L
2

−L
2

dx ρ2(x). (2.39)

In the k-space the Hamiltonian reads

H =
1

2

hv

ν

∑
k

ρ(k)ρ(−k) (2.40)

and the continuity relation in Eq. (2.35) becomes

ρ̇(k) = −ivkρ(k). (2.41)

By comparing Eq. (2.41) with the standard Hamiltonian equations

q̇ =
∂H

∂p
ṗ = −∂H

∂q
(2.42)

we find that, if we identify ρ(k > 0) as the generalized coordinate q, the corresponding
canonical momenta can be identified as

p(k) = −i h
νk
ρ(−k). (2.43)
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2.4. Theoretical model for filling factor ν = 2

2.3.2 Quantization

Knowing the generalized coordinates and this canonically conjugate momentum, the
classical theory can be quantized. We simply view ρ(k) and p(k) as canonically con-
jugate operators, which obey the commutation relation[

p(k), ρ(k′)
]
= iδk,k′ . (2.44)

Replacing p(k) by its expression in Eq. (2.43) one gets the Kac-Moody algebra [128]

[
ρ(k), ρ(k′)

]
= −νk

2π
δk,−k′[

H, ρ(k)
]
= vkρ(k),

(2.45)

with k, k′ = s(2π)/L (s ∈ Z). Notice that the second line of Eq. (2.45) is similar
to Eq. (2.21). It is thus licit to apply the bosonization technique, described in Sec-
tion 2.2.2, defining the bosonic field

ϕ(x) =
π√
νL

∑
k

i
e−a|k|/2

k
e−ikxρ(k). (2.46)

Notice that Eq. (2.45) describes a collection of decoupled harmonic oscillators, gener-
ated by

(
ρ(k), ρ(−k)

)
. Thus, this is an one dimensional free phonon theory, with only

a single branch of phonon, and it is exactly solvable providing a complete description
of the low lying edge excitations of the QH state. The low lying charge excitations cor-
respond to adding (removing) electrons to (from) the edge. Those charged excitations
carry integer charges and are created by electron operators ψ†. The operator ψ(x) can
be expressed in terms of ϕ(x) as

ψ(x) =
F√
2πa

e
−i 1√

ν
ϕ(x)

. (2.47)

In order to identify this as an electron operator we need to show that ψ(x) is a fermionic
operator. Using the Kac-Moody algebra (2.45) we find that

ψ(x)ψ(x′) = (−1)
1
νψ(x′)ψ(x). (2.48)

We see that the electron operator ψ(x) is fermionic only when 1/ν = m is an odd
integer in which case the QH state is a Laughlin state [129] described in Section 1.2.
This assumption is not generally true. We have assumed that the incompressible QH
liquid contain only one component of incompressible fluid which leads to one branch
of edge excitations. The above result implies that, when ν ̸= 1/m, the edge theory
with only one branch do not contain fermionic operators and therefore it is not self
consistent. We conclude that QH states with ν ̸= 1/m may contain more than one
branch of edge excitations [127, 129].

2.4 Theoretical model for filling factor ν = 2

Thanks to the results derived in the previous Sections, we are now able to deal with
interactions in the IQH regime. In this Section we present the TLL theory describing
interactions in copropagating chiral channels based on bosonic collective excitations
called Edge-MagnetoPlasmons (EMPs). The system we have in mind is sketched in
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Fig. 2.4, representing the IQH state at filling factor ν = 2 where two copropagating
edge channels are present on each edge. This is useful since the majority of the
EQO experiments have been performed at this filling factor, where, for a given carrier
density, the QH effect is the most stable. In this state, two Landau levels are filled
and, therefore, two channels are present at each edge of the sample. There is only one
possible direction of propagation along the edges, which is determined by the sign of the
applied orthogonal magnetic field B needed to bring the system in the IQH regime.
The copropagating edge channels are spatially separated and we will refer to them
as inner and outer channels. Since these channels are very close, Coulomb interaction
among them is far from being negligible. It has indeed been proven experimentally [15]
that the charges are fractionalized as a consequence of inter-edge coupling. The theory
we are going to present was proposed in Ref. [130, 131, 132].

Figure 2.4: The IQH state at filling factor ν = 2. Two chiral edge channels emerge at
the edges of the sample, their propagation direction is determined by the sign of the
applied magnetic field B. To fix the notation here, we place the right-moving channels
on the upper edge.

2.4.1 The model and its diagonalization

Let us now discuss the model, which is based on the TLL theory discussed above.
For the sake of simplicity, here we will just focus on a single edge: in particular, we
describe the right-moving channels in the upper edge of Fig. 2.4. The starting point
is the linear-dispersion Hamiltonian

H0 =
∑
j=1,2

vj

∫ +L
2

−L
2

dx : ψ†
j(x)(−i∂x)ψj(x) :, (2.49)

where the index j = 1 (j = 2) labels the inner (outer) channel on the edge and ψ is
again the fermionic field operator annihilating an electron at position x on channel j.
Moreover, the velocities vj are assumed to be already renormalized by possible intra-
channel density-density interactions. Next, we consider a density-density short-range
inter-channel interaction term of the form

Hint = 2πu

∫ +L
2

−L
2

dx : ρ1(x)ρ2(x) : (2.50)

where u is the coupling constant between the two channels and

ρj(x) =: ψ†
j(x)ψj(x) : (2.51)
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2.4. Theoretical model for filling factor ν = 2

is the particle density operator on channel j. Notice that, the interaction term is
introduced as a local capacitive coupling, via a Coulomb interaction, of the two edge
channels. For this reason no net charge is transferred between copropagating channels
as well observed in experiments [133].

As discussed in the previous Section (see Eq. (2.10)), bosonic fields ϕj(x) are in-
troduced via the bosonization identity

ψj(x) =
Fj√
2πa

eikF xe−iϕj(x). (2.52)

Bosonic fields can be used to express the particle density operators, which become

ρj(x) =
Nj

L
− 1

2π
∂xϕj(x). (2.53)

If we compare this expression with Eq. (2.20), we notice that here the sign is the same
for both channels j = 1, 2, while a sign difference was present in the former case. This
is because we are now dealing with copropagating channels. This difference is also
reflected in the commutator

[ϕj(x), ϕj′(x
′)] = iπδj,j′sgn(x− x′), (2.54)

where, again, the sign of the r.h.s. is the same for both values of j, unlike in (2.14).
The bosonized version of the full Hamiltonian H = H0 +Hint reads

H =
1

4π

∫ +L
2

−L
2

dx :
{
v1
[
∂xϕ1(x)

]2
+ v2

[
∂xϕ2(x)

]2
+

+ u
[
∂xϕ1(x)∂xϕ2(x) + ∂xϕ2(x)∂xϕ1(x)

]}
:

(2.55)

where the off-diagonal terms are obtained directly by substituting (2.53) into (2.50),
while the diagonal ones follow from the bosonized form (2.22) discussed in the previous
Sections. The Hamiltonian can be straightforwardly diagonalized by the following
transformation (

ϕρ(x)
ϕσ(x)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ϕ1(x)
ϕ2(x)

)
, (2.56)

which introduces two new bosonic fields ϕρ,σ(x) satisfying the commutation relations

[ϕη(x), ϕη′(x
′)] = iπδη,η′sgn(x− x′) (η = ρ, σ). (2.57)

The parameter θ is called the mixing angle and it is determined by the requirement
that the Hamiltonian is diagonal in the basis of the new fields. This leads to the
equation

tan 2θ =
2u

v1 − v2
. (2.58)

The mixing angle ranges in θ ∈ [0, π/4]; in the non-interacting case θ = 0 and
ϕ1,2(x) = ϕρ,σ(x) so the two edge channels do not mix, as expected. On the con-
trary, the maximal mixing is achieved at θ = π/4, which is usually referred to as the
strongly interacting limit and seems to be the relevant case in different experimental
implementations [2, 102, 134]. However, the stability of the model, namely, the request
that both eigenvelocities are positive [135], imposes a constraint on the maximum ad-
missible value of u, therefore, strictly speaking this limit can be properly obtained
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2.4. Theoretical model for filling factor ν = 2

only for v1 = v2 by keeping u fixed [136]. Experimentally, values of θ ranging from
θ ≈ π/6 [133, 137] to π ≈ π/4 [15] have been reported, indicating that this parameter
strongly depends on the specific details of the considered set-ups.

The Hamiltonian in diagonal form reads

H =
1

4π

∑
η=ρ,σ

vη

∫ +L
2

−L
2

dx : [∂xϕη(x)]
2 :, (2.59)

where the renormalized velocities are given by

vρ,σ =
v1 + v2

2
± 1

cos 2θ

(
v1 − v2

2

)
=
v1 + v2

2
± u

sin 2θ

=
1

2

[
v1 + v2 ±

√
(v1 − v2)2 + 4u2

]
.

(2.60)

Here vρ > vσ, so the Hamiltonian (2.59) describes slow and fast bosonic modes, propa-
gating at velocities vσ and vρ respectively. Moreover, from the chirality of the system,
we have the constraint vρ,σ > 0 as all excitations must propagate in the right direction.
This gives the following bound on the inter-channel coupling strength [135]

u ≤
√
v1v2. (2.61)

This relation further strengthen the previous comment about the strongly interacting
limit (θ = π/4): it is a situation which cannot arise from an arbitrarily strong inter-
channel interaction and, for this reason, we prefer to refer to it as maximal mixing.
In the following, for notational convenience and without loss of generality, we will
consider v2 = v and v1 = α′v (with α′ > 1) so that Eq. (2.60) can be rewritten as

vρ/σ = vf ′ρ/σ(α
′, θ) = v

[(
α′ + 1

2

)
± 1

cos(2θ)

(
α′ − 1

2

)]
. (2.62)

2.4.2 Edge-magnetoplasmon scattering matrix

Let us now discuss the physics of two edge channels capacitively coupled along a fi-
nite region of length L. In order to describe this situation, one can proceed as in
Refs. [131, 138, 139], where the edge channels are divided into three parts: a non-
interacting injection region, an interacting propagating region, and a non-interacting
region of detection (see Fig. 2.5). Notice that this separation is not an oversimplifica-
tion of the problem. Indeed, the chirality guarantees that the interacting region can
be made arbitrarily close both to the injection and the detection regions without loss
of generality.

In the incoming region, where no interactions occur (i.e. u = 0), the Hamiltonian
can be written in terms of Wen’s hydrodynamical model

H(1) =
∑
j=1,2

vj
4π

∫ +L
2

−∞
dx
[
∂xϕj,in(x)

]2
. (2.63)

Therefore, the chiral bosonic fields are related to the charge density along each channel
according to the conventional prescription in Eq. (2.53). These bosonic fields propagate
freely according to the equation of motion deduced from Eq. (2.63)

(∂t + vj∂x)ϕj,in(x, t) = 0. (2.64)
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2.4. Theoretical model for filling factor ν = 2

Figure 2.5: Model for a QH edge state at filling factor ν = 2. According to the chirality,
one can identify the incoming (injection) region (1), the interacting region (2) (shaded
area of length L), and the outgoing (detection) region (3). In regions (1) and (3), the
dynamics of the bosonic fields are well described in terms of free equations of motion
(u = 0). Moreover, the outgoing fields, written in the Fourier space (ϕ̃j,out(x, ω) with
j = 1, 2), are connected to the incoming ones (ϕ̃j,in(x, ω)) through the EMP scattering
matrix S(L, ω), which encodes the information of the inter-channel interaction acting
over a length L and at a given frequency (energy) ω.

By moving into Fourier transform with respect to time, they become

(−iω + vj∂x)ϕ̃j,in(x, ω) = 0, (2.65)

with ϕ̃j,in(x, ω) are the field amplitudes in the frequency space defined as

ϕ̃j(x, ω) =

∫ +∞

−∞
dω eiωt ϕj(x, t). (2.66)

In the interacting region, the Hamiltonian is the one in Eq. (2.59). According to
the discussion in Section 2.4.1, the bosonic fields ϕ1/2 are no longer eigenstates of the
Hamiltonian, and the system is diagonalized in terms of two new modes ϕρ/σ. In this
case, the equations of motion are

(∂t + vη∂x)ϕη(x, t) = 0, (2.67)

with η = ρ, σ. Again, by doing a Fourier transform in time, the previous equations
become

(−iω + vη∂x)ϕ̃η(x, ω) = 0. (2.68)

Then, the solution of the equations of motion in this region reads

ϕ̃η(x, ω) = e
i ω
vη

x
ϕ̃η(0, ω) (2.69)

where, following the rotation (2.56), in the frequency space we have

ϕ̃ρ(0, ω) = cos θ ϕ̃1,in(0, ω) + sin θ ϕ̃2,in(0, ω)

ϕ̃σ(0, ω) = − sin θ ϕ̃1,in(0, ω) + cos θ ϕ̃2,in(0, ω)
(2.70)

and the, possibly frequency-dependent, amplitudes are achieved by imposing the con-
tinuity of the fields at x = 0 which is the boundary between regions (1) and (2).

Analogously to what was discussed for region (1), in the outgoing region the
inter-channel interaction is negligible and the equations of motion are written as in
Eq. (2.64). Here, imposing the continuity of the fields at the boundary between regions
(2) and (3) in x = L, we observe that the outgoing field amplitudes are related to the
incoming ones through the relations

ϕ̃1,out(0, ω) = cos θ ϕ̃ρ(0, ω)− sin θ ϕ̃σ(0, ω)

ϕ̃2,out(0, ω) = sin θ ϕ̃ρ(0, ω) + cos θ ϕ̃σ(0, ω).
(2.71)
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According to this analysis and proceeding as in [139], we obtain the EMP scattering
matrix connecting the incoming (injected) and the outgoing (detected) bosonic fields,
namely (

ϕ̃1,out(L, ω)

ϕ̃2,out(L, ω)

)
= S(L, ω)

(
ϕ̃1,in(0, ω)

ϕ̃2,in(0, ω)

)
, (2.72)

with

S(L, ω) =

(
cos2 θeiωτρ + sin2 θeiωτσ sin θ cos θ

(
eiωτρ − eiωτσ

)
sin θ cos θ

(
eiωτρ − eiωτσ

)
sin2 θeiωτρ + cos2 θeiωτσ

)
, (2.73)

having introduced the short-hand notation

τρ,σ =
L

vρ,σ
(2.74)

for the times of flight associated with the propagation velocity of the charge and dipolar
eigenmodes along the interacting region.

2.4.3 Charge fractionalization

A charge fractionalization process is predicted to occur in copropagating channels as
a consequence of the interaction [16, 140, 141]. In order to understand how this comes
from, we recall Eqs. (2.72) and (2.73) of the previous Section. By explicitly writing
the outgoing bosonic fields in terms of the incoming one, in the time domain, we have

ϕ1,out(L, t) = cos2 θ ϕ1,in(0, t− τρ) + sin2 θ ϕ1,in(0, t− τσ)+

+ sin θ cos θ
[
ϕ2,in(0, t− τρ)− ϕ2,in(0, t− τσ)

]
ϕ2,out(L, t) = sin θ cos θ

[
ϕ1,in(0, t− τρ)− ϕ1,in(0, t− τσ)

]
+

+ sin2 θ ϕ2,in(0, t− τρ) + cos2 θ ϕ2,in(0, t− τσ).

(2.75)

In order to visualize the charge fractionalization, consider now an electron injected
only in the inner channel 1. The outgoing fields are then rewritten as

ϕ1,out(L, t) = cos2 θ ϕ1,in(0, t− τρ) + sin2 θ ϕ1,in(0, t− τσ)

ϕ2,out(L, t) = sin θ cos θ
[
ϕ1,in(0, t− τρ)− ϕ1,in(0, t− τσ)

]
.

(2.76)

From these equations it is clear that, as a result of the interaction between the edge
channels, two new different bosonic excitations propagate at different velocities on
both the outer and the inner channel. They carry a fraction of the initial electron
charge, which can be read directly from Eq. (2.76)

f1,ρ = cos2 θ f1,σ = sin2 θ,

f2,ρ =
sin 2θ

2
f2,σ = −sin 2θ

2
.

(2.77)

Here, fj,η denotes the fraction carried by the excitation propagating at velocity vη on
channel j. The above equations correctly reproduce the non-interacting limit when
θ = 0, in which case we have f1,ρ = 1 and f1,σ = f2,ρ/σ = 0, as expected because the
channels are decoupled. It is worth noting that f1,σ + f1,ρ = 1 for every value of the
mixing angle. This is of course due to charge conservation, because these excitations
originate from the electron injected at x = x0. Likewise, f2,ρ = −f2,σ, meaning that no
net charge is transferred from the outer to the inner channel. Indeed, the two channels
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2.5. Dissipative effects in integer quantum Hall edge channels

Figure 2.6: Charge fractionalization in copropagating channels for maximal coupling
θ = π/4. An electron injected into the inner channel at position x0 splits into fractional
excitations, propagating in the same direction (due to the chirality of the system) but
with different velocities.

are capacitively coupled via Coulomb interactions, which cannot lead to a variation of
the particle number on each channel.

We also note that at maximal mixing (θ = π/4) the injected electron splits into
two identical excitations as the fractionalization factors for the inner channel reduce
to f1,ρ = f1,σ = 1/2. Moreover, the situation is the same also on the outer chan-
nel: f2,ρ/σ = ±1/2. As a consequence, the mode made of the two fast excitations
(those propagating with velocity vρ) has exactly the same charge as the injected elec-
tron, while the slow mode (made of the two excitations propagating at vσ) carries no
charge. This is why in the literature it is common to encounter the terms charged and
neutral modes [15], or dipolar if the coupling is not maximal, associated with fraction-
alization in integer quantum Hall channels: they refer precisely at the scenario depicted
in Fig. 2.6 at the mixing angle θ = π/4. Last, but not least, evidence for the pres-
ence of fractional charges in copropagating quantum Hall channels has been recently
reported by different groups [15, 134, 137, 142], demonstrating that the LL theory
for copropagating quantum Hall edge states is successful in explaining experimental
results [143].

2.5 Dissipative effects in integer quantum Hall edge chan-
nels

As stated in the first Chapter, the 1D, chiral edge channels of the QH effect are
a promising platform in which to implement EQO experiments. In Section 2.4, we
have dealed with interactions for a QH sample with filling factor ν = 2 through a
bosonization approach. However, interactions between the two edge channels and
the external environment have been shown to lead to decoherence as well as energy
relaxation [131, 138, 144] for the injected particle. Such dissipation effects are crucial
in order to properly describe both the dynamics of integer QH states [145] and the
evolution of the peak height of energy-resolved wave-packets injected into them [133].
Remarkably enough, the predicted functional form of the dissipation as a function of
the energy seems to depend on the considered set-up. Therefore, the subject of the
dominant microscopic dissipation processes at different propagation lengths is still an
open issue and a more detailed analysis is needed in order to improve our understanding
of this topic.

In this Section, we want to tackle this subject and to do so we refer to Ref. [146].
Assuming a phenomenological approach, we start from the hydrodynamic model, pre-
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2.5. Dissipative effects in integer quantum Hall edge channels

viously introduced, where the two edge channels are capacitively coupled through a
short-range interaction. In addition, we compare two possible phenomenological dis-
sipation regimes: an ohmic dissipation linear in the injection energy of the electronic
wave-packet and a quadratic dissipation. We observe that the linear dependence pro-
vides the best fit for the experimental data of the evolution of the experimental peak
height at small enough propagation lengths [133]. Conversely, at greater propagation
lengths, a dissipation quadratic in the injection energy dominates [145].

2.5.1 Dissipative effects on the elastic scattering amplitude

Experimental observations [133, 145] suggest a relevant role played by energy dissi-
pation towards additional degrees of freedom in the transport along QH edge chan-
nels. The simplest way to phenomenologically include this effect is by adding a real
frequency-dependent energy loss rate γ(ω) (assumed here to be equal for both channels
for the sake of simplicity) at the level of the equations of motion in the interacting
region (see Eq. (2.68)). According to this, they become(

− iωγ(ω) + vη∂x
)
ϕ̃η(x, ω) = 0. (2.78)

Due to this additional contribution, the solution of the equations of motion acquires a
frequency-dependent damping

ϕ̃η(x, ω) = e
i[ω+iγ(ω)] x

vη ϕ̃η(0, ω) (2.79)

and, consequently, the dissipative effects are taken into account in the scattering matrix
of Eq. 2.73 by substituting ω → (ω+ iγ(ω)). In the following we will focus only on the
top left entry of the scattering matrix in Eq. (2.73), which represents the amplitude
probability for the EMP to be transmitted along the first channel (assumed as the
injection/detection channel), namely

t(ω) = cos2 θei[ω+iγ(ω)]τρ + sin2 θei[ω+iγ(ω)]τσ . (2.80)

Moreover, we will analyze three possible behaviours for γ(ω): a non-dissipative case
γ = 0 (discussed in Section 2.4.3), a linear dissipation case γ(ω) = γ1ω (γ1 real adi-
mensional parameter) [135], and a dissipation quadratic in the energy γ(ω) = γ2ω

2 (γ2
real parameter with the dimension of a time) [145]. Notice that this additional dis-
sipation parameter can be phenomenologically accounted for by adding an imaginary
term to the EMP velocities [147].

In order to catch the effects of dissipation on the evolution of the peak height of
energy-resolved electronic wave-packets propagating along the two QH edge channels,
we study the elastic scattering amplitude for the fermionic excitations evaluated at
different injection energies. As we will show later, our theoretical results [146] are
compared to the experimental data of Ref. [133].

As discussed in Ref. [144], assuming a very peaked (ideally δ-like) injected wave-
packet in energy, the relative height of this peak as a function of the energy is given,
at zero temperature, by

V(ε) = |Z(ε)|2

|Z(0)|2
(2.81)

with

Z(ε) =

∫ +∞

−∞
dτ eiετexp

{∫ +∞

0

dω

ω

[
t(ω)e−iωτ − 1

]
e−ω/ωc

}
(2.82)
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which is the elastic scattering amplitude (see Appendix B for more details of the
calculation). The converging factor ωc, corresponding to the greatest energy scale in
the systems, is sent to ωc → +∞ for our purposes.

Figure 2.7: Relative peak height as a function of the injection energy (measured in µeV)
for two samples of different lengths: L = 0.75µm (left panel) and L = 0.48µm (right
panel). The non-dissipative case (green dash-dotted curve); the linear dissipative case
(blue full curve) with γ1 = 0.13 for the left panel and γ1 = 0.43 for the right panel;
quadratic dissipation with γ2ε0 = 0.03 for both panels (red dotted curve) and with
γ2ε0 = 0.13 for the left panel and γ2ε0 = 0.23 for the right one (bronze dashed curve).
Recalling Eq. (2.62), other parameters are: α′ = 2.1, v = 4 × 104m/s and θ = 0.17π
(left panel) and α′ = 1.6, v = 5 × 104m/s and θ = 0.16π (right panel). Light-blue
diamonds indicate the experimental data taken from Ref. [133].

In Fig. 2.7, we show the relative peak height V(ε) versus the injection energy ε
for two different cases corresponding to experimental length, such that L < 1µm,
and for various possible dissipations behaviors. The analytical expressions for V are
given in Appendix B. In both panels, the parameters for the three different dissipative
regimes are fixed in order to compare the theoretical expressions with the experimental
data (light-blue diamonds). In absence of energy losses towards external degrees of
freedom (γ(ω) = 0 and dash-dotted green line), the curve stays above the experimental
data due to the absence of exponential overall decay. The observed behavior is better
explained through a linear dissipation model (γ(ω) = γ1ω and blue full line). The
quadratic dissipation cases considered strongly deviate from the experimental situation
because the decay of the relative peak height is more pronounced than the linear one.
The discrepancy with the experimental data is more evident for strong dissipation
(brown dashed curve) than with weak dissipation (red dotted line). It is interesting
to notice that for small values of ε both the two dissipation behavior approach the
data. According to these observations, the linear dissipation model can be considered
as the best candidate for describing the experimental data, at least in this case of
relatively short propagation lengths L < 1µm. It is worth remarking that different
experiments [145] carried out in a regime of longer propagation lengths L > 3µm
require a quadratic dissipation to properly reconcile theory and experiments.
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Chapter 3

Collisional interferometry of
levitons in interacting quantum
Hall edge channels

In this Chapter, we study a HOM interferometer for Lorentzian voltage pulses applied
to quantum Hall edge channels in the IQH regime at filling factor ν = 2, in the
presence of interactions between the two edge channels. Based on what discussed
in Sec. 2.4.3, we expect that the injected electronic wavepackets fractionalize before
partitioning at a QPC. Remarkably enough, differently from what was theoretically
predicted and experimentally observed by using other injection techniques [108, 134,
148], we demonstrate that when the injection occurs through time-dependent voltage
pulses arbitrarily shaped, the HOM noise signal always vanishes for a symmetric device
and that a mismatch in the distances between the injectors and the point of collision
is needed to reduce the visibility of the dip. Finally, we also show that by properly
tuning these distances or by applying different voltages on the two edge channels in
each arm of the interferometer, it is possible to estimate the intensity of the interedge
interaction. The material presented in this Chapter includes our original findings
discussed in Ref. [149].

3.1 Context

As introduced in the previous Chapter, the EQO experiments are mainly carried out
in QH edge channels at filling factor ν = 2 (or higher), where interchannel inter-
actions cannot be neglected [15]. The effect of electron-electron interaction emerges
dramatically in HOM experiments realized with a driven mesoscopic capacitor in the
nonadiabatic regime [107, 150, 151], where the visibility of the predicted dip in the au-
tocorrelated noise as a function of the injection delay, a signature of the antibunching
of electrons (see Section 1.6.4), is strongly reduced [108, 134, 148].

In Ref. [148], A. Marguerite and coworkers have used the HOM experiment to
analyze quantitatively the decoherence of a single electron along its propagation within
the outer edge channel of the IQH sample at filling factor ν = 2 and to demonstrate
how EQO techniques provide a powerful probe to investigate strong interaction effects
in ballistic conductors. Following the experimental set-up in Fig. 3.1(a) two mesoscopic
capacitors are used for the injection of controlled electrons into the channels. Both
sources are approximately equally distant from the QPC (L ≈ 3µm).
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Figure 3.1: (a) HOM interferometry: modified scanning electronic microscope picture
of the sample. The 2DEG is represented in blue, the edge channels by blue (outer
channel) and green (inner channel) lines, metallic gates are in gold. The emitters
inject particles in channels 1 and 2. (b) HOM experiment: HOM noise signal ∆q as a
function of the time delay between the sources τ for three values of the emission time
τe. With respect to Chapter 1, we have that the time delay τ = δ and the emission
time τe = γ/2. Figures taken from [148].

Figure 3.1(b) presents the HOM noise for three values of the source emission time
which sets the temporal size of the emitted wavepackets (see Eq. (1.20)). A dip is
observed for three curves around syncronized emission (i.e. τ = 0), revealing the
reduction of random partition noise by two electron interferences. Moreover, the width
of the dip increases by increasing the escape time corresponding to progressively wider
wavepackets. Surprisingly, none of the dips reaches the full suppression showing the
failure of the free electron picture based on the collision of perfectly indistinguishable
wavepackets (see Setion 1.6.4).

Several possibilities could have been envisioned in order to explain the reduction
in the dip’s minimum. A first hypothesis is that the emission of undistinguishable
electrons is prevented by differences between the two sources, either from sample con-
struction or related to environmental noise leading to random fluctuations in the energy
at which electrons are emitted [152]. In a second hypothesis, the contrast reduction
could be related to an energy dependence of the beamsplitter reflection [153]. However,
authors identify the inter-channel Coulomb interaction as the dominant source of such
reduction. Indeed, Coulomb interaction leads to decoherence [108, 138] along propa-
gation as the quasiparticle gets entangled with the neighboring edge channel acting as
an external environment [134], this effect allows to properly explain the experimental
HOM traces.

An alternative protocol for the injection of electrons consists of the application
of a train of well-designed time-dependent voltage pulses as we have introduced in
Sec. 1.4.2. Some theoretical works have addressed the case of injection at ν = 2 via
voltage pulses, focusing on the evolution of excitations due to interactions on the HBT
noise signal [102, 138, 154, 155]. However the following is the first detailed theoretical
analysis of collisional HOM setups for voltage pulses and in particular for Levitons in
QH edge channels at ν = 2. This analysis will be relevant for the interpretation of
forthcoming experiments.
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3.2 Model of the system

For our purpose, we consider a QH bar at filling factor ν = 2. The two copropagating
edge channels are assumed to interact along a region of finite length L via a screened (δ-
like) Coulomb repulsion (see Section 2.4.1) which correctly reproduces the experimental
observations at low enough energies [15, 142, 143]. The system is described according
to the TLL model for copropagating channels presented in Chapter 2. We recall that
the kinetic and the interaction contributions to the total Hamiltonian density are
written as

H0 =
∑
i=1,2

vi
4π

[
∂xϕi(x)

]2 (3.1)

Hint =
u

2π

[
∂xϕ1(x)

][
∂xϕ2(x)

]
, (3.2)

where the index i = 1, 2 labels inner and outer channels respectively (see Fig. 3.2)
while the bosonic fields ϕ are related to the particle density through Eq. (2.53) and
obey the statistics in Eq. (2.54).

Figure 3.2: Schematic view of QH channels at integer filling factor ν = 2. The shaded
red area represents the interaction region, which has a finite length L and is described
by the scattering matrix S(L, ω). (a) After passing this region, the incoming bosonic
fields ϕ̃1,2(0, ω) are transformed into the outgoing ones ϕ̃1,2(L, ω). (b) The input
voltages V in

1/2 are applied to the edge channels. Due to interactions, the excitations
emerging after the propagation from x = 0 to x = L are equivalent to those that would
be generated by the output voltages V out

1/2 applied to the channels directly at the end
of the interaction region. These output voltages are related to the incoming ones by
Eq. (3.6).

The full interacting problem can be diagonalized through a rotation in the bosonic
field space by the angle θ, introduced in Sec. 2.4.1, which is related to the velocities
of the two edge channels and to the intensity of the coupling through Eq. (2.58). We
remind that this parameter encodes the interaction strength, θ = 0 being the non-
interacting limit and θ = π/4 representing the strong interacting regime. The rotation
of Eq. (2.56) leads to two new bosonic fields ϕρ and ϕσ in terms of which the full
diagonalized Hamiltonian density becomes

H =
∑
β=ρ,σ

vβ
4π

[
∂xϕβ(x)

]2
. (3.3)

This new fields are associated to the two new collective modes, known as EMP, pre-
sented in Sec. 2.4.3: a slow dipolar and a fast charge mode propagating, respectively,
with velocities vσ and vρ related to the previous v1/2 through Eq. (2.62).
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Recalling Section 2.4.2 and looking to Fig. 3.2(a), the fields outgoing from the
interacting region L are related to the incoming ones through the EMP scattering
matrix S(L, ω) of Eq. (2.73).

Following Refs. [13, 105, 106] and referring to Sec. 1.4.2, we can consider an electron
source modeled as an ohmic contact coupling each channel to a time-dependent voltage
source and allowing us to control the injection of electrons through voltages V1,in(t)
and V2,in(t) applied to the inner and the outer channels, respectively, according to the
conventional coupling Hamiltonian

HU = −e
∫
ρi(x)U1,in(x, t) dx (3.4)

where i = 1(2) labels the inner (outer) channel and −e (e > 0) is the electron charge
and Ui,in(x, t) describes the effect of the voltage source connected to the channels.
We write it as Ui,in(x, t) = Θ(−x)Vi,in(t), where Vi,in(t) is the time-dependent voltage
of the source and the Heaviside step function Θ(−x) specifies the region where this
potential is applied [156, 157].

This classical potential, coupled to the charge density along the edge according to
the above equation, can then be seen as an external classical forcing for a quantum
harmonic oscillator leading to the generation of a coherent state of the EMPs along
the edge channels. The displacement parameter associated to this coherent state is
derived by solving the equations of motion for the bosonic fields (considering the
complete Hamiltonian H + HU ) and is proportional to the Fourier transform of the
voltages Ṽi,in(ω) [102, 158]. In the frequency domain, the interacting region acts as
a beamsplitter for this coherent state through the EMP scattering matrix S(L, ω) in
exactly the same way as for the bosonic modes in absence of voltage, namely,(

Ṽ1,out(ω)

Ṽ2,out(ω)

)
= S(L, ω)

(
Ṽ1,in(ω)

Ṽ2,in(ω)

)
. (3.5)

In the time domain (see Fig. 3.2(b)) this leads to

V1,out(t) = cos2 θ V1,in(t− τρ) + sin2 θ V1,in(t− τσ)

+ sin θ cos θ[V2,in(t− τρ)− V2,in(t− τσ)]

V2,out(t) = sin θ cos θ[V1,in(t− τρ)− V1,in(t− τσ)]

+ sin2 θ V2,in(t− τρ) + cos2 θ V2,in(t− τσ)

(3.6)

clearly showing that, at the end of the interaction region, the two incoming voltages
are mixed. We remind that τρ/σ = L/vρ/σ are the times of flight associated with fast
and slow modes, respectively.

3.3 General aspects of HOM interferometry

In this Section we will extend the mathematical analysis anticipated in Sec. 1.6.2 for
the electronic HOM interferometer. For this reason, some definitions, as the ones for
the correlators (Eq. (1.96)) or for the coefficients (Eq. (1.105)) will be recalled for
sake of clarity since we now consider the effects of interaction in a HOM experiment
where electronic wave-packets, generated by means of applied voltage pulses, collide
at a QPC with a controlled delay in time.

Fig. 3.3 shows the HOM interferometer. Here, excitations emitted by the voltage
sources A and B fractionalize when going through the interacting regions and are then
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3.3. General aspects of HOM interferometry

Figure 3.3: Schematic view of the HOM interferometer. Two pairs of copropagating
and interacting edge states, on opposite sides of a QH bar, meet at a QPC. The
electron sources A and B are modeled as ohmic contacts which are used to drive each
edge with time-dependent voltages (here VA/B(t) is a compact notation to indicate
V

A/B
1/2,in(t), which are the voltages shown in Fig. 3.2(b) and that are mixed by the

interaction region indicated with the shaded red area). A detector D is placed just
after the QPC to measure current correlations. Notice that the region of the QPC is
brighter to indicate the fact that here the electron-electron interaction is screened.

partitioned at a QPC. For the moment, we assume that the injection only occurs into
the inner channels of each edge, postponing the analysis of a more general case to
Sec. 3.5. Therefore we set V A/B

2,in (t) = 0, where the notation now takes into account the
fact that one can apply a voltage both to the A and the B source. It is worth noting
that, as far as QH edge states in the integer regime are concerned, the different edge
channels can be addressed independently by means of additional upstream QPCs [159,
18] or quantum dots with high transparency [145]. Moreover, we assume that the
partitioning at the QPC involves the inner channels only, which we label as 1A (right-
moving) and 1B (left-moving), related to the incoming fermionic fields ψ1A,I and ψ1B,I

that are evaluated immediately before the QPC. Such a situation can be implemented
by properly tuning the QPC transparency in such a way that the outer channels are
completely transmitted, while the inner ones are also partially reflected [108, 145, 148].
Thus, the brighter region of the QPC (see Fig. 3.3) is not included in the interacting
region and fermions are locally free at this location. According to this and assuming
a local tunneling, the free fermionic fields, outgoing from the QPC, are related to the
incoming ones through a scattering matrix (similarly to Eq. (1.90)) as(

ψ1A(t)
ψ1B(t)

)
O

=

(√
R i

√
T

i
√
T

√
R

)(
ψ1A(t)
ψ1B(t)

)
I

(3.7)

where we recall T and R = 1−T are positive real parameters describing the probability
for a particle to be transmitted or reflected, respectively. This scattering approach for
fermionic fields is justified, in our specific case of interacting channels at ν = 2, as long
as both the inter-edge interaction and the tunneling are local (see for example Supple-
mentary Material of Ref. [108]). According to the chirality and locality of the coupling
we can consider the interaction region extending from just after the injection point to
just before the QPC [131, 138, 139]. This mathematical description is physically moti-
vated by the fact that both the contacts used to apply the voltage and the gates that

62



3.3. General aspects of HOM interferometry

realize the QPC locally enhance the screening of the interaction, that can be therefore
assumed as negligible in these two regions. This theoretical approach already showed
a very good agreement with the experimental observation for HOM interferometers
realized using driven mesoscopic capacitors as single electron sources [15, 148].

Following what is usually investigated in EQO experiments, we focus our attention
on the zero-frequency auto-correlated noise SHOM evaluated just after the QPC. From
Eq. (1.52), this quantity is defined as [74, 79]

SHOM =

∫ [
⟨ID(t)ID(t′)⟩ − ⟨ID(t)⟩ ⟨ID(t′)⟩

]
dtdt′, (3.8)

where ID(t) is the total current arriving at the detector D (see Fig. 3.3) and it is
composed of the currents flowing in the channels 2A and 1B:

ID(t) = I2A(t) + I1B(t) . (3.9)

The current operator on a given channel j = 2A, 1B reads

Ij(t) = −evF : ψ†
j(t)ψj(t) : , (3.10)

where : · · · : denotes the normal ordering with respect to the Fermi sea and fermionic
fields are evaluated at the level of the detector D.

In full generality, the HOM noise can be expressed as

SHOM = S2A,2A + S2A,1B + S1B,2A + S1B,1B , (3.11)

where (i, j = 2A, 1B)

Sij =

∫ [
⟨Ii(t)Ij(t′)⟩ − ⟨Ii(t)⟩ ⟨Ij(t′)⟩

]
dtdt′ . (3.12)

The notation SHOM is chosen to emphasize that we are dealing with the zero-
frequency noise in the HOM configuration, i.e. when both sources are on. We note that
in Eq. (3.11) the first contribution S2A,2A consists only of the current auto-correlations
of the totally transmitted external channel but this does not affect the measurements
because its contribution is zero. Also the terms S2A,1B and S1B,2A do not contribute,
due to the fact that averages involving current operators in different channels factorize
because no interaction occurs at the level of the QPC. Therefore, the only relevant
contribution in Eq. (3.11) is S1B,1B which involves terms referring to both inner chan-
nels. This is because, according to Eq. (3.7), the fermionic field ψ1B,O at the output
of the QPC is expressed in terms of both incoming fields ψ1A,I and ψ1B,I. In order to
simplify the notation, in the following discussion we will refer to the inner channels
1A and 1B just as A and B.

By using Eqs. (3.7) and (3.8) we can express the total noise SHOM as [103]

SHOM = −(evF )
2 RT

∫
∆Q(t, t′)dtdt′ (3.13)

where

∆Q(t, t′) =∆G(e)
A (t′, t)∆G(h)

B (t′, t) + ∆G(h)
A (t′, t)∆G(e)

B (t′, t)

+∆G(e)
A (t′, t)G(h)

F,B(t
′, t) + ∆G(h)

A (t′, t)G(e)
F,B(t

′, t)

+G(e)
F,A(t

′, t)∆G(h)
B (t′, t) + G(h)

F,A(t
′, t)∆G(e)

B (t′, t).

(3.14)
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In Eq. (3.14), ∆G(e/h)
A/B are the non-equilibrium excess first order coherence functions [160,

161, 162] for electrons and holes

∆G(e/h)
A/B (t′, t) = G(e/h)

A/B (t′, t)− G(e/h)
F,A/B(t

′ − t) , (3.15)

where the correlators G(e/h)
A/B , already defined in Eq. (1.96), are evaluated over the non-

equilibrium state induced by the voltage injection, whereas G(e/h)
F,A/B are the correlation

functions for the equilibrium states (i.e. when no drive is applied) and are evaluated
over the Fermi sea. The channel label (A/B) will be dropped in the following when
referring to the equilibrium correlation functions, as they are assumed identical for
both channels. The effect of the external voltage drive can be properly taken into
account with a phase factor [102, 103], see Eq. (1.36), in such a way that Eq. (3.15) is
rewritten as

∆G(e/h)
A/B (t′, t) = G(e/h)

F (t′ − t)
(
e∓iφA/B(t,t′) − 1

)
(3.16)

where

φA/B(t, t
′) = e

∫ t

t′
V

A/B
1,out (τ)dτ (3.17)

is the phase contribution due to the time dependent voltage, carrying information
about interaction effects according to Eq. (3.6). It is worth noting that, limited to the
injection through voltage and under the assumption of local interaction acting over a
finite length, the coherence functions can be written as the free fermionic ones times
phase factors encoding the effect of the applied voltage and the interaction. Therefore,
our system can be mapped onto a free fermion problem subject to a modified voltage
which takes into account the fractionalization effects [102]. Incidentally this fact can
be seen as a further validation of Eq. (3.7).

By replacing Eq. (3.16) into Eq. (3.14), the correlation function ∆Q(t, t′) can be
expressed as

∆Q(t, t′) = 2G(e)
F (t′ − t)G(h)

F (t′ − t)
[
1− cos(φA(t, t

′)− φB(t, t
′))
]
. (3.18)

If one of the two sources is switched off, the above formula simplifies and the HBT
noise associated with the partitioning of excitations incoming only in one arm of the
interferometer is recovered (i = A,B) [103]:

SHBT,i = −2(evF )
2 RT

∫
dt dt′G(e)

F (t′ − t)G(h)
F (t′ − t)

[
1− cos(φi(t, t

′))
]
. (3.19)

In the following, according to what is usually done in conventional HOM experi-
ments with voltage pulses [13, 106], we consider the two sources A and B to be driven
by identical signals apart from a controlled time delay δ, namely

V B
1,in(t) = V A

1,in(t+ δ). (3.20)

An important consequence arises when we consider the interaction strengths and the
distances between the sources and the QPC to be equal in both arms of the interferom-
eter (symmetric configuration with θA = θB = θ and LA = LB = L). In this case, the
voltages V A/B

1,out after the interacting regions are the same for both arms. This can be
easily seen from Eq. (3.6) where it is clear how these voltages depend on the interaction
strength θ and on the interaction length L (via the times of flight τρ/σ). As a result,
at zero injection delay δ = 0 one has φA(t, t

′) = φB(t, t
′), leading to ∆Q(t, t′) = 0.
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3.4. HOM interferometry for Levitons

Therefore we arrive at the consequence that, even in the presence of interactions, the
HOM noise in a symmetric configuration always vanishes for a synchronized emission
in the two incoming channels (δ = 0), regardless of the particular form of the signal
used for the time-dependent voltage injection. Notice that these considerations still
hold also in the case of a long-range interaction [102, 134, 154] as long as it preserves
the symmetry of the set-up.

The injection via the mesoscopic capacitor occurs at a well defined energy above
the Fermi level and it has been shown [138] that in this case the emitted wave-packets
undergo a relaxation towards low-energy degrees of freedom before the process of
fractionalization takes place. On the contrary, voltage-generated excitations are robust
in this respect, as the energy relaxation does not occur for them [138, 154] and they
are only affected by the fractionalization process during their propagation through the
interacting region.

This qualitative difference is consistent with our results, showing that the excita-
tions injected via voltage pulses are robust and do not display any suppression of the
HOM dip at zero delay.

We recall that the standard experimental procedure consists in normalizing the
measured HOM signal with respect to the HBT ones [15], thus defining the ratio

R(δ) =
SHOM(δ)

SHBT,A + SHBT,B
, (3.21)

where we have taken into account the fact that the HOM noise contribution is the
only one which depends on the time delay δ. The noise in Eq. (3.13) can be rewritten
in terms of the average time t̄ = (t + t′)/2 and of the time difference τ = t − t′ as
(adapting the definition to the case of a periodic drive [105])

SHOM = −(evF )
2RT

∫ +T
2

−T
2

dt̄

T

∫ +∞

−∞
dτ∆Q

(
t̄+

τ

2
, t̄− τ

2

)
. (3.22)

These integrals are performed analytically in Appendix C by introducing the Fourier
decomposition of Eq. (1.104) and by using the definition of the period in Eq. (1.100).

By using this approach, the ratio (3.21) can be written as

R(δ) =

+∞∑
l=−∞

|Pl(q; δ)|2|Ωl|
|p̃l,A(q)|2|Ω(l + q)|+ |p̃l,B(q)|2|Ω(l + q)|

, (3.23)

where p̃l,A/B(q) and Pl(q; δ) are new photoassisted coefficients defined in Appendix C
(Eqs. (C.4) and (C.8)) and they can be expressed as functions of amplitudes pl intro-
duced in Eq. (1.105). They are related to the phases φA −φB and φA/B, respectively,
and fully take into account the effects of interactions. It is worth noting that Eq. (3.23)
together with the following results is obtained in the zero temperature limit, thermal
corrections being marginal in realistic experimental conditions [13, 15, 106, 148].

In the next Section, we specify the above general analysis to the case of Lorentzian
pulses (see Sec. 1.4.2) considering symmetric and asymmetric configurations. Both
of them are analyzed by relying on the general expression (3.23), where the proper
photoassisted coefficients (see Eq. (C.6)) will be used.

3.4 HOM interferometry for Levitons

In the previous Section, we have proved that the excess noise in a symmetric HOM
configuration, is always zero for simultaneous injection from the the sources, indepen-
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dently of the shape of the voltage and of the interactions occurring along the channels.
Here, recalling Sec. 1.4.2, we will focus on the injection of a periodic train of Levitons [8,
10, 13]. Then, the injected voltage pulse assumes the form

V A
1,in(t) ≡ V (t) = −2q

e

∑
j∈Z

τ0
τ20 + (t− jT )2

, (3.24)

with q ∈ N. When q = 1, one electron per period T is emitted. In Eq. (3.24) τ0
represents the width in time of each Lorentzian pulse of the periodic train.

3.4.1 Symmetric setup

In this Section we analyze what happens to the noise ratio R, in Eq. (3.23), when
identical Lorentzian voltage pulses with unitary charge (q = 1) are applied to both
contacts. We consider a symmetrical configuration for the interferometer, meaning
that the lengths of the two interacting regions are equal (LA = LB = L), as well as
the inter-edge interaction strength (θA = θB = θ) in the two incoming channels. It is
worth noticing that in this situation the photoassisted coefficients p̃l,A(q) and p̃l,B(q)
entering in Eq. (3.23) are equal.

Due to interactions, as the time delay δ between the right and the left moving
electrons is varied, we find three characteristic features in the noise profile (see Fig. 3.4).
At δ = 0 a central dip appears while two symmetrical side-dips emerge at positions
δsd = ±|τρ−τσ|. The shape of these three dips is Lorentzian reflecting the overall form
of the applied voltage pulses, while their width depends on the timescale τ0. According
to this the dips are more pronounced for a smaller ratio τ0/T .

This interference pattern is interpreted in terms of the different excitations emerg-
ing after the interacting region. Indeed, after the injection, the electronic wave-packet
fractionalizes into a slow and a fast mode carrying different charges. According to
Eq. (3.18), the central dip, which corresponds to the situation of simultaneous in-
jection from the two sources, goes exactly to zero because these identical excitations
interfere destructively. This is in striking contrast with what has been observed in a
HOM experiment at ν = 2 where the injection was achieved by means of driven meso-
scopic capacitors [15, 148], where the visibility of the central dip is always reduced (see
Fig. 3.1) by interactions [108].

The destructive interference is also responsible for the side-dip structures appearing
when fractionalized excitations with different velocities collide (see Fig. 3.4). For
instance, at a delay δsd = τσ − τρ the fast right moving excitation and the slow left
moving one reach the QPC at the same time. Furthermore, Fig. 3.4 also shows as a
reference the behavior of the noise ratio in absence of interactions (θ = 0) which always
reaches zero (at δ = 0) but does not show any side dip because no fractionalization
occurs in this case. Our numerical curve (black) perfectly coincide with the theoretical
analytical formula (gray dots) derived for the HOM noise ratio R of colliding Levitons
with unitary charge in the absence of interactions (θ = 0) [105, 156]

R0(δ) =
sin2

(
π δ
T
)

sinh2
(
2π τ0

T
)
+ sin2

(
π δ
T
) . (3.25)

We have used this reference result as a check for the validity of our numerical calcula-
tions.

In view of possible future experimental validations of our theoretical analysis, the
plots of R as a function of δ/T for different values of θ have been obtained by fixing
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the ratio between the pulse width and the period to be τ0/T = 0.05, compatible with
state of the art experiments carried out in narrow constrictions [13, 106], while the
time of flight of both slow and fast modes are of the order of 10÷ 100 ps, interaction
lengths are L ∼ µm and velocities are vρ/σ ∼ 104÷105m/s. This makes our prediction
observable in nowadays EQO experiments.

Figure 3.4: Ratio R in Eq. (3.23), for Lorentzian pulses, as a function of time delay
over period (δ/T ) for a symmetric setup. The HOM noise generated by the collision
of periodical trains of Lorentzian pulses is shown for different interaction parameters:
θ = 0 (black curve), θ = π/6 (blue curve) and θ = π/4 (red curve). Gray dots represent
the analytical prediction in Eq. (3.25) for the non-interacting case. Other parameters
are: τ0/T = 0.05, vρ = 4 · 105m/s and vσ = 1.8 · 105m/s, with LA = LB = 2µm.
Notice that the positions of side dips occur at δsd = ±|τρ − τσ| (gray dotted vertical
lines).

3.4.2 Asymmetric setup

We now examine the HOM noise ratio in Eq. (3.23) for an asymmetric configuration
where the distances between the injection contacts and the QPC are different (LA ̸=
LB), still assuming the same inter-edge interaction on both arms (θA = θB = θ). Notice
that our general result in Eq. (3.23) can be directly used also to investigate the case
θA ̸= θB even if this condition is more difficult to be controlled experimentally. We did
not include this situation in the paper in order to keep the discussion more focused. In
any case, we expect different interaction strengths to give a similar qualitative behavior
as the presence of different lengths.

Differently from the symmetric case, when LA ̸= LB the photoassisted coefficients
in Eq. (3.23) are no longer equal (p̃l,A ̸= p̃l,B) because of the different interaction
lengths. A new scenario thus emerges in this case as now the right-moving modes and
the left-moving ones do not have the same times of flight even if they have the same
velocities due to the same interaction strengths. For this reason we denote the times
of flight of right-moving modes as τAρ,σ = LA/vρ,σ and those of the left-moving ones as
τBρ,σ = LB/vρ,σ.
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Figure 3.5: Ratio R in Eq. (3.23), for Lorentzian pulses, as a function of time delay
over period (δ/T ) for an asymmetric setup. In the upper panel, the two curves refer
to the strong coupling regime (θ = π/4) for two different length ratios: LB/LA = 1.2
(red curve), LB/LA = 1.5 (blue curve). In the lower one, the curves refer to the
noninteracting case (θ = 0) for the same length ratios as before (red and blue). It is
worth noticing that, if no interaction occurs, the ratio R goes to zero and the positions
of the minima depend on both the length ratios and the velocity propagation of the
free fermions along the channel of the injection (here assumed to be v1 = vρ). Other
parameters are τ0/T = 0.05, vρ = 4 · 105m/s and vσ = 1.8 · 105m/s, with LA = 2µm.
Notice that the positions of the central dip are indicated, respectively, by the red and
blue dashed vertical lines.

As before, we consider the noise ratio R as a function of the time delay δ focusing
on the strong coupling regime (θ = π/4) and considering different values of the length
ratio LB/LA. From Fig. 3.5 (upper panel) one can outline that the three dips described
before are still present, but now the overall profiles are very different with respect to
the symmetric case. Indeed, here the central dip does not reach anymore zero (loss of
visibility) and its position is shifted with respect to the origin by a time delay

δcd =
τBσ + τBρ − τAσ − τAρ

2
(3.26)

which increases with to the length ratio LB/LA. This means that the total suppression
of HOM noise is not achieved because the different interaction lengths result in different
times of flight (τAρ,σ ̸= τBρ,σ) in such a way that the charge and neutral parts of the
incoming signals do not reach the QPC at the same time. The distances of the side
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dips from the central one satisfy

|δcd − δsd| =
τBσ − τBρ + τAσ − τAρ

2
(3.27)

clearly showing the effect of the asymmetric lengths of interacting regions on the noise
ratio R.

Notice that in absence of interactions (lower panel of Fig. 3.5) we recover the same
behavior of the symmetric case in Fig. 3.4 up to a simple shift in the delay direction.
This is a direct consequence of the lack of fractionalization of the incoming excitations.

An additional comment on Eq. (3.26) is worthwhile. In the symmetric setup, the
central dip corresponds to the situation where the two charged (or dipolar) modes
incoming from the two sources arrive simultaneously at the QPC. In the asymmetric
case, at a delay δ1 = τBρ − τAρ (δ2 = τBσ − τAσ ) the charged (dipolar) modes reach the
QPC at the same time, but the dipolar (charged) ones do not. As a result, instead of
a single central dip as appearing in Fig. 3.5 (upper panel), two distinct dips located
at δ1 and δ2 should be expected (for additional details see Appendix D). However,
for realistic values for τ0/T , these two dips are not resolved (because the wavepackets
are not narrow enough) and merge into a broader one, located at an average delay
δcd = (δ1 + δ2)/2.

In Section 3.4.1 we have shown that the HOM noise goes exactly to zero when we
are in a symmetric situation and the excitations are injected simultaneously in the
QH edge channels. This time one may wonder whether the signal periodicity affects
the visibility of the central dip (R(δcd)) in an asymmetric setup when the lengths
ratio is varied. In Fig. 3.6 we show the behavior of the minimum of the HOM ratio
(R(δcd)) as a function of LB/LA in the presence of a periodical Lorentzian source
(main plot) and compare it to the single Lorentzian pulse case (inset). Also in this
case we focus on the strong coupling θ = π/4 regime. The biggest difference between
the two situations lies in the fact that for the periodic drive the red curve goes to
zero three times in the considered range of the ratio LB/LA, including the starting
point (where LB/LA = 1), while for the single pulse no other zero occurs apart the
one corresponding to equal lengths. Therefore, the occurrence of additional zeros is
a remarkable consequence of the periodicity of the drive and can be used to extract
information about the interaction parameter θ.

In order to better understand the behavior in Fig. 3.6 we must start from Eq. (3.18),
for a generic case with δ ̸= 0. Therein, the phases φA and φB must be equal in order
to have a perfect superposition of colliding excitations and a consequent maximal
visibility of the HOM central dip. The expression giving the lengths ratios at which
the central dip is maximally visible in the case of a periodical injection is

LB

LA
=

2(k − k′)T
τAσ − τAρ

+ 1 (3.28)

with k, k′ ∈ N and k > k′ (see Appendix D for more details). The previous relation
describes the zero located at LB/LA ≈ 7.6 in Fig. 3.6, for k−k′ = 1. We also point out
that the presence of a second zero, located at LB/LA ≈ 5.6, is a direct consequence
of the maximal coupling θ = π/4. Indeed, as shown in Appendix D, in this condition
additional zeros appear for a length ratio

LB

LA
=

2(k − k′)T
τAσ − τAρ

− 1 . (3.29)
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However, as soon as the coupling departs from the maximal value (θ < π/4) the
second zero is lifted and turns into a local minimum (see Appendix D for more details).
This is a signature of the different weight of charge and dipole contributions to the
fractionalized wave-packet and can be use to extract information about the mismatch
in the time of flight and consequently about the inter-edge coupling θ.

Figure 3.6: Behavior of R(δcd) as a function of the length ratio LB/LA. The red curve
is obtained for a periodic Lorentzian pulse (τ0/T = 0.05) while the green inset shows
the case of a single pulse. Other parameters are θ = π/4, LA = 2µm, vρ = 1.5·105m/s
and vσ = 1.8·105m/s. Notice that here we have chosen propagation velocities different
with respect to the other figures with the only aim of magnifying the features discussed
in the main text.

The possibility for the HOM central dip to reach zero at different values of the
lengths ratio is a direct consequence of the periodicity of the applied signal. In terms
of electronic density we can think of what is happening as follows: one Leviton is
injected for every period, it crosses the interacting region where it fractionalizes into
two modes with different velocities. If the interacting region has the proper length, the
fast mode of a given period will reach the slow mode of the previous one. By properly
calibrating the ratio between the lengths into the two arms it is possible to achieve a
situation where the colliding objects, the fast and slow modes coming from both arms,
at the QPC are identical leading to a vanishing HOM noise.

3.5 Measuring the interaction

Until now, we have considered a setup where the injection takes place on the inner
channels of QH bar only. A more general analysis consists in considering a case where
the excitations are also injected in the outer channels. This configuration can be
achieved for example by further exploiting an open quantum dot coupled to the outer
channels [15]. As we will demonstrate, in this case a collisional HOM experiment
allows to extract information on the interaction strength between the edge channels
as long as it can be assumed as short-range. In Section 3.4.2 we have shown how the
dependence of the visibility of the central dip as a function of the lengths ratio can
be used to indirectly estimate interactions. Here, we consider a more direct way to
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3.5. Measuring the interaction

measure the interaction intensity encoded in the parameter θ.
Let us start by considering two different input voltages V A/B

1/2 at the entrance
of the interaction region, where 1 stands for the inner channels and 2 for the outer
ones. Without loss of generality we consider the two drives to be proportional, namely
V

A/B
2,in = αV

A/B
1,in . In what follows we only consider a symmetric configuration for the

interferometer even if similar results can be obtained for an asymmetric case. This
implies that Eq. (3.6) can be written as

V
A/B
1,out (t) = cos2 θ V

A/B
1,in (t− τρ) + sin2 θ V

A/B
1,in (t− τσ)

+α sin θ cos θ[V
A/B
1,in (t− τρ)− V

A/B
1,in (t− τσ)]

V
A/B
2,out (t) = sin θ cos θ[V

A/B
1,in (t− τρ)− V

A/B
1,in (t− τσ)]

+α sin2 θ V
A/B
1,in (t− τρ) + α cos2 θ V

A/B
1,in (t− τσ).

(3.30)

From the above equation, we can identify two relevant situations involving two different
values of the proportionality parameter: α = tan θ and α = − cot θ. For these two
values (V A/B

1,in , αV
A/B
1,in )T is an eigenvector of the scattering matrix S(L, ω) in Eq. (2.73).

In the time domain, this results in(
V

A/B
1,out (t)

V
A/B
2,out (t)

)
=

(
V

A/B
1,in (t− τρ)

V
A/B
2,in (t− τρ)

)
for α = tan θ (3.31)

and (
V

A/B
1,out (t)

V
A/B
2,out (t)

)
=

(
V

A/B
1,in (t− τσ)

V
A/B
2,in (t− τσ)

)
for α = − cot θ . (3.32)

Therefore, for these values of α, the input voltages are not mixed by interactions
and are transferred unaffected to the output of the interacting region. This feature
is quite surprising because it means that, by properly tuning α, one can inject two
input excitations which effectively propagate freely along the edge channels without
undergoing any fractionalization process, despite the presence of an interacting region
in the system. Therefore, it is possible to regard α as a tunable parameter with
which one can switch off interaction effects on the HOM noise ratio R. As a possible
experimental way to implement such kind of voltage configuration one can apply the
same voltage V

A/B
1,in (t) to both channels, further adding a voltage (α − 1)V

A/B
1,in (t)

properly synchronized with the first one only to channel 2 by means of a quantum
dot [15].

In order to illustrate this effect we compare in Fig. 3.7 the case where the injection
only occurs in the inner channels (α = 0) with the situation when both inner and outer
channels are driven (α ̸= 0). The former scenario is represented by the dashed curves,
showing the side dips structure already discussed in Section 3.4.1. The latter case is
represented by full lines and clearly shows that, for the particular value α = tan θ, the
side dips disappear and one perfectly recovers the same behavior as in the absence of
interactions, described by Eq. (3.21) and shown by black dots in Fig. 3.7.

As a final remark we mention that, for α > tan θ (not shown), the side dips become
side peaks as a consequence of the fact that excitations with opposite charge reach the
QPC [107, 108].

According to the above considerations it is clear that the study of the evolution
of the side dips as a function of α can be used as a way to estimate the value of the
inter-edge interaction as long as it can be assumed as short range. Indeed, by tuning
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Figure 3.7: Ratio R as a function of time delay over period (δ/T ). The full lines
describe HOM collisions at finite values of α. In a) we set θ = π

6 and α = tan
(
π
6

)
≈ 0.58

while in b) θ = π
4 and α = tan

(
π
4

)
= 1. The dashed lines describe the corresponding

curves for an injection only in inner channels (α = 0) for both a) θ = π
6 and b)

θ = π
4 ). The black dots show the ratio R in the absence of interactions (θ = 0).

Other parameters are: τ0/T = 0.05, vρ = 4 · 105m/s and vσ = 1.8 · 105m/s, with
LA = LB = 2µm.

α in such a way to eliminate the side dips in the HOM signal knowing that this occurs
precisely at α = tan θ, the mixing angle can be obtained from this relation.

3.6 Summary

In this Chapter, we have theoretically investigated a HOM experiment where periodic
time-dependent voltage pulses are injected with a tunable delay into QH edge channels
at filling factor ν = 2 and collide at a QPC. As a consequence of the screened Coulomb
interactions between the edge channels, the injected electrons fractionalize and the
noise measured just outside the QPC is characterized by the emergence of side dips
as a function of the delay in the injection. Differently from what happens in the
case of injection using driven mesoscopic capacitors, the visibility of the central dip
remains maximal independently of the interaction for a symmetric device regardless
of the form of the voltage used for the injection. This fact is a signature of the
robustness of voltage drives with respect to interaction effects. Then, focusing on
Lorentzian voltage pulses and by inducing an asymmetry in the device, for example,
by considering different distances between the injectors and the QPC, the visibility
can be reduced. In addition, from the peculiar dependence of the visibility on the
ratio between these distances, it is possible to extract information about the intensity
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3.6. Summary

of the interaction along the edge. Along this direction, we have also proposed a more
direct measurement of the interaction based on the application of different voltages on
the two edge channels along each arm of the interferometer. In this case, by properly
tuning the ratio between these voltages, it is possible to prevent the fractionalization
with a consequent disappearance of the side dip in the HOM noise profile. Therefore,
the study of the evolution of the side dips in this configuration can provide a direct
measurement of the strength of interedge interactions.
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Chapter 4

Radiation squeezing in interacting
quantum Hall edge channels

In this Chapter, which is based on Ref. [163], we investigate the quantum fluctuations
of the electromagnetic radiation emitted by a QH device at filling factor ν = 2 in a QPC
geometry. In particular, we connect the quantum features of the emitted microwave
radiation, mainly focusing on the squeezing, to the electric current fluctuations mea-
sured at finite frequency, accessible through a two-filters set-up placed after the QPC.
We compare two different periodic drives, a cosine and a train of Lorentzian pulses (see
Section 3.4) respectively, focusing our attention on the role played by the unavoidable
electron–electron interactions between the two edge channels. In both cases quantum
features are reduced due to the interactions, however the Lorentzian drive is charac-
terized by a more robust squeezing effect which can have important application in the
quantum information framework. Finally, we will comment on experimental results
about the squeezing in tunnel junctions and QH conductors [27, 29].

4.1 Introduction

Significant experimental and theoretical efforts have been deployed to find sources of
quantum light. An electromagnetic radiation with properties beyond that of classical
physics is indeed essential in the development of quantum information technology
[164, 165] and has direct applications in metrology [166]. Many systems have been
invented to produce squeezed light, based for example on non-linear crystals, atomic
transitions and non-linear cavities in optics [167] but also with parametric amplifier and
qubits in the microwave domain [168, 169, 170, 171]. Moreover, the study of electric
current fluctuations at finite frequency, carried out in presence of tunnel [27, 28] and
Josephson junctions [172], has underlined the deep connection between this quantity
and the fluctuations of the microwave radiation emitted by driven mesoscopic devices.
This radiation shows quantum features such as squeezing and entanglement of photons
in the frequency domain, which can be properly engineered by controlling the form of
the applied periodic drive. In particular it has been shown that very narrow voltage
pulses can maximize the single- and two-photon squeezing of the radiation emitted in
the microwave range [173, 174]. Above all, a key ingredient in order to obtain squeezed
radiation is the presence of non-linearities which allows to beat vacuum fluctuations
along one quadrature.

Along this direction, electron–electron interactions naturally lead to non-linearities
in the current–voltage characteristics in a QPC geometry and, as lengthy discussed
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above, their effect cannot be avoided in realistic experimental conditions.
In this Chapter we will theoretically investigate the dynamical response of the

current fluctuations, which are associated to the photo-assisted finite frequency noise.
This will allow us to carry out a detailed analysis of the effect of inter-edge coupling
on the quantum properties of the emitted radiation. Setting the proper theoretical
framework is needed in order to pave the way towards new experiments devoted to the
control of the quantum behaviour of the electromagnetic field emitted by interacting
electronic devices.

The importance of our analysis is testified by the fact that, very recently, H. Bar-
tolomei and coworkers [29] have experimentally achieved the generation of squeezed
EMP states at the output of a QPC in a GaAs QH conductor, as we have discussed
in Ref. [163]. These squeezed states will allow for quantum enhanced measurements
in EMP interferometers [175] implemented in mesoscopic QH conductors. Squeezed
EMP states could also be used to extend the study of low dimensional quantum con-
ductors in the regime where they are driven by quantum voltage sources [176], ex-
ploiting the strong coupling of high impedance transmission lines to high impedance
low-dimensional quantum circuits.

4.2 Model

We adopt a model similar to the one used in Section 3.2 of the previous Chapter and
shown schematically in Fig. 4.1, with the addition of few different ingredients. For
completeness, and for a better readability of the present Chapter, we summarize the
main points of the model below highlighting the new ones.

As in Chapter 3, we consider the edge states of the upper part of a QH bar at filling
factor ν = 2. The excitations are injected through a time-dependent voltage source,
presented in Section 1.4.2. We consider the injection only from one arm instead of two
recalling the HBT configuration of Section 1.6.3. The coprapagating edge channels
interact via a short range capacitive coupling which is described according the TLL
model presented in Chapter 2. Inter-edge interactions lead to a charge fractionalization
process, as discussed in Section 2.4.3, before the QPC where the current is partitioned
and enters a two-filters set-up. This set-up allows to measure the dynamical response
of the noise (see below).

Similarly to what done in Section 3.2 of the previous Chapter, the total Hamiltonian
density is H = H0 +Hint, consisting of edge states and of an interaction contribution.
The free Hamiltonian density modeling the two copropagating edge states is given by
Eq. (3.1), while the interacting one is described by Eq. (3.2). The diagonalization is
made possible through a bosonization approach (see Section 2.4.1) and by means of a
rotation of an angle θ in the field space. Then, the dynamics of the edge channels is
solved within the EMP scattering matrix as in Eq. (2.73).

The Hamiltonian density HU modeling the time-dependent voltage source is the
same as the one in Eq. (3.4) but now, differently from Chapter 3, we will consider the
voltage source connected only to the inner channel where the notation Vin(t) ≡ V

(A)
1,in (t),

has been adopted to relate this Chapter with the previous one. We also consider the
decomposition of the voltage in terms of DC and AC part

Vin(t) = VDC + VAC(t) (4.1)
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Figure 4.1: Schematic view of a QH bar at ν = 2 in the QPC geometry. Here, the
Hall channels are capacitively coupled through a short range interaction (red) which
lead to a separation of the electronic excitation, injected through the voltage source
Vin(t) in the inner channel, into a fast charge and a slow neutral modes propagating
with velocities vρ and vσ respectively, defined in Eq. (2.62). The outgoing voltage is
indicated as Vout(t) and it contains a DC and AC parts. By means of gates (yellow),
which create the QPC, the current is partitioned and reaches a two-filters set-up placed
just outside the QPC region. Notice that the region of the QPC is yellow to indicate
the fact that here the electron–electron interaction is negligible.

with
1

T

∫ +T
2

−T
2

dt VAC(t) = 0 (4.2)

being T the period of the drive. In the following we will focus on both a cosine drive
with

V
(c)
AC(t) = −Ṽ cos

(
2πt

T

)
(4.3)

or a periodic train of Lorentzian pulses, from Section 3.4, with width τ0 = ηT

V
(l)
AC(t) =

Ṽ

π

∑
j

η

η2 +
(

t
T − j

)2 − Ṽ . (4.4)

In both cases Ṽ is the amplitude of the AC part of the drive. Recalling the scattering
picture for the voltages of Eqs. (3.5) and (3.6), the voltage outgoing from the interacting
region along the inner channel is

Vout(t) = VDC + cos2 θ VAC(t− τρ) + sin2 θ VAC(t− τσ) (4.5)

where the times of flight τρ/σ have been defined in Eq. (2.74). Finally, by looking at
Fig. 4.1, the outgoing fractionalized excitation are then partitioned at a QPC where
only inner channels are involved in the tunneling. Following the same considerations
of Section 3.3 about the QPC region which is non-interacting and taking into account
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4.3. Current and photo-assisted noise at finite frequency

the chirality of the propagation and to the locality of the coupling, the inner free
fermionic fields outgoing from the QPC are related, from Eq. (1.90), to the incoming
ones through1 (

ψR(t)
ψL(t)

)
O

=

(√
T i

√
R

i
√
R

√
T

)(
ψR(t)
ψL(t)

)
I

. (4.6)

Then, the inner channel of the upper edge enter into a two-filters set-up which is placed
immediately after the QPC in such a way that the interactions between the outgoing
channels are there negligible. In the following Sections we will investigate the current
and the associated fluctuations.

4.3 Current and photo-assisted noise at finite frequency

In this Section, we focus our attention on the evaluation of the finite frequency noise
S(ω1, ω2) which is defined, from Section 1.5, as [74, 79]

S(ω1, ω2) =

∫ +∞

−∞
dt

∫ +∞

−∞
dt′ eiω1teiω2t′C(t, t′) (4.7)

where, following Eq. (1.50), the current-current correlator is

C(t, t′) = ⟨∆I1(t)∆I1(t′)⟩ ≡ ⟨I1(t)I1(t′)⟩c. (4.8)

Here the notation ⟨...⟩c stands for the connected zero temperature quantum mechanical
correlator and the current operator of the inner channel I1(t) is defined as in Eq. (3.10).

Figure 4.2: Schematic view of a set-up designed to measure the dynamical response of
the noise X (k)

φ . The current of the inner channel outgoing from the QPC (associated to
the operator I1(t)) of the Hall bar is further split into two at the level of the detector.
The resulting contributions are filtered at the two frequencies ω (I1,ω(t)) and |kΩ−ω|
(I1,kΩ−ω(t)) respectively (green boxes). They are then multiplied among themselves
and with a cosine signal (⊗ symbols) with a tunable phase shift φ. The final output
is then averaged over time.

In order to access the stationary component of the photo-assisted noise at finite
frequency [74, 79, 177, 178] (zero-th order harmonic) and the more general dynamical
response of the outgoing current fluctuations [174, 179], corresponding to the higher
order harmonics at a frequency kΩ (k ∈ N), we consider a two-filter measurement

1Notice that this scattering matrix is slightly different to the one in Eq. (3.7) due to the geometrical
differences of the set-up considered in this Chapter.
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device, placed immediately after the QPC (see Fig. 4.1). As depicted in Fig. 4.2, the
current of the inner channel (associated to the operator I1(t)), incoming the set-up, is
filtered at two different frequencies, ω and |kΩ − ω| respectively. By considering one
of the two filter, for example the one in ω, the outgoing current becomes

I1(t) → I1,ω(t) ≈ I1(ω)e
iωt + I1(−ω)e−iωt. (4.9)

The filtered contributions are then multiplied among themselves and further with a
cosine signal with frequency kΩ and phase φ.

According to the described set-up and to the symmetrized correlators of the cur-
rent operators [174, 179], the k-th harmonics of the dynamical response of the noise
measured at a frequency ω is given by

X (k)
φ (Ω, ω) = lim

Tm→+∞

1

Tm

∫ +Tm
2

−Tm
2

dt⟨I1,ω(t)I1,kΩ−ω(t) cos(kΩt+ φ)⟩c, (4.10)

with I1,ω(t) defined in Eq. (4.9) and Ω related to the injection period T through
Eq. (1.100). Notice that, consistently to what typically done in experiments, we con-
sider an averaging over a given measurement time Tm longer with respect to all the
other time scales involved in the dynamics of the system. Therefore, keeping only the
non zero terms in the average, the expression in Equation (4.10) reduces to

X (k)
φ (Ω, ω) =

1

2

[
⟨I1(ω)I1(kΩ− ω)e−iφ⟩c + ⟨I1(−ω)I1(−kΩ+ ω)eiφ⟩c

]
. (4.11)

According to this and to the reality constraint I†1(ω) = I1(−ω), for the current opera-
tor, one can write

X (k)
φ (Ω, ω) =

1

2

[
ℜ
{
X (k)
+,φ(Ω, ω)

}
+ ℜ

{
X (−k)
+,φ (Ω,−ω)

}]
(4.12)

with
X (k)
+,φ(Ω, ω) = eiφ⟨I1(ω)I1(kΩ− ω)⟩c (4.13)

and ℜ{...} indicating the real part. From now on we will consider only k > 0. The
expression for the dynamical response of the noise X (k)

φ (Ω, ω), evaluated explicitly in
Appendix E when a periodic drive is applied to the inner edge channel (see Fig. 4.1),
becomes

X (k)
φ (Ω, ω) =

cosφ

2
ℜ
{ +∞∑

n=−∞
p̃n(z)p̃

∗
n+k(z)S0(q

′ + 1 + nλ)+

+

+∞∑
n=−∞

p̃n(z)p̃
∗
n−k(z)S0(q

′ − 1 + nλ)

}
.

(4.14)

Notice that, in the above expression we have kept separated the DC and the AC
amplitude in such a way to consider the parameters q′ = eVDC/ω and z = eṼ /Ω as
totally independent with λ = Ω/ω. The quantity

S0(ξ) = A(ω)|ξ| (4.15)

represents the shot noise [74, 79], in the zero temperature limit, with

A(ω) = GRTω (4.16)
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where G = e2/2π is the linear conductance of the considered channel and RT comes
from the QPC scattering matrix in Eq. (4.6). From this quantity, it is also possible
to tackle the effects of the temperature. Moreover, according to the general definition
reported in Eq. (C.5), one has

p̃l(z) =
∑
n

pl−n(z1)pn(z2)e
iΩτρ(l−n)eiΩτσ(n) (4.17)

where z1 = z cos2 θ and z2 = z sin2 θ. Thus, the coefficients p̃l(z) are completely spec-
ified once the expression of pn(z) is known. These are the photo-assisted amplitudes
defined in Eq. (1.105).

It is worth to note that for k = 0 and φ = 0, the expression in Eq. (4.12) reduces
to

X (0)
0 (Ω, ω) =

1

2

+∞∑
n=−∞

|p̃n(z)|2
[
S0(q

′ + 1 + nλ) + S0(q
′ − 1 + nλ)

]
, (4.18)

which represents the photo-assisted noise measured at finite frequency ω [27].
In order to proceed, we need to recall the functional form of the photo-assisted

amplitudes pn(z) for the considered voltage drives. In the case of the cosine drive in
Eq. (4.3) the coefficients p(c)n (z) assume the expression in Eq. (C.7) while, by looking
at Eq. (C.6), we obtain the coefficients p(l)n (z) in the case of the Lorentzian voltage
pulse from Eq. (4.4).

4.4 Current fluctuations and electromagnetic quadratures

The outgoing current operator I1 can be also related to the emitted electromagnetic
field annihilation operator ã through the relation2 [180]

ã(ω) = −i I1(ω)√
2A(ω)

. (4.19)

According to this, the electromagnetic field can be written as [27, 173]

Aφ(ω) =
1√
2

[
eiφI1(ω) + e−iφI1(−ω)

]
= i
√

A(ω)
[
eiφã(ω)− e−iφã†(ω)

]
(4.20)

where the phase φ between a and a† allows to span the whole phase space. By using
the Robertson formulation of the Heisenberg principle for two generic operators

∆A∆B ≥ 1

2
|⟨[A,B]⟩| (4.21)

the fluctuations of the quadratures of the electromagnetic field satisfy the uncertainty
relation

∆A2φ∆A2φ+π ≥ A(ω), (4.22)
2It is worth to point out that, in an interacting one dimensional chiral channel, an analogous

relation (up to a numerical prefactor) can be derived connecting the current with the EMP cre-
ation (annihilation) operator (Eq. (2.11)). Therefore the conclusion derived in the following can be
generalized also to this bosonic operator as recently reported in Ref. [29].
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with ∆A2φ =
√
⟨A2

2φ⟩ − ⟨A2φ⟩2, which naturally link the quantum fluctuations of the
electromagnetic field quadrature at a given frequency ω with the current fluctuations
(see Eq. (4.23)) and can be detected by the experimental scheme previously presented.
The effect of the radiation squeezing results from the previous Eq. (4.22): when the
value of the fluctuations of one quadrature decreases below the quantum vacuum the
other must increases in order to preserve the uncertainty relation. This means that
if we know with a great precision ∆A2φ we must give hope of knowing precisely the
value of the other (∆A2φ+π). Furthermore it can be observed, from the definition in
the second line of Eq. (4.20), in terms of creation and annihilation operator, that the
expectation value ⟨A2φ⟩ on the equilibrium state is always zero.

In order to bind the dynamical response of the noise, measurable through the
two-filters set-up shown above, to the quadrature fluctuations we use the first line of
Equation (4.20) to calculate

⟨A2
2φ(ω)⟩ =

1

2
⟨
[
I1(ω)e

iφ + I1(−ω)e−iφ

][
I1(ω)e

iφ + I1(−ω)e−iφ

]
⟩ =

=
1

2
⟨
[
I1(ω)I1(−ω) + I1(−ω)I1(ω) + e2iφI1(ω)I1(ω) + e−2iφI1(−ω)I1(−ω)

]
⟩.

(4.23)

We immediately notice that the first two terms, in the second line, correspond to the
photo-assisted noise X (0)

0 (Ω, ω) at finite frequency while the other two are equal, up to
a proportional term in the phase, to the expression in Eq. (4.12) once fixed kΩ = 2ω.
In the following we will focus of the case k = 1 where a greater squeezing can be
achieved [27, 174]. Furthermore, since we are dealing with a low energy theory for the
bosonic modes and the high-frequency noise generated by the stream of single electrons
gets suppressed with increasing frequency [68, 151], we have to consider as an upper
limit for the possible frequencies the energy gap Eg of the QH state. Therefore, in
order to efficiently investigate the squeezing of the emitted microwave radiation using
fluctuations of an electric current we cannot exceed few GHz in the drive frequency Ω.

Following Eq. (4.23), the quadratures of the emitted electromagnetic field can be
written in a more general way as

⟨A2
2φ(ω)⟩ = X (0)

0 (2ω, ω) + X (1)
2φ (2ω, ω) (4.24)

where φ is the phase of the cosine signal of the measurement set-up in Figure 4.2. In the
following we will focus on the two orthogonal quadratures ⟨A2

0⟩ and ⟨A2
π⟩. Furthermore

this configuration leads to the maximal squeezing in the non interacting case [27].

4.5 Suppression of the radiation squeezing

In this Section we will show how the effects of Coulomb interactions affect the squeezing
of the emitted electromagnetic field through the study of the quadratures ⟨A2

2φ⟩ and the
related fluctuations ∆A2φ. In this context, the squeezing property offers the possibility
to beat the vacuum fluctuations along one quadrature at the expense of the other in
order to preserve the inequality in Eq. (4.22). Due to these considerations the squeezing
of the electromagnetic field is achieved for ⟨A2

2φ⟩/A(ω) < 1.
In Figure 4.3 and Figure 4.4, we present the two orthogonal quadratures ⟨A2

0⟩ and
⟨A2

π⟩ of the emitted electromagnetic field for the cosine drive, considered in Eq. (4.3),
and for the Lorentzian one, in Eq. (4.4). The two panels of both figures allow us to
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compare the behaviour of the quadratures in the non-interacting case (dashed curves
in the left panels) with the interacting one (full curves in the right panels). It can
be immediately observed that, for both the considered AC voltage drives, the effects
of interactions lead to a reduction of the value of the minima of the two orthogonal
quadratures due to the neutral-charge modes separation and the consequently rising
of the quantum noise outgoing from the QPC.

In the cosine case for a non-zero θ (right panel of Fig. (4.3)), it is evident the
almost total suppression of the squeezing because the minimum of the quadrature
⟨A2

0⟩ (⟨A2
π⟩) is only slightly below the quantum vacuum (horizontal gray dashed line)

while the other stays well above. Concerning Figure 4.3, the symmetry between the
two quadratures for (q′ → −q′), observed in the non-interacting case [174], is still
preserved in the interacting one according to the general properties of the photo-
assisted amplitudes [13].

Figure 4.3: Quadratures of the emitted electromagnetic field in units of A(ω) as a
function of q′ for a cosine drive. Both panels represent the two orthogonal quadratures
⟨A2

0⟩ (orange) and ⟨A2
π⟩ (green): the non-interacting case (θ = 0) with z = 0.706 is

described in the left panel (dashed curves). The right one (full curves) describes the
quadratures in presence of interactions (θ = π/5) and for z = 1.32. The dashed gray
horizontal line indicates the vacuum fluctuations. The choice of the parameters z in
the two cases is motivated by a numerical minimization of the noise. Other parameters
are: L = 2.5µm, v = 2.8× 104m/s, α′ = 2.1 (from Eqs. (2.62) and (2.74)) and λ = 2.

When we turn our attention to the Lorentzian case, in Fig. 4.4, the situation ap-
pears quite different. First of all, the mirror symmetry encountered for the cosine
drive is absent here [13]. Then, the interactions still increase the values of the quadra-
tures’ minima but ⟨A2

π⟩, for q′ = 1, continues to stay well below the quantum vacuum
limit. It is a clear sign that even in the presence of electron-electron interactions the
squeezing effect is not suppressed when the injection is done with a Lorentzian drive
which appears more robust and remains better with respect to the cosine one, in order
to maximize the squeezing (minimizing the noise). Furthermore, the correspondent
conjugate quadrature ⟨A2

0⟩ is well above this limit as expected from a generic squeezed
state where the fluctuations along one quadrature are suppressed while the others are
enhanced in order to obey the Heisenberg’s uncertainty relation. The presented results,
for all panels in Figures 4.3 and 4.4, have been obtained by numerically minimizing
the noise as a function of z which is the amplitude of the AC drive. This procedure is
done on the one hand because the interactions deform the pulse of the AC drive and
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4.5. Suppression of the radiation squeezing

these effects have to be properly compensated and one the other hand in order to find
the amplitude of the drive leading to the optimal squeezing. It is worth noting that
by considering the optimal value of z for the cosine drive, the squeezing associated to
the Lorentzian drive is still slightly better. This comparison has been done in [163].
Hence it follows that we have used different values of z for the considered drive in the
non-interacting case with respect to the interacting one.

Figure 4.4: Quadratures of the emitted electromagnetic field in units of A(ω) as a
function of q′. The two panels describe the orthogonal quadratures ⟨A2

0⟩ (blue) and
⟨A2

π⟩ (red) for a Lorentzian voltage drive with η = 0.1. The left panel (dashed curves)
represents the quadratures in absence of interactions and with z = 0.856. The right
one (full curves) describes the quadratures in presence of interactions (θ = π/5) and
for z = 1.21. The dashed gray horizontal line indicates the vacuum fluctuations. The
choice of the parameters z in the two cases is motivated by a numerical minimization
of the noise. Other parameters are: L = 2.5µm, v = 2.8 × 104m/s, α′ = 2.1 (from
Eqs. (2.62) and (2.74)) and λ = 2.

Figure 4.5 shows the behaviour of the minimum (i.e. for q′ = 1) of ⟨A2
π⟩ as a func-

tion of the interaction coupling strength θ for the two drives considered previously. We
observe that, by increasing the interactions, the minimum of the quadrature increases
its value for both cosine drive (light blue diamonds) and Lorentzian one (red circles).
However, the squeezing effect is always better if we consider the injection of Levitons
with respect to a cosine drive and it can be seen for all the considered interaction
strengths. It is worth to notice that for all points we have chosen a value for z which
minimize the noise.

Until now, recalling Fig. 4.2, we have considered a fixed value of φ for both quadra-
tures respectively ⟨A2

0⟩ (φ = 0) and ⟨A2
π⟩ (φ = π/2). We remind that this is the phase

of the cosine signal which is multiplied with the filtered current in the two-filters set-
up. From this point of view, we can consider the phase as an experimentally tunable
parameter and we might ask what happens to the quantum fluctuations ∆A2φ when
φ changes.

In Figure 4.6 it is shown the evolution of ∆A2φ, for q′ = 1, when the phase φ is
varied in a polar plot. In the left panel we consider the periodic injection of Levitons
in the non-interacting case (blue) and for θ = π/5 (red) while in the right one we
consider a cosine drive for θ = 0 (blue) and θ = π/5 (red). From both panels, when
we consider a fixed φ, we obtain the values for the fluctuations of the two orthogonal
quadratures ∆A2φ and A2φ+π of the emitted electromagnetic field. In the left panel
(Lorentzian voltage pulses), for the specific case of φ = 0 and for q′ = 1 we immediately
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Figure 4.5: Evolution of the minimum of the ⟨A2
π⟩ quadrature, in units of A(ω), as a

function of the interaction parameter θ for the two different voltage drives evaluated
at q′ = 1. The light blue diamonds describe the behavior of ⟨A2

π⟩ when a Lorentzian
drive is applied while the red circles are referred to a cosine drive. In presence of
interactions, the minimum of the quadrature increases for both drives. However, a
train of Lorentzian pulses is still a better candidate in order to maximize the squeezing.
Notice that, for all points, the z values are chosen in order to numerically minimize
the noise. Other parameters are: L = 2.5µm, v = 2.8 × 104m/s, α′ = 2.1 (from
Eqs. (2.62) and (2.74)) and λ = 2.

observe that the quantum fluctuation ∆Aπ reaches its minimum value at the expense
of ∆A0. Thanks to the particular "peanut shape" of the left panel’s Fig. 4.6, it
is clear that the maximum squeezing effect is obtained for the previous considered
condition where ∆Aπ is well below the value of quantum vacuum at the expenses
of ∆A0. This happens in order to preserve the Heisenberg’s uncertainty relation in
Eq. (4.22). The same considerations about the shape of the curves can be done for
both the non-interacting and interacting cases. The latter case leads to greater values
of the quadratures’ fluctuations but the squeezing property is still present even in the
presence of interactions. This is in perfect agreement with what observed in Fig. 4.4
where even if ⟨A2

π⟩, for θ = π/5 and q′ = 1, is bigger than ⟨A2
π⟩ (for θ = 0 and q′ = 1)

the squeezing effects still remains. The right panel of Fig. 4.6 shows the polar plot
of ∆A2φ for a cosine drive, considered in Eq. (4.3). In this panel, the shape of both
non-interacting (blue) and interacting (red) cases is no longer similar to the "peanut"
one. We can observe that for non-interacting channels the maximum squeezing is
achieved for a fixed φ = 0 while in the interacting case this quantum property is
quite totally suppressed. According to this, we can remark that the Lorentzian shape
of injection voltage is a better drive, even in the presence of interactions, in order
to obtain a squeezed state of the emitted microwave radiation. Until now, we have
assumed η = 0.1 for the Lorentzian case.

Now, in Fig. 4.7 we compare the polar plot of quantum fluctuations ∆A2φ for a
Lorentzian drive (q′ = 1) with different values of the ratio η between the width of the
Lorentzian τ0 and the period T . In the left panel we show the fluctuations in the non-
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Figure 4.6: Left panel: polar plot of the quadratures fluctuations ∆A2φ, in unit of A(ω)
and for q′ = 1, with respect to the phase φ, according to Eq. (4.24). The injection
of particles is done by means of a Lorentzian voltage drive with η = 0.1. The blue
line describes the non interacting case (θ = 0) while the red one stands for θ = π/5.
Right panel: polar plot of the quadratures fluctuations ∆A2φ in the case of injection
of particles through cosine voltage drives, in unit of A(ω) and for q′ = 1, with respect
to the phase φ. The blue line describes the non interacting case (θ = 0) while the red
one stands for θ = π/5. Other relevant parameters are: L = 2.5µm, v = 2.8×104m/s,
α′ = 2.1 (from Eqs. (2.62) and (2.74)) and λ = 2.

interacting case while in the right one we consider the interaction θ = π/5 between
edge channels. If we consider an experimentally more challenging situation where
the Lorentzian pulses are very narrow (purple curve with η = 0.05), we get a more
pronounced "peanut shape" (violet and gold line in both panels), but the squeezing
effect doesn’t improve with respect to the case η = 0.1. Conversely, by increasing
the ratio (yellow and light blue curves with η = 0.2), the "peanut shape" disappears.
In this last situation the effects of the squeezing is evidently reduced and tends to
disappear in the interacting case with respect to the non-interacting one, similarly to
what happens for a cosine drive.

4.6 Experimental signatures

In this Section, we report different experimental signatures of the squeezing of the
emitted electromagnetic radiation by a mesoscopic device.

Starting from Ref. [27], Gasse and co-workers exploited the discreteness of the
electron charge as a source of non-linearity in the free electron case. The authors
considered a tunnel junction, obtained through two metallic contacts separated by a
thin insulating layer, which has a linear current-voltage characteristics at low voltage
and thus cannot be used as a non-linear element to mix signals. This kind of system
shows no photo-assisted DC transport, i.e. no rectification. However, it exhibits shot
noise, in other words the variance of the current fluctuations generated by the junction
depends on the voltage bias. Thus, in the presence of an AC excitation, the junction
exhibits photo-assisted noise [177, 178, 181] as well as a dynamical modulation of its
noise [179]. This modulation due to the external AC excitation is then used to generate
squeezed light. Recalling Section 4.5, the squeezing effect can be seen in Fig. 4.8 where
the fluctuations ∆A2 of the amplitude A cos(ωt) can beat vacuum fluctuations at the
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Figure 4.7: Polar plot of the quadratures fluctuations ∆A2φ with respect to the angle φ,
in unit of A(ω). The voltage drive considered for the injection is a train of Lorentzian
pulses with q′ = 1. In the left we consider the non interacting case θ = 0 while in the
right one we consider the interaction parameter θ = π/5. The three different curves (in
both panels) stand for three values of the ratio η: the purple (left) and gold (right) lines
describes the case at η = 0.05, the blue (left) and red (right) dashed lines are obtained
for η = 0.1 and the yellow (left) and light blue (right) represent the fluctuations for
η = 0.2. Other relevant parameters are: L = 2.5µm, v = 2.8×104m/s, α′ = 2.1 (from
Eqs. (2.62) and (2.74)) and λ = 2.

expense of the others fluctuations ∆B2 of the amplitude of B sin(ωt).
Very recently, the generation of squeezed EMP states has been surprisingly achieved

at the output of a QPC in a GaAs QH conductor [29], whose characteristic impedance
is set by the quantum of resistance (RK ≈ 25 kΩ) much larger than the 50 Ohms used
in previous experiments [27, 28]. This could offer the possibility of a strong coupling
to low dimensional quantum conductors of high impedance [182].

The principle of the experiment is represented in Fig. 4.9(a). The outer edge chan-
nel of a QH conductor at filling factor ν = 3 is partitioned at the central QPC. A DC
current is generated at input 1 while an AC sinusoidal source VAC(t) = VAC cos(4πft)
is applied at input 2, with frequency f = Ω/4π = 7.75GHz. The high frequency
noise ∆SΩ,φ(VDC, VAC) is measured by weakly transmitting the EMPs propagating at
output 4 to a coaxial cable. The signal is then amplified and SΩ,φ is measured by
multiplying the output signal with a local oscillator Vl(t) = Vl cos(Ωt+ φ) using high
frequency mixers. The local oscillator is locked in phase with the pump VAC(t) and
the phase φ of the measured quadrature can be continuously varied. Finally, SΩ,φ is
measured using a diode which integrates the power at the output of the mixer.

Turning on the VAC pump, the high frequency noise measurements are performed
and their results are plotted in Fig. 4.9(b). It can be seen that ∆SΩ,φ(VDC, VAC)
depends strongly on the phase φ as shown by the strong differences between φ = 0
(red points) and φ = π/4 (yellow points). Notice that yellow plot is symmetric for
positive and negative biases VDC while the red one looks completely different because
of its asymmetry with respect to VDC. It shows that for this combination of DC and
AC voltages, the squeezing of the EMP mode at frequency f is obtained since the
red plot goes below the black dashed line which represents the vacuum fluctuations.
Interestingly enough, the red and yellow dashed lines, which represent the theoretical
predictions, don’t fit perfectly experimental data since it is possible to observe less
noise than the theoretical model for negative bias on the red curve. Moreover, it is
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Figure 4.8: Measurements of the fluctuations of the two quadratures (∆A2 and ∆B2) of
the emitted electromagnetic field as a function of the DC voltage bias at T = 28mK.
When the AC voltage is turned on (VAC = 46µV) then the emitted radiation is
squeezed (shaded region). The dotted line corresponds to vacuum fluctuations. Figure
taken from [27].

worth noticing that both experiments have been obviously performed at very low, but
not zero, temperatures which are well approximated by our theoretical predictions. In
fact, the most relevant effect of a non-zero temperature involves a smoothing of the
curves in the quadratures’ plots.

4.7 Perspectives

To conclude, starting from an overview on early works about the quantum properties
of the emitted electromagnetic radiation by a mesoscopic device, we have theoretically
investigated the dynamical response of the outgoing current fluctuations, which are
associated to the photo-assisted finite frequency noise, in a QPC geometry for a QH
bar at filling factor ν = 2 in presence of electron-electron interactions between the two
edge channels.

We have considered the periodic injection of excitations (in the GHz range) in the
mesoscopic system by means of two different time dependent voltage drives, respec-
tively a cosine and a train of Lorentzian pulses, and a short-range coupling between
edge channels. We have shown that the effects of interaction lead to an unavoidable
reduction of the squeezing of the electromagnetic quadratures for both drives. How-
ever, the Lorentzian case still remain a better candidate in order to achieve a relevant
squeezing also in presence of interaction. We have investigated the quantum properties
of the emitted light by studying how the quantum fluctuations vary in terms of the ex-
perimental tunable phase φ. Furthermore, we have shown the connection between the
shape of the squeezed quantum state and the different regimes in the two filters set-up
accessible in experiments. In addition to this analysis, experimental results [29] involv-
ing the demonstration of the squeezing of EMP modes at a frequency in GHz range
by using two-particle interferences, have been presented at the end of this Chapter.

Squeezed states could be used in EMP interferometers for quantum enhanced sen-

86



4.7. Perspectives

Figure 4.9: (a) Principle of the experiment by Bartolomei et al. [29]: EMP squeezing is
generated at the QPC level by partitioning a DC drive and a sinusoidal AC voltage at
frequency 2f = Ω/π. Squeezing is characterized by measuring the high frequency noise
Sout
Ω,φ at the output. The phase φ of the measured quadrature is set by using a high

frequency mixer fed by a local oscillator at frequency f and with a controllable phase φ
locked in phase with the pump VAC. (b) Measurements of ∆SΩ,φ, for φ = 0 (red points)
and φ = π/4 (yellow points) as a function of the DC bias voltage for VAC = 33µV.
The red and yellow dashed lines represent the theoretical predictions for VAC = 33µV.
Best agreement is obtained using the electronic temperature Tel = 30mK. Figures are
taken from [29].

sors or in EMP cavities used as quantum buses to transmit quantum states between
distant mesoscopic samples. For practical applications, it will be necessary to increase
the degree of squeezing which could be achieved by replacing the sinusoidal temporal
dependence of the AC drive by Lorentzian shaped current pulses.
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Chapter 5

Delta-T noise for fractional
quantum Hall states

In this final Chapter, starting from what introduced in Sections 1.2.2 and 1.5.4, we
analyze the current fluctuation in a system where two different FQH edge states, be-
longing to the Laughlin sequence and coupled through a QPC, are connected to reser-
voirs placed at different temperatures. We solve exactly the problem for all couplings
and for any set of temperatures in the specific case of (1/3, 1) junction and we see
that linear contributions in the temperature difference are predominant. This moti-
vates us to focus on a situation where a small mismatch in temperatures is considered,
which turns out to also be the most relevant for possible experimental implementa-
tions. Here, we derive a universal analytical expression which connects the delta-T
noise to the equilibrium one valid for all generic pairs (νL, νR) up to the first order in
the temperature difference. Results presented here are based on Ref. [183].

5.1 Introduction

As presented in Sec. 1.2.2, the FQHE takes its roots in the strong correlations among
electrons due to Coulomb interaction. These edge states provide an interesting alter-
native with respect to the channels of the IQHE for the realization of EQO waveguides
as seen for example in [184, 185]. From Chapter 1 we have understood that noise
measurements are fundamental tools for the understanding of mesoscopic devices. As
introduced in Sec. 1.5.4, systems connected to reservoirs kept at different tempera-
tures have been experimentally [26, 92, 93, 94] and theoretically [95, 96, 97, 98, 99,
100, 101, 186] considered in recent years. The presence of a temperature gradient leads
to a non-equilibrium contribution to the charge current noise known as delta-T noise
which is expected to carry additional information on quantum correlations inside the
systems, since it allows to address directly the tunneling density of states.

In this context, the delta-T noise was recently studied for FQH systems in a QPC
geometry. Here, the delta-T contribution to the noise is quadratic, due to the sym-
metry of the considered set-up under the exchange of reservoirs, and it was found
that the tunneling of quasiparticles is associated with negative values of the delta-T
noise [96]. In other words, the non-equilibrium noise induced by the temperature mis-
match between the two channels of this correlated state turns out to be smaller than
the equilibrium one. Conversely, when electrons tunnel from one edge to the other,
the delta-T noise becomes positive. While it was shown that interactions alone could
not account for such negative delta-T noise, it was put forward that, in several recent
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works, negative contributions to the noise were attributed to braiding effects, albeit
in different configurations [187, 188]. More recently, this connection was further ex-
plored [100], and shown to be merely a byproduct of the true physical mechanism at
play [101]. It was shown that the sign of the delta-T noise was uniquely determined
by the scaling dimension of the tunneling operator.

It follows that the study of the delta-T noise can thus be exploited in order to
investigate the properties of strongly interacting systems, in a way that cannot be ad-
dressed by the usual voltage-induced noise. Moreover, the absence of any bias voltage
allows one to discard some of the non-universal effects (changes in the electrostatic
properties of the point contact, slight modifications of the edge confining potential)
that typically make the comparison with experimental data all the more difficult.

5.2 Model of the junction

In this Chapter, we consider two FQH bars at different filling factors να (α = L,R)
belonging to the Laughlin sequence introduced in Sec. 1.2.2. They are kept at different
temperatures TL and TR and coupled through a point-like tunneling region as depicted
in Fig. 5.1. Since we are dealing with strong interacting systems, the edge states are
described in terms of the hydrodynamical model, introduced in Sec. 2.3, by a chiral
Luttinger liquid with free Hamiltonian of the form

H(0) = H
(0)
L +H

(0)
R =

∑
α=L,R

vα
4π

∫
dx
[
∂xϕα(x)

]2
, α = L,R (5.1)

which comes from Eq. (2.23). Quite generally, the velocities vL,R along the two edges
can be different. However, in what follows, we focus on the situation where the tun-
neling occurs at a specific point, allowing us to rescale the position coordinates in-
dependently for the two bosonic fields. This in turn enables us to alter the velocities
at will, so that, for sake of simplicity, we will assume the same propagation velocity
for the two edges (vL = vR = v). The bosonic fields ϕα satisfy the commutators in
Eq. (2.54) and are related to the particle density through the relation

ρα(x) =

√
να
2π

∂xϕα(x). (5.2)

Then, the electron annihilation operator ψα(x) is expressed in terms of ϕα(x) following
Eq. (2.47).

We assume that the two QH systems are coupled via a QPC, placed at position
x = 0, which allows local tunneling between the two counter-propagating edges. In
practice, there is no bulk Hall fluid in between the two edge states, so that the only
allowed tunneling process involves electrons [189]. This configuration, where only
electrons can locally tunnel from one lead to the other, is described by the tunneling
Hamiltonian

HΛ = Λ

∫
dx δ(x)ψ†

R(x)ψL(x) + H.c. =

=
Λ

2πa
e
i 1√

νR
ϕR(0)

e
−i 1√

νL
ϕL(0) +H.c.,

(5.3)

where the second line stands from Eq. (2.47) and Λ is a constant tunneling amplitude
strength [189, 190, 191, 192]. Notice that the QPC description conventionally used
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Figure 5.1: Sketch of two fractional quantum Hall systems with different filling factors
(νL and νR) belonging to Laughlin sequence and at different temperatures (TL and TR).
Counter-propagating edge states are coupled via a point-like tunneling (orange dashed
line) placed in x = 0 with Λ being the constant tunneling amplitude strength. Notice
that the x-axis follows the chirality of the channels. In orange, we have highlighted
the impinging current on the QPC I0, related to the quantized Hall conductance, the
tunneling current I and the backscattering one IB.

to model the tunneling between QH edge states is valid as long as the width of the
tunneling region is of the order of the magnetic length. This situation is typically
quite well achieved in experiments devoted to noise measurement in quantum Hall
systems [193]. Generalization of this picture towards extended contacts have been
considered [194, 195]. In this situation additional effects such as disorder at the level
of the contact or interferences due to the formation of Aharonov-Bohm loops could
come into play and need to be properly taken into account.

The current operator I(t) describing the tunneling current flowing from one edge
state to the other is obtained from the tunneling Hamiltonian and reads

I(t) = −eṄR = ie[NR, HΛ] = ieΛψ†
R(t)ψL(t) + H.c.

= ie
Λ

2πa
e
i 1√

νR
ϕR(t)

e
−i 1√

νL
ϕL(t) +H.c.,

(5.4)

with Nα =
∫
dxρα(x) the particle numbers on each edge and where the notation only

keeps track of the time dependence of the field operators omitting the fact that they
are evaluated at the QPC in x = 0. Notice that in the second line, we have rewritten
the fermionic operators in terms of the bosonic ones following the prescription in
Eq. (2.47). The current operator can be rewritten as

I(t) = −eṄR = −e
∫ +∞

−∞
dx ∂tρR(x, t) = ie

∫ +∞

−∞
dx [ρR(x, t), HΛ] . (5.5)

Since HΛ only involves fields at the position of the QPC, the resulting commutator is
nonzero only close to x = 0. This allows to write

I(t) = ie

∫ 0+

0−
dx [ρR(x, t), HΛ] = −e

∫ 0+

0−
dx ∂tρR(x, t). (5.6)

Exploiting the chirality and linear dispersion of edge states, one can readily write the
continuity relation of Eq. (2.35) for ρR(x), so that the current can be expressed in
terms of the densities right before (x = 0−) and right after (x = 0+) the QPC as

I(t) = ev
[
ρR(0

+, t)− ρR(0
−, t)

]
. (5.7)
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5.2.1 From different to identical chiral Luttinger liquids

We now consider, differently from Eq. (2.56), another suitable rotation in the bosonic
field space [196] (

φL(x)
φR(x)

)
=

(
cos ζ sin ζ
− sin ζ cos ζ

)(
ϕL(x)
ϕR(x)

)
, (5.8)

with angle satisfying
sin 2ζ =

νR − νL
νR + νL

. (5.9)

The total Hamiltonian H = H(0) +HΛ is then rewritten as

H =
∑

α=L,R

v

4π

∫
dx
[
∂xφα(x)

]2
+

Λ

2πa
e
i 1√

g

[
φR(0)−φL(0)

]
+H.c. (5.10)

which corresponds to the tunneling between two identical chiral Luttinger liquids with
effective filling factor

g−1 =
1

2

(
1

νL
+

1

νR

)
. (5.11)

In this way we map the problem of electron tunneling between different FQH edges
into the problem of electron tunneling between two identical chiral Luttinger liquids
with the same effective filling factor g. This mapping can be visualized passing from
Fig. 5.2(a) to Fig. 5.2(b).

Moreover, a further transformation is introduced

φ+(x) =
1√
2

[
φL(x) + φR(x)

]
φ−(x) =

1√
2

[
φL(x)− φR(x)

]
.

(5.12)

According to this, the free Hamiltonians become

H
(0)
L/R =

v

4π

∫
dx

{
1

2
(cos ζ ∓ sin ζ)2[∂xφ+(x)]

2+

+
1

2
(sin ζ ± cos ζ)2[∂xφ−(x)]

2 +±(cos2 ζ − sin2 ζ)[∂xφ+(x)][∂xφ−(x)]

} (5.13)

and their sum depends on the new fields φ± separately

H
(0)
L +H

(0)
R =

v

4π

∫
dx
{
[∂xφ+(x)]

2 + [∂xφ−(x)]
2 }. (5.14)

Then, the total Hamiltonian of Eq. (5.10) is rewritten as

H =
v

4π

∫
dx
[
∂xφ+(x)

]2
+

v

4π

∫
dx
[
∂xφ−(x)

]2
+

[
Λ

2πa
e
i
√

2
g
φ−(0)

+H.c.

]
(5.15)

The transformation of Eq. (5.12) allows us to decouple the problem of the two FQH
liquids with same g into two separate ones (see Fig. 5.2(c)): the first depending only
on the free field φ+ and the second one which includes the tunneling contribution and
that can be written only in terms of the field φ−.

From a physical point of view, by looking at Fig. 5.2(a), when the two systems are
totally decoupled (i.e. Λ = 0) if an electron is sent from one of the two QH bars, it
is perfectly reflected at the contact and there is no net current flowing through the
junction. However, if we consider a weak coupling limit, for which the two edges are
almost decoupled (i.e. Λ is small but non-zero), the electrons are allowed to jump
from one side to the other.
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Figure 5.2: (a) Scheme of the two FQH systems with filling factors νL/R whose edges are
described by the bosonic fields ϕL/R. (b) This panel is obtained through the rotation
in Eq. (5.8) which maps the original junction, with tunneling parameter Λ, between
two different FQH liquids to one between FQH with the same effective filling factor
g. (c) The rotation in Eq. (5.12) decouples the problem into two separate ones: one
free channel and the other describing a channel with the QPC referred as a localized
impurity. (d) The duality relation in Eq. (5.20) allows to map the problem of two FQH
liquids in the weak coupling regime, where electrons can tunnel, to the strong coupling
one described by a single FQH liquid, with filling factor g and tunneling parameter
Λ′. In this configuration, the quasi-particles provide the dominant contribution to
the tunneling. (e) The further rotation in Eq. (5.23) decouples the problem into two
separate ones in analogy with (c).

5.2.2 Delta-T noise

The expectation value of the current operator in Eq. (5.4) is given by

⟨I(t)⟩ ≡ I =
1

Z
Tr

{
exp

[
−
∑

α=L,R

H
(0)
α

Tα

]
I(t)

}
, (5.16)

with

Z = Tr

{
exp

[
−
∑

α=L,R

H
(0)
α

Tα

]}
. (5.17)

Here, we are assuming that, at the time t → −∞, the tunneling is switched-off and
the two bars are at thermal equilibrium. This leads to the initial density matrix
ϱ0 = (1/Z)exp

[
−
∑

αH
(0)
α /Tα

]
[197]. The tunneling is then turned-on establishing

a stationary current. Moreover, since we are considering no voltage bias and local
tunneling, the total net current I is zero independently of the respective temperatures
of the two edges. This is due to the fact that the transmission function is energy
independent and electrons and holes contribute equally [198, 199]. However, since
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the finite temperature always leads to a non-zero contribution to the noise, through
thermal fluctuations [23, 24], the current-current fluctuations do not vanish. This
charge current noise induced by the mismatch in the temperatures has been dubbed
delta-T noise. As already discussed in Section 1.5.4, it has a purely thermal origin,
but it is only generated in non-equilibrium situations [26, 93, 94, 96].

As in Equation (1.52), the zero-frequency current noise is written as

S (TL, TR) = 2

∫ +∞

−∞
dτ
〈
∆I(τ)∆I(0)

〉
=

= 2

∫ +∞

−∞
dτ

[
1

Z
Tr

{
exp

[
−
∑

α=L,R

H
(0)
α

Tα

]
∆I(τ)∆I(0)

}] (5.18)

where ∆I(t) is defined in Eq. (1.49).
As already introduced in Eq. (1.70), we will also consider, for the following, the

temperature parametrization

TR = T TL = TR +∆T, (5.19)

which is convenient from an experimental point of view. Here, the temperature of one
of the two FQH sample is kept fixed at T , while the other can be varied with ∆T
either positive or negative.

5.3 Duality relation

Let us focus now on the configuration of Fig. 5.2(b), after the change of basis intro-
duced in Eq. (5.8), where we move from an inhomogeneous QH junction to two separate
FQH liquids at the same filling factor g. In this effective picture, as the tunneling am-
plitude increases up to the limit value Λ → ∞ (i.e. strong coupling), we switch from
the two identical, but separate, FQH liquids to a unique one [see Fig. 5.2(d)]. In
analogy to what happens for the Laughlin states, the dynamics of the point contact
evolves from being dominated by electron tunneling at weak coupling, where the fluid is
pinched off, to a strong coupling regime where quasiparticle tunneling dominates [193,
200]. This process is embodied by a powerful electron-quasiparticle duality [189, 201]
which reflects the duality relation between the weak- and strong-coupling limits. In
particular, the strong coupling limit is accessible through a weak-strong duality trans-
formation [202, 203, 204]. This fact is graphically described in Fig. 5.2 by the central
panels surrounded by a dashed line. In this limit, the fields φL,R can be written in
terms of dual fields φ̃L,R defined as

φL(x) = φ̃L(x)Θ(−x) + φ̃R(x)Θ(x)

φR(x) = φ̃L(x)Θ(x) + φ̃R(x)Θ(−x)
(5.20)

with Θ(±x) the step function. This dual transformation can be geometrically under-
stood by thinking about the fact that in the strong coupling limit the previous bosonic
states φL and φR are mixed since now there is only one QH liquid. This non-local
relation, due to the step function, recall the starting point of two different QH sample
separated by a QPC.

Due to the above considerations the total Hamiltonian describing the dynamics
and the coupling of these fields is now

H̃ =
∑

α=L,R

v

4π

∫
dx [∂xφ̃α(x)]

2 +
Λ′

2πa
ei
√
g
[
φ̃R(0)−φ̃L(0)

]
+H.c. (5.21)
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Notice that this last Hamiltonian is the dual of the one in Eq. (5.10) where we have
considered the substitution g → 1/g due to the electron-quasiparticle mapping and
we have introduced an effective coupling parameter Λ′. However, the two tunneling
strengths Λ and Λ′ are not independent as they are connected by the relation [205](

Λ′

ωca

)
=

[
2−2g+1 Γg

(
1 +

1

g

)
Γ(1 + g)

](
Λ

ωca

)−g

(5.22)

where ωc = v/a is related to the short-distance cut-off a and Γ(x) is the Euler Gamma
function of a given argument x. Due to the inverse proportionality between Λ and
Λ′, focusing on the Λ → ∞ limit is equivalent to consider Λ′ → 0 and vice versa,
consistently with the discussed weak-strong coupling duality. The previous relation has
been obtained in Ref. [205] by considering an expansion of the non-linear conductance
in the two different regimes in terms of the weak and strong coupling parameters.

The formulation of the problem in terms of the dual fields φ̃L/R in the strong
coupling limit (Λ → ∞ or Λ′ → 0) has the advantage that these are now free fields.
The quasi-particles which tunnels are non-interacting and carry a charge e∗ = ge.
Quite remarkably, these effective fractionally charged excitations correspond neither
to electrons nor to quasiparticles of the isolated Hall fluids, but instead to complicated
nonlocal objects emerging from the dynamics of the two strongly coupled edge channels
as a whole.

By introducing the fields

φ̃±(x) =
1√
2

[
φ̃L(x)± φ̃R(x)

]
, (5.23)

the Hamiltonian of Eq. (5.21) leads again to two decoupled systems (see Fig. 5.2(e))
with total Hamiltonian H̃ = H̃+ + H̃− where

H̃+ =
v

4π

∫
dx
[
∂xφ̃+(x)

]2
H̃− =

v

4π

∫
dx
[
∂xφ̃−(x)

]2
+

[
Λ′

2πa
ei
√
2gφ̃−(0) +H.c.

]
.

(5.24)

5.4 Exact solution for tunneling in a
(
1
3 , 1
)

junction

In this Section we focus on a junction between a normal metal (νR = 1) and a FQH
state with filling factor νL = 1/3 in the presence of a temperature difference between
the Hall bars. This case can be exactly solved via refermionization for the entire range
of couplings and temperatures allowing us to evaluate the delta-T noise exactly.

5.4.1 Refermionization

The case νR = 1 and νL = 1/3 leads to a description, in terms of an effective filling
factor g = 1/2 (see Eq. (5.11)). In the rotated basis, and taking into account the
duality, one can consider a tunneling Hamiltonian proportional to the factor eiφ̃− (see
Eq. (5.24)), which looks like an electronic operator. It thus becomes possible to intro-
duce a new fermionic field and re-express the tunneling term accordingly, ultimately
allowing us to diagonalize exactly the Hamiltonian, and therefore account for tunneling
at all orders.
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This idea of refermionization was first introduced in Ref. [206] in the framework of
quantum dissipative systems, and subsequently applied to the case FQH states [207].
It amounts to refermionize the bosonic field φ̃− so that the tunneling term of the
Hamiltonian H̃− in Eq. (5.24) now takes the form

Λ′

2πa
eiφ̃−(0) + H.c. −→ Λ′

√
2πa

fψ†(0) + H.c. , (5.25)

where we remind that x = 0 is the position of the QPC. Here f is an auxiliary
(Majorana) fermion field which arises from the proper handling of the zero modes of
the bosonic fields. In particular, the new fields ψ(x) and f satisfy the following set of
equations of motion

−i∂tψ(x, t) =iv∂xψ(x, t) +
Λ′

√
2πa

f(t)δ(x)

−i∂tψ†(x, t) =iv∂xψ
†(x, t)− Λ′

√
2πa

f(t)δ(x)

−i∂tf(t) =2
Λ′

√
2πa

[
ψ(0, t)− ψ†(0, t)

]
.

(5.26)

From this, one can map the problem into the scattering of the right-mover ψ on
a localized impurity. These equations are then solved by introducing a plane-wave
decomposition of the fermionic field ψ as

ψ(x, t) =

{ ∫
dωAωe

iω x
v e−iωt for x < 0∫

dωBωe
iω x

v e−iωt for x > 0
(5.27)

ψ†(x, t) =

{ ∫
dωA†

−ωe
iω x

v e−iωt for x < 0∫
dωB†

−ωe
iω x

v e−iωt for x > 0.
(5.28)

Substituting these back into the equations of motion, using the definition

ψ(0) =
1

2

[
ψ(0+) + ψ(0−)

]
(5.29)

and integrating around the δ(x) function, one is left with

0 =iv

∫
dω
(
Bω −Aω

)
e−iωt +

Λ′
√
2πa

f(t)

0 =iv

∫
dω
(
B†

−ω −A†
−ω

)
e−iωt − Λ′

√
2πa

f(t)

−i∂tf(t) =
Λ′

√
2πa

[ ∫
dω
(
Bω +Aω

)
e−iωt+

−
∫
dω
(
B†

−ω +A†
−ω

)
e−iωt

]
.

(5.30)

Combining these equations to get rid of f and B†, one obtains

Bω =
−iω

Tk − iω
Aω +

Tk
Tk − iω

A†
−ω, (5.31)

where we introduced the crossover energy scale

Tk =
4πa

v

(
Λ′

2πa

)2

(5.32)
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which is set by the tunneling amplitude Λ′. Following Ref. [205], the previous relation
can be generalized for all filling factors taking the form

Tk =
2ωc

g

(
1

2Γ(g)

Λ′

aωc

) 1
1−g

. (5.33)

Performing the Fourier transform back to the time domain one finally obtains the
following relation between the Fourier components of the fermionic field ψ before (A)
and after (B) the QPC as

B(t) = A(t)− Tk
∫ t

−∞
e−Tk(t−t′)

[
A(t′)−A†(t′)

]
. (5.34)

In Refs. [196] and [207], all relevant transport quantities are then written down
only in terms of averages of this newly defined fermionic A field, which is free by
construction. The corresponding propagator was naturally assumed to be trivially
given by a Fermi function, corresponding to the reservoirs at equilibrium, i.e. equal
temperature.

However, as we can see from Eq. (5.27), the new fermion ψ is actually made of
combined quasiparticles from the right and left reservoirs which, in our present case,
correspond to different temperatures. One therefore needs to be particularly careful in
expressing the propagator. One way of doing this is to revert to the bosonic description
and to write ψ in terms of the bosonic fields ϕR,L, taken at a position before the QPC,
which are then uncoupled from each other. The full calculation of the propagator is
detailed in Appendix F, here we report the final result for a (1/3, 1) junction which
reads

⟨A†(t)A(t′)⟩ = ⟨ψ†(0−, t)ψ(0−, t′)⟩ = 1

2πa
e

3
4
GL(t−t′)e

1
4
GR(t−t′) (5.35)

where, since A is only defined at a position before the QPC, the quantum averaging is
performed on the state where the two edge states are decoupled and at their respective
temperature Tα. Following Eq. (1.96), the bosonic Green’s function is written as [79]

Gα(τ) = − log

[
sinh

(
πTα(

i
ωc

− τ)
)

sinh
(

i
ωc
πTα

) ]
. (5.36)

In practice, we will be needing two types of correlators, which we express from their
Fourier transform as

⟨A†(t)A(t′)⟩ =
∫

dω

2πv
eiω(t−t′)nω (5.37)

⟨A(t)A†(t′)⟩ =
∫

dω

2πv
e−iω(t−t′)(1− nω) (5.38)

where according to Eq. (5.35), one has

nω =

∫
dτe−iωτ ωc

2π
e

3
4
GL(τ)e

1
4
GR(τ). (5.39)

Note that although nω is not, in all generality, a Fermi distribution, the field A
is a fermionic field and thus satisfies the standard anti-commutation relations (see
Eq. (2.6)).
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5.4.2 General expression of the delta-T noise for
(
1
3
, 1
)

junction

In order to evaluate the noise in Eq. (5.18) we need to consider the fluctuations of the
tunneling current. The latter, in Eq. (5.7), is expressed in terms of the imbalance of the
right densities before and after the QPC which are related to the Fourier components
of the fermionic field ψ before (A) and after (B) the QPC (see Appendix G for more
details), namely

I(t) = ev
[
ρR(0

+, t)− ρR(0
−, t)

]
=
ev

2

[
B†(t)B(t) +A†(t)A(t)

]
. (5.40)

This expression can readily be understood from a current conservation perspective
as the current tunneling between edges naturally corresponds to the difference of the
current impinging on and the one outgoing from the QPC.

From Eqs. (1.50) and (5.40), the fluctuations of the tunneling current are then
readily given by

C
(
t1, t2

)
=
(ev
2

)2 〈[
B†(t1)B(t1) +A†(t1)A(t1)

]
·
[
B†(t2)B(t2) +A†(t2)A(t2)

]〉
(5.41)

where one should only keep the connected contributions of the thermal average.
Since we are interested in the zero-frequency current noise given in Eq. (5.18), the

final result reads

S(TL, TR) = 2

∫ +∞

−∞
dτ C(0, τ) = 2

(
Tk
e

2

)2 ∫ dω

2π

{
2
[
nωn−ω+

+ (1− nω)(1− n−ω)
]( ω

T 2
k + ω2

)2

+ nω(1− nω)

(
2

Tk
ω2

T 2
k + ω2

)2}
(5.42)

where all the detailed calculations are reported in Appendix H. It is worth noticing
that, since we are considering the noise induced by a temperature difference, the dis-
tribution function nω depends on both temperatures as

nω =

∫
dτe−iωτ ωc

2π

[
sinh( i

ωc
πTL)

sinh(πTL(
i
ωc

− τ))

]3/4[ sinh( i
ωc
πTR)

sinh(πTR(
i
ωc

− τ))

]1/4
. (5.43)

Using that nω + n−ω = 1, the noise can be written under a much simpler form as

S(TL, TR) = e2
∫
dω

2π
nω(1− nω)

(
1−

T 2
k − ω2

T 2
k + ω2

)
. (5.44)

The noise can be obtained numerically for any set of temperatures TL, TR and the
information on the coupling strength is encoded in the energy crossover Tk which
allows to scan for the entire range of tunneling regimes.

In Fig. 5.3, we show the full delta-T noise (as defined in Eq. (5.18)) as a function
of the temperature difference, in unit of Tk, for six different cuts. It comes out that
in the weak to moderate temperature bias regime, the leading contribution to the
noise is linear in ∆T , a feature that can be readily confirmed analytically as we show
in Appendix H. This leading linearly-∆T behavior survives even if one changes the
temperature parametrization, introducing the average temperature T̄ = (TR + TL)/2.
This may come as a surprise as it is in stark contrast with the results obtained for the
homogeneous case (νR = νL = ν) [96] where the dominant term was quadratic in the
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Figure 5.3: Full noise S for the (1/3, 1) junction, as a function of the temperature
difference ∆T (given in units of the energy scale Tk) for different values of the right
lead temperature, T/Tk = 0.1, 1, 2, 3, 4 and 5. The gray area corresponds to the
unphysical region where TL = T +∆T < 0.

temperature difference. Indeed, in this latter situation, one is protected from such a
linear contribution because of the symmetry of the system under the exchange of right
and left leads, ensuring that only even terms in ∆T survive. The inhomogeneous case
considered here breaks this symmetry, thus enabling linear contributions which then
dominate the noise in the regime of weak temperature bias.

Notice that in presence of an extended contact, disorder effects could lead to asym-
metries also in in homogeneous case. This could lead to a noise contribution linear in
the temperature mismatch. However, we expect this contribution to be sample depen-
dent and not universally related to the scaling dimension of the tunneling operators
differently from the one we are investigating (see below). From the experimental stand-
point, the emergence of a linear correction as a function of the temperature difference
constitutes a major improvement compared to the homogeneous case as it makes the
delta-T noise a lot easier to probe.

In this Section we have been able to solve exactly the problem of tunneling between
a QH junction with the only constraint on filling factors, being νL = 1/3 and νR = 1.
This interesting result can be enriched by extending to a general dependence of the
noise on filling factors without specifying their values a priori. Moreover, in addition
to the numerical evaluation, it could be interesting to work out an analytic expression
for the delta-T noise. As we will see below, this can be achieved for comparable
temperatures of the two QH bars, as this approach relies on an expansion in the
temperature difference ∆T . Nevertheless, considering small temperature differences
allows us to be closer to the experimentally realistic situation, where large temperature
gradients between reservoirs are difficult to control.

5.5 Universal expression for the delta-T noise

In this Section, we derive a universal formula for the first order expansion of the noise
in Eq. (5.18) that applies to all orders in the tunneling amplitude Λ and for any set of
filling factors (νL, νR).

Since we are considering different temperatures between the two QH bars, parametrized
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as in Eq. (5.19), and according to the rotations introduced in previous Sections, we
can expand the noise S(TL, TR) up to the first order in the ratio ∆T/T . Following the
calculations given in Appendix I, one has

S(TL, TR) = S0(T ) +
∆T

T 2

∫ +∞

−∞
dτ

1

Z
×

× Tr

{
e−β(H

(0)
+ +H

(0)
− )H+,−I(φ−(τ))I(φ−(0))

}
+O(∆T 2)

(5.45)

where β = T−1 and the mixed term H+,− due to the expansion in ∆T is given by

H+,− =
v

4π

∫
dx

[
cos2 ζ

2
(∂xφ+ + ∂xφ−)

2+

− sin ζ cos ζ(∂xφ+ + ∂xφ−)(∂xφ+ − ∂xφ−) +
sin2 ζ

2
(∂xφ+ − ∂xφ−)

2

]
.

(5.46)

In Eq. (5.45), S0(T ) is the equilibrium noise at ∆T = 0, namely

S0(T ) = S(TL, TR)

∣∣∣∣
∆T=0

=

=
1

Z
(0)
+ Z

(0)
−

∫ +∞

−∞
dτ Tr

{
e−β(H

(0)
+ +H

(0)
− )I(φ−(τ))I(φ−(0))

}
,

(5.47)

with
Z

(0)
± = Tr

{
e−βH

(0)
±

}
. (5.48)

Furthermore, in Eq. (5.45) one needs to consider also the first order expansion of Z
which reads

Z = Tr

{
e−β(H

(0)
+ +H

(0)
− )

(
1 +

∆T

T 2
H+,−

)}
. (5.49)

Finally, putting everything together, the delta-T noise of Eq. (5.18), expanded to first
order in ∆T , reads

S(TL, TR) = S0(T ) + Σ(νL, νR, T )∆T +O(∆T 2) (5.50)

with
Σ(νL, νR, T ) = −

(
νR

νR + νL

)
1

T 2

∂S0
∂β

. (5.51)

We underline the relevance of this result which enables to calculate the first order
correction to the noise in the temperature gradient only by knowing the expression
for the equilibrium noise S0(T ). In particular, our derivation does not require any
assumption concerning the strength of the tunneling between the two QH bars. This
allows us to obtain the out-of-equilibrium delta-T noise in various tunneling regimes,
provided that one is able to compute the corresponding thermal noise at equilibrium.
Since Eqs. (5.50) and (5.51) are valid for all values of Λ, it is worth noticing that they
can be exploited for describing both the weak-coupling regime and the dual strong-
coupling model.
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5.6 Explicit results for the delta-T noise

In the previous Section, we have showed that it is possible to obtain a universal ex-
pression for the delta-T noise at first order in ∆T/T , without specifying the tunneling
strength between the two QH systems.

Here, we investigate in details the two opposite regimes of weak and strong coupling
between the two Hall fluids. We start by applying our universal formula, Eq. (5.50), to
the specific case of the (νL = 1/3, νR = 1) junction. There, an exact expression of the
equilibrium noise can be derived at all orders in the tunnel coupling [196], following the
refermionization procedure introduced in the previous Section. Then, we generalize
this approach for a system with generic filling factor combinations, concentrating on the
two opposite regimes of the coupling strength. It is worth emphasizing that, although
our focus is on the weak and strong coupling regimes, in principle, our approach allows
us to calculate the full noise for any value of the tunneling parameter, provided that
we have the corresponding expression of the equilibrium noise.

5.6.1 Exact solution for a
(
1
3
, 1
)

junction

By exploiting the exact refermionization procedure, given in the previous Section, we
are able to evaluate the equilibrium noise S0(T ) in the case (νL = 1/3, νR = 1),
recovering the result from Ref. [196] at zero voltage. The final expression, whose
derivation is given in Appendix J, reads

S0(T ) =
1

2

(
e2

2π

)
Tk
[
4
T

Tk
− 2

π
ψ′
(
1

2
+

Tk
2πT

)]
, (5.52)

with Tk defined in Eq. (5.33). Then, according to Eq. (5.51), one can write the coeffi-
cient of the first order correction to the delta-T noise

Σ

(
1

3
, 1, T

)
=

(
e2

2π

)[
3

2
+

3

8π2
ψ′′
(
1

2
+

Tk
2πT

)(
Tk
T

)2
]

(5.53)

with ψ′′ the second derivative of the digamma function. The behavior of this quantity
as a function of T/Tk is reported in Fig. 5.4.

We can now consider two interesting limits of Eq. (5.53): the weak coupling limit
described by Λ → 0 or equivalently, due to Eq. (5.22), Λ′ → ∞ (i.e. Tk → ∞ from
Eq. (5.32)) and the strong coupling limit where Λ → ∞ and consequently Λ′ and Tk
go to zero. This means that, in terms of the ratio T/Tk, in the weak coupling regime
(T ≪ Tk) one has

Σ(wc)

(
1

3
, 1, T

)
=

(
e2

2π

)
3π2

2

(
T

Tk

)2

(5.54)

while in the strong coupling limit (T ≫ Tk) one obtains

Σ(sc)

(
1

3
, 1, T

)
=

(
e2

2π

)
3

2
. (5.55)

It is worth noting that Eqs. (5.54) and (5.55) are related to the slope of the curves
shown in Fig. 5.3 near the value of ∆T = 0. When the ratio T/Tk is small, meaning
that we are considering the weak coupling limit, we see that the plot has a non-linear
behavior, near ∆T = 0, reflecting the quadratic dependence of Σ(wc) on T/Tk in
Eq. (5.54). However, for the strong coupling regime, where bigger ratios T/Tk have
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Figure 5.4: Behavior of the linear coefficient Σ ≡ Σ(1/3, 1, T ) in Eq. (5.53) in units of
Σ0 = e2/2π as a function of T/Tk. The dashed gray line stands for the weak coupling
limit (see Eq. (5.54)) when T ≪ Tk (Λ → 0, Λ′ → ∞). The horizontal dashed red line
describes the strong coupling limit for T ≫ Tk (Λ → ∞, Λ′ → 0) [see Eq. (5.55)].

been considered, the slope of the plot is linear according to Eq. (5.55), where Σ(sc) is
independent of T/Tk.

Moreover, in Fig. 5.3 we observe the behavior of the linear coefficient in Eq. (5.53)
for a (1/3, 1) junction in terms of the ratio between temperature T and the energy scale
Tk, related to the tunneling amplitude. This coefficient vanishes at zero temperature
then evolves quadratically, consistently with Eq. (5.54). As temperature increases
further, Σ continuously increases before saturating as it gets closer to the limiting
value of 3/2 (in units of e2/2π) which corresponds to the strong coupling value of
Eq. (5.55). This latter value represents the maximum reachable one for the linear
order correction in the considered case.

5.6.2 Perturbative regimes

In this Subsection, we write the explicit expression for the equilibrium noise S0(T ) due
to the tunneling current, starting from the weak-coupling regime for all filling factors
νL and νR. We then switch to the strong-coupling limit by exploiting the duality
relation discussed in Section 5.3.

In the weak-coupling regime, the explicit form for the equilibrium noise S0(T ) is
obtained through a perturbative expansion up to the second order in the tunneling
Hamiltonian HΛ, from Eq. (5.10), by using the Keldysh formalism [79, 208]

S
(wc)
0 (T ) =

(
eΛ

πa

)2 ∫ +∞

−∞
dτ e

2
g
G(τ) (5.56)

with the bosonic Green’s function given in Eq. (5.36) with Tα = T and g = 2(νLνR)/(νL+
νR).

Then the equilibrium noise in the weak-coupling regime reads [185, 209]

S
(wc)
0 (T ) =

(
e2

2π

)(
2Λ

ωca

)2(2π

ωc

) 2
g
−2

T
2
g
−1

Γ2(1g )

Γ(2g )
. (5.57)
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In the case of free fermions νL = νR = 1, Eq. (5.57) yields the Johnson-Nyquist
linearity of the equilibrium noise as a function of temperature. Furthermore, if we
consider equal filling factors νL = νR we recover the result reported in Ref. [96] for
the thermal noise calculated in the tunneling regime. It is worth noticing that the
expression in (5.57) only depends on g which is the sum of the inverse filling factors [196]
which does not allow us to discriminate between configurations such as (νR = 1, νL =
1/5) or (νR = νL = 1/3) only by looking at the equilibrium noise.

The equilibrium noise of Eq. (5.57) in the weak coupling regime for all filling
factors can be rewritten in terms of the crossover energy scale instead of the tunneling
amplitude by exploiting Eqs. (5.22) and (5.33), namely

S
(wc)
0 (T ) =

1

4

(
e2

2π

)
(4π)

2
g
−2

Γ4(1g )

Γ(2g )

(
T

Tk

) 2
g
−1

Tk (5.58)

and consequently from Eq. (5.51) the linear coefficient for a generic (νL, νR) junction
as

Σ(wc)(νL, νR, T ) =
1

4

(
e2

2π

)(
νR

νR + νL

)(
2

g
− 1

)
(4π)

2
g
−2

Γ4(1g )

Γ(2g )

(
T

Tk

) 2
g
−2

. (5.59)

Notice that for νR = 1 and νL = 1/3, this last equation reduces to the result derived
in Eq. (5.54) for the weak coupling limit T ≪ Tk.

Now, the strong coupling limit can be studied using the weak-strong duality trans-
formation, introduced in Section 5.3, where we consider the electron-quasiparticle sub-
stitution for the charge e → e∗ = ge and for the filling factor g → 1/g. By focusing
on the strong coupling limit we consider Λ′ instead of Λ as depicted in Fig. 5.2(d).
According to this, Eq. (5.57) leads to

S
(sc)
B (T ) =

(
e∗2

2π

)(
2Λ′

ωca

)2(2π

ωc

)2g−2

T 2g−1 Γ
2(g)

Γ(2g)
. (5.60)

It is worth mentioning that the weak-strong duality transformation amounts to con-
sider a dual system which can be treated in the weak coupling limit, i.e. perturba-
tively in Λ′. According to this, at equilibrium, the tunneling current noise maps into
a backscattered current noise, hence the notation SB.

Using the expression for Tk from Eq. (5.33), we can rewrite the equilibrium backscat-
tering noise in the strong coupling regime for all filling factors as

S
(sc)
B (T ) = (4g)2

(
e2

2π

)(
4π

g

)2g−2 Γ4(g)

Γ(2g)

(
T

Tk

)2g−1

Tk. (5.61)

The noise associated with the tunneling current is then readily obtained from its
backscattering counterpart by accounting for a bare equilibrium noise contribution
linear in temperature which ends up dominating the transport for temperatures T ≫
Tk.

In the end, it leads to the total equilibrium tunneling noise in the strong coupling
regime

S
(sc)
0 (T ) =

(
e2

2π

)
4gT − S

(sc)
B (T ). (5.62)
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5.7. Summary

In this case, the linear coefficient of the ∆T noise can be written as

Σ(sc)(νL, νR, T ) =

(
e2

2π

)(
νR

νR + νL

)[
4g+

+ (4g)2(1− 2g)

(
4π

g

)2g−2 Γ4(g)

Γ(2g)

(
Tk
T

)2−2g] (5.63)

which then reduces to Eq. (5.55) for the (1, 1/3) junction.
Notice that the analysis carried out so far is proper of the case of inhomogeneous

Hall junction with filling factors belonging to the Laughlin sequence. Here, clearly
emerge the role played by the scaling dimension associated to the different FQH states
involved in the tunneling (related to the filling factors νL and νR). In more general
composite FQH states the emergence of neutral modes affects the scaling dimension
of the tunneling operators and need to be carefully taken into account [210].

As a final remark we notice that the first order contribution to the delta-T noise in
the temperature bias cannot be solely expressed in terms of the effective filling factor
g. This is true for both the weak and strong coupling regimes as can be readily seen
from Eqs. (5.59) and (5.63). Since the linear in ∆T coefficient depends separately
on νL and νR, this specific signature allows us to distinguish between different filling
factor combinations which nevertheless have the same effective filling factor g, and
consequently the same equilibrium noise, such as (νR = 1, νL = 1/5) or (νR = νL =
1/3). This further highlights the importance of the low order delta-T noise as a relevant
probe of the transport mechanisms at play in the general (νR, νL) junction.

5.7 Summary

As introduced in Section 1.2.2, FQH systems host topologically protected chiral modes
at their edge which can be relevant for a generalization of EQO to the fractional regime.
Along this direction, the study of the current noise is essential in the EQO framework
for the understanding of transport mechanisms in mesoscopic systems.

In this Chapter we devote our attention to the study of the non-equilibrium noise
generated by a temperature gradient between two FQH systems, known as delta-
T noise. We have considered an inhomogeneous QH junction and we have demon-
strated the predominant contribution to the noise is linear in the temperature gradi-
ent, differently from an homogeneous junction where the first non-zero contribution is
quadratic [96]. Moreover, we have considered the two Hall bars characterized by strong
interaction in the FQH regime, with filling factors belonging to the Laughlin sequence,
focusing on a coupling between the two edges whose intensity can be either considered
in a weak or strong coupling regime thanks to a weak-strong duality transformation.

We have solved exactly the problem of the delta-T noise for the (1/3, 1) junction,
demonstrating that this regime enables to explore the full range of tunnel coupling
and to consider any set of temperatures TR and TL without restrictions. In addition,
we have reported on a universal expression, in terms of the tunneling parameter for a
completely generic junction, for the linear correction to the full delta-T noise in the
temperature gradient starting from the knowledge of the equilibrium noise. Further-
more, we have demonstrated that we are able again to move from the weak-coupling
regime to the strong-coupling one by applying a duality transformation and we have
reported on the asymptotic behavior of the linear coefficient of this expansion for
generic values of the filling factors (νL, νR). Finally, our approach shows the relevance
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5.7. Summary

of delta-T noise in better understanding the transport properties of such strongly cor-
related systems, unlike previously considered noise contributions, since it depends on
both filling factors separately rather than the sole effective filling factor describing the
junction.

This analysis offers many interesting perspectives, essentially related to practical
realizations of such temperature-biased inhomogeneous junctions. Indeed, junctions
between different Hall fluids are notoriously difficult to implement experimentally and
the careful investigation of their transport properties remain largely unexplored. As
the magnetic field is constant everywhere across the two-dimensional electron gas, re-
gions of different filling factors require different electron density, which is typically
achieved via electrostatic gates whose close proximity leads to a severe risk of shorting
each other. Several solutions have been envisioned to circumvent this issue. However,
these raise several challenging problems for theoretical modeling. One aspect that
could be explored in forthcoming studies is the effect of local charge depletion at the
QPC, as a consequence of electrostatic effects. This leads to a local filling factor in the
region of the point contact, whose importance for transport properties has been previ-
ously underlined [211, 212]. Moreover, interesting new perspectives in this field could
be opened by the study of composite FQH edge state, where the emergence of co- and
counter-propagating neutral modes could complicate the presented picture [138, 189,
210, 213]. Another fascinating direction to explore is the case of long junctions, where
Andreev reflection-like processes have been observed recently [214]. This would the-
oretically involve multiple, randomly distributed, quantum point contacts and brings
about the importance of coherence effects.
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Conclusions and perspectives

In this Thesis, we have investigated the effects of electron-electron interactions on cur-
rent fluctuations in quantum Hall systems. These kind of systems provide topologically
protected edge states where electrons can propagate ballistically. The discovery of these
new states of matter and their protected edge states has triggered a huge number of
theoretical proposals and cutting-edge experiments. In these context several analogies
can be drawn between the propagation of electrons in quantum Hall edge channels and
photons in vacuum. This observation opened the way to a new research field, known as
electron quantum optics. The main purpose of electron quantum optics is to reproduce
conventional optics experiments using electrons propagating in condensed matter sys-
tems instead of photons traveling along waveguides. In the first part of Chapter 1, we
revised the main concept of electron quantum optics in non-interacting systems. Here,
we introduced the idea of single-electron sources, that can be exploited to emit purely
electronic excitations into quantum Hall edge states. In particular, we focused on the
case of Lorentzian voltage pulses carrying an integer number of electronic excitations,
the so-called levitons, which are one of the main building blocks of electron quantum
optics. By partitioning a periodic train of levitons traveling along quantum Hall edge
states by means of a quantum point contact, which is the analogue of a photonic beam
splitter for electrons, we showed that levitons are minimal excitation states for integer
filling factors. Finally, we discussed different sources of noise through the scattering
formalism focusing on the Hanbury Brown-Twiss and Hong-Ou-Mandel interferometry
with levitons, where electrons impinge on the opposite side of a quantum point contact
with a tunable delay. By performing such interferometric experiments, it is possible
to observe the anti-bunching effect typical of particle obeying Fermi statistics.

Despite having considered non-interacting systems, the crucial difference between
conventional quantum optics and electron quantum optics is the fact that electrons are
charged interacting particles. This leads to many-body effects which strongly affect
the dynamics of excitations and play a major role in various experimental situations.
In particular, this is true when experiments are carried out in quantum Hall edge
channels at filling factor ν = 2 or at fractional filling factor belonging to the Laughlin
sequence where electron-electron interactions cannot be neglected. In Chapter 2 we
introduced the Tomonaga Luttinger liquid theory which allowed us to treat Coulomb
interactions in quantum Hall systems through the bosonization procedure. Here, we
showed a theoretical model for a quantum Hall sample at filling factor ν = 2 where the
dynamics along edge channels, which interact via a short-range capacitive coupling,
is solved through the edge-magnetoplasmon scattering matrix. Interedge interactions
led to a charge fractionalization process for copropagating edge channels which will
play a fundamental role in the next Chapters. Interactions between the two edge
channels and the external environment have been shown to lead to decoherence as
well as energy relaxation. The edge-magnetoplasmon approach allowed us to deal
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5.7. Summary

with these effects and we showed what happens to an injected electrons in the inner
channel of an interacting ν = 2 QH sample where interaction and dissipation effects
are taken into account.

The electron quantum optics experiments are mainly carried out in quantum Hall
edge channels at filling factor ν = 2 where interchannel interactions cannot be ne-
glected. The effect of electron-electron interaction emerges dramatically in Hong-Ou-
Mandel experiments. Chapter 3 is devoted to the study of interactions on the cur-
rent correlations in an electronic Hong-Ou-Mandel interferometer. Here, two identical
stream of particles, injected through a properly engineered time-dependent voltage
pulse, impinge at a quantum point contact with a given time delay. We demonstrate
the Hong-Ou-Mandel noise signal always vanishes for a symmetric device and that a
mismatch in the distances between the injectors and the point of collision is needed
to reduce the visibility of the dip. We also showed that, by properly tuning these
distances or by applying different voltages on the two edge channels in each arm of the
interferometer, it is possible to estimate the intensity of the interedge interaction.

In Chapter 4, starting from the set-up presented in the previous Chapter, we stud-
ied the connection between the current fluctuations and the electromagnetic radiation
emitted by a mesoscopic device. In particular, we focused on the effects of interacting
edge channels on the squeezing of the emitted microwave radiation when particles are
injected into the system by means of time-dependent voltage sources. We compared a
cosine pulse with a Lorentzian one and we realized that in both cases quantum features
are reduced due to the interactions, however the Lorentzian drive is characterized by
a more robust squeezing effect. We finally reported recent experimental results which
supported the edge-magnetoplasmon squeezing in a quantum point contact geometry.

Finally, in Chapter 5, we moved into a different platform where, however, in-
teractions play a significant role: the ones governed by the fractional quantum Hall
effect. Here, we investigated a thermal activated non-equilibrium noise which is known
as delta-T noise. We considered an inhomogeneous quantum Hall junction, coupled
through a quantum point contact, and we demonstrated that the predominant contri-
bution to the noise is linear in the temperature gradient, differently from an homoge-
neous junction where the first non-zero contribution is quadratic. Moreover, we solved
exactly the problem of delta-T noise for a (1/3, 1) junction demonstrating that this
regime enables to explore the full range of tunnel coupling and to consider any set
of temperatures without restrictions. In addition, we reported on a universal expres-
sion, in terms of the tunneling parameter for a completely generic junction, for the
linear correction to the full delta-T noise in the temperature gradient starting from the
knowledge of the equilibrium noise. Finally, we demonstrated that we can cross from
the weak-coupling regime to the strong-coupling showing the relevance of delta-T noise
in better understanding the transport properties of such strongly correlated systems,
unlike previously considered noise contributions.

Possible extensions of this Thesis could address the consequences of inter-edge
interactions on the quantum coherence of the injected electrons in an electronic Mach-
Zehnder interferomer. It would be extremely interesting going beyond the simple
understanding of the consequences of in interactions in such an interferometer by
studying the possibility to obtain squeezed light even in this configuration. However,
a first step in this direction should be to better understand experimental results in non-
interacting quantum Hall system where the edge-magnetoplasmon squeezing does not
seem to overlap with theoretical predictions. Furthermore, another interesting research
perspective could extend the study of delta-T noise to states with filling factors other
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than Laughlin where fascinating effects should manifest themselves as a consequence
of the more complex structure of the edge states.
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Appendix A

Time evolution of fermionic and
bosonic operators

In this Appendix we evaluate the time evolution of fermionic and bosonic operators
due to the effect of a voltage drive in the non interacting case. The free Hamiltonian
for a single channel is

H0 =

∫ +∞

−∞
dxψ†(x)(−ivF∂x)ψ(x). (A.1)

Next, we consider a time-dependent voltage V (t) applied in the region x ∈ (−∞, 0).
This is described by the Hamiltonian

HU = −e
∫ +∞

−∞
dxU(x, t)ψ†(x)ψ(x)

with U(x, t) = Θ(−x)V (t).
The equations of motion determining the time evolution ψ(x, t) operators are ob-

tained in the Heisenberg picture by calculating the commutator [H0 +HU , ψ]. This is
easily done by using the identity [A,BC] = {A,B}C −B{A,C}, as well the canonical
anticommutation. relations. We have

[ψ(x), H0] = −ivF∂xψ(x)
[ψ(x), HU ] = −eU(x, t)ψ(x)

(A.2)

resulting in the equation of motion

i(∂t + vF∂x) = −eU(x, t)ψ(x, t). (A.3)

This equation can be solved by the Green function method as follows: define the
differential operator L = i(∂t + vF∂x) and look for a solution of the form

ψ(x, t) = ψ(x, t)eβ(x,t) (A.4)

such that L(x, t) = 0. Then Eq. (A.3) is converted in an equation for the function
β(x, t)

Lψ(x, t) = ψ(x, t)eβ(x,t)Lβ(x, t) = −eU(x, t)ψ(x, t)eβ(x,t),

→ Lβ(x, t) = −eU(x, t).
(A.5)
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By introducing the Green function G(x, x′; t, t′) of the operator L, satisfying

LG(x, x′; t, t′) = δ(x− x′)δ(t− t′), (A.6)

we can write the solution to (A.5) in the form

β(x, t) = −e
∫
R2

dx′dt′G(x, x′; t, t′)U(x′, t′). (A.7)

Indeed, by acting with L on this expression and using the property (A.6), we readily
obtain (A.5). The Green function for L is

G(x, x′; t, t′) = −iΘ(t− t′)δ[vF (t− t′)− (t− t′)]. (A.8)

As a matter of fact

LG(x, x′; t, t′) = δ(t− t′)δ(x− x′) + Θ(t− t′)∂tδ[vF (t− t′)− (t− t′)]

+ vFΘ(t− t′)∂xδ[vF (t− t′)− (t− t′)]

= δ(t− t′)δ(x− x′).

(A.9)

By using (A.8) into (A.7) we obtain

β(x, t) = ie

∫ t

−∞
dt′ U [x− vF (t− t′), t′]. (A.10)

The last ingredient is the solution to the homogeneous equation Lψ(x, t) = 0, which
is any function of the form ψ(x− vF t, 0). Therefore we conclude

ψ(x, t) = ψ(x− vF t, 0)e
ie

∫ t
−∞ dt′U [x−vF (t−t′),t′], (A.11)

which reduces to Eq. (1.35). In particular, by expliciting the U(x, t) = Θ(−x)V (t), we
find

ψ(x, t) = ψ(x− vF t, 0)e
iα
(
t− x

vF

)
(A.12)

with the function α(t) defined as

α(τ) = e

∫ τ

−∞
dt′V (t′). (A.13)

The above result reduces to Eq. (1.36).
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Appendix B

Calculation of the elastic scattering
amplitude

We start by considering an electronic wave-packet injected in channel 1 of Fig. 2.5 in
such a way that

|in⟩ =
∫ +∞

−∞
dy φ(y)ψ†(y)|F⟩1 ⊗ |F⟩2 (B.1)

with |F⟩i (i = 1, 2) the Fermi sea associated to the i-th channel, ψ† the electronic
creation operator and φ(y) its wave-packet.

In the following we will focus on an energy resolved wave-packet with

φ(y) =
eiεy√
Nt

(B.2)

where the normalization Nt represents the longest time scale in the system and ε the
energy.

According to the hydrodynamic approach discussed in Section 2.3 one can write the
fermionic operator acting on the Fermi sea as a coherent state of edge-magnetoplasmons
(up to a Klein factor that plays no role in what follows) [215]. This leads to

|in⟩ =
∫ +∞

−∞
dy
eiεy√
T

(⊗
ω>0

| − λω(y)⟩1

)
⊗

(⊗
ω>0

|0ω⟩2

)
(B.3)

with
λω(y) = − 1√

ω
eiωy (B.4)

and 0ω the EMP vacuum.
The analogous expression

|out⟩ =
∫ +∞

−∞
dy′

eiεy
′

√
T

(⊗
ω>0

| − λω(y
′)⟩1

)
⊗

(⊗
ω>0

|0ω⟩2

)
(B.5)

holds for the state in the outgoing region.
Expressing the incoming EMPs in terms of the outgoing ones requires to take into

account the entries of the matrix Ŝ in Eq. (2.73) in such a way that

|in⟩ → |in⟩′ =
∫ +∞

−∞
dy
eiεy√
T

(⊗
ω>0

| − S11(ω)λω(y)⟩1

)
⊗

(⊗
ω>0

| − S12(ω)λω(y)⟩2

)
.

(B.6)
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B.1. Non-dissipative case

The elastic scattering amplitude is then given by

Z(ε) = ⟨out|in⟩′ (B.7)

that, taking into account the general relation for coherent states⊗
ω>0

⟨αω|βω⟩ = e−
1
2

∫+∞
0 |αω−βω |2dωei

∫+∞
0 ℑ(α∗

ωβω)dω (B.8)

with ℑ(...) representing the imaginary part, leads (in the limit Nt → +∞) to

Z (ε) =

∫ +∞

−∞
dτeiετ exp

{∫ +∞

0

dω

ω

[
t (ω) e−iωτ − 1

]}
(B.9)

which is the expression considered in Eq. (2.82).

B.1 Non-dissipative case

In absence of energy losses towards external degrees of freedom the EMP transmission
amplitude is

tnd (ω) = pρe
iωτρ + pσe

iωτσ (B.10)

with pρ(θ) = cos2 θ and pσ(θ) = sin2 θ. This leads, in the time domain, to

Znd(t) = exp

{
pρ

∫ +∞

0

dω

ω

[
e−iω(t−τρ) − 1

]
e−ω/ωc

}
×

× exp

{
pσ

∫ +∞

0

dω

ω

[
e−iω(t−τσ) − 1

]
e−ω/ωc

}
=

=
−i
ωc

1(
t− τρ − i

ωc

)pρ (
t− τσ − i

ωc

)pσ . (B.11)

Its Fourier transform reads

Znd(ε) =
−i
ωc

∫ +∞

−∞
dt

eiεt(
t− τρ − i

ωc

)pρ (
t− τσ − i

ωc

)pσ
=

2π

ωc
e
i ε
ε0f

′
ρ 1F1

[
pρ, 1;−i

ε

ε0

(
1

f ′σ
− 1

f ′ρ

)]
Θ(ε) (B.12)

with
ε0 =

v

L
, (B.13)

Θ(...) the Heaviside Theta function, 1F1 indicates the Kummer confluent hypergeo-
metric function and f ′ρ/σ defined in Eq. (2.62).

In this case the relative height of the wave-packet evolves as

Vnd(ε) =

∣∣∣∣1F1

[
pρ, 1;−i

ε

ε0

(
1

f ′σ
− 1

f ′ρ

)] ∣∣∣∣2Θ(ε). (B.14)

In the strongly interacting limit (θ = π/4), due the peculiar functional identities
between hypergeometric and the zero-th order Bessel function J0, the above expression
reduces to [144]
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B.2. Linear dissipation

Znd,strong(ε) =
2π

ωc
e
i ε
2ε0

(
1
f ′ρ

+ 1
f ′σ

)
J0

[
ε

2ε0

(
1

f ′σ
− 1

f ′ρ

)]
Θ(ε). (B.15)

with visibility

Vnd,strong(ε) = J2
0

[
ε

2ε0

(
1

f ′σ
− 1

f ′ρ

)]
Θ(ε). (B.16)

B.2 Linear dissipation

The analytic expressions in this case can be obtained from the non-dissipative one by
taking into account the substitution (see Section 2.5)

ω → ω + iγ1ω (B.17)

at the level of the first integral. This leads to

Zl (ε) =
2π

ωc
e
i ε
ε0f

′
ρ e

− γ1
f ′ρ

ε
ε0

1F1

[
pρ, 1;−γ1

ε

ε0

(
1

f ′σ
− 1

f ′ρ

)
+ i

ε

ε0

(
1

f ′σ
− 1

f ′ρ

)]
Θ(ε)

(B.18)
and

Vl (ε) = e
−2

γ1
f ′ρ

ε
ε0

∣∣∣∣1F1

[
pρ, 1;−γ1

ε

ε0

(
1

f ′σ
− 1

f ′ρ

)
+ i

ε

ε0

(
1

f ′σ
− 1

f ′ρ

)] ∣∣∣∣2Θ(ε) . (B.19)

B.3 Quadratic dissipation

In this case the elastic scattering amplitude can be written, in the time domain, as

Zq(t) = exp {Wρ(t)} exp {Wσ(t)} =

= exp

{
pρ

∫ +∞

0

dω

ω
[e−iω(t−τρ−iγ2ωτρ) − 1]e−ω/ωρ

}
×

× exp

{
pσ

∫ +∞

0

dω

ω
[e−iω(t−τσ−iγ2ωτσ) − 1]e−ω/ωρ

}
.

(B.20)

This first integration can be done analytically and the exponents Wρ,σ(t) take the
following form

Wρ,σ(t) = 2pρ,σ

{
γ − log(γ2τρ,σω

2
c ) + iπErf

[
i+ (τρ,σ − t)ωc

2
√
γ2ωc

]
+

− (i+ (τρ,σ − t)ωc)
2

2γ2τρ,σω2
c

2F2

[
1, 1;

3

2
, 2;−(i+ (τρ,σ − t)ωc)

2

4γ2τρ,σω2
c

]} (B.21)

where γ ≈ 0.577 is the Euler’s constant and Erf is the error function. Unfortunately,
it is not possible to obtain an analytical solution for the Fourier transform Zq(ε) and
a numerical integration is needed.
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Appendix C

Photoassisted amplitudes and
HOM noise ratio

In this Appendix we evaluate the photoassisted amplitudes p̃l,A/B(q) and Pl(q; δ) in
terms of amplitudes pl(q), introduced in Section 1.6.3, and we show how to obtain
Eq. (3.23). The coefficients we want to determine, for a periodic voltage pulse source
V (τ) = V (τ + T ), are defined by the Fourier series (j = A,B)

e−ie
∫ t
0 V j

1,out(τ)dτ = e−iqΩt
∑
l

p̃l,j(q)e
−ilΩt (C.1)

where Ω = 2π/T and

e−ie
∫ t
0 [V

A
1,out(τ)−V B

1,out(τ)]dτ =
∑
l

Pl(q; δ)e
−ilΩt . (C.2)

The explicit expressions of these coefficients in terms of pl are then obtained by in-
verting the previous relations. Let us start with p̃l,j(q). From Eq. (C.1) we have

p̃l,j(q) =

∫ T

0

dt

T
ei(l+q)Ωte−ie

∫ t
0 V j

1,out(τ)dτ . (C.3)

Next, with the help of Eqs. (3.20) and (3.30), the voltages V j
1,out(t) are expressed

in terms of the source drive V (t) given in Eq. (3.24). In doing that, four different
phase factors involving V (t) are obtained, each of which containing a time shift and
being differently weighted due to interactions. It is then possible to repeatedly use
Eq. (1.104) to express these factors as Fourier series involving the photoassisted coef-
ficients pl. Finally, after performing the time integration in Eq. (C.3) we obtain the
result (neglecting unimportant phases)

p̃l,j(q) =
∑
nrs

pl−n−r+s(q1)pn(q2)pr(q3)p
∗
s(q3)

× eiΩτ jρ (l−n+s)eiΩτ jσ(n−s),

(C.4)

where q1 = cos2 θ, q2 = sin2 θ and q3 = α sin θ cos θ. In absence of the voltage source
connected to the external channel (i.e. α = 0) Eq. (C.4) becomes

p̃l,j(q) =
∑
n

pl−n(q1)pn(q2)e
iΩτ jρ (l−n)eiΩτ jσ n. (C.5)
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Notice that in absence of interaction (θ = 0) the photoassisted coefficients reduces to
the results in Eq. (1.105) finding the condition of free fermions.

Thus, the coefficients p̃l,j(q) are completely specified once the expression of pl
is known. In the following we will specify the form of these coefficients both for a
Lorentzian drive and for a cosine one which will be useful for Chapter 4.

For a Lorentzian drive, the expression of pl(q) is generically given by [13, 102, 156]

pl(t) = t

+∞∑
s=0

(−1)sΓ(t+ l + s)e−2πτ0(2s+l)/T

Γ(t+ 1− s)Γ(1 + s)Γ(1 + l + s)
(C.6)

with Γ(x) being the Euler’s Gamma function.
For a cosine drive one has

p
(c)
l (t) = Jl(−t) (C.7)

with Jl(t) the l-th Bessel’s function of the first kind.
Once p̃l,j are known, it is easy to obtain the photoassisted coefficients Pl(q; δ) that

take into account the time delay δ between the two sources. Indeed, by inverting
Eq. (C.2) and using Eq. (C.1) to express the phase factors involving the voltages
V j
1,out(t), we readily arrive at the expression

Pl(q; δ) =
∑
m

p̃l+m,A(q)p̃
∗
m,B(q) e

imΩδ, (C.8)

where, again, unimportant phases have been neglected.
Now we have all the ingredients to evaluate the HOM ratio defined in Eq. (3.21).

Recall that SHOM is obtained by evaluating Eq. (3.22) and that the contributions
SHBT,j are particular cases when one of the two sources is switched off. The first step
is to express the phases φj(t, t

′) by relying on the photoassisted coefficients we have
determined in this Appendix. For instance,

e−iφA(t̄+ τ
2
,t̄− τ

2
) =

(∑
l

p̃l,A(q) e
−ilΩ(t̄+ τ

2
)e−iqΩ(t̄+ τ

2
)

)
×
(∑

l′

p̃∗l′,A(q) e
il′Ω(t̄− τ

2
)eiqΩ(t̄− τ

2
)

)
=
∑
ll′

p̃l,A(q)p̃
∗
l′,A(q) e

iΩt̄(l′−l)e−iΩ τ
2
(l+l′+2q)

(C.9)

and similarly for e−iφB , where the time delay δ has to be taken into account. This
expression is then used into Eq. (3.18) to obtain the function ∆Q(t + τ/2, t − τ/2).
Finally, the two time integrations in Eq. (3.18) can be performed yielding (in the limit
of zero temperature)

SHOM = −(evF )
2RT

(
π
∑
l

|Pl(q; δ)|2|Ωl|
)

(C.10)

for the general HOM case and

SHBT,j = −(evF )
2RT

(
π
∑
l

|p̃l,j(q)|2|Ω(l + q)|
)

(C.11)

for the HBT contributions. From these expressions, the noise ratio R in Eq. (3.23)
follows straightforwardly. All the above (infinite) sums are convergent and their value
has been obtained numerically by summing over a finite number of coefficients until
the desired precision is obtained.
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Appendix D

Central dip in the asymmetric
length case

D.1 Central dip resolution

In this Appendix we want to comment the resolution of the central dip in the asym-
metric case θA = θB and LA ̸= LB.

In principle when the interferometer is asymmetric, one should expect four dips,
whose positions would be indeed determined by two delay times only. At δ1 = τBρ −τAρ ,
the two charged modes arrive at the QPC simultaneously, but the dipolar ones do not.
Similarly, at δ2 = τBσ − τAσ , the two dipolar modes arrive at the QPC at the same time
while the charged ones do not. However, the proper visualization of those dips requires
enough resolution, namely the wave-packets have to be narrow enough. This feature
is simply not resolved in Fig. 3.5 (upper panel) where we have chosen a value for τ0
(width of the Lorentzian voltage) and T (period of the source) in the typical range
accessible for the experiments. As a result, the two expected dips at δ1 and δ2 merge
into a broader one, located at δcd (Eq. (3.26)), which is the average delay between the
previous two

δcd =
δ1 + δ2

2
. (D.1)

In Fig. D.1 we show how the ratio R should be if we consider unrealistically narrow
pulses (for a period T = 100τ0). Here the two dips are well resolved respectively at
positions δ1 and δ2 symmetrically with respect to δcd, bringing the number of observed
dips in the HOM ratio from three (as in Fig. 3.5) to four.

Concerning the sideband dips, they are located at δ = τBσ −τAρ (coincidence between
the dipolar mode incoming from B and the charged one incoming from A) and δ =
τBρ − τAσ (coincidence between the charged mode incoming from B and the dipolar
one incoming from A). Therefore their positions are determined by two times only.
In Eq. (3.27) we have expressed the location of these side dips relative to the broad
central one.

It is worth noticing that in the symmetric situation when LA = LB we have
δ1 = δ2 = δcd = 0 as expected.

D.2 Central dip visibility

The result in Eq. (3.28), relating the lengths ratio to the periodicity of the signal used
for explanation of the minimum value for R(δcd) in Fig. 3.6, is obtained starting from
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D.2. Central dip visibility

Figure D.1: Ratio R in Eq. (3.26), for Lorentzian pulses, as a function of time delay
over period (δ/T ) for an asymmetric set-up. The lengths ratio of the two arms is
LB/LB = 1.5, the channel coupling strength is maximal (θ = π/4) and one fix T =
100τ0. Vertical solid lines correspond respectively to δ1 = τBρ − τAρ and δ2 = τBσ − τAσ
while the dotted vertical one to δcd (in Eq. (3.26)). Other parameters are: τ0/T = 0.05,
vρ = 4 · 105m/s and vσ = 1.8 · 105m/s, with LA = 2µm.

the equality in Eq. (3.20), that is still true also for the phases φj(t). The phases are
(considering the injection only in one channel)

φA(t) = cos2 θ φ(t− τAρ ) + sin2 θ φ(t− τAσ )

φB(t+ δ) = cos2 θφ(t− τBρ + δ) + sin2 θφ(t− τBσ + δ)
(D.2)

where φ(t) =
∑

k∈Z arctan
(
t−kT
τ0

)
for Lorentzian periodic pulses. In order to solve

φA(t) = φB(t + δ) we have to specify the interaction angle. Firstly considering 0 <
θ < π/4, see Fig. D.2 (left panel), we know that sin θ ̸= cos θ and this means that
Eq. (3.20) is satisfied when

φ(t− τAρ/σ) = φ(t− τBρ/σ + δ). (D.3)

These two conditions lead to the same result, therefore we can focus on the first
one ∑

k

tan−1

[
t− kT − τAρ

τ0

]
=
∑
k′

tan−1

[
t− k′T − τBρ + δ

τ0

]
(D.4)

which yields
(k′ − k)T = τAρ − τBρ + δ. (D.5)

Because we want to study how the minimum of central dip varies, the delay δ has to
be fixed by

δcd =
τBρ + τBσ − τAρ − τAσ

2
. (D.6)

By substituting this expression into Eq. (D.5) and recalling that τBρ/σ = τAρ/σ LB/LA,
we arrive at the result in Eq. (3.28).
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D.2. Central dip visibility

Figure D.2: Left panel: behavior of R(δcd) with respect to lengths ratio LB/LA for
three different fixed value of the interaction angle: θ = π

4 (red curve), θ = π
6 (cyan

curve) and π
8 (brown curve). Other parameters are: τ0/T = 0.05, LA = 2µm vρ =

1.5 · 105m/s and vσ = 2 · 104m/s. Right panel: visualization of single electron charge
density propagation along an edge channel. In a) a Leviton enter the interacting region
x > 0, in b) it is clear how the Coulomb coupling mechanism works: the fast mode
and the slow one start separating. The separtion continues in c). In d) the green
curve describes the case when a second Leviton enter the interacting region: its fast
mode reaches the slow mode of the previous period, recreating a purely electronic
wave-packet. The process of entry and of charge fractionalization continues in e) and
f). By repeating this mechanism for all the periods one can justify Eq. (3.28) and the
relations between the lengths ratio and the periodic windows.

An interesting additional feature for R(δcd) is obtained when θ = π/4. Due to
the fact that in this case sin θ = cos θ, there is another possibility to fulfill φA(t) =
φB(t+ δ), namely

φ(t− τAρ/σ) = φ(t− τBσ/ρ + δ). (D.7)

Again, this two conditions lead to the same result, which reads

LB

LA
=

2(k′ − k)T
τAσ − τAρ

− 1. (D.8)

This analysis clearly shows that the zeros in R(δcd) described by Eq. (3.28) are sta-
ble with respect to the change of the interaction strength, while those described by
Eq. (D.8) are only present at maximal coupling (see also Fig. D.2 (left panel) ). In
order to further characterize the physics behind this phenomenology we have reported
in Fig. D.2 (right panel) some snapshots of the evolution of the particle density, show-
ing how Levitons emitted in different periods of the drive can recombine due to the
interaction-induced fractionalization process.
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Appendix E

Calculation of the dynamical
response of the noise

In this Appendix we evaluate explicitly the expression of the dynamical response of
the noise X (k)

φ (Ω, ω) appearing in Eq. (4.14) in the zero temperature limit, according
to what happens in the experimental situations. In order to reach this goal we have
to calculate the correlator in Eq. (4.13)

X (k)
+,φ(ω0, ω) = eiφ⟨I1(ω)I1(kΩ− ω)⟩c =

= eiφ
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dt′ ei(kΩ−ω)t′⟨I1(t)I1(t′)⟩c.

(E.1)

By considering the following change of variables t̄ = t+t′

2 and τ = t − t′, the previous
equation can be rewritten as

X (k)
+,φ(Ω, ω) = eiφ

∫ +T
2

−T
2

dt̄

T

∫ +∞

−∞
dτeiω(t̄+

τ
2
)ei(kΩ−ω)(t̄− τ

2
)⟨I1(t̄+

τ

2
)I1(t̄−

τ

2
)⟩c . (E.2)

The effect of the external voltage drive Vin(t) can be properly taken into account with
a phase factor [102, 103], see Eq. (1.36) for the fermionic field, in such a way that Eq.
(3.15) is rewritten as

G1(t̄+
τ

2
, t̄− τ

2
) = ⟨ψ†

1(t̄+
τ

2
)ψ1(t̄−

τ

2
)⟩c =

= G1,F (τ)(e
−iΦ1(t̄+

τ
2
,t̄− τ

2
) − 1)

(E.3)

where G1,F is the correlation function for the equilibrium state (i.e. when no drive is
applied) and the phase factor follows Eq. (1.37)

Φ1(t, t
′) = e

∫ t

t′
V1,out(τ)dτ (E.4)

with V1,out takes the form in Eq. (4.5) and carry information about the effects of
interactions. The fermionic operator ψR,O ≡ ψ1, outgoing from the QPC in the inner
channel, is

ψR,O(t) =
√
TψR,I(t) + i

√
RψL,I(t) (E.5)

where ψR,I and ψL,I are the incoming inner ones. The previous relation descends
directly from the scattering matrix in Eq. (4.6).
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In the HBT geometry depicted in Fig. 4.1, after substituting (E.5) in Eq. (E.3) the
HBT contribution to the correlation function is

G1(t̄+
τ

2
, t̄− τ

2
) = −i

√
RTG(R,L)

1,F (e−iΦ1(t̄+
τ
2
,t̄− τ

2
) − 1). (E.6)

By substituting Equation (E.6) in (E.2), the current correlator becomes

⟨I1(t̄+
τ

2
)I1(t̄−

τ

2
)⟩c = (ev1)

2 RTG(R,L)
1,F (τ)G(R,L)

1,F (τ)×

×
[
e−iΦ1(t̄+

τ
2
,t̄− τ

2
) + e+iΦ1(t̄+

τ
2
,t̄− τ

2
) − 2

]
.

(E.7)

For a periodic voltage pulse source, considered here, the phase factor can be written in
terms of the Fourier series as in Eq. (1.104) and Eq. (C.1). Then the explicit expression
of the coefficients p̃l is reported in Eq. (4.17) similarly to Eq. (C.5). Furthermore the
form of the coefficients pl is related to particular form of the drive considered (cosine
or Lorentzian) and it is expressed in Equations (C.7) and (C.6). By substituting the
Fourier series in (E.2) we have

X (k)
+,φ(Ω, ω) =(evF )

2RTeiφ
∫ +T

2

−T
2

dt̄

T

∫ +∞

−∞
dτ

1

τ2
ei(ω−

kΩ
2
)τeikΩt̄×

×
∑
ll′

p̃l(z)p̃
∗
l′(z)e

−iΩ(l−l′)t̄e−iΩ(l+l′) τ
2 eiq

′ωτ .

(E.8)

After the first integration in t̄ the previous Equation gives a δ(l − l′ − k) and the
expression becomes

X (k)
+,φ(Ω, ω) = (evF )

2RTeiφ
∫ +∞

−∞
dτ

1

τ2

∑
l

p̃l(z)p̃
∗
l−k(z)e

−iΩ τ
2
(2l−k)eiq

′ωτe−ikΩτ/2eiωτ

= (evF )
2RTeiφ

∑
l

(π|Ωl + q′ω − ω|)

= (evF )
2RTeiφ

∑
l

(πω|λl + q′ − 1|)

(E.9)

where we have used the short hand notation λ = Ω/ω and |...| denotes the abso-
lute value. The same steps can be followed in order to calculate the other term
X (−k)
+,φ (Ω,−ω) in Eq. (4.12). The above (infinite) sum is convergent and its value

has been obtained numerically by summing over a finite number of coefficients until
the desired precision is obtained.
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Appendix F

Explicit evaluation of the correlator
in Eq. (5.35)

In this Appendix, we compute explicitly the propagator ⟨A†(t)A(t′)⟩ of Eq. (5.35). The
latter only involves the fermionic field A, which is only defined at a position before the
QPC, so that the quantum averaging is performed on the state where the two edge
states are decoupled and at their respective temperature TR,L.

We first recall the relation in Eq. (5.20) between the rotated fields φR/L and the
dual ones φ̃R/L. The idea in order to evaluate the propagator is to revert to the bosonic
description, where

⟨A†(t)A(t′)⟩ = ⟨ψ†(0−, t)ψ(0−, t′)⟩ = 1

2πa

〈
e−iφ̃−(0−,t)eiφ̃−(0−,t′)

〉
=

=
1

2πa

〈
e
− i√

2
φ̃L(0

−,t)−φ̃R(0−,t)
e

i√
2
φ̃L(0

−,t′)−φ̃R(0−,t′)〉
=

=
1

2πa

〈
e
− i√

2
φL(0

−,t)−φR(0−,t)
e

i√
2
φL(0

−,t′)−φR(0−,t′)〉
=

=
1

2πa

〈
e
−i

[
cos ζ+sin ζ√

2
ϕL(0

−,t)+ sin ζ−cos ζ√
2

ϕR(0−,t)
]
e
i
[
cos ζ+sin ζ√

2
ϕL(0

−,t′)+ sin ζ−cos ζ√
2

ϕR(0−,t′)
]〉
.

(F.1)

The bosonic fields ϕR/L are taken at a position before the QPC (x = 0−) and are thus
uncoupled from each other. For this reason we are able to rewrite the correlator as a
product of averages evaluated at a fixed temperature TR/L of the considered right or
left QH bar. Then, for the particular case of a QH junction with νL = 1/3 and νR = 1
we recover the result of Eq. (5.35) in the main text, namely

⟨A†(t)A(t′)⟩ = 1

2πa

〈
e−i

√
3
2
ϕL(0

−,t)ei
√

3
2
ϕL(0

−,t′)
〉〈
ei

1
2
ϕR(0−,t)e−i 1

2
ϕR(0−,t′)

〉
=

1

2πa
e

3
4
GL(t−t′)e

1
4
GR(t−t′). (F.2)
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Appendix G

Particle densities relations in an
inhomogeneous FQH junction

In this Appendix, we give a description of the junction in terms of the particle densities
of the edge channels and we restore the equivalence in Eq. (5.40). This allows to
compute the current noise for the specific case of (1/3, 1) presented in Section 5.4.2.

The particle densities ρL/R of the two edges of the inhomogeneous QH junction are
defined in Eq. (5.2) and depend on the fields ϕL/R. The first change of basis, which
relates ϕL/R to φL/R (see Eq. (5.8)), can be expressed in terms of the particle densities
as follows (

ρL
ρR

)
=


√
νL +

√
νR

2

√
νL −√

νR
2√

νR −√
νL

2
√
νLνR

√
νR +

√
νL

2
√
νLνR

(ρ′Lρ′R
)
. (G.1)

After the introduction of the second rotation of Eq. (5.12), the new densities ρ+/− are
related to ρ′L/R by (

ρ′L
ρ′R

)
=

√
g

2

(
1 1
1 −1

)(
ρ+
ρ−

)
. (G.2)

In terms of densities, the duality relates ρ′L/R to the dual ones ρ̃L/R. Notice, from the
dual fields transformation in Eq. (5.20), that the densities in the incoming channels
ρ′L/R(x < 0) are the same as ρ̃L/R(x < 0) (i.e. from Eq. (5.20) for x < 0 we have
φL/R = φ̃L/R and consequently for the densities). Furthermore, the matrices given in
Eq. (G.1) and (G.2) can be used to express the original fields ϕL/R(x < 0) in terms of
the fields φ̃+/−(x < 0).

In order to write the original densities in the outgoing channels ρL/R(x > 0) in
terms of the densities ρ̃+/−(x > 0) it is necessary to realize that the duality transfor-
mation of Eq. (5.20) exchanges φL and φR for x > 0. As a consequence, for x > 0
Eq. (G.1) reads

(
ρL
ρR

)
=


√
νL +

√
νR

2

√
νL −√

νR
2√

νR −√
νL

2
√
νLνR

√
νR +

√
νL

2
√
νLνR

(ρ̃Rρ̃L
)
. (G.3)

It is thus useful to connect the corresponding ± density operators with their initial
(L/R) counterparts. By using Eqs. (G.1), (G.2) and (G.3) the densities ρL/R can be
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written in terms of ρ̃+/−

ρL(x = 0−, t) =

√
gνL
2
ρ̃+(0

−, t) +

√
gνR
2
ρ̃−(0

−, t)

ρR(x = 0−, t) =

√
g

2νL
ρ̃+(0

−, t)−
√

g

2νR
ρ̃−(0

−, t)

(G.4)

and

ρL(x = 0+, t) =

√
gνL
2
ρ̃+(0

+, t)−
√
gνR
2
ρ̃−(0

+, t)

ρR(x = 0+, t) =

√
g

2νL
ρ̃+(0

+, t) +

√
g

2νR
ρ̃−(0

+, t).

(G.5)

Since the φ̃+ field is continuous through the QPC, we can drop the ρ̃+ contribution
and the current operator is therefore given by

I(t) = ev

√
g

2
[ρ̃−(0

+, t) + ρ̃−(0
−, t)]. (G.6)

Exploiting the decomposition in Eqs. (5.27) and (5.28) for the specific case of the
(1/3, 1) junction (i.e. g = 1/2), the tunneling current can be rewritten in terms of the
Fourier components of the fermionic field before (A) and after (B) the QPC leading to

I(t) =
ev

2
[A†(t)A(t) +B†(t)B(t)]. (G.7)

This last equation is thus an equivalent definition of the current operator introduced
in Eq. (5.4) and it is quoted in the main text as Eq. (5.40).
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Appendix H

Delta-T noise for a (1/3, 1) junction

H.1 Zero-frequency noise for a mismatched (1/3, 1) QH
junction

In this Appendix we derive the result of Eq. (5.42). To do this, we recall Eq. (5.34)
where the fermionic fields B are written in terms of the A ones so that one has

B†(t)B(t) +A†(t)A(t) =

= −Tk
∫ t

−∞
dt′e−Tk(t−t′)A†(t)

[
A(t′)−A†(t′)

]
+

− Tk
∫ t

−∞
dt′e−Tk(t−t′)

[
A†(t′)−A(t′)

]
A(t) + 2A†(t)A(t)

+ T 2
k

∫ t

−∞
dt′1

∫ t

−∞
dt′2e

−Tk(t−t′1)e−Tk(t−t′2)
{
A†(t′1), A(t

′
2)
}

=
Tk
2v

+ Tk
∫ t

−∞
dt′e−Tk(t−t′)

[
A†(t)A†(t′)−A†(t)A(t′)+

+A(t′)A(t)−A†(t′)A(t) + 2A†(t)A(t)
]
.

(H.1)

Substituting this expression back into the definition for the noise, Eq. (5.41), one has

S(t1, t2) =
(
Tk
ev

2

)2 ∫ t1

−∞
dt′1

∫ t2

−∞
dt′2e

−Tk(t1−t′1+t2−t′2)〈[
A†(t1)A

†(t′1)−A†(t1)A(t
′
1) +A(t′1)A(t1)

−A†(t′1)A(t1) + 2A†(t1)A(t1)
]
×

×
[
A†(t2)A

†(t′2)−A†(t2)A(t
′
2) +A(t′2)A(t2)

−A†(t′2)A(t2) + 2A†(t2)A(t2)
]〉

(H.2)
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H.2. Delta-T noise of the (1/3, 1) junction: first order expansion in ∆T

which becomes, after applying Wick’s theorem,

S(t1, t2) =
(
Tk
ev

2

)2 ∫ t1

−∞
dt′1

∫ t2

−∞
dt′2e

−Tk(t1−t′1+t2−t′2)×{
⟨A†(t1)A(t2)⟩⟨A†(t′1)A(t

′
2)⟩ − ⟨A†(t1)A(t

′
2)⟩⟨A†(t′1)A(t2)⟩

+⟨A†(t1)A(t
′
2)⟩⟨A(t′1)A†(t2)⟩+ ⟨A†(t1)A(t2)⟩⟨A(t′1)A†(t′2)⟩

+⟨A(t′1)A†(t′2)⟩⟨A(t1)A†(t2)⟩ − ⟨A(t′1)A†(t2)⟩⟨A(t1)A†(t′2)⟩
+⟨A†(t′1)A(t

′
2)⟩⟨A(t1)A†(t2)⟩+ ⟨A†(t′1)A(t2)⟩⟨A(t1)A†(t′2)⟩

−2
(
⟨A†(t1)A(t2)⟩⟨A(t′1)A†(t2)⟩+ ⟨A†(t′1)A(t2)⟩⟨A(t1)A†(t2)⟩

+⟨A†(t1)A(t
′
2)⟩⟨A(t1)A†(t2)⟩+ ⟨A†(t1)A(t2)⟩⟨A(t1)A†(t′2)⟩

)
+4⟨A†(t1)A(t2)⟩⟨A(t1)A†(t2)⟩

}
.

(H.3)

Using the Fourier transformed versions of the correlators from Eqs. (5.37) and (5.38),
this is further rewritten as

C(t1, t2) =

(
Tk
ev

2

)2 ∫ dω1

2πv

∫
dω2

2πv

×
{
ei(ω1+ω2)(t1−t2)nω1nω2

[
1

Tk − iω2
− 1

Tk − iω1

]
1

Tk + iω2
+

+ e−i(ω1+ω2)(t1−t2)(1− nω1)(1− nω2)

[
1

Tk + iω1
− 1

Tk + iω2

]
1

Tk − iω1
+

+ ei(ω1−ω2)(t1−t2)nω1(1− nω2)

[
1

Tk − iω1
+

1

Tk + iω2

]
1

Tk − iω2
+

+ ei(ω1−ω2)(t1−t2)nω1(1− nω2)

[
1

Tk − iω1
+

1

Tk + iω2

]
1

Tk + iω1

− 2ei(ω1−ω2)(t1−t2)nω1 (1− nω2)

[
2

T 2
k + ω2

2

+
2

T 2
k + ω2

1

− 2

T 2
k

]}

(H.4)

where we also performed the time integrals.
Since we want to consider the noise power S(TL, TR) we need to perform an addi-

tional time integration over (t1 − t2), leading to

S(TL, TR) = 2

(
Tk
e

2

)2 ∫ dω

2π

(
2
[
nωn−ω + (1− nω)(1− n−ω)

][ ω

T 2
k + ω2

]2
+

+ nω(1− nω)

{[
2Tk

T 2
k + ω2

]2
− 8

T 2
k + ω2

+
4

T 2
k

}) (H.5)

which then recovers the result of Eq. (5.42).

H.2 Delta-T noise of the (1/3, 1) junction: first order ex-
pansion in ∆T

Rather than a numerical evaluation, it could be more rewarding to try to work out an
analytic expression for the ∆T noise of the (1/3, 1) junction. This, however, can only
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be achieved for comparable temperatures, as this approach relies on an expansion in
the temperature difference ∆T .

In practice, the calculation amounts to expanding the distribution function as

nω = n(0)ω +
∆T

T
n(1)ω +O

(
∆T 2

)
. (H.6)

Substituting this back into the expression for the noise, Eq. (5.44), one has

S(TR, TL) = S0(T ) +
∆T

T
S1(T ) (H.7)

with

S0(T ) = e2
∫
dω

2π
n(0)ω

(
1− n(0)ω

)(
1−

T 2
k − ω2

T 2
k + ω2

)
(H.8)

S1(T ) = e2
∫
dω

2π
n(1)ω

(
1− 2n(0)ω

)(
1−

T 2
k − ω2

T 2
k + ω2

)
. (H.9)

The zero-th order contribution to the distribution nω trivially reduces to the Fermi
distribution at temperature T which is given in Eq. (1.34) where we have now set
kB = 1 and n(0)ω ≡ f(ω) for notational convenience.

The first order contribution can be worked out as

n(1)ω =
3

4

∫
dτe−iωτ ωc

2π

sinh
(
iπ T

ωc

)
sinh

(
πT
(
i 1
ωc
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))
 iπ T

ωc

tanh
(
iπ T

ωc

) −
πT (i 1

ωc
− τ)

tanh
(
πT (i 1

ωc
− τ)

)


= T
3

4
∂T

∫ dτe−iωτ ωc

2π

sinh
(
iπ T

ωc

)
sinh

(
πT
(
i 1
ωc

− τ
))
 = T

3

4
∂Tn

(0)
ω . (H.10)

It follows that

n(1)ω

(
1− 2n(0)ω

)
= T

3

4
∂Tn

(0)
ω

(
1− 2n(0)ω

)
= T

3

4
∂T

[
n(0)ω

(
1− n(0)ω

)]
(H.11)

which allows us to readily write

S1(T ) = T
3

4
∂TS0(T ). (H.12)

Here, we have obtained an analytical expression for the delta-T noise in a (1/3,1)
junction. In the next Appendix we generalize this approach to a generic (νL,νR)
junction.
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Appendix I

Universal first order expansion of
the noise in ∆T

In this Appendix we report on the calculation for the expansion of S(TL, TR) at the
first other in ∆T/T . The noise can be written, taking into account the temperature
parametrization in Eq. (5.19) and up to first order in ∆T/T , as

S(TL, TR) =
1

Z

∫ +∞

−∞
dτ Tr

{
e−β(H

(0)
L +H

(0)
R )

[
1 +

∆T

T 2
H

(0)
L

]
I(τ)I(0)

}
+O(∆T 2),

(I.1)

with β = T−1. Through the transformations in Eqs. (5.8) and (5.12) the noise can be
rewritten as

S(TL, TR) =
1

Z

∫ +∞

−∞
dτ Tr

{
e−β(H

(0)
+ +H

(0)
− )×

×
[
1 +

∆T

T 2
H+,−

]
I(φ−(τ))I(φ−(0))

}
+O(∆T 2)

(I.2)

with H+,− defined in Eq. (5.46) of the main text.
One needs also to consider the first order expansion of the partition function Z

Z = Tr

{
e−β(H

(0)
L +H

(0)
R )

[
1 +

∆T

T 2
H

(0)
L

]}
+O(∆T 2). (I.3)

In terms of the new fields φ± and taking into account the fact that the term (∂xφ+)(∂xφ−)
gives no contribution to the trace, one has

Z = Tr

{
e−βH

(0)
+ e−βH

(0)
−

[
1 +

∆T

2T 2

(
H

(0)
+ +H

(0)
− + sin 2ζ(H

(0)
− −H

(0)
+ )
)]}

+O(∆T 2)

(I.4)

where we recall that
sin 2ζ =

νR − νL
νR + νL

. (I.5)

Then by exploiting the properties of the trace we have that

Z = Z
(0)
+ Z

(0)
− +

∆T

2T 2

[
− Z

(0)
−
∂Z

(0)
+

∂β
− Z

(0)
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(0)
−
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∂
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(
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(0)
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(0)
−

)]}
+O(∆T 2)

(I.6)
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with
Z

(0)
± = Tr

{
e−βH

(0)
±

}
. (I.7)

One can then define the equilibrium noise as in Eq. (I.1) with ∆T = 0. Since the
operator I only depends on φ− [see Eq. (5.4)], the trace with respect to φ+ is trivial
leading to

S0(T ) =
1

Z
(0)
−

∫ +∞

−∞
dτ Tr

{
e−βH

(0)
− I(φ−(τ))I(φ−(0))

}
, (I.8)

which only depends on the temperature T .
The expansion of the noise S(TL, TR) up to first order in ∆T/T then reads

S(TL, TR) = S0(T ) +
1

Z
(0)
+ Z

(0)
−

∫ +∞

−∞
dτTr

{
e−β(H

(0)
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(0)
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×
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]
I(φ−(τ))I(φ−(0))

}
∆T

2T 2
+O(∆T 2).

(I.9)

By exploiting the properties of the Tr{...} and after some algebra we rewrite
Eq. (I.9) as

S(TL, TR) = S0(T ) +

[
S0(T )

∂ln(Z
(0)
+ Z
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− )
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(I.10)

Since the last term can be rewritten as∫ +∞

−∞
dτ

1

Z
(0)
−

∂

∂β
Tr

{
e−βH

(0)
− I(φ−(τ))I(φ−(0))
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=
∂S0
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+ S0
∂lnZ

(0)
−
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(I.11)

one can finally rewrite Eq. (I.9) as

S(TL, TR) = S0(T )− (1 + sin 2ζ)
∂S0
∂β

∆T

2T 2
+O(∆T 2). (I.12)

Note that from this expression we recover the noise for the particular (1/3, 1) junction
reported in Eq. (H.12).
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Appendix J

Recovering Equation (5.52)

We start from the general expression for the noise of the (1, 1/3) junction, as obtained
in Eq. (5.44), and write

S0(T ) =
e2

4

∫
dω

2π

[
1− tanh2

( ω
2T

)](
2−

2T 2
k

T 2
k + ω2

)
(J.1)

where we focus on the equilibrium situation, allowing us to replace the distribution
function nω with the standard Fermi distribution n

(0)
ω at temperature T , whose ex-

pression is made explicit in Eq. (1.34) where n(0)ω ≡ f(ω). We recall that the crossover
energy is set by the tunneling amplitude Λ′

Tk =
4πa

v

(
Λ′

2πa

)2

. (J.2)

The first term can be readily integrated out, while the second one is re-expressed
through an integration by part, thus leading to

S0(T ) =
e2

π
T − e2

π
TT 2

k

∫
dω tanh

( ω
2T

) ω(
T 2
k + ω2

)2 . (J.3)

The resulting integral can then be evaluated following standard contour integration
techniques, yielding

S0(T ) =
e2

π
T − e2Tk

4

1
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Tk
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) +
e2

π
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Tk
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(J.4)

which can further be rewritten as

S0(T ) =
e2

π
T − e2Tk

4

1

cos2
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Tk
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) +
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4π2
Tk
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1
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1

2
+

Tk
2πT

)
(J.5)

where we used the properties of the derivatives of the digamma function.
This ultimately leads back to the expression from Eq. (5.52) quoted in the text,

namely

S0(T ) =
1

2

e2

2π
Tk
[
4
T

Tk
− 2

π
ψ′
(
1

2
+

Tk
2πT

)]
. (J.6)
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