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INTRODUCTION

The aim of this work is to study exact algebraic criteria local/global observability ([HK77],

[Ino77]) for polynomial dynamical system by means of algebraic geometry and computational

commutative algebra in the vein of [SR76], [Son79a], [Son79b], [Bai80], [Bai81], [Bar95],

[Bar99], [Nes98], [Tib04], [KO13], [Bar16].

A key point in this topic is to work with polynomials with real coefficients and their real

roots instead of their complex roots, as it is usually the case ([CLO15], [KR00]). A central

concept is then the real radical of an ideal [BN93], [Neu98], [LLM+13], along with the Krivine-

Dubois-Risler real nullstellensatz for polynomial rings [Kri64], [Dub70], [Ris70], [BCR98].

Underestimating this point leads to incorrect results (see, e.g. [Bar16] remark on [KO13]).

This thesis is therefore devoted to set the necessary algebraic tools in the right context and

level of generality (i.e. real algebra and real algebraic geometry) for applications to our dynamical

systems and to further develop their exploit in this context.

The first two chapters set the algebraic and algebraic geometry preliminaries. The third

chapter is devoted to the applications of the previous algebraic concepts to the study of the ob-

servability of polynomial dynamical systems. In the last chapter an approach to the construction

of Lyapunov funtions to prove stability in estimation problems is presented.
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NOTATION

• N, Z, Q, R, C: natural, integer, rational, real and complex numbers.

• A: commutative unitary ring. A×: its group of units.





CHAPTER 1

ALGEBRA

1.1. Commutative rings, ideals, ring homomorphisms, quotient rings

We recall and fix some terminology from algebra ([Lan02]), commutative algebra ([AM69],

[Kun85], [Sha90], [Bos18]) and real algebra ([Lam84], [BCR98]) which will be of use in the

sequel.

1.1.1. Units, zero divisors, integral domains, fields. — Let A = (A, +, 0A; ·, 1A) be a

commutative unitary ring. An element of a ∈ A is said to be invertible, or a unit, in A if there

exists a b ∈ A such that ab = 1, and then we write b = a−1. The set of all units of A is denoted

A× = U(A) := {a ∈ A | a is invertible}, and it forms a group under multiplication of A.

An element of a ∈ A \ {0} is said to be a zero divisor if there exists a nonzero b ∈ A \ {0} such
that ab = 0. If, moreover a 6= 0, then a is said to be a non-trivial zero divisor of A. The set

of all zero divisors of A is denoted Zdv(A). Obviously 0A ∈ Zdv(A) if and only if 1A 6= 0A (as

often implicitly assumed). The non-zero ring A is said to be a (integral) domain if whenever

ab = 0 then a = 0 or b = 0, and A is said to be a field whenever a 6= 0 in A implies there exists

b ∈ A such that ab = 1, or equivalently A× = A \ {0}.
A field K is said to be an algebraically closed field if every univariate polynomial with

coefficients in K has a root in K (and therefore splits into a product of powers of linear factors

with coefficients in K).

1.1.2. Definition. — Let A be a commutative unitary ring. We denote A(2) the set of all

squares in A, that is the image of the square map p2 : A −→ A, a 7→ a2. The set A(2)

contains 0, 1 and is closed under products and inverses (meaning: if a square is invertible then

also its inverse is square), but it does not need to be closed under sums in general.
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1.1.3. Definition. — The set of all (finite) sums of squares of elements of A is denoted

SQ(A) = ΣA(2) := {a2
1 + · · ·+ a2

n | n ∈ N+, a1, · · · an ∈ A}.

1.1.4. Remark. — Note that:

ΣA(2) + ΣA(2) ⊆ ΣA(2), ΣA(2)ΣA(2) ⊆ ΣA(2), (A× ∩ ΣA(2))−1 ⊆ ΣA(2), N · 1A ∈ ΣA(2),

i.e. ΣA(2) is closed under addition, multiplication and inversion.

Proof. — Obviously, sums of sums of squares, and therefore linear combinations with non-

negative integer coefficients
∑t

i=1 niσi (with ni ∈ N, σi ∈ ΣA(2)) of them, as well as products of

sums of squares, are sums of squares. If σ ∈ A× ∩ΣA(2), then σ−1 = σ · (σ−1)2 ∈ ΣA(2). Clearly

0A = 02
A and 1A = 12

A are in ΣA(2) as well as, therefore, any iterated sum n · 1A with n ∈ N. �

1.1.5. Remark. — If A is a commutative unitary ring such that 2 ∈ A× then every element

of A is a difference of two square elements.

Proof. — Indeed a = 1
44a = 1

4

(
(1 + a)2 − (1− a)2

)
=
(

1+a
2

)2 − (1−a
2

)2
. �

1.1.6. Remark. — (a) Clearly, every field is a domain.

(b) By definition, if A is domain then its cardinal number |A| ≥ 2.

(c) If A happens to be a domain with a finite number of elements, or finite dimensional as a

K-vector space, over a field K, then A is a field. In both cases, the multiplications maps by

non zero elements µa : A −→ A, x 7→ ax are injective as A is a domain and therefore they are

bijective since the finiteness assumption.

1.1.7. Characteristic of a ring. — The characteristic of A, denoted char(A), is defined

as the smallest n ∈ N+ such that n · 1A = 0A in A, if there is such an n, otherwise it’s defined

to be 0.

1.1.8. Example. — (a) The rings Z, Q, R, C, their unitary subrings as any unitary ring

containing them, they all have characteristic 0.

(b) The residue class ring Z/(n) = Z/nZ has characteristic n for any n ∈ N, n ≥ 2.

(c) The finite field with p elements, Fp = Z/(p) = Z/pZ, with p a prime integer, the finite field

with q = pn elements, Fq, with q = pn a power of p, their algebraic closure Fp, as well as any

unitary ring containing them, all have characteristic p.
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1.1.9. Remark (Trivial cases of −1 ∈ A(2)). — Note that if A = Q (the algebraic closure

of the field Q), A = C, or A = L any algebraically closed field, or A has positive characteristic

then −1 ∈ ΣA(2).

Proof. — In the first two examples: −1 = i2, and in general if A is an algebraically closed field

then −1 = a2 with a any root of X2 + 1 ∈ A[X]. If A has positive characteristic, say n ≥ 2, then

rearranging the n-terms sum n · 1A =
∑n

j=1 1A = 0 we get −1A =
∑n−1

j=1 12
A ∈ ΣA(2). �

1.1.10. Ring homomorphisms. — Let A and B be two commutative unitary rings. A

(unitary) ring homomorphism from A to B is a map f : A −→ B such that

f(x+ y) = f(x) + f(y), f(xy) = f(x)f(y), f(1A) = 1B

1.1.10.1. Remark. — (a) The integer char(A) is also the (unique) non negative generator of the

kernel of the (unique) unitary ring homomorphism ιA : Z −→ A,n 7→ n·1A, Ker(ιA) = (char(A)).

(b) The image of this ring homomorphism is called the prime subring of A, it coincides with

the smallest subring of A and it is isomorphic (as a ring) either to Z (if char(A) = 0) or to Z/nZ
(if n = char(A) > 0).

(c) If A = K is a field, Im(ιA) is always contained in the prime subfield of K, i.e. the smallest

subfield of K, and it coincides with it if and only if p = char(K) > 0 is a prime integer (and

Im(ιA) ∼= Fp prime subfield of K), else it is isomorphic (as a ring) to Z (subring of Q prime field

of K).

1.1.11. Ideals and Residue Class Rings. — (a) An ideal of A is a (necessarily not empty)

subset I ⊆ A which is a subgroup of the additive group (A, +, 0A) and satisfies AI := {ax | a ∈
A, x ∈ I} ⊆ I. Note that we then have the following "stability property": I = A⇔ 1 ∈ I.
(b) If I is an ideal of A, the relation a ≡ b (mod I) :⇔ a− b ∈ I, called congruence modulo I,

is an equivalence relation (1) on A which is coherent with the operations (that’s why it is called

a "congruence") and the quotient set A/I = {a+ I | a ∈ A} is also a commutative unitary ring

wrt to the operations induced by those of A. It is called the residue class ring or quotient

1. An equivalence relation on a set S is a binary relation ∼ on S which is reflexive (s ∼ s for each s ∈ S),

symmetric (s1 ∼ s2 ⇔ s2 ∼ s1) and transitive (s1 ∼ s2, s2 ∼ s3 ⇒ s1 ∼ s3), i.e. it is a subset E∼ of

the cartesian square S2 = S × S containing the diagonal (∆S := {(s, s) | s ∈ S} ⊆ E∼), symmetric with

respect to it ((a, b) ∈ E∼ ⇔ (b, a) ∈ E∼) and such that (s1, s2), (s2, s3) ∈ E∼ ⇒ (s1, s3) ∈ E∼. Obviously

s1 ∼ s2 ⇔ (s1, s2) ∈ E∼.
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ring of A modulo I. Moreover the quotient map A −→ A/I, a 7→ a = [a]I = a + I is a

homomorphism of unitary ring with the usual universal property, see [Lan02, p. 89].

1.1.11.1. Principal ideals and finitely generated ideals.— (a) If x ∈ A, the smallest ideal

of A containing x is the subset (x) := Ax = {ax | a ∈ A}, the ideal generated by the element

x; the ideals of the form (x), with x ∈ A are said principal ideals of A. Clearly, x is a unit in

A if and only if (x) = A.

(b) More generally, if S ⊆ A is any subset of A (even the empty one), the smallest ideal of A

containing it is the subset (S) containing all the (finite) linear combinations of elements from S

with coefficients in A, the ideal generated by the subset S. In case S = {x1, . . . , xn} is a finite
subset of A then we simply write (S) = (x1, . . . , xn) = Ax1 + · · ·+Axn := {a1x1 + · · ·+ anxn |
a1, · · · , an ∈ A}; the ideals of this form are said finitely generated ideals of A.

(c) Note that (∅) = (0) = {0} is the zero ideal of A, while its unit ideal is (1) = A, hence any

non zero A has at least two ideals and it has only these two if and only if it is a field.

1.1.11.2. Kernels, images. — (a) The kernel and the image of a ring homomorphism are

defined as usual Ker(f) = f−1(0B) = {a ∈ A | f(a) = 0B}, and Im(f) = f(A) = {f(a) ∈ a ∈ A}.
(b) The kernel is always an ideal of A, while the second in usually only a subring of B.

1.1.11.3. Remark. — If A happens to be a field, then any unitary homomorphism from A to

any non-zero ring B is injective. Indeed the kernel of such a homomorphism is an ideal of A, but

as A is a field it has to be either (0) or (1).

1.1.11.4. Definition. — (a) If J is an ideal of B then f−1(J) is always an ideal of B, called

the contraction of J to A, i.e. Jc := f−1(J).

(b) On the other hand, if I is an ideal of A and f is surjective, then f(I) is an ideal of B also; but

if f is not surjective, then f(I) is not necessarily an ideal of B (despite being a multiplicatively

closed subgroup of it). Hence, if I is an ideal of A, we define its extension to B as the ideal of

B generated by f(I), that is Ie = f(I)B := (f(I)B).

1.1.11.5. Extension-contraction of ideals. — Given a ring homomorphism f : A −→ B, we

have two opposite set maps {ideals of A}
f−1

←−−−−−−−−→
f
{ideals of B}, I 7→ Ie ⊆ B, J 7→ Jc ⊆ A. They

are two order-preversing "enlarging" maps, that is

I1 ⊆ I2 in A⇒ Ie1 ⊆ Ie2 in B, J1 ⊆ J2 in B ⇒ Jc1 ⊆ Jc2 in A

Iec ⊇ I in A Jce ⊆ J in B.
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As a consequence Iece = Ie in B and Jcec = Jc in A. Therefore, the above ordered correspon-

dence induces a bijection between contracted ideals (from B) of A and extended ideals (from

A) of B

C := {I ideal of A | Iec = I}
f−1

←−−−−−−−−→
f
E := {J ideal of B | Jce = J},

A ⊇ I 7→ Ie = (f(I)B) ⊆ B B ⊇ J 7→ Jc = f−1(J) ⊆ A

When f is surjective, for example a canonical quotient ring map A −→ A/I, this gives that ideals

of B correspond bijectively to ideals of A containing Ker(f), in the example of the quotient map

the ideal I.

1.1.12. Definition (Algebras). — If R is a commutative unitary ring, a R-algebra is a

pair (A, η) where η : R −→ A is a (unitary) ring homomorphism. The homomorphism is called

structure morphism of the R-algebra A. If A is a R-algebra and r ∈ R and a ∈ A we write

ra to mean η(r)a.

1.1.13. Definition (Homomorphism of R-algebras). — If R is a commutative unitary

ring, and (A, ηA) and (B, ηB) are two R-algebras, a homomorphism of R-algebras

f : (A, ηA) −→ (B, ηB)

is a (unitary) ring homomorphism f : A −→ B such that f ◦ ηA = ηB. Hence

f(ra) = f(ηA(r)a) = f(ηA(r))f(a) = ηB(r)f(a) = rf(a)

for each r ∈ R and a ∈ A.

1.1.14. Example: algebra of functions. — Let R be any commutative unitary ring, and

let S be any set, then RS =
∏
s∈S R = F(S,R) := {ϕ | ϕ : S −→ R function from S to R} is

an R algebra under pointwise defined sum and product operations, the R-algebra structure is

defined by the "diagonal" ring homomorphism η : R −→ RS , r 7→ (r)s∈S (the constant function

with constant value r). The invertible elements of this algebra are U(RS) = U(R)S . Note that,

for each s ∈ S the function es := (δs,t)t∈S ∈ RS , with δs,t = 1 if and only of t = s and δs,t = 0

otherwise, is an idempotent element of RS , that is e2
s = es for each s ∈ S, and eset = 0 for each

s, t ∈ S such that t 6= s. Hence RS is a domain if and only if R is a domain and |S| = 1.
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1.2. Polynomial rings

1.2.1. Definition (polynomials with coefficients in A). — If A is a commutative unitary

ring, the set of all A-valued, finite support, sequences

A(N) := {α = (an)n∈N | an ∈ A for each n ∈ N, there is Nα ∈ N : an = 0A for each n ≥ Nα}

endowed with pointwise sum and Cauchy product of sequences ((αβ)n :=
∑n

i=0 αiβn−i for each

n), so that, if ei := (δij)j∈N, with δij = 1A if j = i and else 0A, we have en1 = en for each

n ∈ N, is a commutative unitary ring with unit 1 = e0 = (1A, 0A, 0A, 0A, . . . ), endowed with a

(unitary) ring homomorphism ιA : A −→ A(N), a 7→ (a, 0A, 0A, 0A, . . . ), and which is generated

as an A-algebra by the indeterminate X := e1 = (0A, 1A, 0A, 0A, . . . ), that is

A(N) = A[X] = {a0 + a1X + · · ·+ anX
n | a0, a1, . . . , an ∈ A, n ∈ N}.

This ring is called the ring of (univariate) polynomials with coefficients in A. The

multivariate case is defined by induction A[X1, . . . , Xn] := (A[X1, . . . , Xn−1])[Xn] for each integer

n ≥ 2. One can also avoid the induction defining directly

A[X1, . . . , Xn] = A(Nn) =

{α = (ak)k∈Nn | ak ∈ A for each k ∈ Nn and ak = 0A for all but a finite number of k ∈ Nn}.

If ek := (δk,h), with δk,h = 1A if h = k and else 0A, then ek = Xk1
1 · · ·Xkn

n and every

element of A[X1, . . . , Xn] is a finite sum of the form
∑

k∈Nn akek =
∑

k∈Nn akX
k1
1 · · ·Xkn

n and

the operations are defined as usual (the product is the convolution one). Clearly, the obvious

map A −→ A[X1, . . . , Xn] makes A[X1, . . . , Xn] an A-algebra.

1.2.2. Remark: ideal extension from A to A[X1, . . . , Xn]. — If I is an ideal of A, then its

extension to A[X1, . . . , Xn] under the structural map is given by

Ie = IA[X1, . . . , Xn] =: I[X1, . . . , Xn] = {p ∈ A[X1, . . . , Xn] | p has coefficients in I}.

The homomorphism of A-algebras

A[X1, . . . , Xn] −→ (A/I)[X1, . . . , Xn],
∑
k∈Nn

akX
k1
1 · · ·X

kn
n 7→

∑
k∈Nn

akX
k1
1 · · ·X

kn
n

induces a canonical isomorphism A[X1, . . . , Xn]/I[X1, . . . , Xn] −→ (A/I)[X1, . . . , Xn].Moreover,

for any ideal I of A we have Iec = (I[X1, . . . , Xn]) ∩A = I.
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1.2.3. Universal property of polynomial rings. — For every pair of commutative unitary

rings A and B, there is a natural bijection

{(unitary) ring homomorphisms A[X] −→ B} −→ {(unitary) ring homomorphisms A −→ B}×B

such that: to a (unitary) ring homomorphism Λ: A[X] −→ B it corresponds the ordered

pair (Λ ◦ ιA,Λ(X)), and conversely to such a pair (λ, b) it corresponds the (unitary) ring

homomorphism Λ: A[X] −→ B such that Λ(
∑n

i=i aiX
i) :=

∑n
i=i λ(ai)b

i ∈ B.

Similarly, in the multivariate case we have:

{ring homomorphisms A[X1, . . . , Xn] −→ B} −→ {ring homomorphisms A −→ B} ×Bn.

1.2.4. Adjunction of elements. — If A is a unitary subring of B and {b1, . . . , bn} is a subset

of B, the smallest subring of B containing A and {b1, . . . , bn} is

A[b1, . . . , bn] := {f(b1, . . . , bn) | f ∈ A[X1, . . . , Xn]}.

It coincides with the image of the ring homomorphism A[X1, . . . , Xn] −→ B, such that∑n
i=i aiX

i 7→
∑n

i=i aib
i. If it happens that this ring is a field we write A(b1, . . . , bn).

1.2.5. Remark (polynomials and polynomial functions). — It is common to identify

polynomials and polynomial functions, but actually, for every A-algebra B there is only a

(obvious) ring homomorphism PFBA : A[X] −→ {functions ϕ : B −→ B} whose image is the

set (A-subalgebra) of (univariate) polynomial functions on B with coefficients in A and

whose kernel coincides with the set of all polynomials with coefficients from A inducing the

zero function on B: Ker(PFBA) = {f ∈ A[X] | f(b) = 0 for each b ∈ B}. This kernel can be

non trivial. For example, if A = B is a finite ring then f(X) :=
∏
a∈A(X − a) is a nonzero

monic polynomial of degree |A|, the cardinality of A, inducing the zero function on B, that is

f ∈ Ker(PFBA) \{0}.

1.2.6. Proposition. — Let K be a finite field. Then K is not algebraically closed.

Proof. — As K is finite the formula f(X) := 1 +
∏
a∈K(X − a) ∈ K[X] defines a polynomial of

degree |K| ≥ 2 with coefficients in K such that f(a) = 1 for each a ∈ K. As f has no roots in

K, the field K is not algebraically closed. �
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1.3. Noetherian rings

1.3.1. Proposition-Definition. — Let A be a commutative unitary ring, the following facts

are equivalent:

a) every ideal of A is finitely generated, that is it has a finite system of generators;

b) every ascending chain of ideals of A, I1 ⊆ I2 ⊆ · · · In ⊆ · · · , becomes stationary (we say

that the Ascending Chain Condition for ideals holds in A);

c) every non nonempty set of ideals of A contains a maximal element with respect to inclusion

(we say that the maximal condition for ideals holds in A).

d) any system of generators of an ideal I contains a finite system of generators of I.

A is said to be Noetherian if it satisfies the above properties.

Proof. — See [Kun85, Ch. 1, Prop. 2.2]. �

1.3.2. Examples of Noetherian rings. — Every field is such, as well as all rings of polyno-

mials in a finite number of indeterminates with coefficients in a Noetherian ring (Hilbert’s Basis

Theorem, see [Kun85, prop. 2.3] or [Lan02, Ch. IV, Thm. 4.1]). Every quotient ring of a

Noetherian ring is still such, as well as any finite direct product of Noetherian rings.

1.4. Operations on ideals. Prime and maximal ideals. Minimal primes

1.4.1. Lattice properties of ideals. — The set of all ideals of A is a complete lattice with

respect to set theoretic inclusion, indeed the intersection (of any number) of ideals of A is itself

an ideal of A (their "infimum" in the lattice) and the sum (2) (of any number) of ideals of A is

again an ideal of A (which can be shown to be their "supremum" in the lattice).

1.4.2. Products and powers of ideals. — The product IJ of two ideals (or of any finite

number) I and J is defined as the ideal generated by all the products xy, with one element x

from I and one element y from J , hence IJ is the set of all finite sums ΣXiyi with Xi ∈ I and

yi ∈ J foreach i. Note that IJ ⊆ I ∩ J ⊆ I + J (where all the inclusions can be strict). In

2. The "sum", ΣI∈FI = (
⋃
I∈F I), of any (possibly infinite) numbers of ideals of A is the set of all finite sums

with summands taken each in one of the ideals of the family; it’s not difficult to show that this set is an ideal of

A containing all the given ideals and it is the smallest one w.r.t. these two properties. In the finite binary case,

we obviously have I + J = {x+ y | x ∈ I, y ∈ J}.
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particular, given n ∈ N, we can consider the power In of an ideal I (with I0 = (1) by definition),

which, if n > 0, is the set of all finite sums with summands which are products of n elements

from I.

1.4.3. Prime and maximal ideals. — A proper (3) ideal I of A is said to be prime if

whenever xy ∈ I, for some x, y ∈ A, then x ∈ I or y ∈ I. Equivalently, I is prime if and only

if whenever J1J2 ⊆ I, for some ideals J1, J2 of A, then J1 ⊆ I or J2 ⊆ I. In particular (0) is a

prime ideal if and only if A is a domain. It’s not difficult to check that I is prime if and only if

the quotient ring A/I is a domain. The set of all prime ideals of a commutative unitary ring is

called its spectrum and it is denoted Spec(A) := {p | p is a prime ideal of A}. A proper ideal

I of A is said to be maximal if it is such among all proper ideals, that is I 6= A and if J is a

proper ideal of A such that I ⊆ J then I = J . In particular (0) is a maximal ideal if and only

if A is a field. It’s not difficult to check that I is maximal if and only if the quotient ring A/I

is a field. In particular, any maximal ideal is prime (but the converse does not hold). The set

of all maximal ideals of a commutative unitary ring is called its maximal spectrum and it is

denoted m-Spec(A) := {m | m is a maximal ideal of A}.

1.4.4. Remark: contraction of primes. — If f : A −→ B is a ring homomorphism and P

is a prime ideal of B, then its contraction to A, i.e. Pc = f−1(P), is always a prime ideal of A.

Indeed we have the ring injection into a domain A/f−1(P) ↪−→ B/P, a 7→ a. This is not true,

in general, for maximal ideals: (0) is a maximal ideal of Q, but its contraction to the subring Z
is a prime non maximal ideal of Z.

1.4.5. Remark: extension of primes from A to A[X1, . . . , Xn]. — Note that, thanks to

1.2.2, we have an injective map Spec(A) ↪−→ Spec(A[X1, . . . , Xn]), p 7→ p[X1, . . . , Xn]. This map

is, in general, not surjective: (X) is a prime ideal of Z[X] which does not come as an extension

of a prime ideal of Z. Also: (2, X) is a maximal ideal of Z[X] which properly contains the

(extended) prime ideal (2)Z[X] of Z, note: Z[X]/(2, X) ∼= F2, while Z[X]/(2)Z[X] ∼= F2[X].

1.4.6. Minimal primes of an ideal. — By Zorn’s Lemma, any proper ideal I in a commu-

tative unitary ring is contained in (at least) a maximal ideal ([AM69, Ch. I, Cor. 1.4]). On the

other hand, among all prime ideals p containing I, a special role is played by those which are

3. An ideal I of A is said to be proper if I 6= (1), that is I 6= A
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minimal for this property: a minimal prime (divisor) of I is a prime ideal p such that I ⊆ p

and if I ⊆ q for a prime ideal q, then p ⊆ q ([AM69, Ch. I, Ex. 8], [Kun85, Ch. I, Prop. 4.9],

[Sha90, Thm. 3.52]). The set of all minimal primes of I is denoted Min(I). The minimal prime

ideals of the ring A are the minimal primes of its zero ideal, thus Min(A) := Min((0)).

1.4.7. Remark: minimal primes in Noetherian rings. — If A is Noetherian, then Min(I)

is a finite set for each ideal I of A (see 1.11).

1.5. UFDs, PIDs and Euclidean domains. Algebraic and transcendental elements

We recall the following basic definitions and facts about a commutative unitary ring A.

1.5.1. Definition (Divisibility relation in a ring). — Given two elements x, y ∈ A we say

that x divides y, and we write x | y, if there exists a ∈ A such that y = ax. If x does not divide

y we write x - y.

1.5.2. Definition (Irreducible and prime elements). — A non-zero element x ∈ A is said

to be prime if the ideal (x) it generates is a prime ideal, that is p | ab, with a, b ∈ A always

implies p | a or p | b, i.e. whenever ab = xc, with a, b, c ∈ A, then a = xa′ for some a′ ∈ A, or
b = xb′ for some b′ ∈ A. An element x ∈ A is said to be irreducible if x is not a unit in A and

it cannot be expressed as a product of two non-units, i.e. x 6∈ {0} ∪ A× and whenever x = ab,

with a, b ∈ A, then a ∈ A× or b ∈ A×. The element x is said reducible if it is not irreducible.

1.5.3. Remark. — By the chosen definitions (according to [Lan02, II, §5], [Coh03, 10.2],

[Bos18, 2.4] and [KR00, 1.2]), the zero element x = 0 ∈ A is neither irreducible nor prime

(although the ideal (0) is prime if A is a domain); 0, all units u ∈ A× and all products of at

least two irreducible elements are reducible. If x is irreducible and u is a unit, then ux is still

irreducible. Note that if x 6= 0 and (x) is a maximal ideal then x is a prime element.

1.5.4. Example. — (a) If A = Z, then x is an irreducible element if and only if it is a prime

element if and only if the ideal (x) is maximal in Z if and only if x = ±p for a prime p ∈ N.
(b) In the polynomial ring A[X] any element of the form uX + b with u ∈ A× and b ∈ A is

an irreducible element (by degree reasons), but these elements are prime if and only if A is an

integral domain (because A[X]/(uX + b) ∼= A).
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1.5.5. Proposition. — Let A be an integral domain, then any prime element is an irreducible

element.

Proof. — See [Bos18, 2.4, Oss. 5] or [Coh03, 10.2]. �

1.5.6. Remark. — The previous result does not hold if A is not an integral domain. Let for

example A = Z6 := Z/(6), where 2 · 3 = 6 = 0, hence A is not a domain. We have that (2) is a

maximal ideal (as Z6/(2) ∼= Z2 is a field), hence 2 is a prime element in Z6. But 2 = 2 · 4 and 2

and 4 are non-units, hence 2 is prime but not irreducible.

1.5.7. Definition (UFD). — The ring A is said to be factorial, or a factorial domain, or

a unique factorization domain (UFD) if it is a domain and every non-unit in A \ {0} has a
unique factorization up to order and units, i.e. for any x ∈ A \ ({0}∪A×) there are u ∈ A× and

irreducible elements x1, . . . , xn ∈ A such that x = ux1 · · ·xn and any two such factorizations can

differ only for the the unit factors and the order of the irreducible factors (but their number and

the irreducible factors appearing in the two factorizations are the same).

1.5.8. Remark. — (a) If A = K is a field, then any element is either zero or a unit. Then

K \ ({0} ∪K×) = and K is trivially a factorial domain.

(b) If A is a (unitary) subring of a factorial domain B, then A is not necessarily factorial, for

example for any domain is a unitary subring of its field of fractions (see 1.8, v).

1.5.9. Proposition. — Let A be a factorial domain and let x ∈ A, then x is a prime element

if and only if x is an irreducible element.

Proof. — See [Bos18, 2.4, Prop. 10] or [Coh03, 10.2.1]. �

1.5.10. Proposition. — If A is a factorial domain with field of fractions (4) KA = qf(A), and

f ∈ A[X], then f is irreducible in A[X] if and only if f is irreducible as an element of KA[X].

1.5.11. Remark. — In the situation above we note that any F ∈ KA[X] can be written as

F = 1
af with f ∈ A[X] and a ∈ A \ {0}, then F is irreducible in KA[X] if and only if f is

irreducible in A[X].

4. See 1.8, v): K = qf(A) = {u
v
| u, v ∈ A, v 6= 0} where, since A is a domain, u

v
= s

t
in K ⇔ ut = vs in A.
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1.5.12. Proposition (Gauß Theroem). — Let A be a commutative unitary ring. If A is

factorial then A[X] is factorial too.

Proof. — See [Lan02, IV, §2, Thm. 2.3], [Bos18, 2.7, Prop. 1] or [KR00, 1.2.12]. �

1.5.13. Definition (PID). — The ring A is said to be principal, or a principal domain,

or a principal ideal domain (PID) if it is a domain and every ideal of A is principal, i.e. if

I is an ideal of A then I = (x) for some x ∈ A.

1.5.14. Proposition. — Let A be a principal domain and let x ∈ A be a non-zero non-unit

element. Then the following facts are equivalent:

i) x is irreducible.

ii) x is prime.

ii) (x) is a maximal ideal of Z.

Proof. — See [Bos18, 2.4, Prop. 6]. �

1.5.15. Definition (Euclidean Domain). — The ring A is said to be Euclidean, or a

Euclidean domain if it is a domain and there exists a function δ : A \ {0} −→ N such that for

all x, y ∈ A \ {0} the following properties hold:

a) If x | y then δ(x) ≤ δ(y).

b) There exist elements q, r ∈ A such that y = qx+ r and either r = 0 or δ(r) < δ(y).

1.5.16. Example. — The following rings are Euclidean domains: (a) the ring of integers Z
(δ = | · |), (b) the ring of Gaußian integers (subring of the complex plane) Z[i] ⊆ C (δ = | · |2),
(c) any univariate polynomial ring K[X] with coefficients in a field K (δ = deg( · )).

1.5.17. Proposition. — Let A a commutative unitary ring. If A is a PID then A is a UFD,

and if A is a Euclidean domain then A is a PID.

Proof. — See [Coh03, Cor. 10.2.3, Cor. 10.2.4] or [Bos18, 2.4, Prop. 2, cor. 11]. �

1.5.18. Remark. — None of the previous implications is an equivalence.
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1.5.19. Critical Example. — Let A = K[X,Y, Z, T ]/(XT − Y Z) = K[x, y, z, t], then A is a

domain (5) and x = X is an irreducible element which is not prime. The ring A is not factorial.

1.5.20. Proposition. — Let K be a field and let f ∈ K[X] such that deg(f) = 2 or 3, then f

is irreducible if and only if f has no roots in K

Proof. — By degree reason, such an f is reducible ⇔ it has a degree one factor over K. �

1.5.21. Remark: non-zero prime ideals of K[X]. — (a) Let K be a field, then K[X] is

a Euclidean ring, hence a PID, hence a UFD. Let I be a proper non-zero ideal of K[X] then

necessarily I = (f(X)) for some f(X) ∈ K[X] non-constant monic polynomial of positive degree

(else f(X) = 0 or f(X) is a unit). By 1.5.14 we then know that

(f(X)) is maximal ⇔ (f(X)) is prime ⇔ f(X) is irreducible.

(b) Obviously, any polynomial of degree one of K[X] is irreducible. Moreover K is an alge-

braically closed field if and only if the only irreducible polynomials of K[X] are those of degree

one.

(c) If K is not algebraically closed, the irreducible polynomials of degree two or three are exactly

those which do not have a root in K. If K = R the irreducible polynomials are exactly those

of degree one or those of degree two with negative discriminant. If K = Q there are irreducible

polynomials of any degree, indeed Xn − p is irreducible in Q[X] for any prime p ∈ N and any

n ∈ N+ thanks to Eisenstein’s Criterion (cf. for example [Lan02, IV,§3, Thm 3.1]).

1.5.22. Definition (Algebraic/Transcendental element). — Let K be a subfield of a field

L, and let a ∈ L. We say that a is algebraic over K if there exists a non zero polynomial

f(X) ∈ K[X] such that f(a) = 0, else we say that a is transcendental over K. That is

a is algebraic (respectively transcendental) over K if and only if the kernel of the evaluation

morphism eva : K[X] −→ L, f 7→ f(a) is a non-zero (resp. zero) ideal of the Euclidean domain

K[X]. In this case its monic generator is called the minimal polynomial of a over K, it is

the monic polynomial of K[X] of least degree vanishing on a and it is necessarily irreducible.

5. Because f = XT − Y Z is irreducible in the factorial domain K[X,Y, Z, T ]. Indeed f can be thought of as

a degree one polynomial f = aX + b in A[X], with A = K[Y,Z, T ], factorial domain, a = T , b = −Y Z and a - b

in A. Therefore f is irreducible by degree reason.
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1.5.23. Remark: on the simple extension K[X]/(f). — The residue class ring K[X]/(f)

is a K-algebra generated, as an algebra, by the element x = X = X + (f), the equivalence

class of the indeterminate X. Hence, as in 1.2.4, we write K[X]/(f) = K[x]. If f ∈ K,

then: f = 0 ⇔ K[x] ∼= K[X], while f ∈ K \ {0} ⇔ K[x] = (0) (the zero ring). Assuming

deg(f) = n > 0, by performing euclidean division we get that for each polynomial g ∈ K[X]

there are two polynomials q, r ∈ K[X] such that g = qf + r and deg(r) < n or r = 0. Therefore,

the generic element g(x) ∈ K[x] can always be expressed as

g(x) = g(X) = q(X)f(X) + r(X) = q(X)f(X) + r(X) = r(x) = a0 + a1x+ · · ·+ an−1x
n−1

for some coefficients a0, a1, . . . , an−1 ∈ K uniquely determined by g(x). That is K[x] is a K-

vector space of dimension n− 1 with K-basis 1, x, . . . , xn−1:

K[x] = K ⊕Kx⊕ · · · ⊕Kxn−1.

If K[x] = L is a field, which in turn is equivalent to f being irreducible, then K[x] coincides

with its field of fractions K(x) := qf(K[x]) (see 1.8, v)) and we write K[x] = K(x) to mean

it. Obviously x ∈ L is algebraic over K with minimal polynomial LC(f)−1f , where LC(f), the

leading coefficient of f is the coefficient of the highest degree monomial in f .

1.5.24. Example. — (a) Let L := R[X]/(X2 + 1) = R[x] = R(x) = R ⊕ Rx with x such

that x2 = −1. By the universal property of the quotient ring, a (unitary) ring homomorphism

L → C is uniquely determined by a (unitary) ring homomorphism Θ: R[X] → C such that

(X2 + 1) ⊆ Ker(Θ), and by the universal property of the polynomial ring, Θ is uniquely

determined by the choice of Θ(X) ∈ C. Hence we see that, by the constraint (X2 +1) ⊆ Ker(Θ),

that is Θ(X)2 + 1 = 0 in C, there are only two such choices: either Θ(X) = −i or Θ(X) = i.

Each one induces a field homomorphism θ : R[x] −→ R[i] = C where θ(x) = −i in the former

case and θ(x) = i in the latter case. In particular ±i ∈ C are algebraic over R with minimal

polynomial X2 + 1.

(b) Let L := Q[X]/(X3−2) = Q[x] = Q(x) with x = X such that x3 = 2, and hence as Q-vector

space: Q(x) = Q ⊕ Qx ⊕ Qx2. For instance, x−1 = 1
2x

2 ∈ Q[x]. As X3 − 2 has only one real

root, there is only one ring homomorphism Q(x) −→ R, the one determined by x 7→ 3
√

2, whose

image is the smallest subfield of Q containing Q and 3
√

2, that is

Q(x) ∼=
⋂

{K subfield of R |K⊇Q∪ 3√2}

K =: Q(
3
√

2).
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The polynomial X3 − 2 ∈ Q[X] thought of as an element of Q( 3
√

2)[X] splits as X3 − 2 =

(X− 3
√

2)(X2 + 3
√

2X+ 3
√

4), with X2 + 3
√

2X+ 3
√

4 irreducible in Q( 3
√

2)[X] (because it is a degree

two polynomial with no roots in Q( 3
√

2) ⊆ R). Instead, there are exactly two homomorphisms

from Q(x) to C corresponding to the two non-real roots 3
√

2e±
2
3
πi of X3 − 2, that is the two

complex conjugate roots of the quadratic real polynomial X2 + 3
√

2X + 3
√

4, each giving rise to

a field isomorphism to the corresponding smallest subfield of C containing Q and the given non-

real root. In particular 3
√

2, 3
√

2e
2
3
πi, and 3

√
2e−

2
3
πi are algebraic over Q with minimal polynomial

X3 − 2. Note that the three fields Q( 3
√

2), Q( 3
√

2e
2
3
πi), and Q( 3

√
2e−

2
3
πi) = Q( 3

√
2e

4
3
πi), though

all isomorphic to Q(x) as abstract fields, are three distinct subsets of C. Indeed one can show

that 3
√

2 6∈ Q( 3
√

2e±
2
3
πi) and Q( 3

√
2e

2
3
πi) ∩Q( 3

√
2e

4
3
πi) = Q.

(c) Let a ∈ C be any element which is transcendental over Q, that is f(a) 6= 0 for every f ∈ Q[X],

for example a = π ∈ R, a = e ∈ R, or a = iπ ∈ C. Then the unique unitary ring homomorphism

Q[X] −→ C, X 7→ a is injective and its image is the smallest subring of C containing both Q and

a, that is Q[a]. Hence Q[a] ∼= Q[X] and this ring homomorphism induces a field homomorphism

of Q(X), the field of (univariate) rational functions with Q-coefficients, with Q(a) the smallest

subfield of C (or of R if a ∈ R) containing both Q and a.

(d) Let K := Q(X) and let Y an indeterminate over K. Then Y 2 −X ∈ K[Y ] is irreducible in

K[Y ] = Q(X)[Y ]. Indeed X is not a square in Q(X), else there exist u(X), v(X) ∈ Q[X], with

v 6= 0 such that X = u2

v2 in Q(X) = qf(Q[X]). By definition of equality in the field of fraction

of a domain, this gives v(X)2X = u(X)2 in the factorial domain Q[X]. But this is impossible

by the uniqueness of the factorization into irreducible elements in Q[X] because in the left hand

side the irreducible factor X appears an odd number of times while it appears an even number

of times in the right hand side. Therefore Y 2−X is irreducible as claimed and the residue class

ring L = K[Y ]/(Y 2 −X) = K[y] = Q(X)[y] = Q(X)⊕ Q(X)y = Q(X)(y) is a field. A generic

element α of this field can be represented in a unique way in the form α = u0
v0

+ u1
v1
y where

ui, vi ∈ Q[X] are monic polynomials such that and v0v1 6= 0 and MCD(ui, vi) = 1. Hence we

can also write α = a0+a1y
A where a0, a1, A ∈ Q[X] are monic polynomial such that A 6= 0 and

MCD(a0, a1, A) = 1. As y2 = X, we could could abusively write y =
√
X and consequently

L = Q(X)(
√
X) = Q(

√
X), indeed X = (

√
X)2 ∈ Q(

√
X), hence Q(X) ⊆ Q(

√
X), though this

notation could be misleading sometimes.

(e) As −X is not a square in Q(X) too (be the same argument above), we can also consider the

field Q(X)[Y ]/(Y 2 +X) = Q(
√
−X).
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1.6. Nilpotent elements, nilradical, reduced ring

1.6.1. Definition. — An element a of a ring A is nilpotent if a power of it vanishes, i.e.

there exists n ∈ N+ such that an = 0 in A.

1.6.2. Definition. — The set of all nilpotent elements of A is an ideal of A and it is called

the nilradical, Nil(A), of A. It coincides with the intersection of all minimal primes of (0):

Nil(A) =
⋂

p∈Min((0)) p (cf. [AM69, Ch. 1]).

1.6.3. Definition. — A is said to be a reduced ring if it has no nonzero nilpotent elements,

i.e. Nil(A) = (0). The ring Ared := A/Nil(A) is reduced.

1.6.4. Remark: the nilradical of a polynomial ring. — Let A be any unitary commuta-

tive ring, then Nil(A[X1, . . . , Xn]) = Nil(A)[X1, . . . , Xn], that is: any polynomial, in n indeter-

minates, whose coefficients are nilpotent elements of A, is a nilpotent polynomial, and conversely

if a polynomial is nilpotent then its coefficients must all be nilpotent elements in A.

1.6.5. Remark: units of A[X1, . . . , Xn]. — It follows, considering degrees, that there is

a group isomorphism A[X1, . . . , Xn]× ∼= A× × ((X1, . . . , Xn) ∩ Nil(A)[X1, . . . , Xn]). such that

f 7→ (f(0, . . . , 0), f(X1, . . . , Xn)− f(0, . . . , 0)).

1.7. Quotient ideals and saturation

1.7.1. Definition. — The quotient ideal of two ideals I and J of A is defined as

(I : J) = {a ∈ A | aJ ⊆ I}.

In case I or J , or both, is a principal ideal (a) with a ∈ A, we simply write (I : a) := (I : (a)),

(a : J) := ((a) : J) and (a : b) := ((a) : (b)).

1.7.2. Remark. — The definition makes sense also when J = S is just any subset of A. In

that case, it is easy to show that (I : S) is an ideal of A, as it is when J is an ideal (cf. below).

1.7.3. Remark. — Note that we always have (I : 1) = (I : A) = I, (1 : J) = (A : J) = A,

(I : 0) = A, while (0 : J) is the so called annihilator of J (6).

6. If A is a domain and J 6= 0, then (0 : J) = (0).



1.7. QUOTIENT IDEALS AND SATURATION 29

1.7.4. Properties of the quotient ideal. —

a) (I : J) is an ideal of A;

b) (I : J) = A⇔ J ⊆ I;
c) I ⊆ (I : J);

d) (I : J)J ⊆ I;
e) ((I1 : I2) : I3) = (I1 : I2I3) = ((I1 : I3) : I2);

f) (
⋂
i Ii : J) =

⋂
i(Ii : J);

g) (I : ΣJi) =
⋂
i(I : Ji);

h) I1 ⊆ I2 ⇒ (I1 : J) ⊆ (I2 : J) and J1 ⊆ J2 ⇒ (I : J1) ⊇ (I : J2);

i) if J is an ideal and p is a prime ideal, then (p : J) = A if J ⊆ p or (p : J) = p if J 6⊆ p.

Proof. — For a) to g) we refer [AM69].

h) It’s straightforward.

i) If J ⊆ p then (p : J) = A by a). Let J 6⊆ p, then there exists j ∈ J such that j 6∈ p. By b)

p ⊆ (p : J), let then a ∈ (p : J) that is aJ ⊆ p. In particular aj ∈ p, as p is a prime ideal and

j 6∈ p it is a ∈ p. �

1.7.5. Saturation wrt an ideal. — Let I and J be two ideals of A, then

(I : Jn) ⊆ (I : Jn+1) for any n ∈ N (∗)

thus (I : J∞) :=
⋃
n∈N(I : Jn) = {a ∈ A | aJn ∈ I for some n ∈ N+} is an ideal of A,

which is called the saturation of I with respect to J . It directly follows by definition that

(I : J∞) = A⇔ 1 ∈ (I : J∞)⇔ Jn ⊆ I for some n ∈ N+.

1.7.6. Remark (Strictly ascending chain). — We note a special property of the chain (∗)
defining (I : J∞). If (I : JN ) = (I : JN+1) for some N ∈ N then the chain stays stationary after

(I : JN ), that is (I : J t) = (I : JN ) for all t ∈ N such that t ≥ N .

Proof. — Indeed, the claim follows by induction on n ≥ N , where n = N is the base case and the

inductive step goes as follows: if n ≥ N and (I : Jn) = (I : Jn+1) then (I : Jn+1) = (I : Jn+2),

which is true because (I : Jn+1) ⊆ (I : Jn+2) holds in general, while if a ∈ (I : Jn+2), that is

aJn+2 ⊆ I, then, for any choice of j ∈ J we have ajJn+1 ⊆ I, hence aj ∈ (I : Jn+1) = (I : Jn)

for all j ∈ J . This means ajJn ⊆ I for all j ∈ J , that is aJn+1 ⊆ I, and therefore a ∈ (I : Jn+1)

as required. �
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It follows that, if A is a Noetherian ring, then (I : J∞) = (I : JN ) for some N ∈ N+ and the

previous ideals in the chain, (I : Jn) with n < N , are strictly increasing from (I : J) to (I : J∞)

in the nontrivial cases J 6⊆ I (otherwise (I : J) is already (1)) and I ( (I : J) (otherwise

(I : J∞) = (I : J) = I).

1.8. Rings of fractions

For the construction of rings of fractions of commutative unitary rings A with respect to

multiplicative systems S (i.e. S ⊆ A such that 1 ∈ S and S · S ⊆ S) and their properties, we

refer to [AM69, Ch. 3], [Sha90, Ch. 5], [KR00, 3.5.A] and [Eis95, Ch. 2]:

AS = S−1A = A[S−1] := (A× S)/ ∼ ∼= A[Xs | s ∈ S]/({sXs − 1 | s ∈ S}) ∼= lim−→
f∈S

Af .

We just point out that

i) If a, b ∈ A and s, t ∈ S, then a
s = b

t in AS ⇔ u(ta − sb) = 0 in A for some u ∈ S.

The canonical ring homomorphism χS : A −→ S−1A, a 7→ a
1 is universal among the

unitary ring homomorphisms f : A −→ B such that f(S) ⊆ B×. In general, it is neither

injective nor surjective, though it is a unitary ring epimorphism, also called "essentially

surjective", i.e. if u, v : S−1A −→ B are two (parallel) unitary ring homomorphisms

such that u ◦ χS = v ◦ χS then u = v. The kernel of χS is the ideal of A given by

Ker(χS) = {a ∈ A | sa = 0 for some s ∈ A} =
⋃
s∈S(0 : s). Note that, in particular,

Ker(χS) ⊆ Zdv(A) for every multiplicative system S such that 0 6∈ S
ii) We have AS = 0 if and only if S contains a nilpotent element (i.e. s ∈ S such that sn = 0,

in A, for some n ∈ N+). Hence, in particular, f ∈ A is nilpotent if and only if the fraction

ring Af = A
[

1
f

]
= 0.

iii) We have a completely general commutation relation between taking quotient wrt an ideal

I and forming fractions wrt a multiplicative system S: (A/I)S
∼= AS/IS .

iv) The canonical ring homomorphism A −→ AS induces a correspondence (via extension-

contraction described in 1.1.11.5) such that: every ideal of AS is extended from an ideal

of A, if I is an ideal of A then Iec =
⋃
s∈S(I : s) (hence Ie = (1) ⇔ I ∩ S 6= ∅), I = Iec if

and only if no element from S becomes zerodivisor in the quotient ring A/I, prime ideals

of AS bijectively correspond to prime ideals of A avoiding S.
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v) For any ring, Σ0 := A \ Zdv(A) is a multiplicative system, and the corresponding ring of

fraction is called the total ring of quotients of A and it is denoted

Q0(A) := (Σ0)−1A = (A \ Zdv(A))−1A.

Note that Σ0 is the biggest multiplicative system S of A such that χS : A −→ S−1A is

injective, and that for any multiplicative system S′ such that S′ ⊆ Σ0, i.e. S is "zerodivisor

free", we have a unitary ring injection AS′ ↪−→ Q0(A). Moreover, if S is such a "zerodivisor

free" multiplicative system of A then equality in S−1A take the usual simplified appearance
a
s = b

t in AS ⇔ ta = sb in A. If A is a domain, then Σ0 = A \ {0}, and we define

qf(A) := Q0(A) = AΣ0 = A[Σ−1
0 ] = (A \ {0})−1A,

which is always a field, called field of fractions (or field of quotients) of the domain

A. For example: if A is a domain, then qf(A[X1, . . . , Xn]) = KA(X1, . . . , Xn) is the

field of rational functions in n indeterminates with coefficients in the field of fractions

KA = qf(A) of A.

vi) If f ∈ A then S := {fn | n ∈ N} is a multiplicative system of A. We define

Af := AS = A[f−1] ∼= A[X]/(fX − 1).

We have: Af = (0)⇔ f is nilpotent.

vii) If p is a prime ideal of A, then S := A\p is a multiplicative system of A. The localization

of A at the prime p is defined to be the ring of fractions

Ap := AS = A[(A \ p)−1] = lim−→
f 6∈p

Af .

The ring Ap is said to be local because pAp is its only maximal ideal. The quotient ring

κ(p) := Ap/pAp
∼= (A/p)(0) = qf(A/p) is therefore a field, called the residue field of the

prime p, it is isomorphic to the field of fractions of the domain A/p.

viii) Note that, for a maximal ideal m of A we have κ(m) ∼= A/m because the quotient is already

a field; while, to the other extreme, if p is minimal prime of A (i.e. p ∈ Min((0))), then

pAp = Nil(Ap) (because pAp becomes the only minimal prime of 0
1 in Ap), and the residue

field becomes κ(p) = Ap/pAp = (Ap)red ∼= qf(A/p). In case, moreover, p is a minimal

prime such that Nil(Ap) = (0), then κ(p) = Ap.
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1.9. Radical of an ideal

1.9.1. Definition. — The radical of an ideal I is defined as
√
I := {a ∈ A | there exists n ∈ N+ such that an ∈ I}.

1.9.2. Remark. — Obviously, the radical of the zero ideal coincides with the set of all nilpotent

elements in the ring: Nil(A) =
√

(0A).

1.9.3. Proposition (Radical membership test). — Let I be an ideal of A, let A[X] be the

univariate polynomial ring with coefficients in A and indeterminate X, and let a ∈ A. Then

a ∈
√
I ⇔ 1 ∈ (I, aX − 1) ⊆ A[X].

Proof. — See, for example, [KR00, 3.5.15]. �

1.9.4. Radical ideals. — An ideal I is said to be a radical ideal if I =
√
I, the family of all

such ideals is closed under intersection (as it follows by f) of 1.9.5 e) and f) below).

1.9.5. Radical properties. —

a)
√
I is an ideal of A;

b) I ⊆
√
I;

c) I ⊆ J ⇒
√
I ⊆
√
J

d)
√√

I =
√
I;

e) I =
√
J ⇒ I =

√
I;

f)
√
IJ =

√
I ∩ J =

√
I ∩
√
J and

√
In =

√
I for each n ∈ N+;

g)
√
I = (1)⇔ I = (1);

h)
√
I + J =

√√
I +
√
J ;

i) If p is a prime ideal of A and n ∈ N+ then
√
pn = p;

j)
√
I =

⋂
p⊇I, p prime p =

⋂
p∈Min(I);

k) If ϕ : A −→ B is any (unitary) ring homomorphism and J is an ideal of B, then

ϕ−1(
√
J) =

√
ϕ−1(J);

l) If S is a multiplicative system of A, then
√
IS = (

√
I)S in the ring of fractions AS;

m) If A is Noetherian, then I contains a power of its radical;
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n) If I is an ideal of A, then
√
I = π−1(

√
(0)) where π : A −→ A/I is the canonical projection

on the quotient ring, i.e.
√
I = π−1(Nil(A/I));

o) If X1, . . . , Xn are indeterminates over A and I is an ideal of A, then√
I[X1, . . . , Xn] =

√
IA[X1, . . . , Xn].

p) If K is a field, L is an extension field of K, X1, . . . , Xn are indeterminates over K, and I

is an ideal of K[X1, . . . , Xn], then√
IL[X1, . . . , Xn] = (

√
I)L[X1, . . . , Xn].

Proof. — See [AM69], [Eis95, p. 33], and [Kun85, Ch. III, Rules 4.8 c)]. Part o) can be easily

proven, by induction on n, using the canonical isomorphism A[X]/IA[X] ∼= (A/I)[X], together

with n) and the fact that, if R is any commutative unitary ring and f ∈ R[X], then f is nilpotent

in R[X] if and only if its coefficients are nilpotent in R ([AM69, Ch. 1, Ex. 2]). Property p) is

a well known pleasant arithmetic feature of the radical operation but its full proof is non-trivial,

see for example [KR00, ??] for a proof in case L = K an algebraic closure of K. �

1.9.6. Remark. — We can summarize general properties of operations on ideals with respect

to any ring homomorphism, in terms of extension-contraction notation ( 1.1.11.2), as follows

([AM69, Ch. 1, Ex. 1.18]):

(I1 + I2)e = Ie1 + Ie2 (J1 + J2)c ⊇ Jc1 + Jc2

(I1 ∩ I2)e ⊆ Ie1 ∩ Ie2 (J1 ∩ J2)c = Jc1 ∩ Jc2
(I1I2)e = Ie1I

e
2 (J1J2)c ⊇ Jc1J

c
2

(I1 : I2)e ⊆ (Ie1 : Ie2) (J1 : J2)c ⊆ (Jc1 : Jc2)
√
I
e ⊆
√
Ie

√
J
c

=
√
Jc

1.9.7. Proposition. —

a) if A is a Noetherian ring, (I : J∞) = A⇔ J ⊆
√
I;

b) Let I, J be ideals of A, then
√

(I : J) ⊆
√

(I : J∞) ⊆ (
√
I : J) and, if A is a Noetherian

ring,
√

(I : J∞) = (
√
I : J).

c) Let I, J be ideals of A with I a radical ideal, then (I : J) is a radical ideal itself and moreover

(I : J∞) = (I : J) = (I :
√
J);

Proof. — a) It follows from j) of 1.9.5 .
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b) The first inclusion follows from (I : J) ⊆ (I : J∞) and monotony of taking radicals (see

above). For the second inclusion, if a ∈
√

(I : J∞) there exists t ∈ N+ such that atJk ⊆ I

for some k ∈ N+. Hence, as we can assume t great enough (t ≥ k) if needed, for any j ∈ J ,
(aj)t = atjt ∈ atJ t ⊆ atJk ⊆ I, which yields aJ ⊆

√
I and eventually a ∈ (

√
I : J). Assume

now, that A is a Noetherian ring and that a ∈ (
√
I : J), hence aJ ⊆

√
I. As aJ is an ideal of A

contained in
√
I, then from j) of 1.9.5 a power of it, say (aJ)t with t ∈ N+, is contained in I; in

particular atJ t ⊆ I, therefore a ∈
√

(I : J∞).

c) From the above b), we have in general that (I : J) ⊆
√

(I : J) ⊆ (
√
I : J) = (I : J) where

the last equality holds for I is radical, hence
√

(I : J) = (I : J) in this case. The first equality

in the second statement is then clear (I : J) ⊆ (I : J∞) ⊆
√

(I : J∞) ⊆ (
√
I : J) = (I :

J) ⇒ (I : J∞) = (I : J). For the second one, as
√
J ⊇ J we have (I :

√
J) ⊆ (I : J). Let

now a ∈ (I : J), that is aJ ⊆ I. If b ∈
√
J there exists t ∈ N+ such that bt ∈ J , hence

(ab)t = atbt = a(at−1bt) ∈ aJ ⊆ I with I radical, hence ab ∈ I. As this holds true for any

b ∈
√
J we get (I : J) ⊆ (I :

√
J), and therefore (I : J) = (I :

√
J). �

1.10. Primary ideals

1.10.1. Proposition-Definition. — A proper ideal Q of A is said to be primary if whenever

xy ∈ Q, for some x, y ∈ A, then x ∈ Q or y ∈
√
Q. The radical of a primary ideal Q is always

a prime ideal and it is minimal for this property.

Proof. — Indeed, if xy ∈
√
Q then (xy)n = xnyn ∈ Q for some n ∈ N+; if, say, x 6∈

√
Q then

xn 6∈ Q (for all n ∈ N+), but as Q is primary it must then be yn ∈
√
Q, that is (yn)m = ynm ∈ Q

for some m ∈ N+. Hence y ∈
√
Q, and

√
Q = p is a prime ideal. Moreover, as it follows from

1.9.5 i), if q is prime ideal such that q ⊇ Q then q ⊇ p. �

We say then that Q is a p-primary ideal, with p prime, to mean that
√
Q = p.

1.10.2. Remark. — Note that, if A is a Noetherian ring, then any such Q is in between two

powers of the prime ideal p; but this is only a necessary condition, indeed it holds for any ideal

having prime radical.

1.10.3. Lattice property. — The family of all p-primary ideals is stable under finite inter-

sections.
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1.10.4. Example. — (a) In K[X,Y ], (XY,X2, Y 3) and (X3, Y 5) are two different (X,Y )-

primary ideals. (b) In K[X], the ideals pi := (X1, · · · , Xi) are prime and all their positive

powers pti are pi-primary.

1.10.5. Example. — (a) One can show that if
√
I = M is a maximal ideal then I is a M-

primary ideal, and that any ideal J , of a Noetherian ring A, such that Mr ⊆ J ⊆M, for some

positive integer r, is a M-primary ideal. (b) Note that not even powers of (non maximal) prime

ideals are necessarily primary ideals ([AM69]), though this is true in Euclidean domains (such

as A = Z, K[X] with K a field, . . . ).

1.10.6. Proposition. — Let Q, J be ideals of A with Q a p-primary ideal, then

a) (Q : J) = A if J ⊆ Q or (Q : J) is a p-primary ideal if J 6⊆ Q. If, moreover, J 6⊆ p, then

(Q : J) = Q;

b) (Q : J∞) = A if Jk ⊆ Q for some k ∈ N+ or (Q : J∞) is a p-primary ideal if Jk 6⊆ Q for

every k ∈ N+. If, moreover, J 6⊆ p, then (Q : J) = Q;

c) If A is Noetherian, then (Q : J∞) = A if J ⊆ p or (Q : J∞) = Q if J 6⊆ p.

Proof. — If J ⊆ Q then (Q : J) = A by 1.7.4 a). Let J 6⊆ Q, then there exists j ∈ J such that

j 6∈ Q, and let a ∈ (Q : J) that is aJ ⊆ Q. In particular aj ∈ Q, which is p-primary, as j 6∈ Q
then a ∈ p; hence Q ⊆ (Q : J) ⊆ p ⇒ p =

√
Q ⊆

√
(Q : J) ⊆ √p = p ⇒

√
(Q : J) = p.

Let us check that (Q : J) is indeed primary: let xy ∈ (Q : J) and y 6∈ p =
√

(Q : J), then

xyz = (xz)y ∈ Q for any z ∈ J , as Q is p-primary, we find xz ∈ Q for any z ∈ J . Therefore

x ∈ (Q : J) and (Q : J) is a primary ideal. For the last statement: let j ∈ J \ p and let a ∈ A
such that aJ ⊂ Q. Then aj ∈ Q \ p, as Q is p-primary and j 6∈ p we get a ∈ Q, and hence

(Q : J) = Q. �

1.11. Primary decomposition

For what follows, refer to [AM69], [Sha90, Ch. 4], or [KR00, Tutorial 43] and [KR05,

5.6.B].

1.11.1. Theorem (Primary decomposition in Noetherian rings). — Let A be a Noethe-

rian ring and let I be an ideal of A. Then:



36 CHAPTER 1. ALGEBRA

i) I has a primary decomposition, that is I is an intersection of finitely many pi-primary

ideals Qi, i.e. I = Q1 ∩ · · · ∩Qs, where: pi =
√
Qi;

ii) any decomposition as in i) can be rearranged into a minimal primary decomposition,

that is I = Q1 ∩ · · · ∩ Qr, where pi =
√
Qi, with pi 6= pj if i 6= j and none of the Qi is

redundant, that is Qi 6⊇
⋂
{j 6=i}Qj for any i = 1, · · · , r;

iii) the number of primary ideals Qi, the prime ideals pi, as well as those primary ideals Qj
whose radical pj belong to the minimal prime ideals of I, of a minimal primary decomposi-

tion as in ii) are uniquely determined by the ideal I.

1.11.2. Associated prime ideals of an ideal. — If I is an ideal of A, then its associated

prime are the radicals of primary ideals of any minimal primary decomposition of I. The set of

the associated primes of I = Q1 ∩ · · · ∩ Qr is denoted Ass(I) and, if A is a Noetherian ring, it

can be shown that ([AM69, Ch. 4, Prop. 4.6; Ch. 7, Prop. 7.17])

∅ 6= Min(I) ⊆ Ass(I) = {p1, · · · , pr} = {p prime | p = (I : a) for some a ∈ A}.

Those associated primes which are minimal are called isolated prime of I, all the others are

called embedded prime of I. If I is a radical ideal then it has no embedded primes ([AM69,

Ch. 4, Ex. 2]).

1.11.3. Example. — Observe that, in K[X,Y ], I := (XY, Y 2) has, at least, two distinct

minimal primary decompositions: I = (X,Y 2) ∩ (Y ), and I = (X,Y )2 ∩ (Y ). In both cases the

associated primes are (X,Y ) and (Y ), with (Y ) isolated prime and (X,Y ) embedded (for it is

not minimal). Clearly, the (X,Y )-primary "component" is not uniquely determined.

1.11.4. Primary decomposition for principal ideals in UFD. — If A is a unique

factorization domain (UFD) and a = uan1
1 · · · a

nk
k ∈ A with u ∈ A invertible and ai irreducible,

then (a) = (an1
1 · · · a

nk
k ) = (a1)n1 ∩ · · · ∩ (ak)

nk is a ("the") minimal primary decomposition of

(a). Clearly, there cannot be embedded components, all associated primes are minimal.

1.12. Real and Semireal Rings and Ideals.

For what follows see [Kri64], [Coh03, 8.6, 8.7, 8.8], [Lan02, XI, 2], [BCR98, Ch. 1],

[BPR06] as well as [Lam84].
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Let A be a commutative unitary nonzero ring.

1.12.1. Definition. — (a) The ring A is called semireal if −1 6∈ ΣA(2).

(b) The ring A is called real (or formally real) if a2
1 + · · ·+ a2

t = 0, with ai ∈ A, implies that

each ai = 0.

1.12.2. Definition. — Let I be an ideal of A.

(a) The ideal I of A is said to be semireal if the quotient ring A/I is semireal, that is −1 is not

a sum of squares in A/I.

(b) The ideal I of A is said to be real if, for every a1, . . . , an ∈ A we have a2
1 + · · ·+ a2

n ∈ I ⇒
ai ∈ I for each i = 1, . . . , n.

1.12.3. Remark. — If A is a semireal ring, then it has characteristic 0.

Proof. — If A has characteristic n ∈ N, n ≥ 2, then n = 12 + · · · + 12 = 0 (n summands).

Therefore −1 =
∑n1

i=1 12 in A. �

1.12.4. Remark. — (a) If A is a field: A is real ⇔ A is semireal.

(b) It is straightforward to check that: I is a semireal (resp. real) ideal of the A if and only if

the quotient ring A/I is semireal (resp. real).

(c) If m is a maximal ideal of A: m is real ⇔ m is semireal.

(d) The conditions defining reality and semireality are clearly invariant under rings isomorphism.

(e) Clearly real rings are semireal, but the converse is in general not the case. For example

Q[X]/(X2) and R[X1, . . . , Xn]/(X2
1 + · · ·+X2

n), for n ≥ 1, are semireal but not real. The latter,

with n ≥ 2, being an example of a semireal integral domain which is not a real domain.

(f) If A is semireal, then no square can be equal to −1. Nonetheless, this is only a necessary

condition. In A = Z/(6) no square equals −1 (as one can easily check directly), though A is not

semireal: 1
2

+ 2
2

+ 5
2

= 0, whence −1 = 2
2

+ 5
2 and therefore A is not a semireal ring. To

better understand phenomena of this kind the concept of level of a ring (or "Stufe" in German)

has been developed (see [Lam84]).

(g) Obviously, any subring of a real (respectively semireal) ring is still such.

(h) A cartesian product of two (or any of any, even not finite, cardinal number of) real rings, with

coordinate-wise operations, as well as any polynomial ring (in any number of indeterminates) is

a real ring.
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1.12.5. Proposition. — Let A and B two unitary commutative rings, and let f : A −→ B a

unitary ring homomorphism. then

a) B semireal ⇒ A semireal.

b) If f happens to be injective, B real ⇒ A real.

c) If A is real and S is a multiplicative system of A then S−1A real.

Proof. — See [Lam84, 2.2]. �

1.12.6. Remark. — In [Lam84, Rem. 2.2] the following are proven:

i) A is real if and only if A is reduced and all minimal primes of A are real.

ii) A is real if and only if A can be embedded into a direct product of real fields. Actually we

have that A ↪−→
∏

p∈Min((0)) qf(A/p) ∼=
∏

p∈Min((0)) qf(Ap/pAp) ∼=
∏

p∈Min((0))Ap. If A

has only finitely many minimal prime ideals, as it is for any Noetherian ring, then A is a

subring of a direct product of finitely many real fields.

iii) A is semireal if and only if one its minimal prime is semireal.

1.12.7. Example. — If A is a real ring (respectively semireal) and S is a nonempty set, then

the A-algebra of all functions on S with value in A, with pointwise operations, AS = F(S, A) :=

{f | f : S −→ A} is a real (respectively semireal) ring.

Proof. — Straightforward verification. Note also that F(S, A) = AS =
∏
s∈S A is a product of

real (respectively semireal) rings. �

1.12.8. Example. — (a) The rings: Z, Q, R, K[X1, . . . , Xn] with K a real field, as well as

A[X1, . . . , Xn] and any S−1A[X1, . . . , Xn] with A real, their ring products and subrings of them,

as well as the rational function fields in any number of indeterminates K({Xi | i ∈ I}) with K

semireal/real are such.

(b) Any ring in which the square map p2 is surjective (as any algebraically closed field is), as

well as any positive characteristic ring, is not even semireal.

(c) The complex subfield Q( 3
√

2e
2
3
πi) is real, thought it is not a subfield of R. Indeed it is

isomorphic (cf. 1.5.24 (b)) to Q( 3
√

2), subfield of R, and we noticed that for a ring being

real/semireal is preserved under field isomorphisms.

(d) Let K be any field. Then, by 1.5.24 (d), (e) the indeterminate X is neither a square nor the

opposite of a square, therefore the two residue class rings K(
√
±X) := K(X)[Y ]/(Y 2 ∓ X) =
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K(X) ⊕K(X)y, with y2 = ±X are fields. If moreover K is a real field, or equivalently K(X)

is real, then both fields K(
√
±X) are real too. Indeed, assume there exist αi = ai0+ai1y

Ai
, with

ai0, ai1, A ∈ K[X] monic polynomials such that Ai 6= 0 and MCD(ai0, ai0, Ai) = 1, such that

α2
1 + · · · + α2

t = 0 in K(
√
±X). Then, clearing the denominators multiplying both sides by

(A0 · · ·At)2 we get

(b10 + b11y)2 + · · ·+ (bt0 + bt1y)2 = 0 in K(
√
±X) where bij = aij

∏
k 6=i

Ak ∈ K[X].

Expanding out and grouping according to the powers of y we get

∑
i

b2i0 ±X
∑
i

b2i0 + 2

(∑
i

bi0bi1

)
y = 0 in K(

√
±X) ⇔


∑

i b
2
i0 ±X

∑
i b

2
i0 = 0∑

i bi0bi1 = 0
in K[X].

Since the first equation of the system gives
∑

i b
2
i0 = ∓X

∑
i b

2
i0 in K[X], and K is real, if they

are both not zero, as polynomials in X, the left hand side has even degree and the right hand

side has odd degree. As K[X] is a domain, we are thus left with
∑

i b
2
i0 =

∑
i b

2
i0 = 0 in K[X],

but as K[X] is a real ring this implies bij = 0 for every i = 1, . . . , t and j = 0, 1. Hence we

conclude that each αi has to be zero and therefore K(
√
±X) are real fields.

1.13. Ordered Rings and Fields. Real-Closed Fields

We recall the standard definitions and notation about orders and preorders on a set.

1.13.1. Definition. — Let S be a set. (a) A (partial) preorder on S is a binary relation �
on S which is reflexive, that is s � s for every s ∈ S, and transitive, that is for every s1, s2, s3 ∈ S
if s1 � s2 and s2 � s3 then s1 � s3. A total preorder is a preorder such that for every s1, s2 ∈ S
it is s1 � s2 or s2 � s1. If � is a preorder on S we write s2 � s1 to mean s1 � s2, and s1 ≺ s2

to mean s1 6= s2 and s1 � s2. In particular it is s 6≺ s for every s ∈ S.
A preordered set is a pair (S,�), where S is a set and � is a preorder on S. (b) A (partial)

order on S is a (partial) preorder ≤ which is antisymmetric, that is for every s1, s2 ∈ S if s1 ≤ s2

and s2 ≤ s1 then s1 = s2. An order is said to be total when it is a total preorder. The meaning

of s2 ≥ s1 and s1 < s2 is as above. For a total order ≤ on S we then have the trichotomy law:

for every s1, s2 ∈ S exactly one of the relations s1 < s2 or s1 = s2 or s2 > s1 holds. A ordered

set is a pair (S,≤), where S is a set and ≤ is a order on S.
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Let A be a commutative unitary ring.

1.13.2. Definition. — A preorder � on A is called a ring-preorder on A if:

i) a1 � a2 ⇒ a1 + a3 � a2 + a3 for every a1, a2, a3 ∈ A.
ii) a1 � a2 and 0 � a ⇒ a1a3 � a2a3 for every a1, a2, a3 ∈ A.
iii) 0 � a2 for each a ∈ A.
iv) 0 6� −1.

The nonnegative cone T of (A,�) is then defined as T = T� := {a ∈ A | a � 0}. The set

t := T ∩ (−T ) is called the support of �.

1.13.3. Remark. — (a) The trivial preorder (a � b for every a, b ∈ A, hence it would be

T = A) does satisfy i)− iii) but it does not fulfill iv).

(b) Request iii) implies 0 � 1, hence 0, 1 ∈ T and −1 6∈ T .
(c) For every a ∈ A, it is a ∈ −T ⇔ −a ∈ T , hence we have {a ∈ A | 0 � a and a � 0} =

T ∩ (−T ) = t. This set, the support of �, can be thought of as the set of the elements of A

which are (zero or) "�-indistinguishable from 0". Note that request iv) implies 1 6∈ t.

A preorder, being a relation on A, is a subset of the cartesian square A2 := A×A. As it is easier
to work with subsets of A instead of subsets of A2, the above definition is usually rephrased in

terms of nonnegative cones as follows.

1.13.4. Definition. — A cone on A is a subset T of A such that:

i) T + T ⊆ T .
ii) T · T ⊆ T .
iii) A(2) ⊆ T .

In this case we define a �T b : ⇔ b− a ∈ T . The set t := T ∩ (−T ) is the support of T .

The cone T is said to be proper if, moreover, it satisfies

iv) −1 6∈ T .

1.13.5. Remark about terminology. — We are here following the terminology of [BCR98,

4.2.1], while [Lam84], [BN93, 2] and [Neu98, 1] use "preorder" instead.
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1.13.6. Remark. — "Ring-preorders � on A" and "proper cones T of A" are equivalent

concepts. Indeed, if � is a ring-preorder on A then T� is a proper cone of A such that �T�=�,
and vice-versa if T is a proper cone of A then �T is a ring-preorder on A such that T�T = T .

1.13.7. Critical Example. — If A is such that −1 ∈ N · 1A (as it is in any finite ring) then

−1 ∈
∑
A(2), and hence A cannot have precones. For example, let A := Z/(6). Then −1 = 5 · 1

in A, moreover A(2) = {0, 1, 4, 3} and A(2) +A(2) = {0, 1, 4, 3, 2, 5} = Z/(6).

1.13.8. Proposition. — Let f : A −→ B be a unitary ring homomorphism, and let U be a

(proper) cone of B with support u. Then f−1(U) is a (proper) cone of A with support f−1(u).

Proof. — All verifications are straightforward. �

The basic properties a precone may have are summarized and proved in the following proposition.

1.13.9. Proposition. — Let T be a proper cone of A. Then

a) A is semireal. In particular char(A) = 0 and Z is a unitary subring of A.

b) T · t ⊆ t, −T · t ⊆ t and t is the biggest additive subgroup of A contained in T .

c)
∑
A(2) ⊆ T and

∑
A(2) is the smallest proper cone on A (i.e. the sums of squares are

universally non-negative).

d)
∑
T ·A(2) ⊆ T .

e) If S is a multiplicative system of A such that S ∩ t = ∅, then the subset

TS := {x ∈ S−1A | x =
a

s
for some a ∈ A, s ∈ S with sa ∈ T}

of S−1A is a proper cone on S−1A, and its inverse image under the canonical ring homomor-

phism χS : A −→ S−1A is the proper cone χ−1
S (TS) = {a ∈ A | s2a ∈ T for some s ∈ S}.

f) T is a total proper cone if and only if A = T ∪ (−T )

g) If T is a total proper cone then (T ∩A×)−1 ⊆ T .
h) If 2 ∈ A× or T is a total proper cone of A then the support t is an ideal of A. In this case,

T := π(T ), the image of T in the canonical quotient map π : A −→ A onto the residue class

ring A := A/t, is a proper cone on A whose inverse image under π is exactly T , and A is

a semireal ring.

k) If A = K is a field, then t = (0).
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i) If T is a total proper cone of A with zero support, S is a multiplicative system of A such that

S ∩ Zdv(A) = ∅ and TS is the proper cone of S−1A defined in e) above, then χ−1
S (TS) = T .

Moreover, the ring-preorder on S−1A associated to TS is the unique extension of the ring-

preorder of A associated to T .

Proof. — a) It follows from the conjunction of i), iii) and iv). The last statement is clear.

b) Let t ∈ T and z ∈ T ∩ (−T ), that is 0 �T z �T 0. We need to show ±tz ∈ T ∩ (−T ). From

0 �T t we get 0 �T tz �T 0 hence tz ∈ T ∩ (−T ), while from −t �T 0 we get 0 �T −tz �T 0

hence −tz ∈ T ∩ (−T ). As for the last statement, we note that, as 0 ∈ t, it is t 6= ∅. By its very

definition −t ⊆ t, if now t1, t2 ∈ t then by i) it must be t1 − t2 ∈ t, hence t is a subgroup of the

additive group of A which is contained in T . On the other hand, if E ⊆ T is a subgroup of the

additive group of A then E = −E ⊆ −T , hence E ⊆ t. Therefore t is the biggest subgroup of

the additive group of A contained in T .

c) From iii) and i) it follows that
∑
A(2) ⊆ T . On the other hand, the set

∑
A(2) clearly always

satisfies i) − iii). Therefore
∑
A(2) is a proper cone if and only if A is semireal, which is the

same as asking that A has at least one proper cone. In particular, in this case,
∑
A(2) is the

smallest proper cone of A.

d) It follows from iii), ii and i).

e) Note that, by definition, for x ∈ TS we required just that at least one representative of x is

of the form a
s with sa ∈ T . The set TS clearly satisfies i) and ii), and it obviously contains

(S−1A)(2), therefore TS satisfies also iii). Assume, by contradiction, that there exist a ∈ A,

s ∈ S with sa ∈ T such that −1
1 = a

s in S−1A, so that −1 ∈ TS . By definition of equality in the

fraction ring S−1A there exist u ∈ S such that u(−s − a) = 0 in A. Hence, multiplying both

sides by us ∈ S, it is also u2s(−s − a) = 0. As S is a multiplicatively closed subset of A and

sa ∈ T , we get that (us)2 = −u2as is an element of S ∩ t = ∅ (by hypothesis), which is absurd.

Therefore TS satisfies all conditions i) − iv), and so it is a proper cone on S−1A. For the last

statement. Let a ∈ A such that a
1 ∈ TS , that is

a
1 = a′

s in S−1A with s ∈ S and a′ ∈ A such that

sa′ ∈ T . As before, there exist u ∈ S such that u(sa − a′) = 0 in A and so (us)2a = u2sa′ ∈ T
with (us)2 ∈ S(2). If, for the converse, a ∈ A is such that there exists s ∈ S with s2a ∈ T , then
a
1 = s2a

s2
∈ TS indeed s2 · s2a ∈ T as s2 ∈ T .

f) The proper cone T of A is total if and only if the ring-preorder �T is a total preorder relation,

hence for any a ∈ A it is 0 �T a (i.e. a ∈ T ) or a �T 0, which implies 0 �T −a (i.e. −a ∈ T ,
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hence a ∈ −T ). For the converse, let a, b ∈ T then a − b ∈ T (i.e. a �T b) or b − a ∈ −T (i.e.

b �T a).
g) Let a ∈ T be a unit of A, then aa−1 = 1. As T is a total proper cone, by e) a−1 ∈ T or

a−1 ∈ −T . In the latter case −a−1 ∈ T and so −1 = −a−1a ∈ T , absurd.
h) If T is a total proper cone then A = T ∪ (−T ) by c), thus the claim follows by a). Assume

2 ∈ A×, then from 1.1.5 any x ∈ A is a square difference x = y2 − z2 (for some y, z ∈ A).

The claim now follows by iii) and a). For the second statement of this point, we first note that

π−1(T ) = π−1(π(T )) = T + t = T as π is a homomorphism with kernel t and T is additively

closed by i), and now T is a proper cone of A by straightforward verifications and hence, by part

a), the ring A is semireal.

k) If A is a field, as it must have char(A) = 0 by a), then 2 ∈ A× and so by the above t is an

ideal of A. As −1 6∈ t, by iv), and A is a field we conclude that t = (0).

i) As S does not meet Zdv(A) we have that χS : A ↪−→ S−1A is a ring injection in this case.

Trivially T ⊆ χ−1
S (TS). Let now a ∈ χ−1

S (TS) by e) above it is s2a ∈ T for some s ∈ S. As T is

total, A = T ∪ (−T ). If a ∈ T there is nothing to prove, assume then that −a ∈ T . We have thus

T 3 s2(−a) = −s2a, whence s2a ∈ −T , and therefore s2a ∈ t = (0) by hypothesis. As s2a = 0

and S does not contains zero-divisor, we conclude a = 0 ∈ T . For the last statement, let U be

a proper cone of S−1A such that A ∩ U = T (using the identification induced by the injection

χS), we claim that then U = TS . Indeed, if x ∈ TS , then x = a
s with a ∈ A and s ∈ S such that

sa ∈ T = A ∩ U ⊆ U . Therefore x = a
s = as

s2
=
(

1
s

)2
as ∈ U . Coversely, if U 3 a

s = as
s2
, then

as = as
s2
· s2 ∈ A ∩ U = T , and therefore a

s ∈ TS . We conclude that U = TS as claimed. �

1.13.10. Proposition (Lattice properties of proper cones). — Let T the family of all

proper cones on A, considered as an ordered set with respect to set-inclusion. Then:

a) T is closed under arbitrary intersection, and if T 6= ∅ then
∑
A(2) =

⋂
T is its minimum.

b) Any chain in T has an upper bound in T .
c) Any proper cone T of A is a subset of a maximal one.

Proof. — a) is clear, the last statement is just a rephrase of part c) of 1.13.9.

b) If (Tλ)λ∈Λ is a chain in T , that is a family of proper cones of A, totally ordered by set-inclusion,

then their union T :=
⋃
λ∈Λ Tλ is clearly a proper cone of A containing each element of the chain,

hence it is an upper bound in T for the chain.
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c) follows by b), applying Zorn’s Lemma to the partially ordered, with respect to set-inclusion,

subset of all proper cones containing the given one (which is nonempty by hyphothesis). �

We now come to what should be considered the best approximation of an order on a general

commutative ring, not necessarily a domain.

1.13.11. Definition. — A ring-quasi-order on A is a ring-preorder � on A which moreover

satisfies:

v) � is a total preoder.

vi) {a ∈ A | 0 � a and a � 0} is a prime ideal of A.

We say that the ring-quasi-order ≤ is a ring-order if moreover ≤ is an antisymmetric relation

on A, equivalently its support (assumed to be a prime ideal) is reduced to 0, that is {a ∈ A |
0 ≤ a ≤ 0} = (0). This is equivalent to require that ≤ is a total order relation on the semireal

domain A (7).

1.13.12. Remark. — In the specialized literature (see [Lam84]) ring-quasi-orders are simply

called "orders" (as well as the corresponding nonnegative cones). To avoid conflict with the

general standard notion of order recalled in definition 1.13.1 I slightly modified the terminology

here.

1.13.13. Remark. — Request vi) is equivalent to ask that if a is �-indistinguishable from 0

then any xa (x ∈ A) is such, and if a product is �-indistinguishable from 0 then at least one

factor of the product is such.

1.13.14. Definition. — A prime cone of A is a proper cone N ⊂ A satisfying moreover

v) A = N ∪(−N ).

vi) Its support n = N ∩(−N ) is a prime ideal of A.

In this case we define a �N b : ⇔ b − a ∈ N , which is a ring-order on A. We say that N is a

strict prime cone of A if n = (0).

1.13.15. Remark about terminology. — Again we follow the terminology of [BCR98,

4.3.1], while [Lam84] uses "order" instead.

7. As the support {a ∈ A | 0 � a � 0} = (0) is required to be a prime ideal, A must be an integral domain.
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1.13.16. Remark. — (a) "Ring-quasi-orders� on A" and "prime conesN of A" are equivalent

concepts as in the case of ring-preorders and proper cones. Ring-orders on A corresponds to strict

prime cones of A and vice-versa.

(b) If A is field then any prime cone is a strict one by part k) of 1.13.9.

(c) If A has a strict prime cone N , then A is necessarily a domain because in this case (0) = n

is a prime ideal of A.

1.13.17. Proposition. — Let f : A −→ B be a unitary ring homomorphism, and let L be a

prime cone of B with support l. Then f−1(L) is a prime cone of A with support f−1(l). If B is

a domain and L is a strict prime cone of B, then f−1(L) is a strict prime cone of A if and only

if f is injective and A is a domain.

Proof. — Standard verifications. The ideal f−1(l) is a prime ideal of A by 1.4.4. �

1.13.18. Proposition (Cone criterion). — Let T be a proper cone of A. Then T is a prime

cone of A if and only if whenever ab ∈ −T it is a ∈ T or b ∈ T .

Proof. — Necessity. Let a ∈ A, then −a2 = (−a)a ∈ −T . Therefore a ∈ −T or a ∈ T ,

that is A = −T ∪ T . By 1.13.9 h) the support t = T ∩ (−T ) is then an ideal of A. Assume

ab ∈ t, whence also −ab ∈ t, and a 6∈ t. If a 6∈ T then −a ∈ T by A = −T ∪ T and b ∈ t as

a(±b) = ±ab ∈ t ⊆ −T . If a 6∈ −T then −a 6∈ T and b ∈ t as (−a)(±b) = ∓ab ∈ t ⊆ −T . Thus t
is a prime ideal of A. Sufficiency. Assume ab ∈ −T , with a 6∈ T and b 6∈ T . Then a, b ∈ −T and

therefore ab ∈ t prime ideal. Therefore a ∈ t ⊆ T or b ∈ t ⊆ T , absurd. �

1.13.19. Proposition. — Let N be a prime cone of A, then its support n is a real prime ideal

of A.

Proof. — Let x := a2
1 + · · ·+ a2

t ∈ n = N ∩(−N ) for some a1, . . . , at ∈ A. As
∑
A(2) ⊆ N , then

xi :=
∑

j 6=i a
2
j ∈ N and −xi ∈ −N for every i = 1, . . . , t. Hence a2

i = x − xi = x + (−xi) ∈

N ∩(−N ) = n for every i = 1, . . . , t. Therefore ai ∈ n for every i = 1, . . . , t since n is a prime

ideal. �

1.13.20. Corollary. — If A has a strict prime cone, then A is a real domain.

Proof. — A strict prime cone is a prime cone N with support n = (0), which is therefore a real

prime ideal of A. Hence the ring A is a real domain. �
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1.13.21. Critical example. — Let R be a real domain, such as R = Z or R = K a real field,

and let A = R[X]/(X2) = R[ε] = R ⊕ Rε, with ε2 = 0. Note that A is semireal but not real

as ε2 = 0 but ε 6= 0. For any given x = u + vε, y = s + tε ∈ A, with u, v, s, t ∈ R, we define

x = u + vε ≤ y = s + tε :⇔ u < s, or u = s and v ≤ t. Then ≤ is a total order on A such

that T := {x ∈ A | x ≥ 0} is a proper cone on A with support t = T ∩ (−T ) = (0), as ≤ is

antisymmetric. But A is not a domain, hence (0) is not a prime ideal. Because of this, despite

being a "true" order relation even "well behaved" with respect to the ring operations, ≤ is not

a ring-order, not even a ring-quasi-order, as in definition 1.13.11. The relation ≤ on A is only

a ring-preorder, as in definition 1.13.2, and T is a proper cone of A which is not a prime cone.

Instead N := {a + bε | a, b ∈ Z, a ≥ 0} is a prime cone of A with support the real prime ideal

n = N ∩(−N ) = (ε). By the previous corollary there cannot be strict prime cones of A.

Prime cones and their supports have, to some extent, certain maximality properties (w.r.t. set-

inclusion), thought this is especially true in the case of fields.

1.13.22. Proposition. — Let A be a commutative unitary ring.

a) If T is a proper cone of A and x, y ∈ A are such that xy ∈ −T , then at least one of T +xT ,

T + yT is proper cone.

b) Every maximal proper cone (w.r.t. set-inclusion) is a prime cone.

c) Any proper cone T of A is contained in a prime cone.

d) If N1, N2 and N3 are three prime cones of A then

d1) N1 ⊆ N2 ⇒ n1 ⊆ n2.

d2) N1 ⊆ N2 and n1 = n2 ⇒ N1 = N2.

d3) N1 ⊆ N2 and N1 ⊆ N3 ⇒ N2 ⊆ N3 or N3 ⊆ N2.

In particular, the set of all prime cones containing a given one is totally ordered by inclusion.

e) If N is a prime cone of A, then N is maximal as a prime cone if and only if it is maximal

as a proper cone.

f) If A is a field, then prime cones are exactly the maximal proper cones.

Proof. — a) and b) can be found in [Lam84, 3.4, 3.6].

c) This follows from c) of 1.13.10.

d) The first claim is clear as N1 ⊆ N2 ⇒ −N1 ⊆ −N2.
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As for the second one. Let a ∈ N2, as N1 is a cone, a ∈ N1 or a ∈ −N1. In the former case,

there is nothing to prove. In the latter case, −a ∈ N1 ⊆ N2 implies a ∈ N2 ∩(−N2) = n2 =

n1 ⊆ N1, therefore a ∈ N1.

Finally, for the third claim. Let, by contradiction, x3 ∈ N3 \N2, and x2 ∈ N2 \N3, and

consider the elements a := x3 − x2 and −a = x2 − x3. We note that a 6∈ N2, otherwise

x3 = a + x2 ∈ N2 and −a 6∈ N3, otherwise x2 = −a + x3 ∈ N3. As N1 ⊆ N2 ∩N3 this means

that a 6∈ N1 and −a 6∈ N1, which is impossible as N1 is a prime cone.

e) It follows from b) and c) above.

f) See [Lam84]. �

Emil Artin, in it’s solution of Hilbert 17th problem, showed in 1927 that a field F can be ordered

if and only if F is "semireal" in the sense that −1 is not a sum of squares in F .

1.13.23. Theorem. — Let K be a field. Then the following facts are equivalent:

a) K can be ordered;

b) The field K has a prime cone as defined in 1.13.14;

c) K is semireal, i.e. −1 6∈ ΣK(2);

d) K is a real field, that is for every x1, . . . , xn ∈ K,
∑n

i=1 x
2
i = 0 ⇒ x1 = · · · = xn = 0.

Proof. — The proof can be found in [BCR98, Thm. 1.1.8]. �

1.13.24. Theorem. — Let K be a real field.

a) Let x ∈ K. If x ∈
∑
K(2), then K(

√
x) is real. If K(

√
x) is not real, then −x ∈

∑
K(2).

Hence K(
√
x) or K(

√
−x) is real.

b) For any irreducible polynomial of odd degree f ∈ K[X] and any root α of f , the field

extension K(α) is real.

Proof. — The proof can be found in [Lan02, XI, §2, Prop. 2.1]. �

1.13.25. Definition. — A field K is said to be a real-closed field if it is real and it has no

nontrivial real algebraic extension, i.e. if L is an algebraic extension of K either L = K or L is

not real.
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1.13.26. Example. — The field Q is not real-closed: Q[
√

2] is a non trivial real algebraic

extension of it. The field R is a real-closed field, it’s only proper algebraic extension is C = R[i],

which is not real. No algebraically closed field L can be real-closed, indeed −1 is a square in L

for any such L.

1.13.27. Remark: conjugation on K[i]. — If K is a field in which −1 is not a square, the

polynomial X2 + 1 ∈ K[X] is irreducible and therefore the ring K[i] := K[X]/(X2 + 1) is a field.

As a K-vector space K[i] = K ⊕ iK where {1, i} is a K-bases of K[i]. As for C = R[i], hence

a+ ib := a − ib for every a + ib ∈ K[X] (with a, b ∈ K) is a well defined K-linear involutive

automorphism of the field K[i], i.e. uz1 + vz2 = uz1 + vz2 for every z1, z2 ∈ K[i] and u, v ∈ K,

z1z2 = z1z2 for every z1, z2 ∈ K[i] and z = z for every z ∈ K[i] (all verifications are standard).

As in the complex case, for any z = a + ib, with a, b ∈ K, we can define the following maps

K[i] −→ K: R(z) := a, =(z) := b, N(z) = |z|2 := zz = a2 + b2. In particular, as in the

complex case: for every polynomial f ∈ K[X] and every z ∈ K[i] we have f(z) = f(z) and thus

f(z) = 0⇔ f(z) = 0. Hence by Ruffini Theorem we get that, if z ∈ K[i] is a root of f ∈ K[X],

then (X−z)(X−z) = X2−2R(z)X+N(z) ∈ K[X] divides f(X), and (X−z)(X−z) is reducible
in K[X] if and only if =(z) = 0 (that is z ∈ K), in which case X2− 2R(z)X +N(z) = (X − z)2.

Therefore, all the quadratic polynomials of the form X2−2R(z)X+N(z) ∈ K[X] are irreducible

in the factorial domain K[X] as z varies in K[i] \K.

1.13.28. Theorem. — Let K be a field. Then the following facts are equivalent:

i) K is real-closed.

ii) Every polynomial of K[X], of odd degree, has a root in K and there is a unique ordering

on K whose nonnegative cone is the set of squares of K.

iii) The ring K[i] := K[X]/(X2 + 1) is an algebraically closed field (in particular, K is not

algebraically closed).

iv) K is an ordered field and it has the "intermediate value property" for polynomials (if

f ∈ K[X] is such that f(x)f(y) < 0 for some x, y ∈ K, then f(z) = 0 for some z ∈ K such

that x < z < y).

v) For each a ∈ K \ {0} exactly one of a, −a is a square of K, and every polynomial of odd

degree of K[X] has a root in K.

Proof. — A complete proof of the equivalence of i)⇔ ii)⇔ iii) can be found in [BCR98, Thm.

1.2.2]. The equivalences i)⇔ v) and i)⇔ iv) are shown in [Coh03, Thm. 8.8.7, Prop. 8.8.9].
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Here we just show iii) ⇒ i) giving full details. If K[i] is a field, then X2 + 1 is irreducible in

K[X], therefore −1 is not a square in K. We claim that as K[i] is algebraically closed then

every sum of squares in K is itself a square in K, i.e. K(2) =
∑
K(2). Let x, y ∈ K, than

x+ iy ∈ K[i] has a square root in K[i], that is there are u, v ∈ K such that x+ iy = (u+ iv)2. By

conjugation x− iy = (u− iv)2, and so x2 +y2 = (x+ iy)(x− iy) = (u+ iv)2(u− iv)2 = (u2 +v2)2.

Thus, by induction, any finite sum of squares in K is a square in K as claimed. We conclude

−1 6∈
∑
K(2), and so K is a real field. Let now L be a proper algebraic extension of K, as K[i]

is algebraically closed and algebraic over K then there is a K-linear field embedding L ↪−→ K[i]

extending the inclusion K ⊆ L (cf. [Lan02, V, §2, Thm. 2.8] or [Bos18, 3.4, Prop. 9]). As by

assumption K ( L and dimK K[i] = 2, it must be L ∼= K[i]. Therefore any proper algebraic

extension of K is not real, that is K is real-closed. �

1.13.29. Remark. — If K = F3 = Z/(3) = {0, 1, 2} (the field with three elements), then

−1 = 2 is not a square in F3 and so X2 + 1 ∈ F3[X] is irreducible and F3[X]/(X2 + 1) is a field.

Indeed, F3[X]/(X2 + 1) ∼= F9, the field with 9 elements which is not an algebraically closed field,

for any algebraically closed field must be infinite (cf 1.2.6).

1.13.30. Proposition. — Let K be a real-closed field, then the irreducible polynomials of K[X]

are either those of degree one or those of degree two without roots in K.

Proof. — Let f ∈ K[X] be any polynomial of degree d > 0, hence as K[i] is algebraically closed

f splits into a product of d linear factors in (K[i])[X]. As f is a polynomial with coefficients in

K, taking into account 1.13.27, one can write

f = a(X − x1) · · · (X − xr) · (X − z1)(X − z1) · · · (X − zs)(X − zs)

=
r∏
i=1

(X − xi) ·
s∏
j=1

(X2 − 2R(zj)X +N(zj))

where a ∈ K \ {0}, r, s ∈ N, with r + 2s = d, xi ∈ K, and zj ∈ K[i] \ K. As the quadratic

polynomials X2 − 2R(z)X +N(z), with z ∈ K[i] \K, have coefficients in K, this shows that in

the factorial domain K[X] there are no irreducible polynomials of degree higher than two. �

The following result, due to E. Artin, shows that for an algebraically closed field L either L = K[i]

is the algebraic closure of a real-closed subfield K or L is at "infinitely bigger" than any of its

subfields K, because it must be dimK L = ∞. In particular the latter situation is standard in

positive characteristic.
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1.13.31. Theorem (E. Artin). — Let L be an algebraically closed field. If K is a proper

subfield of L such that L is a finite dimensional K-vector space, then K is not algebraically

closed and L = K[i] with i ∈ L \K such that i2 = −1. In particular, K is real-closed field.

Proof. — The proof exploits Galois Theroy, it can be found in [Bos18, 6.3, Prop. 2]. �

1.13.32. Example. — Let A = R[X], then I = (X2 +1) is not a real ideal of A, for 1+X2 ∈ I
but 1 6∈ I (and indeed the quotient ring A/I ∼= C is not real). As I is a maximal ideal of A, the

smallest real ideal of A containing I is (1) = A itself.

1.13.33. Example. — Let A = Q[X,Y ], then I = (X2 + Y 2) is not a real ideal of A, for

X2 + Y 2 ∈ I but X 6∈ I (degree reason). Let J be the smallest real ideal of A containing I, as

X2 +Y 2 ∈ I ⊆ J then necessarily J ⊇ (X,Y ). As (X,Y ) is a real ideal of A (8), it is the smallest

real ideal containing I.

1.13.34. Example. — Let A = Q[X], then I = (X2 − 2) is a real ideal of A. Indeed if

f1(X)2 + · · · + fn(X)2 ∈ I then f1(X)
2

+ · · · + fn(X)
2

= 0 in the quotient ring Q[X]/I ∼=
Q[
√

2] = Q(
√

2), which is a real field because it is a subfield of R. Hence fi(X) = 0 in Q[X]/I

for each i, that is fi(X) ∈ I for each i.

1.13.35. Example. — Let A = Q[X], then I = (X2 + 2) is not a real ideal of A. Indeed

it’s residue class ring Q[X]/I ∼= Q[
√

2i] = Q(
√

2i) (subfield of C) is not a real field because it

contains i with i2 = −1, and hence i2 + 1 = 0 is a non trivial sum of squares equal to 0.

1.13.36. Theorem-Definition. — Let H be a real field. Then there exists an algebraic

extension K of H such that K is a real-closed field. Such K is called a real closure of the

real field H.

Proof. — After having fixed an algebraic closure C of H, consider the ordered set (with respect

to set-inclusion) of all real subfields of C containing H (they are necessarily algebraic over H

being contained in C). A straightforward application of Zorn’s Lemma shows that there is a

maximal such subfield K. By the maximality property of K, it is a real-closed field.

For a proof without Zorn’s Lemma see [San91]. �

8. If S(X,Y ) := f1(X,Y )2 + · · ·+ fn(X,Y )2 ∈ (X,Y ), then S(0, 0) = 0. As S(0, 0) is a sum of squares in R,

it must be fi(0, 0) = 0. Hence fi(X,Y ) ∈ (X,Y ) for every i. Or just take the quotient K[X,Y ]/(X,Y ) ∼= K.
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1.13.37. Remark. — One can prove that each given order ≤ on H gives rise to a real-closure

(K,≤) of H extending the given order on the subfield, and that two such real-closures are H-

isomorphic up to an order-preserving field isomorphism. But, in general, two real-closures K1

and K2 of H could be non-isomorphic (cf. [BCR98, 1.3], [BN93, 1]).

1.13.38. Example. — (a) The real closure of Q is Ralg := {x ∈ R | x is algebraic over Q}.
(b) The (real) subfield H = Q(

√
2) of R admits two distinct orders. The first order on H is

the one pulled back from R along the field inclusion H ↪−→ R (hence its non-negative cone is

N1 = H ∩ R(2)), while the second one is induced by the only non-trivial Q-automorphism of H,

that is τ : Q(
√

2) −→ Q(
√

2), a + b
√

2 7→ a − b
√

2, with a, b ∈ Q (hence N2 = τ−1(N1) is the

smallest cone of H containing H(2) and −
√

2).

1.14. Properties of real ideals. The Real radical

1.14.1. Proposition. —

a) Any real ideal I of A is a radical ideal;

b) Any intersection of real ideals is still such;

c) Any product of real ideals is still such;

d) The sum of real ideals is not necessarily still such;

e) Let I, J be ideals of A with I a real ideal, then (I : J) is a real ideal itself and moreover

(I : J∞) = (I : J) = (I :
√
J);

f) If ϕ : A −→ B is a (unitary) ring homomorphism and J is a real ideal of B, then it’s

contraction to A wrt ϕ, Jc = ϕ−1(J), is a real ideal of A;

g) If S is a multiplicative system of A and I is real of A, then then IS := IAS is a real ideal

of the ring of fractions AS;

h) If I is real then I[X] = IA[X] is real, whenever X is an indeterminate on A;

i) If I is real, all minimal prime ideals of I are real.

Proof. — a) If at ∈ I for some t ∈ N+, then a2t = a2t+ 02 ∈ I also. As I is real, it follows a ∈ I.
Hence I is necessarily radical if it is real.

b) It is straightforward.
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c) Let’s consider the case of two real ideals I1, I2. If a sum of squares a2
1+· · ·+a2

n ∈ I1I2 ⊆ I1∩I2,

then ai ∈ I1 ∩ I2 ∀i = 1, · · · , n and hence a2
i ∈ I1I2 ∀i = 1, · · · , n. The general case follows by

induction.

d) Let A = Z[T ] and I := (T − 6), J := (T ) ideals of A. Note that A is a real ring (subring of

R[T ]) and that I and J are real ideals of A, indeed the quotient rings A/I ∼= Z and A/J ∼= Z
are both real rings. Nonetheless, their sum I + J = (T − 6;T ) = (6, T ) is not a real ideal:

12 + 22 + 52 = 30 = 5 · 6 ∈ I + J , but 1 6∈ I + J , hence can’t be real (the residue class ring is

A/(I + J) ∼= Z/(6)). Another example: A = R[X,X] (a real ring), I = (Y −X2), J = (Y ) real

ideals: A/I ∼= R[X] and A/J ∼= R[Y ] are real rings. But I + J = (X2, Y ) is a non radical ideal,

hence not real by point a) above.

e) Let a2
1 + · · ·+ a2

n ∈ (I : J), then (a2
1 + · · ·+ a2

n)j ∈ I for every j ∈ J . As I is an ideal, we also

have (a1j)
2 + · · · + (anj)

2 = (a2
1 + · · · + a2

n)j2 ∈ I for every j ∈ J . As I is real we get akj ∈ I
for every j ∈ J and every k = 1, · · · , n. Therefore ak ∈ (I : J) for every k = 1, · · · , n. The last

statement follows from 1.9.7 as I real implies I radical.

f) The quickest argument could be that the canonical ring homomorphism A/ϕ−1(J) −→ B/J

is (tautologically) injective, hence B/J real implies A/ϕ−1(J) real.

g) It follows from the canonical isomorphism AS/IAS ∼= (A/I)S and c) of 1.12.5.

h) It follows from the canonical isomorphism A[X]/I[X] ∼= (A/I)[X] and the easy observation

that a polynomial ring with coefficients in a real ring is itself real.

i) The minimal prime ideals of I in A bijectively correspond under contraction wrt the canonical

projection π : A −→ A/I to the minimal prime ideals of (0) in A/I . Hence we conclude by

1.12.6 i) and f) above. See also [Lam84, Lemma 2.9] or, in the Noetherian case, [BCR98,

Lemma 4.1.5], or [Neu98, Lemma 2.3]. �

1.14.2. Proposition-Definition. — The real radical of an ideal I of A is defined as

R
√
I := {a ∈ A | a2m + b21 + · · ·+ b2t ∈ I for some m ∈ N, b1, · · · bt ∈ A}.

It coincides with the smallest real ideal of A containing I and with the intersection of all real

prime ideals containing I (or A itself, if there is no real prime ideal containing I).

Proof. — Several proofs are possible [Lam84, Thm. 6.5], [BCR98, Lemma 4.1.7], [BN93,

Prop. 1], or [Neu98, Cor. 2.4]. The one in [Lam84] is, maybe, the most transparent

though the less "computational". Here we follow [BCR98], but giving full details. From the

definition it is clear that if J is a real ideal containing I, then I ⊆ R
√
I ⊆ J . Hence, as a set,
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R
√
I ⊆ Ĩ :=

⋂
I⊆J real J ⊆

⋂
I⊆p real prime p, where Ĩ is obviously the smallest real ideal containing

I (9). Moreover, it follows also that R
√
I is "real as a set". Indeed

a2
1 + · · ·+ a2

t ∈
R
√
I ⇔ (a2

1 + · · ·+ a2
t )

2m + σ ∈ I for some m ∈ N, σ ∈
∑

A(2),

but

(a2
1 + · · ·+ a2

t )
2m =

t∑
j=1

a4m
j +

∑
i=(i1,...,i2m)

a2
i1a

2
i2 · · · a

2
i2m =

t∑
j=1

a4m
j +

∑
i=(i1,...,i2m)

(ai1ai2 · · · ai2m)2,

where the second sum is over all the non-constant functions i : {1, . . . , 2m} −→ {1, . . . , t}. Hence,
by definition of R

√
I, all aj belong to it. To show that R

√
I is an ideal of A, we start by proving

A R
√
I ⊆ R

√
I. Let a ∈ A and x ∈ R

√
I, then there are m ∈ N and a sum of squares σ ∈

∑
A(2)

such that x2m + σ ∈ I. Then, as I is an ideal, I 3 a2m(x2m + σ) = (ax)2m + a2mσ and

a2mσ ∈
∑
A(2). Therefore xa ∈ R

√
I. Then we show R

√
I + R

√
I ⊆ R

√
I. Let a1, a2 ∈ R

√
I, hence

there are m1,m2 ∈ N and a sum of squares σ1, σ2 ∈
∑
A(2) such that a2mi

i + σi ∈ I for i = 1, 2.

To show that a1 + a2 ∈ R
√
I, letting for a while k = m1 +m2, we first notice that

(a1 + a2)2k + (a1 − a2)2k =

2k∑
j=0

(
2k

j

)
a2k−j

1 aj2 +

2k∑
j=0

(−1)j
(

2k

j

)
a2k−j

1 aj2 = 2

k∑
i=0

(
2k

2i

)
a2k−2i

1 a2i
2 ,

as k = m1 +m2, and hence 2k − 2i = 2m1 + 2m2 − 2i, we get

(a1 + a2)2k + (a1 − a2)2k =

m2−1∑
i=0

2

(
2k

2i

)
a2k−2i

1 a2i
2 +

m1+m2∑
i=m2

2

(
2k

2i

)
a2k−2i

1 a2i
2 =

m1+m2∑
j=m1+1

2

(
2k

2k − 2j

)
a2j

1 a
2k−2j
2 +

m1+m2∑
i=m2

2

(
2k

2i

)
a2k−2i

1 a2i
2 =

a2m1
1

m1+m2∑
j=m1+1

2

(
2k

2k − 2j

)
a2j−2m1

1 a2k−2j
2 + a2m2

2

m1+m2∑
i=m2

2

(
2k

2i

)
a2k−2i

1 a2i−2m2
2 =

a2m1
1

m2∑
j=1

2

(
2k

2k − 2j

)
a2j

1 a
2m2−2j
2 + a2m2

2

m1∑
i=0

2

(
2k

2i

)
a2m1−2i

1 a2i
2 =

a2m1
1 σ′1 + a2m2

2 σ′2,

9. If one proves directly that actually the equality with the intersection of real primes holds, then it comes out

"for free" that R
√
I is an ideal, being an intersection of such, and that it is also the smallest real ideal containing

I. This is the strategy of [Lam84], where it is not shown directly that R
√
I is closed under sum.
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where σ′1, σ
′
2 are sum of squares because the binomial coefficients are nonnegative integers.

Therefore

I 3 (a2m1
1 + σ1)σ′1 + (a2m2

2 + σ2)σ′2 = (a1 + a2)2(m1+m2) + (a1 − a2)2(m1+m2) + σ1σ
′
1 + σ2σ

′
2,

and so a1 + a2 ∈ R
√
I as (a1 − a2)2(m1+m2) + σ1σ

′
1 + σ2σ

′
2 is a sum of squares. We showed so far

that R
√
I is a real ideal containing I, and actually it is the smallest ideal real ideal containing

I, hence R
√
I = Ĩ. To prove R

√
I =

⋂
I⊆p real prime p, it remains to show, by contraposition, that

A \ R
√
I ⊆ A \

⋂
I⊆p real prime p. Hence what we need to show is that if a 6∈ R

√
I there exists a real

prime p ⊇ I such that a 6∈ p. To this end, consider the set J of all real ideals of A such that

a 6∈ R
√
I. Clearly it is not empty, as it contains R

√
I at least, and it is straightforward to show that

every linear chain (of real ideals) in it has a supremum (the union of the elements in the chain is

again a real ideal not containing a), hence by Zorn Lemma ([Lan02, Appendix 2.2], [Bos18, 3.4,

Lemma 5], [Sha90, 3.8], [AM69, Footnote to 1.3]), I has a maximal element p. We claim that p

is a prime ideal (real, obviously as p ∈ J). Else, there are x1 6∈ p and x2 6∈ p such that x1x2 ∈ p.

By the maximality property in the definition of p then we get a ∈ R
√

p + (x1)∩ R
√

p + (x2), that is

there existm1,m2 ∈ N and σ1, σ2 ∈
∑
A(2) such that a2mi+σi ∈ p+(xi), for i = 1, 2. Multiplying

these two relations we get (a2m1 +σ1)(a2m2 +σ2) = a2(m1+m2) +σ′ ∈ (p+ (x1))(p+ (x2)) ⊆ p, as

(x1)(x2) ⊆ p, and with σ′ ∈
∑
A(2). Hence a ∈ R

√
p = p (as p is real), which is a contradiction.

Thus p 3 a is prime, and so R
√
I =

⋂
I⊆p real prime p. �

1.14.3. Remark. — Example 1.13.32 shows that R
√

(1 +X2) = (1) in R[X], hence the

"stability property" 1.9.5 g) does not hold for the real radical: a proper ideal can have non

proper real radical, thereby disproving [Bar16, Prop. 9.3]

1.14.4. Real radical properties. —

a) if I is real, then R
√
I =
√
I = I;

b) R
√
I is a real ideal of A;

c) R
√
I =

⋂
p⊇I, p real prime p =

⋂
p∈Min(I)|p real;

d) I ⊆ R
√
I;

e) I ⊆ J ⇒ R
√
I ⊆ R

√
J

f)
R
√

R
√
I = R

√
I;

g) I = R
√
J ⇒ I = R

√
I;

h) R
√
IJ = R

√
I ∩ J = R

√
I ∩ R
√
J and R

√
In = R

√
I for each n ∈ N+;
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i) R
√
I = (1) if and only if there are no real prime ideals containing I (cf. Example1.13.32);

j) R
√
I + J =

R
√

R
√
I + R
√
J ;

k) If p is a prime ideal of A and n ∈ N+ then R
√
pn = p if and only if p is a real prime;

l) If ϕ : A −→ B is a (unitary) ring homomorphism and J is an ideal of B, then

R
√
ϕ−1(J) ⊆ ϕ−1(

R
√
J).

Moreover: if ϕ is surjective, then R
√
ϕ−1(J) = ϕ−1( R

√
J);

m) If S is a multiplicative system of A, then R
√
IS = ( R

√
I)S in the ring of fractions AS;

n) If A is Noetherian, I does not necessarily contain a power of its real radical.

o) If X is an indeterminate over A and I is an ideal of A, then R
√
IA[X] = R

√
IA[X].

Proof. — Everithing, but h) and m), follows quite as 1.9.5, with slight modifications taking into

account the previous results ( ??). See also the following Remark about l).

As for h), from IJ ⊆ I ∩ J and I ∩ J ⊆ I, I ∩ J ⊆ J , by e), as usual, we have the chain of

inclusions R
√
IJ ⊆ R

√
I ∩ J ⊆ R

√
I ∩ R
√
J. Let now a ∈ R

√
I ∩ R
√
J , i.e. there are s, t ∈ N and

σ, τ ∈
∑
A(2) such that f2s + σ ∈ I and f2t + τ ∈ J . Then

IJ 3 (f2s + σ)(f2t + τ) = f2(s+t) + f2sτ + f2tσ + στ.

Being f2sτ + f2tσ + στ ∈
∑
A(2), the above yields f ∈ R

√
IJ . Therefore R

√
I ∩ R
√
J ⊆ R

√
IJ and

all the inclusions of the previous chain are equalities.

Let’s also give an argument to show m) (it is stated without proof in [Neu98, Lemma 2.2]).

The proof is not difficult, but quite tedious. We start showing that R
√
IS ⊆ ( R

√
I)S . Let a ∈ S

and s ∈ S such that a
s ∈

R
√
IS , then there exist m ∈ N, a1, · · · , ar ∈ A, s1, · · · , sr ∈ S, b ∈ S and

t ∈ S such that

a2m

s2m
+

r∑
i=1

ai
s2
i

=
b

t
in AS ⇔ ∃u ∈ S : ut(s1 · · · sr)2a2m + ut

r∑
i=1

a′i
2

= us2m(s1 · · · sr)2b ∈ I in A,

where a′i := sm(
∏
j 6=i sj)ai ∈ A. Multiplying both sides by ut ∈ S we get then that

(uts1 · · · sr)2a2m +
r∑
i=1

a′′i
2

= u2ts2m(s1 · · · sr)2b ∈ I in A

where a′′i := uta′ ∈ A and uts1 · · · sr =: s′ ∈ S. Thus, multiplying again by s′2m−2 ∈ S we have

(s′a)
2m

+
r∑
i=1

(s′
m−1

a′′i )
2

= s′
2m−2

u2ts2m(s1 · · · sr)2b ∈ I in A,



56 CHAPTER 1. ALGEBRA

and, finally, then a
s = as′

ss′ in AS with as′ ∈ R
√
I and s′ ∈ S, by the above. Hence a

s ∈ ( R
√
I)S .

For the opposite inclusion, let now a ∈ R
√
I , then there exist m ∈ N, a1, · · · , ar ∈ A and b ∈ I,

such that a2m +
∑r

i=1 a
2
i = b ∈ I. Therefore, for any s ∈ S,

(a
s

)2m
+

r∑
i=1

( ai
sm

)2
=
a2m +

∑r
i=1 a

2
i

s2m
=

b

s2m
∈ IS .

n) First example: I = (X2 + 1) ⊆ Q[X], then clearly R
√
I = (1) but 1 6∈ I. Second example:

I = (X3 − Y 3) ⊆ Q[X,Y ], then R
√
I = (X − Y ) (as we shall see in 2.18.9) but (X − Y )k 6∈ I

for each k ∈ N. Indeed I is a radical ideal (as X3 − Y 3 = (X − Y )(X2 +XY + Y 2) is a product

of two irreducible factors in the unique factorization domain Q[X,Y ]) such that X − Y 6∈ I (by

degree reasons).

o) As R
√
I is a real ideal of A, by ?? h), R

√
IA[X] is a real ideal of A[X]. As it contains IA[X],

then R
√
IA[X] ⊆ R

√
IA[X]. For the opposite inclusion, note that as R

√
IA[X] is generated by

the set of monomials {aXk | a ∈ R
√
I, k ∈ N} and R

√
IA[X] is an ideal, it suffices to show

that R
√
IA[X] contains those monomials. So, let a ∈ A such that a2m + σ ∈ I for some

m ∈ N, σ ∈
∑
A(2), and let k ∈ N. Then (aXk)2m + X2mkσ = (a2m + σ)X2mk ∈ IA[X],

with X2mkσ = (Xmk)2σ ∈
∑
A[X](2). Hence {aXk | a ∈ R

√
I, k ∈ N} ⊆ R

√
IA[X], and we

conclude that R
√
IA[X] ⊆ R

√
IA[X]. �

1.14.5. Remark. — 1.14.4 l) differs from 1.9.5 k), as well as the "stability property" of 1.9.5

g) vs the "unstability property" 1.14.4 i). Indeed, let’s consider a slight variation of Example

1.13.32. Let ι : R −→ R[X] be the natural inclusion (non-surjective ring homomorphism) and let

J := (X2+1) (maximal) ideal of R[X]. We have
√
J = J (as J is prime), R

√
J = (1) (as computed

in 1.13.32), ι−1(
√
J) = ι−1(J) = R ∩ J = (0), while ι−1( R

√
J) = ι−1(R[X]) = R[X] ∩ R = R.

Hence 1.14.4 l) is optimal as stated, though, apparently, less general than 1.9.5 k).

1.14.6. Remark. — Let K be any field and let f = hm1
1 · · ·hmrr ∈ K[X1, . . . , Xn] = K[X],

with hi irreducible polynomials pairwise distinct (recall that K[X] is a unique factorization do-

main). Then, as K[X] is a UFD, I := (f) =
⋂r
i=1(hmii ) and hence the "diagonal" ring homomor-

phism δf : K[X] −→ K[X]/(hm1
1 )× · · · ×K[X]/(hmrr ), such that p(X) 7→

(
p(X)

1
, · · · , p(X)

r
)
,

having Ker(∆f ) =
⋂r
i=1(hmii ) = (f), induces an injective ring homomorphism

∆f : K[X]/(f) ↪−→ K[X]/(hm1
1 )× · · · ×K[X]/(hmrr ), p(X) 7→

(
p(X)

1
, · · · , p(X)

r
)
.
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Hence if the product ring K[X]/(hmii ) × · · · ×K[X]/(hmrr ) is real, also its "subring" K[X]/(f)

is such, (f) is then real and R
√

(f) = (f). This construction shows, for example, that any

product of distinct linear forms, i.e. mi = 1 and hi = li with deg li = 1, gives rise to a principal

real ideal with generator f = l1 · · · lr. For n = 1, in which case K[X] is even an Euclidean

domain, then the above ring homomorphism is actually an isomorphism ∆f : K[X]/(f)
∼=−→

K[X]/(hm1
1 ) × · · · ×K[X]/(hmrr ). Hence, as a real ideal is radical, in order to K[X]/(f) to be

real it must have no nilpotent elements, hence mi = 1 for each i = 1, · · · , r, and each subring

K[X]/(hi) as to be real. This reduces the question to that of classify irreducible polynomials h

of K[X] such that the (prime) ideal (h) is real. We will complete this discussion in the general

case towards the end of next chapter, cf. 2.18.6 and 2.18.7.

1.14.7. Proposition (maximal ideals of K[X] with K real-closed). — Let K be a real-

closed field, and let f ∈ K[X] be a monic polynomial of positive degree d. Then the following

facts hold.

a) (f) is maximal if and only if either d = 1 or d = 2 and f is a sum of non-zero squares.

b) R
√

(f) = (R-sqfree(f)), where R-sqfree(f), the real square free part of f , is the product

of the distinct linear factors of f , or 1 if there are no such factors.

c) (f) is real if and only if f has d distinct roots all in K.

d) (f) is a real maximal ideal if and only if d = 1.

Proof. — a) Since K is field, K[X] is a Euclidean domain and so its maximal ideals are principal

ideals with an irreducible generator f ∈ K[X]. As K is real-closed, from 1.13.30, f is either

linear (degree one) or quadratic with no roots in K (degree two). In the latter case, as we

can always write f = X2 + 2sX + p = (X + s)2 + p − s2 we get f has no root in K if

and only if p − s2 > 0. Indeed, by 1.13.24 either K(
√
p− s2) is real or K(

√
s2 − p) is

real, but K is real-closed hence either K(
√
p− s2) = K or K(

√
s2 − p) = K, that is either√

p− s2 ∈ K or
√
s2 − p ∈ K. In the former case f = (X + s)2 +

(√
p− s2

)2
is a sum squares

and
√
p− s2 6= 0, else f is not irreducible, while in the latter case f = (X + s)2− (

√
s2 − p)2 =

(X + s+
√
s2 − p)(X + s−

√
s2 − p) is not irreducible. Therefore if (f) is maximal f has to be

as claimed. For the converse, in both cases f is clearly irreducible hence (f) is a maximal ideal

of K[X] by 1.5.14 and 1.5.17.
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b) We can write

f =
h∏
i=1

(X − xi)µi
k∏
j=1

(X − zj)νj (X − zj)νj =
h∏
i=1

(X − xi)µi
k∏
j=1

(X2 − 2R(zj)X +N(zj))
νj

where h, k, µi, νj ∈ N, with
∑h

i=1 µi + 2
∑k

j=1 νj = d, and xi ∈ K, zj ∈ K[i] \ K the distinct

roots of f in K[i], hence the quadratic factors, if any, do not have zeros in K and therefore they

are sum of non-zero squares of K[X] as above. Then we get an identity of ideals of K[X]

(
f
)

=
h∏
i=1

(
X − xi

)µi k∏
j=1

((
X − R(zj)

)2
+
(√

N(zj)− R(zj)2
)2
)νj

,

and by 1.14.4 h), a) we find

R

√(
f
)

=
h⋂
i=1

R

√(
X − xi

)µi ∩ k⋂
j=1

R

√((
X − R(zj)

)2
+
(√

N(zj)− R(zj)2
)2
)νj

=
h⋂
i=1

(
X − xi

)
∩

k⋂
j=1

R

√(
X − R(zj),

√
N(zj)− R(zj)2

)

=

(
h∏
i=1

(X − xi)

)
∩

k⋂
j=1

(
1
)

=
(
(X − x1) · · · (X − xh)

)
∩
(
1
)

=
(
R-sqfree(f)

)
.

Note that in the above writing we might have h = 0, i.e. f has no roots in K, in which case

R-sqfree(f) = 1, or k = 0 i.e. f has all its roots in K and R-sqfree(f) coincides with its usual

squarefree part. c) and d) follows now as corollaries of a) and b). �



CHAPTER 2

(AFFINE) ALGEBRAIC GEOMETRY

In this chapter we will give an elementary, yet quite thorough, survey of affine algebraic geometry

with major emphasis on the tools we will need for the applications to dynamical systems. Then,

we recall and fix some terminology from algebraic geometry. The standard basic references for

the subject, such as [Har77] or [Sha13], are partially of use because we specifically need a

careful treatment of algebraic sets over a not algebraically closed field, therefore we will greatly

refer to [Kun85] and [BCR98] among others. Let K and L be two fields, with K subfield

of L (hence K ⊆ L), and let AnL := Ln be the n-dimensional affine space over L and

K[X] = K[X1, . . . , Xn] the ring of multivariate polynomials in n indeterminates X1, . . . , Xn with

coefficients in the subfield K. The starting point of this kind of geometry is the interplay between

the left and right annihilators of the natural pairing AnL × K[X1, . . . , Xn] −→ L, (P, f) 7→<
P, f >= evP := f(P ), where AnnK[X](P ) = {f ∈ K[X] | f(P ) = 0} = I(P ) ⊆ K[X] is the

"vanishing ideal" of the point P , and AnnAnL(f) = {P ∈ AnL | f(P ) = 0} = Z(f) ⊆ AnL is the

"zero locus" of the polynomial f .

2.1. Affine K-algebraic sets of AnL

2.1.1. Definition (zero locus Z). — Given a family of polynomials T ⊆ K[X] (the "equa-

tions") its set of zeros in AnL

ZLK(T ) := {P = (a1, . . . , an) ∈ AnL | f(P ) = 0 ∀f ∈ T} =
⋂
f∈T
ZLK(f) =

⋂
f∈T

f−1(0) ⊆ AnL

is called an (affine K-)algebraic subset of AnL, or (affine) K-algebraic set in AnL for short.

To simplify the notation, in what follows we write Z = ZLK unless the specification is needed.
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2.1.2. Remark. — If T = {f1, . . . , ft} then V = Z(T ) = {P ∈ AnL | f1(P ) = · · · = ft(P ) = 0}
is nothing but the set of solutions in AnL of the system of polynomial equations f1 = · · · = ft = 0.

2.1.3. Beahviour of ZLK under field extensions. — Let K ⊂ H ⊂ L a composite of field

extensions, then AnK ⊆ AnH ⊆ AnL and K[X] ⊆ H[X] ⊆ L[X]. If T ⊆ K[X] is a set of polynomial

equations, then: ZKK (T ) ⊆ ZHK (T ) = ZHH (T ) ⊆ ZLK(T ) ⊆ ZLK(T ) = ZLL (T ). A key fact in dealing

with these kind fo situations in given is the following result.

2.1.4. Proposition. — Let K ⊆ L be any field extension and I an ideal of K[X]. Then we

have IL[X] ∩K[X] = I. In particular, we have 1 ∈ IL[X] if and only if 1 ∈ I (in K[X]).

Proof. — See [KR00, Prop. 2.6.12]. �

2.1.5. Remark. — It follows immediately that the ideal generated by the family of poly-

nomials T , as well as its radical, have the same set of zeros of the starting set: Z(T ) =

Z((T )) = Z(
√

(T )), more generally we have: Z(T ′) = Z(T ) for any T ′ ⊆ K[X] such that

T ⊆ (T ′) ⊆
√

(T ). We note therefore that the assignment, from subsets T 7→ Z(T ) of K[X] to

subsets of AnL, is a highly non injective one.

2.1.6. Remark (finiteness of the number of equations). — In particular, from the remark

above, being the ring K[X] Noetherian by Hilbert Basis Theorem ([Kun85, Ch. 1, Prop. 2.3]),

it follows that every K-algebraic set V = Z(T ) ⊆ AnL is the zero locus of a finite number of

polynomials (because (T ) is always a finitely generated ideal, even if T is an infinite set of

polynomials).

2.1.7. Lattice properties of Z. — Any finite union of K-algebraic sets is a K-algebraic set:

s⋃
i=1

Z(Ti) = Z(

s⋂
i=1

(Ti)) = Z((T1) · · · (Ts)) (product of ideals),

and any intersection (also infinte ones) of K-algebraic sets is such:⋂
i

Z(Ti) = Z(
⋃
i

Ti) = Z(Σi(Ti)) (sum of ideals).
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2.1.8. Z is inclusion-reversing. — Obviously we have: T1 ⊆ T2 ⊆ K[X] ⇒ Z(T1) ⊇

Z(T2) ⊆ AnL, hence the mapping Z form subsets of K[X] to subsets of AnL is a reversing order

one (weakly decreasing), and it can be restricted to a decreasing mapping between radical ideals

of K[X] and K-algebraic sets of AnL. Note that, nonetheless, for n = 1, M1 := (X2 + 1) and

M2 := (X2 + 2) are two maximal (hence radical) ideals of Q[X] having the same set of R-zeros:

ZR
Q(M1) = ∅ = ZR

Q(M2); this kind of problems can happen any time the (bigger) field L is not

algebraically closed.

2.2. Basic examples and constructions

2.2.1. Example: the empty set and the whole space. — We always have: ∅ = Z(1) =

Z(K[X]) and AnL = Z(0), hence ∅ and AnL are K-algebraic sets.

2.2.2. Example: K-rational points of AnL. — If P = (a1, . . . , an) ∈ AnL is a K-rational

point, that is ai ∈ K for each i, then {P} = Z(X1 − a1, . . . , Xn − an) is a K-algebraic set.

Note that mP := (X1 − a1, . . . , Xn − an) is a maximal ideal of K[X] (indeed, the quotient ring

K[X]/(X1 − a1, . . . , Xn − an) ∼= K, a field). Note also that if P ∈ AnL \ AnK it may happen that

{P} is not a K-algebraic set in AnL (cf. 2.4.3).

2.2.3. Example: the diagonal ∆n of A2n
L . — The zero set of the (prime) ideal dn :=

(X1 − Y1, . . . , Xn − Yn) ⊆ K[X,Y ] := K[X1, . . . , Xn; Y1, . . . , Yn] coincides with the diagonal

subspace of the product AnL × AnL ∼= A2n
L , i.e. Z(dn) = {(a, b) ∈ A2n

L | a = b} =: ∆n.

2.2.4. Example: K-rational "slices". — For each a ∈ AnK , the subspace ("cylinder")

{a}×AnL is a K-algebraic set in An+m
L , indeed: {a}×AmL = Z(X1− a1, . . . , Xn− an), where the

polynomials X1−a1, . . . , Xn−an ∈ K[X] are thought of as elements of the larger polynomial ring

K[X,Y1, . . . , Ym]. Obviously, {a}×AmL is the zero set of the (prime) ideal maK[Y ], extended to

K[X,Y1, . . . , Ym] from the maximal ideal ma of K[X]. Note that if P ∈ AnL \AnK it may happen

that {P} × AmL is not a a K-algebraic set in An+m
L .

2.2.5. Example: "cylindrical" algebraic sets. — More generally, if V = Z(f1, . . . , fr) is

a K-algebraic subset of AnL, then its cylinder in An+m
L = AnL × AmL is defined by the same
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equations (ideal) of V but thought of as functions on the larger space:

CylAmL (V ) := V × AmL = Z(f1, . . . , fr) = Z((f1, . . . , fr)K[X,Y1, . . . , Ym])

where the polynomials f1, . . . , fr ∈ K[X] are thought of as elements of K[X,Y1, . . . , Ym].

2.2.6. Example: cartesian products of algebraic sets. — If V = Z(f1, . . . , fr) ⊆ AnL and

W = Z(g1, . . . , gs) ⊆ AmL we then have for their cartesian product in An+m
L = AnL × AmL :

V ×W = (V × AmL ) ∩ (AnL ×W ) = Z(f1, . . . , fr, g1, . . . , gs)

= Z((f1(X), . . . , fr(X))K[Y1, . . . , Ym] + (g1(Y ), . . . , gs(Y ))K[X1, . . . , Xn]).

2.3. Zariski topology on AnL relative to K

As seen in the above examples (cf. 2.2.1) the family of all K-algebraic sets of AnL contains the

empty set and the whole affine space, and from 2.1.7 it is also closed under finite unions and

arbitrary intersections. Therefore it is the family of closed subsets for a topology on AnL. This

topology is known as the Zarisky topology on AnL (relative to K), see [Kun85, Ch. I, Cor.

2.7].

2.3.1. Distinguished open subsets. — A basis of open subsets for this topology is given

by the subsets of the form Df := AnL \ Z(f) where f ∈ Ak, called distinguished open sets.

Moreover Df1 ∩Df2 = Df1f2 .

Proof. — Indeed: ∅ = D0, AnL = D1, if U = AnL \Z(T ), with T ⊆ K[X], is a generic open subset

of AnL then U = AnL \Z(T ) = AnL \
⋂
f∈T Z(f) =

⋃
f∈T AnL \Z(f) =

⋃
f∈T Df . The last assertion

is straightforward. �

Note that, if L is an infinite field, none non trivial distinguished open sets can be (set theoreti-

cally) a K-algebraic set of AnL, indeed it can be shown that they are in this case actually dense

subsets of the affine space: Df
Z

= AnL (where SZ , the "Zariski closure" of S, is the closure of

S in the Zariski topology of AnL with respect to K). If P ∈ AnK a fundamental system of

neighborhoods for P is given by {Df | P ∈ Df} = {AnL \ Z(f) | f ∈ K[X] and f(P ) = 0}.
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2.3.2. Noetherianity. — As K[X] is a Noetherian ring, it satisfies the Ascending Chain

Condition on ideals, and as ZLK is an inclusion-reversing map, then the Zariski topology on AnL
satisfies a descending chain condition on closed subsets: if C0 ⊇ C1 ⊇ · · · ⊇ Ci ⊇ · · · , with Ci
closed algebraic subsets, then Ci = CN ∀i ≥ N for some N ∈ N. We say that AnL, with the

Zariski topology, is a Noetherian topological space ([Kun85, Def. 2.13]).

2.4. Remarks and examples on Zariski topology

2.4.1. Remark: behavior under base field extension. — If H ⊆ K are both subfields of

L, then H[X] ⊆ K[X]; and so if T ⊆ H[X], then ZLH(T ) = ZLK(T ). This means that any closed

subset of AnL which is Zariski closed relative to H is also Zariski closed relative to K, therefore

the second topology is finer than the first one.

2.4.2. Example: Zariski topology on A1
L relative to K. — For n = 1, every ideal of

K[x] is principal (it is indeed an Euclidean domain [Lan02, ]), and the closed subset of A1
L for

this topology are exactly A1
L, ∅, and those finite subsets C of L such that C = ZL(f) for some

f ∈ K[x] (in particular, every element of C must be algebraic over the subfield K).

If L = K this simply reduces to A1
L and all the finite subsets of L, and hence Zariski topology

relative to L itself on A1
L is nothing but that cofinite topology (and if L is finite it also coincide

with the discrete topology). But if K ( L not every finite subset of A1
L is closed in this topology.

In the general case, the Zariski topology on A1
L, relative to a subfieldK of L, is a coarser topology

than the cofinite topology on L.

2.4.3. Critical example: if K ( L, Zariski topology can be not even T1. — Even for

n = 1 several issues may happen, note indeed that:

a) With K = R and L = C we have ZR
R (X2 + 1) = ∅, while ZC

R (X2 + 1) = {−i, i} but it can
be shown that neither {i} nor {−i} are, separately, R-algebraic sets of A1

C = C. Indeed,

the crucial point, whose proof is elementary, is the following:

{f ∈ R[X] | f(i) = 0} = {f ∈ R[X] | f(−i) = 0} = (X2 + 1) in R[X].

Hence, in general, points can be not always closed for this topology if K 6= L, unless they

are K-rational.
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b) With K = Q, H = Q( 3
√

2) and L = Q( 3
√

2, 3
√

2ei
2
3
π) (the last one is the splitting field of the

polynomial x3 − 2 ∈ Q[X]), we have: ZHK (X3 − 2) = ZQ( 3√2)
Q (X3 − 2) = { 3

√
2} ⊆ A1

Q( 3√2)
is

a closed subset of A1
Q( 3√2)

; but

ZLK(X3 − 2) = ZQ( 3√2, 3√2ei
2
3π)

Q (X3 − 2) = { 3
√

2,
3
√

2ei
2
3
π,

3
√

2ei
4
3
π} ⊆ A1

Q( 3√2, 3√2ei
2
3π)

and none of { 3
√

2}, { 3
√

2ei
2
3
π}, { 3

√
2ei

4
3
π} is alone in itself a closed subset of A1

L in the Zariski

topology relative to Q. Also in this case, the crucial point is:

{f ∈ Q[X] | f(
3
√

2) = 0} = {f ∈ Q[X] | f(
3
√

2ei
2
3
π) = 0}

= {f ∈ Q[X] | f(
3
√

2ei
4
3
π) = 0} = (X3 − 2) in Q[X].

2.4.4. Zariski topology on AnL over a finite field L is discrete. — If K = L is a finite

field, it can be shown ([Kun85, Ch. I, Sec. 1, Exercise 6]) that the Zariski topology on AnK = Kn

(finite set) relative to K is the discrete topology.

2.4.5. Special feature of non algebraically closed fields. — If K is not algebraically

closed, as it is for K = R, we also have this peculiar behavior: any K-algebraic set V ⊆ AnK can

be written as the zero set of a single polynomial in K[X] (1). For K = R this is clear: let V be

defined by the equations f1 = · · · = ft = 0 with fi ∈ R[X], then V = ZR
R (f2

1 + · · · + f2
t ) (see

also [Kun85, Exercise 3, Ch. I.1]). Note, though, that ZR
R (X2 + Y 2) = {(0, 0)} is just a point,

while ZC
R (X2 + Y 2) contains the infinitely many points (a,±ia) ∈ C2, with a ∈ R, (union of two

complex lines).

2.4.6. Remark: not a Hausdorff topology. — As soon as L is an infinite field, the Zariski

topology on AnL relative to K is not a Hausdorff one, this is clear when n = 1 (cf. 2.4.2 and

2.4.3) because, as Zariski topology (relative to K) on A1
L is coarser than cofinite topology, open

subsets are then complement of (certain) finite sets and therefore they always have nonempty

intersection. As it can be verified that A1
L
∼= ZLK(X1) ⊆ AnL, with X1 ∈ K[X], is a topological

1. It’s clearly enough to show that, if L is not algebraically closed, for each r ∈ N+ there exists ωr ∈ L[Y ] such

that ZLL (ωr) is reduced to the origin of ArL. This can be done as follows: as L is not algebraically closed there is

a p(X) ∈ L[X] such that p(a) 6= 0 for all a ∈ L. Let d be the degree of p. Define ω1 := Y1, ω2 := Y d2 p
(
Y1
Y2

)
be

the homogenization of p (then ZLL (ω2(Y1, Y2)) = {(0, 0)}), and set inductively ωn+1 = ω2(ωn(Y1, · · · , Yn), Yn+ 1).

Even a more general result holds true: if K ⊆ H ⊆ K is a tower of fields, where K is an algebraic closure of K

and H is not algebraically closed (i.e. H ( K), then for each m ∈ N+ there exists a homogeneus polynomial

p ∈ K[Y1, . . . , Ym] such that ZHK (p) = {0Am
H
} ([Lak87, Prop. 5]).
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subspace of AnL with respect to the Zariski topology relative to K, then AnL is not a Hausdorff

space too. More generally, it can be shown that if K is infinite, any two non empty open subsets

of AnL must intersect because, in this case, AnL is an irreducible topological space in this topology

(see [Kun85, Ch. I, Sections 1 and 2]). See also 2.8.4 for another general argument on the non

separateness of Zariski topology on AnL.

2.4.7. Remark. — After characterizing the closure operator of this topology (see 2.12.3), it’s

not difficult to show that AnK is a dense subset of AnL (with respect to the Zariski topology on

AnL with respect to K) if and only if K is infinite or K = L.

2.4.8. Remark: comparison with the Euclidean topology on Rn. — In the case K =

L = R, as every polynomial function is continuous with respect to the usual Euclidean topology,

every Zarisky closed subset of AnR is also closed in the Euclidean topology. But, though, in this

case, Zariski topology has closed points, it is not a Hausdorff topology (as K = R is infinite),

therefore the Zariski topology on AnR = Rn, relative to R, is a much coarser topology than the

usual Euclidean one.

2.4.9. Subspace Zariski topology. — Any subset S ⊆ AnL inherits the subspace topology

from the Zarisky topology on AnL (relative toK), this is also called Zarisky topology on S (relative

to K); its closed subsets are those of the form S ∩ ZLK(I) as I varies among the ideals of K[X].

2.5. Regular (polynomial) functions on K-algebraic set. The coordinate ring.

In Algebraic Geometry, one regards polynomials of K[X] as functions on the affine space AnL.
These clearly form a K-subalgebra of the K-algebra of all functions from AnL to A1

L = L.

Moreover, they can be described just as linear combinations of products of powers ("terms"

or "monomials") of coordinates of points of AnL. Formally, we can say that their K-subalgebra

K[AnL] is generated by the coordinate (functions) of AnL.
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2.5.1. Definition. — Le S be a subset of AnL, and ϕ : S −→ L a L-valued function on S. Then

ϕ is said to be a K-regular function (or a K-polynomial function ) on S if there exists a

polynomial f ∈ K[X1, . . . , Xn] such that ϕ = f|S
(2).

2.5.2. Definition (Coordinate ring K[S]L). — Let S be a subset of AnL, then its coordinate

ring (over K) is the K-algebra of all K-regular functions on S, K[S]L := {f|S | f ∈ K[X]}.
Hence K[S]L = K[X1|S , . . . , Xn|S ] as a K-subalgebra of the algebra of all functions from S to

L. Whenever L = K we simply write K[S] := K[S]K .

2.5.3. Remark: K[S]L are affine K-algebras. — Coordinate rings are clearly reduced and

finitely generated K-algebras, hence they are affine K-algebras.

2.5.4. Definition (Zero locus of a regular function). — Le S be a subset of AnL, and
ϕ ∈ K[S]L a K-regular function on it. Then we define the zero locus of ϕ as Z(ϕ) = ZLK(ϕ) :=

{P ∈ S | ϕ(P ) = 0}.

2.5.5. Remark. — Choosing a representative for ϕ, such as ϕ = f|S , with f ∈ K[X1, . . . , Xn],

we see that Z(ϕ) = Z(f) ∩ S. Hence Z(ϕ) is a closed subset of S. And if g ∈ K[X1, . . . , Xn] is

another representative for ϕ, then f|S = g|S ⇒ Z(f) ∩ S = Z(g) ∩ S. Hence, the set Z(ϕ) does

not depend on the specific representative choosen.

2.5.6. Example: K[AnL]L ∼= K[X] if L is infinite. — By definition, K[AnL]L =

K[X1|AnL , . . . , Xn|AnL ], where the notation Xi|AnL should remember that Xi is thought of as

a function on AnL instead of the indeterminate Xi, hence Xi corresponds to the i-th projection

pri : AnL −→ A1
L and K[AnL]L ∼= K[X1, · · · , Xn] as soon as L is infinite (3).

2. Note that, though f ∈ K[X1, . . . , Xn], the function f|S may assume values in L which do not belong to K.

Examples: ϕ = X1|A1
C

: A1
C = ZC

R (0) −→ C, then ϕ(i) = i ∈ C \ R; or V = ZR
Q(X1 −X2) = {(a, a) | a ∈ R}, and

ϕ = X1|S , then ϕ(π, π) = π ∈ R \Q.
3. While K[AnL]L ∼= K[X1, . . . , Xn]/(Xq

1 −X1, . . . , X
q
n−Xn) if L = Fq the finite field with q = pk elements (p

a prime integer).
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2.5.7. Example: K[∅]L = (0). — Quite easily K[∅]L = K[Z(1)]L = (0) is the "zero K-

algebra": there is only one function from the empty set to A1
L, the empty function.

But note that R[ZR
R (X2 + 1)]R = R[∅]R = (0), while

R[ZC
R (X2 + 1)]C = R[ZC

R (X + i) ∪ ZC
R (X − i)]C = R[{−i} ∪ {i}]C ∼= C× C.

2.5.8. Example: K[P ]L ∼= K if P is K-rational. — Let P be a K-rational point in AnL,
then a K-regular function ϕ on {P} = Z(mP ) is uniquely determined by its value ϕ(P ), which

must be an element of A1
K ⊆ A1

L because ϕ = f|{P} for some f ∈ K[X] and the coordinates of P

are in K. Therefore K[P ]L ∼= K if P is a K-rational point.

2.5.9. Example. — Let K = Q and L = Q[
√

2] = Q(
√

2), and let V = Z(X2 − 2) =

{−
√

2,
√

2}, then

K[V ]L = Q[{−
√

2,
√

2}]Q(
√

2)
∼= Q(

√
2), via ϕ 7→ ev√2(ϕ) = ϕ(

√
2) ∈ Q[

√
2] = Q(

√
2),

indeed, this is clearly a K-algebra homomorphism which is easily seen to be bijective. The main

point is again that {f ∈ Q[X] | f(
√

2) = 0} = {f ∈ Q[X] | f(−
√

2) = 0} = (X2 − 2) in Q[X].

If K = Q, L = Q[ 3
√

5] = Q( 3
√

5), and V = Z(X3 − 5) = { 3
√

5}, then, as above,

Q[Z(X3 − 5)]Q( 3√5) = Q[{ 3
√

5}]Q( 3√5)
∼= Q(

3
√

5), via ϕ 7→ ϕ(
3
√

5),

and also taking L = Q( 3
√

5, 3
√

5ei
2
3
π, 3
√

5ei
4
3
π) (the splitting field over Q of X3 − 5), or even

L = Q,

Q[Z(X3 − 5)]L = Q[{ 3
√

5,
3
√

5ei
2
3
π,

3
√

5ei
4
3
π}]Q ∼= Q[

3
√

5] = Q(
3
√

5), via ϕ 7→ ϕ(
3
√

5),

again because

{f ∈ Q[X] | f(
3
√

5) = 0} = {f ∈ Q[X] | f(
3
√

5ei
2
3
π) = 0}

= {f ∈ Q[X] | f(
3
√

5ei
4
3
π) = 0} = (X3 − 5) in Q[X].

2.5.10. Proposition (continuity of the regular functions). — If ϕ ∈ K[S]L, then ϕ is a

continuous function with respect to the Zariski topology on A1
L (relative to K) and the subspace

topology on S induced by the Zariski topology on AnL (relative to K).

Proof. — Let ϕ = f|S for some polynomial f ∈ K[X1, · · · , Xn], and let C = Z(g), with g ∈ K[Y ],

be any closed subset of A1
L (as all ideals in K[Y ] are principal we can always assume C be

defined by a single equation), then ϕ−1(Z(g)) = S ∩ (f−1(g−1(0))) = S ∩ Z(g ◦ f), where
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(g ◦ f) = g(f(X1, · · · , Xn)) ∈ K[X1, · · · , Xn], is a closed subset of S in the subspace topology.

�

2.5.11. Proposition (K[S]L and K[S
Z

]L are isomorphic). — Let S be any subset of

AnL, then, the inclusion map ι : S ↪−→ S
Z , of S in its Zariski closure S

Z , induces a ring

homomorphism of restriction ι∗ : K[S
Z

]L −→ K[S]L, ϕ 7→ ϕ ◦ ι = ϕ|S which is an isomorphism

of rings.

Proof. — We first note that ι∗ is well defined. Indeed, if ϕ = f|SZ , with f ∈ K[X1, · · · , Xn], is

a regular function on SZ , then ι∗(ϕ) = ϕ ◦ ι = ϕ|S = (f|SZ )
|S

= f|S is also a regular function

on S. The map is clearly a ring homomorphism (by definition of ring operations in algebras

of functions), and it is also trivially surjective: if ψ = f|S for some f ∈ K[X1, · · · , Xn] then

ψ = ι∗(f|SZ ). Let’s verify that ι∗ is also injective. Let ϕ = f|SZ ∈ Ker(ι∗) (f ∈ K[X1, · · · , Xn]),

then 0 = ι∗(ϕ) = f|S ⇒ S ⊆ Z(f), but then, as SZ is the smallest closed subset containing S, it

must be SZ ⊆ Z(f). Therefore ϕ = f|SZ = 0 in K[S
Z

]L, and hence ι∗ is injective. �

In light of the above proposition there is no point in considering K[S] with S not closed, hence

from now on we will always work with coordinate rings of K-algebraic subsets of affine spaces.

2.5.12. Proposition (K[V × W ]L and K[V ]L ⊗K K[W ]L). — Let K ⊆ L be any field

extension, and let V be a K-rational subset of AnL and W be a K-rational subset of AmL . Then we

have a surjective K-bilinear homomorphism µ = µLK : K[V ]L ×K K[W ]L −→ K[V ×W ]L such

that (α, β) 7→ α · β, inducing a surjective homomorphism of K-algebras

µ⊗ = (µLK)⊗ : K[V ]L ⊗K K[W ]L −→ K[V ×W ]L,
∑
i

αi ⊗ βi 7→
∑
i

αi · βi

and an isomorphism

µ⊗ = (µLK)⊗ : (K[V ]L ⊗K K[W ]L)/Ker(µ⊗) −→ K[V ×W ]L,
∑
i

αi ⊗ βi 7→
∑
i

αi · βi

Proof. — The verifications needed to define µ and µ⊗ are all straightforward. The maps µ, and

µ⊗, are surjective because a system of K-algebra generators for K[V ×W ]L is given, from its very

definition, by the restrictions αi := Xi|V×W for i = 1, . . . , n and βj := Yj |V×W for j = 1, . . . ,m,
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of the coordinate functions of An+m
L , and these are in the image of µ, indeed µ(αi, 1K) = αi for

any i, and µ(1K , βj) = βj for any i, as well as any "power product" in them:

αh1
1 · · ·αn

hn · βk1
1 · · ·βm

km = µ(αh1
1 · · ·αn

hn , βk1
1 · · ·βm

km) for any h ∈ Nn, k ∈ Nm.

Hence K[V ×W ]L = K[α1, . . . , αn, β1, . . . , βm] = Im(µ) = Im(µ⊗). The last assertion follows

then by the standard universal property of the quotient ring. �

2.5.13. Remark ((µLK)⊗ can have a non zero kernel). — The previous homomorphism

(µLK)⊗ is not always an isomorphism in the general case (K ( L). For example, as K[V ×W ]K is

a reduced algebra, its kernel must clearly contain every nilpotent element of K[V ]L ⊗K K[W ]L.

It can fail to be an isomorphism even if L is algebraically closed, as shown in 2.10.8. However,

if L is algebraically closed, the nilradical of K[V ]L ⊗K K[W ]L is the major obstruction to µ⊗

being an isomorphism, as shown by [Kun85, Ch. I, Rules 3.12 c)] (see also 2.21.1 o)). Let’s see

in the next corollary that, however, if K = L then the kernel Ker(µ⊗) is necessarily trivial, and

therfore µ⊗ is an isomorphism of K-algebras.

2.5.14. Corollary (K[V ×W ]K and K[V ]K ⊗KK[W ]K are isomorphic). — Let L = K be

any field, and let V be a K-rational subset of AnK and W be a K-rational subset of AmK . Then

the map K[V ]K ⊗K K[W ]K −→ K[V ×W ]K ,
∑

i αi ⊗ βi 7→
∑

i αi · βi is an isomorphism of

K-algebras.

Proof. — From 2.5.12, we only need to show that, if L = K, then µ⊗ is actually injective. To this

end, let’s start fixing a K-basis (ϕs⊗νt)s∈S,t∈T for K[V ]K⊗KK[W ]K taking K-bases (ϕs)s∈S for

K[V ] and (νt)t∈T for K[W ]. Thus, let
∑

s,t cs,tϕs⊗νt ∈ Ker(µ⊗) for some (cs,t)s∈S,t∈T ∈ KS ×T .
Then 0 = µ⊗(

∑
s,t cs,tϕs ⊗ νt) =

∑
s,t cs,tϕsνt in K[V ×W ]K , as a function on V ×W , which

means
∑

s,t cs,tϕs(P )νt(Q) = 0 for every P ∈ V and everyQ ∈ W . Since this relation can be

rewritten as: for every Q ∈ W it is
∑

s (
∑

t cs,tνt(Q))ϕs(P ) = 0 for every P ∈ V . Note now

that, thanks to the hypothesis L = K, the inner sum
∑

t cs,tνt(Q) ∈ K also, because all the νt
are K-valued functions by assumption (which is not always the case, as we already remarked,

if K ( L, cf. footnote to 2.5.1). Therefore, since the ϕs are K-linearly independent in K[V ]

it must be
∑

t cs,tνt(Q) = 0 for every Q ∈ W , for every s ∈ S. But (cs,t)s∈S,t∈T ∈ KS ×T and

the νt are K-linearly independent in K[W ] by assumption, hence for every s ∈ S and for every

t ∈ T it is cs,t = 0. That is
∑

s,t cs,tϕs ⊗ νt = 0 in K[V ]K ⊗K K[W ]K as claimed. �
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2.6. Regular maps between K-algebraic sets.

2.6.1. Definition. — Let V be a K-algebraic subset of AnL, W a K-algebraic subset of AnL
and let Φ: V −→ W be a map from V to W . Then Φ is said to be a K-regular map on V ,

or a K-morphism, if there exists F = (f1, · · · , fm) ∈ K[X]m such that (f1(P ), · · · , fm(P )) ∈W
for each P ∈ V and Φ(P ) = (f1(P ), · · · , fm(P )) for each P ∈ V .

2.6.2. Remark. — Regular functions on V are the same thing as regular maps from V to A1
L:

K[V ]L = {K-regular maps V −→ A1
L}.

2.6.3. Proposition (ring homomorphism induced by a regular map). — If Φ: V −→W

is a K-regular map between the K-algebraic sets V and W then Φ induces, controvariantly, a K-

algebra homomorphism between the coordinate rings of W and V Φ∗ : K[W ]L → K[V ]L, defined

by "pulling back" along Φ, i.e. ψ 7→ Φ∗(ψ) := ψ ◦ Φ, such that

a) (IdV )∗ = IdK[V ];

b) if Υ: W → X is a second K-regular map, (Υ ◦ Φ)∗ = Φ∗ ◦Υ∗;

c) Ker(Φ∗) = {ψ ∈ K[W ]L | ψ|Φ(V )
Z ≡ 0}.

Proof. — All verifications for a) and b) are straightforward.

For c), let ψ = g|W ∈ K[W ]L, with g ∈ K[Y1, . . . , Ym], such that 0 = Φ∗(ψ) = ψ ◦ Φ. This

means Φ(V ) ⊆ W ∩ Z(g). But W ∩ Z(g) is a closed subset of W , hence Φ(V )
Z ⊆ W ∩ Z(g).

This means that g|Φ(V )
Z ≡ 0 identically, hence ψ|Φ(V )

Z ≡ 0. This shows the ⊆ inclusion. The

converse is trivial: if ψ K[W ]L is such that ψ|Φ(V )
Z ≡ 0, then necessarily Φ∗(ψ) = ψ ◦ Φ ≡ 0 on

V , hence ψ ∈ Ker(Φ∗). �

2.6.4. Definition. — Let V be a K-algebraic subset of AnL, W a K-algebraic subset of AnL.
We say that V and W are K-isomorphic, or K-polynomially isomorphic if there exists a

pair of opposite K-regular maps Φ: V −→W and Υ: W −→ V which are inverse, i.e. such that

Υ ◦ Φ = IdV and Φ ◦Υ = IdW . In this case, the K-regular map Φ, as well as Υ, is said to be a

K-regular isomorphism, or a K-polynomial isomorphism.

2.6.5. Remark. — See 2.11.5 for an algebraic characterization of K-polynomial isomorphisms

of algebraic sets.
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2.6.6. Proposition (regular maps are continuous). — If Φ: V −→W is a K-regular map

between the K-algebraic subsets V and W , then Φ is a continuous function with respect to the

subspace topology on V induced by the Zariski topology on AnL (relative to K) and the subspace

topology on W induced by the Zariski topology on AmL (relative to K).

Proof. — If W = Z(R) with R ⊆ K[Y1, . . . , Ym] is a Zariski closed subset of AmL then

Φ−1(W ) = Φ−1(
⋂
g∈R
Z(g)) =

⋂
g∈R

(Φ−1(g−1(0))) =
⋂
g∈R

(g ◦ Φ)−1(0) =
⋂
g∈R
Z(g ◦ Φ)

as g ◦ Φ = g(f1(X1, . . . , Xn), . . . , fm(X1, . . . , Xn)) ∈ K[X1, . . . , Xn] for each g(Y1, . . . , Ym) ∈
K[Y1, . . . , Ym], Φ−1(W ) is a Zariski closed subset of AnL . That is Φ−1(Z(R)) = Z(Φ∗(R)) where

Φ∗ : K[Y1, . . . , Ym] −→ K[X1, . . . , Xn], g 7→ g ◦ Φ is the map induced by Φ. �

2.6.7. Critical example: regular maps need not to be closed maps. — Let L be

an infinite field and let’s consider V := Z(XY − 1) ⊆ A2
L (a hyperbola), W := A1

L, and

Φ: V −→ W, (a, a−1) 7→ a. Then Φ(V ) = A1
L \ {0} which is not a K-algebraic subset

of W , indeed, being L an infinite field, it can be shown that Φ(V )
Z

= A1
L. Hence, in the

Zariski topology, a regular (hence continuous) image of a closed subset need not be closed. Note

that in the example given, moreover, Φ is an injective map on V . For a second example: let

Φ: A1
R −→ A1

R, a 7→ a2, then Φ(A1
R) = {a ∈ R | a ≥ 0} is not a R-algebraic subset of the affine

line A1
R. Indeed, as we already know that closed subsets of A1

R are either finite or total, it is

Φ(A1
R)
Z

= A1
L.

2.6.8. Definition. — Let V be a K-algebraic subset of AnL, W a K-algebraic subset of AnL
and let Φ: V −→ W. be a K-regular map from V to W . Then Φ is said to be a dominant if

Φ(V ) is dense in W , that is Φ(V )
Z

= W.

2.6.9. Proposition (ring injection induced by a dominant regular map). — Let

Φ: V −→W be a K-regular map as above. Then its induced K-algebra homomorphism

Φ∗ : K[W ]L → K[V ]L, ψ 7→ Φ∗(ψ) := ψ ◦ Φ

is injective if and only if Φ is dominant.

Proof. — It follows from 2.6.3, c). �
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2.6.10. Definition-proposition. — Let V be a K-algebraic subset of AnL, W a K-algebraic

subset of AnL and let Φ: V −→W. be a K-regular map from V to W . Then its graph is defined

as ΓΦ := {(P,Φ(P )) | P ∈ V } ⊆ V ×W. The graph of a regular map is a K-algebraic subset of

(V ×W and) An+m
L and Im(Φ) = prW (ΓΦ).

Proof. — If V = Z(h1, . . . , hr) with h1, . . . , hr ∈ K[X1, . . . , Xn], and Φ is induced by F =

(f1, · · · , fm) ∈ K[X]m then

ΓΦ = Z(h1(X1, . . . , Xn), . . . , hr(X1, . . . , Xn), y1 − f1(X1, . . . , Xn), . . . , ym − fm(X1, . . . , Xn)).

Hence ΓΦ is a K-algebraic subset of An+m
L . The last assertion is straightforward. �

2.6.11. Proposition. — Let Φ: V −→W. as above. Then the inverse maps

(IdV ,Φ): V −→ ΓΦ, P 7→ (P,Φ(P )), prV : ΓΦ −→ V, (P,Φ(P )) 7→ P

are K-regular and induce reciprocal isomorphisms of K-algebras on the coordinate rings

K[V ]L
(IdV ,Φ)∗
←−−−−−−−−−−−−−−−−−−→

pr∗V
K[ΓΦ]L.

In particular ΓΦ is always K-isomorphic to V .

Proof. — The first map is K-regular because it is induced by (X1, . . . , Xn, f1, . . . , fm) ∈
K[X1, . . . , Xn]n+m. The second map is the restriction to ΓΦ of the first projection V ×W −→ V ,

hence it is induced by (X1, . . . , Xn) ∈ K[X1, . . . , Xn, Y1, . . . , Ym]n and therefore it is K-regular.

As prV ◦ (IdV ,Φ) = IdV and (IdV ,Φ) ◦ prV = IdΓΦ
, by 2.6.3 a) and b), it follows that (IdV ,Φ)∗

and pr∗V are inverse isomorphims on K-algebras. �

2.6.12. Proposition. — Let V be a K-algebraic subset of AnL, W a K-algebraic subset of AnL
and let P = (a) ∈ V a K-algebraic subset of V (and thus of AnL). That is P is a K-rational

point of V . Then, the subset P ×W := {P} ×W is a K-algebraic subset (as in 2.2.4) and it is

K-isomorphic to W .

Proof. — The maps Υ: W −→ P ×W, Q 7→ (P,Q) and Φ: P ×W −→ W, (P,Q) 7→ Q are

obviously, set theoretically, inverse maps, which are also K-regular. Indeed

Υ = (a1, . . . , an, Y1, . . . , Ym)|W and Φ = (Y1, . . . , Ym)|W .

Hence they give the required K-regular isomorphism. �
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2.6.13. Remark. — The previous result does not hold true if P is not K-rational. Consider,

indeed, the following: K = Q, L = R, and V = W = Z(X2 − 2) = {−
√

2,
√

2}.
Then {

√
2} ×W = {(

√
2, −
√

2), (
√

2,
√

2)} is not even a Q-algebraic subset of AR
2 because

{
√

2} ×W
Z

= V ×W.

The crucial point to prove this is that, if f ∈ Q[X1, Y1] is such that f(
√

2, −
√

2) = (
√

2,
√

2) = 0

then it is also f(−
√

2, −
√

2) = (−
√

2,
√

2) = 0; that is V ×W ⊆ Z(f) necessarily. The claim

will be immediately clear using 2.12.3 and 2.21.1 p) (or by direct proof). Moreover, it is clear

that there is no Q-regular map from W to {
√

2} ×W , essentially just because
√

2 6∈ Q.

2.7. Irreducible topological spaces, irreducible components

In this section X will usually denote a topological space.

2.7.1. Proposition-Definition. — A (nonempty) topological space X is said to be irre-

ducible if the following equivalent condition hold true:

a) if X = C1 ∪ C2 with C1, C2 closed subsets of X, then X = C1 or X = C2;

b) if U1, U2 are non empty open subsets of X, then U1 ∩ U2 6= ∅;
c) any nonempty open subset of X is dense.

Proof. — See [Kun85, Ch. I, Def. 2.8, Lemma 2.9 ] and [Har77, Pag. 3]. Note that in the

former reference the empty set is considered irreducible, but not in the latter, as I prefer do not

repeat "nonempty" each time, and also in light of 2.11.2, I follow [Har77]. �

2.7.2. Definition. — A subspace S of a topological space X is said to be an irreducible

subspace of X if S endowed with the subspace topology from X is such.

2.7.3. Remark. — A Hausdorff space is irreducible if and only if it is reduced to a point.

2.7.4. Remark: comparison between irreducibility and connectedness. — Clearly,

every irreducible space is connected, while the converse does not hold in general: the union of

the axes, ZR
R (XY ) = ZR

R (X) ∪ ZR
R (Y ), is connected but is clearly not irreducible.
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2.7.5. Proposition. — Irreducible spaces are stable under continuous images and (finite)

cartesian products. That is:

a) If f : X −→ Y is a continuous map between topological spaces, and Z is an irreducible

subspace of X then f(Z) is an irreducible subspace of Y .

b) If X and Y are two irreducible topological spaces, then X ×Y is irreducible wrt the product

topology.

Proof. — a) Let C1, C2 two closed subsets of Y such that f(Z) ⊆ C1∪C2, then Z ⊆ f−1(f(Z)) ⊆
f−1(C1) ∪ f−1(C2), with f−1(Ci), i = 1, 2, closed subsets of X by continuity of f . Since Z is

irredducible, it must be Z ⊆ f−1(Ci) for some i. Then f(Z) ⊆ f(f−1(Ci)) ⊆ Ci. Hence f(Z) is

irreducible.

b) Let C1, C2 two closed subsets of X × Y such that X × Y = C1 ∪ C2. As, for each x ∈ X
the subspace (with the subspace topology coming from X × Y , which in turn coincides with its

own product topology) x × Y := {x} × Y is clearly homeomorphic to Y (via y 7→ (x, y), and

(x, y) 7→ y) and therefore irreducible x× Y because Y is such, we have

x× Y = (x× Y ) ∩ (X × Y ) = ((x× Y ) ∩ C1) ∪ ((x× Y ) ∩ C2),

then x×X ⊂ C1, or x×X ⊂ C2. Let, for i = 1, 2, Xi := {x ∈ X | x×Y ⊂ Ci} ∼= ((X×y)∩Ci),
then clearly X = X1 ∪X2. We claim that the Xi, for i = 1, 2, are closed subsets of X. Indeed,

clearly it is Xi = ∩y∈Y ι−1
y (Ci), where, for each y ∈ Y , ιy : X −→ X × Y is the map x 7→ (x, y),

which is continuous because on sub basic open subsets U ×Y (U open of X) and X×V (V open

of Y )

ι−1
y (U × Y ) = U, and ι−1

y (X × V ) =

X if y ∈ V,

∅ if y 6∈ V
.

Hence the Xi is an intersection of closed subsets of X and thus it is closed itself. But now X is

irreducible, hence X = X1, in which case X × Y = C1, or X = X2, in which case X × Y = C2.

We conclude that X × Y is irreducible too. �

2.7.6. Remark. — Since being irreducible is a property stable under homeomorphisms, it is

a topological property.

2.7.7. Remark. — If S is an irreducible subspace of a topological space X, then any S′ ⊆ X,

such that S ⊆ S′ ⊆ SX is irreducible too (see [Kun85, Ch. I, Cor. 2.10]). Obviously, every {x}
with x ∈ X, as well as its closure {x}X , is an irreducible subspace of X.
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2.7.8. Definition. — By definition ([Kun85, Ch. I, Def. 2.11]), an irreducible component

of a topological space X is any maximal irreducible subspace of X.

2.7.9. Proposition. — Let X be any topological space. Then:

a) any irreducible component of X is closed in X;

b) any irreducible subset of a topological space is contained in an irreducible component;

c) any (nonempty) topological space X is the union of its irreducible components;

d) any Noetherian topological space has only finitely many irreducible components; no such

component is contained in the union of the others (the union is not redundant).

Proof. — See [Kun85, Ch. I, Props. 2.12, 2.14]. �

2.8. Irreducibility and algebraic sets

We now give the algebraic characterization of irreducibility for K-algebraic sets in terms of their

K-algebras of regular functions.

2.8.1. Proposition (Irreducible K-algebraic subsets). — Let V be a K-algebraic subset

of AnL, then: V is irreducible if and only if K[V ]L is an integral domain.

Proof. — Assume V is irreducible, and let ϕ1, ϕ2 ∈ K[V ]L such that ϕ1ϕ2 = 0. This means

ϕ1(P )ϕ2(P ) = 0 for each P ∈ V , in L. Since L is a field, we then have the closed decomposition

(2.5.4 and 2.5.5): V = Z(ϕ1) ∪ Z(ϕ2). Since V is irreducible, it must be V = Z(ϕ1) or

V = Z(ϕ2). In the former case ϕ1 = 0 and in the latter ϕ2 = 0. Therefore K[V ] has no non zero

zero divisors, that is it is a domain. Assume now thatK[V ] is a domain, and let, by contradiction,

V = Z1∪Z2 for some proper Zariski closed subsets Zi of V . Let then Ji := {ϕ ∈ K[V ] | ϕ|Zi = 0},
for i = 1, 2. Clearly J1, J2 are ideals of K[V ] and neither J1 nor J2 is the zero ideal (as both Zi
are proper). But J1 ∩ J2 = (0) as V = Z1 ∪ Z2. Then J1J2 ⊆ J1 ∩ J2 = (0), and therefore K[V ]

has non trivial zero divisors. Contradiction. �

2.8.2. Remark. — As we already noticed that AnL, with the Zarisky topology on (relative to

K), is a Noetherian topological space (as well as any K-algebraic set in it), we can conclude that
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any K-algebraic set V of AnL is a finite union of uniquely determined irreducible K-algebraic sets

V1, . . . , Vs ⊆ V :

(1) V = V1 ∪ · · · ∪ Vs

2.8.3. Primary decomposition and Z. — As any ideal I of K[X] has a minimal primary

decomposition (see 1.11) we find

(2) I = Q1 ∩ · · · ∩Qr ⇒ V = Z(I) = Z(Q1) ∪ · · · ∪ Z(Qr) = Z(p1) ∪ · · · ∪ Z(pr)

where Qi are pi-primary ideals. Hence, every algebraic set of ANL is, set-theoretically, a finite

union of zero loci of prime ideals of K[X] (some of them my well be empty or not irreducible

if L is not algebraically closed, compare 2.13). We will compare and relate these two closed

decompositions (1) and (2) in what follows (cf. 2.15).

2.8.4. Remark: non hausdorffness and product topology. — As already mentioned

(2.4.6), the Zariski topology is almost never a Hausdorff one unless L is a finite field, for then it’s

the discrete topology. From a different perspective, we saw ( 2.8.2) that every K-algebraic set is

a finite union of irreducible ones, and if L is not finite then AnL itself is irreducible, hence any two

non empty open sets of AnL must intersect, which is the least "Hausdorff behavior" a topological

space can have. On the other hand, we saw (2.2.3) that the diagonal subspace ∆n of AnL × AnL
is a K-algebraic subset of A2n

L , hence it is closed. From this we draw that the Zariski topology

on a cartesian product is not the product of the Zariski topologies of the factors. The key point

is that, actually, the Zariski topology on A2n
L is strictly finer than the topological product of the

Zariski topology on AnL×AnL. Indeed, every product of two closed Zariski subsets of AnL is Zariski

closed in A2n
L , as if V = Z(f1(X), . . . , fr(X)) and U = Z(g1(X), . . . , gs(X)) in AnL, then

V×U = (V×AnL)∩(AnL×U) = Z((f1(X), . . . , fr(X))K[X,Y ]+(g1(Y ), . . . , gs(Y ))K[X,Y ]) ⊆ A2n
L ,

but the diagonal ∆n = Z(dn) is a Zariski closed subset of AnL which is not closed in the product

topology because AnL is not a Hausdorff space as soon as L is infinite.

2.8.5. Proposition. — Let K ⊆ L be any field extension, and let V be a K-rational subset of

AnK and W be a K-rational subset of AmK . The followings hold true:

a) If V ×W is irreducible, then V and W are irreducible.
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b) If L = K the converse holds: if V and W are irreducible, then V ×W is such (wrt the

subspace topology induced by the Zariski topology on AnL).

Proof. — a) It follows from 2.7.5 a) and 2.6.6 since the projections from V ×W to its factors

are K-regular maps.

b) As we assumed L = K, the very same argument used to prove 2.7.5 b) works in this case.

Indeed, every point of V or W is K-rational (closed in the Zariski topology), therefore all the

"slices" P ×W and V ×Q are K-algebraic subsets (cf. 2.6.12) and all the needed maps required

in the proof of 2.7.5 b) are actually K-regular, hence the proof can be repeated and works word

by word in the context of K-algebraic subsets. �

2.8.6. Critical Example. — The previous result 2.8.5 b) does not hold true in general if

K ( L. Consider, as in 2.6.13, the following situation: K = Q, L = R, and V = W =

Z(X2 − 2) = {−
√

2,
√

2}. Then V is irreducible, since Q[V ]R ∼= Q[X]/(X2 − 2) = Q(
√

2) is a

domain (actually, even a field), but the product space

V × V = {(−
√

2, −
√

2), (−
√

2,
√

2), (
√

2, −
√

2), (
√

2,
√

2)} = ZR
Q(X2

1 − 2, X2
2 − 2).

We easily verify then that

V × V = ZR
Q(X2

1 −X2
2 , X

2
2 − 2) = ZR

Q(X1 +X2, X
2
2 − 2) ∪ ZR

Q(X1 −X2, X
2
2 − 2)

is not irreducible in the Zariski topology (relative to Q), on the contrary it is even not connected:

V × V = {(−
√

2,
√

2), (
√

2, −
√

2)} ∪ {(−
√

2, −
√

2), (
√

2,
√

2)}.

Its K-algebra of regular functions is Q[V × V ]R ∼= Q(
√

2) × Q(
√

2). Of course, in the Zariski

topology relative to R, it is V = ZR
R (X +

√
2) ∪ ZR

R (X −
√

2), hence VR is no longer irreducible

in this (finer) topology everything works as expected from 2.8.5.

2.9. Vanishing ideals in K[X1, . . . , Xn]

We can also proceed the other way round, that is from subsets of the affine space AnL = Ln to

subsets of the polynomial rings K[X].
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2.9.1. Definition. — Given a subset S of AnL, the set of all polynomials vanishing on it

ILK(S) := {f ∈ K[X] | f(P ) = 0 ∀P ∈ S} =
⋂
P∈S
ILK(P ) ⊆ K[X1, . . . , Xn] = K[X]

is (obviously) a radical ideal of K[X] (if fn ∈ ILK(S), for some n, then f ∈ ILK(S)) and it is

called the (vanishing K-)ideal of S. Note that, given a polynomial f ∈ K[X], saying f ∈ I(S)

is equivalent to say that f , thought of as a function on AnL, induces the zero function on S, i.e.

f ∈ I(S) ⇔ f|S ≡ 0.

2.9.2. Remark. — Note that, for example, if n = 1, K = Q, L = C and S = {π}, then

ICQ(π) = {p(X) ∈ Q[X] | p(π) = 0} = (0) just because π ∈ R is transcendental over Q.

2.9.3. behavior of ILK under field extensions. — If H ⊆ K are both subfields of L, then

AnK ⊆ AnH ⊆ AnL ⊆ and H[X] ⊆ K[X]. We have the following relations:

a) if S ⊆ AnL, then ILK(S) = ILH(S) ∩K[X] and ILK(S) ⊆ IHK (S ∩ AnH);

b) from a different perspective, if V is a K-algebraic set in AnK , let V ⊆ AnL be its closure

in the Zaraski topology of AnL relative to L. Then the vanishing ideal of V in L[X] is the

extension ideal of its vanishing ideal in K[X], that is ILL (V ) = IKK (V )L[X] ([Kun85, Ch.

1, Sec. 2, Ex. 7], [AM69, Ch. 1])

2.9.4. Example. — Let K = Q, H = R, L = R(i) = C and f = X2 + 1 ∈ Q[X]. Then

ICQ(ZC
Q(f)) = (X2 + 1) ( Q[X] = IRQ(ZR

Q(f)).

To simplify the notation, in what follows we write I = ILK unless the specification is needed.

2.9.5. Remark: "stability property" of I. — As, tautologically, S ⊆ Z(I(S)) for every

subset S of AnL, then 1 6∈ I(S) whenever S 6= ∅. That is I(S) is always a proper ideal of K[X]

for nonempty subsets S.

2.9.6. Lattice properties of I. — For any family of subsets Si ⊆ AnL we have:
⋂
i I(Si) =

I (
⋃
i Si) , while I(S1) + I(S2) ⊆

√
I(S1) + I(S2) ⊆ I(S1 ∩S2). Note that the sum of two (even

radical) ideals is, in general, not necessarily radical. The last inclusion above can well be strict

if L is not algebraically closed.
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2.9.7. Example. — Let L be an infinite field, and let S1 = Z(Y − X2) (a parabola) and

S2 = Z(Y ) (the X axis). It can be shown that I(S1) = (Y − X2) and I(S2) = (Y ). Then

J := I(S1) + I(S2) = (Y − X2, Y ) = (X2, Y ) is not a radical ideal, for X2 ∈ J but x 6∈ J .

Indeed S1 ∩ S2 = {(0, 0)}, and I(S1 ∩ S2) = (X,Y ). Hence, I(S1 ∩ S2) =
√
I(S1) + I(S2) in

this case.

2.9.8. I is inclusion-reversing. — As it happens for Z, also I is a (weakly) decreasing

mapping between subsets of the affine space AnL and subsets of the polynomial ring K[X], that

is S1 ⊆ S2 ⊆ AnL ⇒ K[X] ⊇ I(S1) ⊇ I(S2).

2.10. Basic constructions with I. Nullstellensatz (field theoretic version)

2.10.1. Example. — It’s not difficult to see that: I(∅) = K[X] = (1) and, if L has infinitely

many elements (4), I(AnL) = (0) (cf. [Kun85, Ch. I, Sec. 1, Prop. 1.3 a)]).

2.10.2. Example: vanishing ideal of K-rational points. — Let P = (a1, . . . , an) ∈ AnL
be a K-rational point as in 2.2.2, then obviously 1 6∈ I({P}), because P ∈ Z(I({P})), and
on the other hand Xi − ai ∈ I({P}) for every i = 1, · · · , n. Hence the whole maximal ideal

mP := (X1 − a1, · · · , Xn − an) ⊆ I({P}), as 1 6∈ I({P}) and mP maximal, it must then be

I({P}) = (X1 − a1, · · · , Xn − an) = mP .

2.10.3. Proposition (field theoretic version of Nullstellensatz). — If K is a field and

m a maximal ideal of the polynomial ring P := K[X1, . . . , Xn], then m ∩K[Xi] 6= (0) for each

i = 1, . . . , n. Moreover, the K-algebra P/m is a finite dimensional K-vector space and hence

P/m is an algebraic field extension of K.

Proof. — A proof, relying on Gröbner bases theory, can be found in [KR00, Thm. 2.6.6]. �

4. If L = Fq is a finite field with q = pn elements, for some n ∈ N+ and p a prime integer, it’s not difficult to

show that I(AnL) = (Xq
1 −X1, · · · , Xq

n−Xn). Over a finite fields, "polynomials" and "polynomial functions" are

not the "same thing".
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2.10.4. Remark: vanishing ideal of arbitrary points. — If P = (a1, . . . , an) ∈ AnL is an

arbitrary point (not necessarily K-rational), then I(P ) is always a prime ideal of K[X] because

evaluation homomorphism evP : K[X]L −→ L, f 7→ f(P ) has Ker(evP ) = ILK(P ), and it induces

an injection of rings K[X]/Ker(evP ) = K[X]/ I(P ) ↪−→ L; as L is a field, then K[X]/ I(P )

must be a domain. We therefore have a map AnL −→ {prime ideals of K[X1, . . . , Xn]} defined

by P 7→ I(P ) = Ker(evP ), which is in general neither injective nor surjective. None the less,

by restriction it induces a bijection AnK −→ {"linear" maximal ideals of K[X1, . . . , Xn]}, where
(a1, . . . , an) 7→ (X1− a1, · · · , Xn− an). Note that ICQ((π, π)) = (X − Y ), ICQ((π, e)) = (0) (!?) (5)

and ICQ((i, π)) = (X2 + 1) are prime, not maximal, ideals of Q[X,Y ], while ICQ((i, 3
√
−2)) =

(X2 + 1, Y 3 + 2) is a maximal ideal (Q[x, y]/(X2 + 1, Y 3 + 2) ∼= Q(i, 3
√

2) subfield of C). As

a consequence of the field theoretic version of the Hilbert Nullstellensatz ( 2.10.3), also known

as Zariski’s Lemma, the vanishing ideal I(P ) is a maximal ideal of K[X] if and only if every

coordinate of P is algebraic over K.

Proof. — Indeed, if P = (a1, . . . , an) ∈ AnL and, say, a1 is transcendental over K, then I(P ) ∩
K[X1] 6= (0) and therefore I(P ) can’t be maximal. This shows that if I(P ) is a maximal of

K[X1, . . . , Xn], then each coordinate of P is algebraic over K.

Conversely, if each ai ∈ L is algebraic over K, then I(P ) ∩ K[Xi] = (mai(Xi)) is a non zero,

proper, ideal of the Euclidean ring K[Xi] generated by the minimal polynomial of ai over K.

Hence I(P ) ⊇ (ma1(X1), . . . ,man(Xn)) and the quotient ring

K[X]/ I(P ) ∼=
K[X]/(ma1(X1), . . . ,man(Xn))

I(P )/(ma1(X1), . . . ,man(Xn))
,

viewed as a K-vector space, has dimension bounded by the product of the degrees of these

minimal polynomials, since K[X]/(ma1(X1), . . . ,man(Xn)) ∼=
⊗n

i=1K[Xi]/(mai(Xi)). As

K[X]/ I(P ) is always a domain, as already seen above, it must be a field (6), therefore I(P ) is

maximal. �

What just proved can be rephrased as: I(P ) is a maximal ideal of K[X] for every P ∈ AnL if and

only if L is an algebraic extension of K. Using Hilbert Nullstellensatz (see 2.14.3) one can show

that the initial map AnL −→ {prime ideals of K[X1, . . . , Xn]} such that P 7→ I(P ) = Ker(evP ),

5. At least, if Schanuel’s conjecture is true ([Mor96, III.4])...
6. If D is a K-algebra with finite dimension as a vector space over K and D is also a domain, then it is a

field. Indeed, because of the finite dimension, every injective K-linear map is also surjective. Applying this to

the multiplication endomorphisms of D, we get that every nonzero element of D has an inverse in D.
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is surjective for any n ∈ N+ and any subfield K of L such that L is algebraic over K if and only

if L is an algebraic closure of K.

Proof. — If L is an algebraic closure of K, then L is algebraic over K and hence the map

takes values in the set of maximal ideals of K[X]. If m is a maximal ideal of K[X1, . . . , Xn]

then, thanks to 2.1.4, its extension mL[X1, . . . , Xn] is a proper ideal of the Noetherian ring

L[X1, . . . , Xn]. Hence, by Noetherianity, there exists a maximal ideal M in L[X1, . . . , Xn]

such that mL[X1, . . . , Xn] ⊆ M. By 2.10.3, and the fact that L is algebraically closed, it is

necessarily M = (X1 − a1, . . . , Xn − an) = ILL (P ) for some P = (a1, . . . , an) ∈ AnL, whence

ZLK(m) = ZLL (mL[X1, . . . , Xn]) ⊇ ZLL (M) = {P} and from Hilbert Nullstellensatz 2.14.3 d) (for

the second equality) m =
√
m = IKL (ZLK(m)) ⊆ ILK(P ). As m is maximal and ILK(P ) is a proper

ideal we conclude m = ILK(P ) (7). For the converse, let’s assume that the map is well defined

and surjective for any n ∈ N+ and any subfield K of L such that L is algebraic over K. We can

then take n = 1 and K = L. We will show that if L′ is an algebraic extension of L then L′ = L,

whence L is algebraically closed. Let a′ ∈ L′, as a′ is algebraic over L the ideal IL
′

L (a′) is a

nonzero prime ideal in L[X], hence it is a maximal ideal (because L[X] is an euclidean domain).

By the hypothesis we then have that there exists a ∈ L such that IL
′

L (a′) = ILL (a) = (X − a),

then a′ = a ∈ L for each a′ ∈ L′, whence L′ = L as claimed and L is algebraically closed. �

2.10.5. Example: vanishing ideal of the diagonal ∆n ⊂ AnL. — Let ∆n := {(a, b) ∈ A2n
L |

a = b} be the diagonal subspace of AnL×AnL ∼= A2n
L as in 2.2.3. Its vanishing ideal I(∆n) clearly

contains the prime (non maximal) ideal dn = (Y1 − X1, . . . , Yn − Xn) ⊆ K[X,Y ]. Let, on the

other hand, f be a polynomial of K[X,Y ] such that f ∈ I(∆n). Using a sort of "extended

division", we will show that, if L is, at least, infinite then f ∈ dn. Therefore, in the end, we have

that, whenever L is infinite (8), I(∆n) = (Y1 −X1, . . . , Yn −Xn) = dn in K[X,Y ].

Proof. — From the above discussion, the inclusion (Y1 −X1, . . . , Yn −Xn) ⊆ I(∆n) is clear.

For the converse, let A := K[X]. Given any f ∈ K[X,Y ] = A[Y ], by [KR00, Prop. 3.6.1.],

there are polynomials g1, · · · , gn ∈ A such that

f(X,Y ) = g1(X)(Y1 −X1) + · · ·+ gn(X)(Yn −Xn) + f(g1(X), . . . , gn(X)) in A[Y ].

7. Note that this does not mean that ZLK(m) = ZLK(ILK(P )) = {P}, indeed the second equality is false in

general: for example, ZC
R (ICR (i)) = ZC

R (X2 + 1) = {−i, i}. The point is that ICR (i) = (X2 + 1) = ICR (−i), i.e. the

map we are studying is not injective (unless K = L).
8. If L = Fq is finite, then I(∆n) = dn + (Xq

1 −X1, . . . , X
q
n −Xn, Y q1 − Y1, . . . , Y

q
n − Yn)
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As by assumption is f ∈ I(∆n), then 0 = f(a, a) = f(g1(a), . . . , gn(a)) for every a) ∈ AnL, hence
the remainder polynomial f(g1(X), . . . , gn(X)) induces the zero function on the whole affine

space AnL, that is f(g1(X), . . . , gn(X)) ∈ I(AnL) = (0) as L is infinite. Therefore we have

f(X,Y ) = g1(X)(Y1 −X1) + · · ·+ gn(X)(Yn −Xn) ∈ dn.

�

2.10.6. Example: vanishing ideal of a "cylinder". — Let V = Z(f1, . . . , fr) be a K-

algebraic subset of AnL, and let CylAmL (V ) = V × AmL be its cylinder (cf. 2.2.5) in An+m
L =

AnL × AmL . If L is infinite, we have

I(CylAmL (V )) = I(V × AmL ) = I(V )K[X1, . . . , Xn, Y1, . . . , Ym] = I(V )[Y1, . . . , Ym].

Proof. — For the the inclusion I(V )[Y1, . . . , Ym] ⊆ I(V ×AmL ), let f ∈ K[X1, . . . , Xn, Y1, . . . , Ym]

such that f ∈ I(V )[Y1, . . . , Ym]. We can then write f =
∑

γ∈Nn fγ(X)Y γ , with fγ ∈ I(V ) ⊆
K[X]. Hence, for each P = a ∈ V and each Q = b ∈ AmL we have f(P,Q) =

∑
γ∈Nn fγ(a) bγ = 0

because fγ ∈ I(V ), hence f|V×AmL ≡ 0 and so f ∈ I(V × AmL ).

For the converse inclusion, let again f ∈ K[X1, . . . , Xn, Y1, . . . , Ym] but assume this time that

f ∈ I(V × AmL ). As before, we can write f =
∑

γ∈Nn fγ(X)Y γ with fγ ∈ K[X]. We have to

show that f ∈ I(V × AmL ) ⇒ fγ ∈ I(V ) for each γ. Let P ∈ V , then the polynomial function

f(P, Y ) =
∑

γ∈Nn fγ(P )Y γ vanishes identically on AmL by hypothesis. As L is infinite, this

implies fγ(P ) = 0 for each γ. As P is arbitrary in V we conclude fγ ∈ I(V ) for each γ, and

therefore f ∈ I(V )[Y1, . . . , Ym]. �

2.10.7. Example: vanishing ideal of a cartesian product. — Let V and W as in

2.2.6, with I = (f1, . . . , fr) ⊆ K[X], J = (g1, . . . , gs) ⊆ K[Y ] and IK[Y ] + JK[X] =

(f1, . . . , fr, g1, . . . , gs) ⊆ K[X1, . . . , Xn, Y1, . . . , Ym], then

I(V ×W ) = I((V × AmL ) ∩ (AnL ×W )) = I(Z(IK[Y ] + JK[X]))

⊇
√
I(Z(I))[Y ] + I(Z(J))[X].

Moreover, if K is a field of characteristic zero (or more generally, if K is a perfect field (9)) then√
I(Z(I))[Y ] + I(Z(J))[X] = I(Z(I))[Y ] + I(Z(J))[X] (because, in that case, the right hand

9. The concept of a perfect field and the behavior of tensor products of algebra over it can be found, for

example in [Bos18, 3.6; 7.4, Ex. 6]. As every field of characteristic zero is a perfect field, and here we are mainly

interested in the case K = R, which has zero characteristic, we do not give details on that.
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side is already a radical ideal). We will see in 2.21.1 o), p) that if L is algebraically closed or

real-closed, then ILK(V ×W ) = ILK(Z(I))[Y ] + ILK(Z(J))[X]. But, in the general case, only the

inclusion shown above does hold.

2.10.8. Critical example. — Let p is a prime integer, K = Fp(T ) and L be an algebraic

closure of Fp(T )[U ]/(Up − T ) = Fp( p
√
T ). Then (by Frobenius endomorphism in characteristic

p): V = W = ZLK(Xp − T ) = ZLK((X − p
√
T )p) = { p

√
T} and V ×W = {( p

√
T , p
√
T )}. We also

have ILK(V ) = (Xp
1 − T ) and ILK(W ) = (Y p

1 − T ), essentially because p
√
T 6∈ K. In K[X1, Y1]

we find Z(I)[Y1] +Z(J)[X1] = (Xp
1 − T, Y

p
1 − T ) = (Xp

1 − Y
p

1 , Y
p

1 − T ) = ((X1 − Y1)p, Y p
1 − T ),

which is not a radical ideal. Indeed, by Frobenius homomorphism,

(X1 − Y1)p = Xp
1 − Y

p
1 = (Xp

1 − T )− (Y p
1 − T ) ∈ (Xp

1 − T, Y
p

1 − T ),

but X1 − Y1 6∈ (Xp
1 − T, Y

p
1 − T ) for degree reason. Therefore, in this case,

I(V ×W ) ) ILK(I)[Y1] + ZLI (J)[X1].

Actually, it is I(V ×W ) = (X1−Y1, Y
p

1 −T ), indeed K[X1, Y1]/(X1−Y1, Y
p

1 −T ) ∼= L and thus

(X1 − Y1, Y
p

1 − T ) is a maximal ideal.

2.11. Vanishing ideals, regular functions and regular maps

2.11.1. Remark: coordinate rings are quotients of polynomial rings. — If S is a subset

of AnL, the inclusion map iS : S ↪−→ AnL induces a restriction homorphism of K-algebras in the

opposite direction resS = i∗S : K[AnL]L −→ K[S]L, f 7→ f ◦ iS = f|S which is surjective by

definition of K[S]L, and whose kernel coincides with the vanishing ideal of the subset S. We

therefore have an exact sequence (10) of K[AnL]L-modules, as well as K-vector spaces,

0 −→ ILK(S) −→ K[AnL]L
resS−→ K[S]L −→ 0.

Hence the K-algebras K[S] are all just quotients of the polynomial ring K[X1, · · · , Xn] by a

radical ideal. In particular, they are all affine K-algebras, that is finitely generated reduced

K-algebras: K[S]L ∼= K[AnL]L/Ker(resS) ∼= K[X1, · · · , Xn]/ ILK(S). It can be proven that,

conversely, any affine K-algebra is the coordinate ring of some K-algebraic set (see [Kun85,

Ch. I, Sec. 3, Rules 3.12 f)]).

10. It just means that, in each point, the image of the incoming map is equal to the kernel of the next one.
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2.11.2. Corollary (vanishing ideals of irreducible sets). — Let V be a K-algebraic subset

of AnL, then: V is irreducible if and only if ILK(V ) is a prime ideal of K[X1, . . . , Xn].

Proof. — By previous remark, it is a straightforward reformulation of 2.8.1. �

2.11.3. Proposition (defining equations of regular maps). — Let V = Z(I) ⊆ AnL and

W = Z(J) ⊆ AmL two K-algebraic sets. Then, given F = (f1, . . . , fm) ∈ K[X1, . . . , Xn]m we

have that F induces a K-regular map ΦF : V −→W if and only if Φ∗F (I(Z(J))) ⊆ I(Z(I))

Proof. — It is clear that F induces a K-regular map ΦF : AnL −→ AmL , such that (a1, . . . , an) 7→
(f1(a1, . . . , an), . . . , fm(a1, . . . , an)). This regular map induces, by restriction, a K-regular map

between V and W if and only if ΦF (P ) ∈W for each P ∈ V . Assume now that Φ∗F (I(Z(J))) ⊆

I(Z(I)) holds true, and let g ∈ I(Z(J)). Then

Φ∗F (g) = g ◦ ΦF = g((f1(X1, . . . , Xn), . . . , fm(X1, . . . , Xn))) ∈ I(Z(I)).

For any P ∈ V = Z(I) we than have g(ΦF (P )) = (g ◦ ΦF )(P ) = 0 for any g ∈ I(Z(J)), that

is ΦF (P ) ∈ W = Z(I(Z(J))). Therefore ΦF restricts to a K-regular map V −→ W . For the

converse, assume that ΦF : AnL −→ AmL restricts to a K-regular map V −→ W . Then ΦF (V ) ⊆
W , and taking I this gives I(ΦF (Z(I))) ⊇ I(Z(J)). Let now g ∈ I(Z(J)), and consider

Φ∗F (g) = g ◦ ΦF . Let now P be any point in V , then Φ∗F (g)(P ) = (g ◦ ΦF )(P ) = g(ΦF (P )) = 0,

therefore Φ∗F (g) ∈ I(Z(I)), as claimed. �

2.11.4. Remark. — The previous result means that to define a K-regular map from V to

W trough F = (f1, . . . , fm) ∈ K[X1, . . . , Xn]m we need generators for their vanish ideals (not

just sets of defining equations): I(V ) = (u1, . . . , us) ⊆ K[X1, . . . , Xn], I(W ) = (v1, . . . , vt) ⊆
K[Y1, . . . , Ym], and we need to check that v1(f1, . . . , fm), . . . , vt(f1, . . . , fm) ∈ (u1, . . . , us).

2.11.5. Proposition (K-isomorhism). — If Φ: V −→ W is a K-regular map from V to

W , then Φ is a K-polynomial isomorphism if and only if its induced K-algebras homomorphism

Φ∗ : K[W ]L −→ K[V ]L is an isomorphism of K-algebras.

Proof. — From 2.6.3 b) and a) it is clear that if Φ is a K-regular isomorphism, then Φ∗ is an

isomorphism of K-algebras (whose inverse is Υ∗).

For the converse, as K[V ] ∼= K[X1, . . . , Xn]/ I(V ) and K[W ] ∼= K[Y1, . . . , Ym]/ I(V ), let Υ be

the K-regular map induced by a polynomial representative G = (g1, . . . , gn) ∈ K[Y1, . . . , Ym]n
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for the inverse of the K-algebra isomorphism Φ∗:

Φ∗−1 : K[V ] ∼= K[X1, . . . , Xn]/ I(V ) −→ K[W ] ∼= K[Y1, . . . , Ym]/ I(V ).

All the necessary verifications are straightforward. �

2.11.6. Proposition (vanishing ideals of images and graphs). — Let V = Z(I) ⊆ AnL
and W = Z(J) ⊆ AmL two K-algebraic sets, and let Φ: V −→W be a K-regular map induced by

F = (f1, . . . , fm) ∈ K[X1, . . . , Xn]m.

a) If S ⊆ V then I(Φ(S)) = Φ∗−1(I(S)) and Φ(S)
Z

= Z(Φ∗−1(I(S))) In particular, if

S = Z(I ′) for some ideal I ′ ⊆ K[X1, . . . , Xn] containing I, it is Φ(Z(I ′))
Z ⊆ Z(Φ∗−1(I ′)).

b) The vanishing ideal of the graph of Φ is

I(ΓΦ) = I(V )K[X,Y ] + (y1 − f1(X1, . . . , Xn), . . . , ym − fm(X1, . . . , Xn)) ⊆ K[X,Y ],

and, for any ideal I ′ ⊆ K[X1, . . . , Xn] containing I,

I(Φ(Z(I ′))) = ( I(Z(I ′))K[X,Y ] + (y1 − f1, . . . , ym − fm) ) ∩K[Y ],

where K[X] = K[X1, . . . , Xn] and K[Y ] = K[Y1, . . . , Ym].

Proof. — a) Let S ⊆ V and P ∈ S, then

I(Φ(P )) = Ker(evΦ(P )) = Ker(evevPΦ) = Ker(evP ◦ Φ∗) = Φ∗−1(I(P )).

Therefore I(Φ(S)) =
⋂
P∈S I(Φ(P )) =

⋂
P∈S Φ∗−1(I(P )) = Φ∗−1(

⋂
P∈S I(P )) = Φ∗−1(I(S))

and Φ(S)
Z

= Z(I(Φ(S))) = Z(Φ∗−1(I(S))). In particular

I(Z(I ′)) ⊇ I ′ ⇒ Φ∗−1(I(Z(I ′))) ⊇ Φ∗−1(I ′)

and so Φ(Z(I ′))
Z

= Z(Φ∗−1(I(Z(I ′)))) ⊆ Z(Φ∗−1(I ′)).

b) The inclusion I(ΓΦ) ⊆ I(V )K[X,Y ] + (y1 − f1(X1, . . . , Xn), . . . , ym − fm(X1, . . . , Xn)) is

trivial. Let now h ∈ K[X,Y ] = (K[X])[Y ] be such that h ∈ I(ΓΦ). Thanks to [KR00, Prop.

3.6.1] we can write h =
∑m

i=1 hi(X,Y )(yi− fi(X)) + h(f1(X), . . . , fm(X)). As h vanishes on ΓΦ

we get P ∈ V ⇒ 0 = ev(P,Φ(P ))(h) = evP (h(f1(X), . . . , fm(X))), therefore

h(f1(X), . . . , fm(X)) ∈ I(V )[X,Y ].

For the last statement, we have Φ(Z(I ′)) = prW (ΓΦ|Z(I′)), hence

I(Φ(Z(I ′))) = pr∗W
−1(I(ΓΦ|Z(I′))) = I(ΓΦ|Z(I′)) ∩K[Y ]
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as pr∗W
−1(T ) = T ∩K[Y ] for every T ⊆ K[X,Y ]. �

2.12. Galois connection and the closure operator

2.12.1. Proposition. — The two composite maps Z ◦I and I ◦Z are "enlarging": for any

subset S of AnL we have S ⊆ Z(I(S)), and for any subset T of K[X] we have T ⊆ I(Z(T )).

Moreover Z(I(Z(T ))) = Z(T ) for every T ⊆ K[X], and I(Z(I(S))) = I(S) for every S ⊆ AnL.

Proof. — The first statement is clear. For the first equation of the second part, from I ⊆

I(Z(T )) it follows Z(T ) ⊇ Z(I(Z(T ))). On the other hand, let P ∈ Z(T ) be fixed and let

f ∈ I := I(Z(T )) a generic element, then f(P ) = 0 by definition of I(Z(T )); as this is true

for all f ∈ I(Z(T )), then P ∈ Z(I) = Z(I(Z(T ))) and this shows Z(T ) ⊆ Z(I(Z(T ))).

Analogously, for the second, from S ⊆ Z(I(S)) it follows I(S) ⊇ I(Z(I(S))). On the other

hand, let f ∈ I(S) be fixed and let P ∈ V := Z(I(S)) a generic element, then f(P ) = 0 by

definition of Z(I(S)); as this is true for all P ∈ Z(I(S)), then f ∈ I(V ) = I(Z(I(S))) and this

shows I(S) ⊆ I(Z(I(S))). �

This shows that the pair of "opposite" maps Z and I forms a Galois connection ([Bor94,

3.1.6.m], [Mac98, IV.5], [Eis95, Ex. 1.8]).

2.12.2. Example. — Note also that, for K = L = R and n = 1, it is IRR (ZR
R (X2 + 1)) =

IRR (∅) = K[X] while ICR (ZC
R (X2 + 1)) = ICR ({−i, i}) = (X2 + 1). This shows that if L is not

algebraically closed the composite I ◦Z can behave badly. Moreover, (X2 + 1) is a maximal

ideal of R[X] whose extension to C[X] is no longer such: (X2 + 1)C[X] = (X + i) ∩ (X − i) =

(X + i)(X − i), and neither (X + i) ⊆ (X2 + 1) nor (X + i) ⊆ (X2 + 1), hence (X2 + 1)C[X] is

not a prime ideal of C[X].

We already noticed that obviously S ⊆ Z(I(S)). Actually Z(I(S)) is the smallest Zariski close

subset of AnL containing S, i.e. its (Zariski) closure.

2.12.3. Proposition (closure operator). — For every S ⊆ AnL we have:

S
Z

= Z(I(S)) = {P ∈ AnL | f(P ) = 0 for every f such that f|S ≡ 0}.

Therefore, the composite map Z ◦I from AnL to itself is the closure operator of the Zariski

topology on AnL relative to K.
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Proof. — If Z(I) is a Zariski closed subset containing S, from S ⊆ Z(I) we get I(S) ⊇ I(Z(I)),

and hence Z(I(S)) ⊆ Z(I(Z(I))) = Z(I). This shows that any Zariski closed subset containing

S contains also the Zariski closed subset Z(I(S)), hence this last is the (Zariski) closure of S. �

2.12.4. Remark: I is injective on algebraic set. — In particular, this means that for

any K-algebraic set V ⊆ AnL we have Z(I(V )) = V , and therefore I is an injective map when

restricted to K-algebraic sets of AnL.

2.12.5. Remark. — Note that, tautologically, I(S
Z

) = I(Z(I(S))) = I(S) for any S ⊆ AnL.

2.12.6. Remark. — If L is infinite, then AnL is irreducible ([Kun85, Ch. I, Rules 1.8]), while

it’s a discrete topological space if L is finite ([Kun85, Ch. I, Ex.3, Ex. 6]).

2.13. "Pathologies" over non algebraically closed fields

2.13.1. Example. — The ideal I := (X2 +1) is prime ideal in R[X] (actually a maximal ideal,

as the quotient R[X]/(X2 + 1) ∼= C is a field), but its set of real zeros is empty: ZR
R (X2 + 1) = ∅

(which is not considered an irreducible space) and IRR (ZR
R (X2 + 1)) = IRR (∅) = R[X] which is

not a prime ideal.

2.13.2. Example. — A less basic example could be anything like:

p := ((X − a)2(X − b)2 + Y 2) ⊆ R[X,Y ],

with a 6= b in R, which is necessarily a prime ideal because ([Lan02, II, 5]) the polynomial

f(X,Y ) = (X − a)2(X − b)2 + Y 2 is irreducible in the unique factorization domain R[X,Y ].

Else, it would necessarily split as (Y + u(X))(Y + v(X)) with u(X), v(X) ∈ R[X] of degree one.

By comparison, it must be v(X) = −u(X), hence we would have f(X,Y ) = Y 2 − u(X)2, which

is clearly false as f can only take non negative values, being a sum of squares. On the other

hand,

ZR
R (p) = ZR

R (f(X,Y )) = {(a, 0), (b, 0)} = ZR
R (X−a, Y )∪ZR

R (X−b, Y ) = ZR
R (m(a,0))∪ZR

R (m(b,0))

is not irreducible. One can show that IRR (ZR
R (p)) = ((X − a)(X − b), Y ) = m(a,0) ∩m(b,0), which

is not a prime ideal because X − a 6∈ IRR (ZR
R (p)) and X − b 6∈ IRR (ZR

R (p)), but (X − a)(Y − b) ∈

IRR (ZR
R (p)).
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2.13.3. Remark. — These kind of phenomena are less unexpected than one could think.

Indeed we already mentioned (cf. footnote to 2.4.5) that if L is not algebraically closed then

any algebraic subset of AnL, of whatever nature, as a set of points, is the zero locus of a single

polynomial from L[X], i.e. it is an hypersurface (in the classical language of Algebraic Geometry).

That is, for every I ideal of L[X] there exists a polynomial f ∈ L[X] (not unique, in general)

such that ZLL (I) = ZLL (f). Sometimes we can choose f to have special properties, for example

being irreducible in L[X] (as in the example above), in this case the principal ideal (f) is prime

by factoriality of L[X]. This is a huge source of so called "pathologies" of algebraic geometry

done at set-theoretic level on non algebraically closed fields. See also 2.18. This cannot happen

if L is algebraically closed (see 2.14.3).

2.14. Hilbert’s Nullstellensatz

2.14.1. The I-Z correspondence. — If we restrict I from K-algebraic sets of AnL to radical

ideals of K[X] we then get a strictly decreasing map. Thus, so far we have two opposite,

inclusion-reversing, maps

{K-algebraic subsets of AnL}
Z←−−−−→
I
{radical ideals of K[X1, . . . , Xn]}

such that I ◦Z(I) ⊇ I and Z ◦I(V ) = V . In particular, I (restricted to K-algebraic sets),

having a left inverse, is necessarily injective (and Z is, obviously, surjective onto K-algebraic

sets), which means that any K-algebraic set V is always completely identified by its vanishing

ideal I(V ).

2.14.2. Remark: I ◦Z 6= Id in general.— We noticed above that IRR (ZR
R (X2 + 1)) = R[X],

but even if we take L = K = C yet ICC (ZC
C (Xn)) = ICC (ZC

C (X)) = (X) ⊆ C[X] for every n ∈ N+,

though in the first case the starting ideal ((X2 + 1) in R[X]) is even a prime ideal. Hence the

first composite usually differ from the identity map. In the first example the issue is due to the

fact that R is not an algebraically closed field, while in the second example the point is that the

ideals (Xn), with n ∈ N, n ≥ 2, are not radical. It naturally raises the question under which

condition, if any, this pair of maps is a bijection. This is the case if L is an algebraically closed

field, this result is one of the many equivalent forms of the fundamental Hilbert’s Nullstellensatz.
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2.14.3. Theorem (Hilbert Nullstellensatz). — Let L be a field, the following facts are

equivalent:

a) The field L is an algebraically closed.

b) For every n ∈ N+ the only maximal ideals of L[X1, . . . , Xn] are those corresponding to

L-rational points of AnL, i .e. the map

P = (a1, . . . , an) ∈ AnL 7→ (X1 − a1, . . . , Xn − an) ∈ {maximal ideals of L[X1, . . . , Xn]}

is bijective.

c) For every n ∈ N+ and every subfield K of L, if I is an ideal of K[X1, . . . , Xn] then

ZLK(I) = ∅ ⇔ 1 ∈ I;
d) For every n ∈ N+ and every subfield K of L, If J is any ideal of K[X1, . . . , Xn], then

ILK(ZLK(J)) =
√
J ;

e) For every n ∈ N+ and every subfield K of L, the assignment

ILK : {K-algebraic sets of AnL} −→ {radical ideals of K[X1, . . . , Xn]}, V 7→ ILK(V )

defines a bijection of the set of all K-algebraic sets V ⊆ AnL onto the set of all ideals I of

K[X1, . . . , Xn] such that I =
√
I, with inverse the map

ZLK : {radical ideals of K[X1, . . . , Xn]} −→ {K-algebraic sets of AnL}, I 7→ ZLK(I);

in this bijection irreducible algebraic sets correspond to prime ideals, and vice-versa.

Proof. — Everything can be found, though in a less compact form, for example among many

others, in [Kun85, Ch. 1, Sec. 3] as well as in [KR00, 2.6]. I will sketch a path of proof giving

the exact references to [KR00].

a)⇒ b) is [KR00, Prop. 2.6.11] (with I = (0)).

b) ⇒ c) is [KR00, Thm. 2.6.13] (where in the proof it is used b) together with 2.1.4 and the

Noetherianity of the polynomial ring).

c) ⇒ d) is [KR00, Thm. 2.6.12] (where d is deduced from c) by means of the so called

"Rabinowitsch trick").

d)⇒ e) In the given situation, by 2.12.3 we have Z ◦I = Id on K-algebraic subsets. Thanks to

d), if I is a radical ideal of K[X1, . . . , Xn] we get also I ◦Z(I) =
√
I = I, that is I ◦Z = Id on

radical ideals. Hence the two maps are reciprocal inverse. As an algebraic set V is irreducible if

and only if its vanishing ideal I(V ) is prime also the last statement clear.
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e)⇒ a) To prove that L is algebraically closed we need to show that every univariate polynomial

f(X) ∈ L[X] of positive degree has a root in L, i.e. ZL(f) 6= ∅. If, by contradiction,

Z(f) = ∅ = Z(1), then thanks to e) we get
√

(f) = I(ZL(f)) = I(∅) = (1) and so 1 ∈ (f). But

this is impossible by degree reasons. �

2.14.4. Corollary. — Let L be a algebraically closed field, and let I be an ideal

of K[X1, . . . , Xn] (so that ZLK(I) ⊆ AnL is a K-algebraic set). Then K[ZLK(I)]L ∼=
K[X1, . . . , Xn]/

√
I.

Proof. — From Hilbert Nullstellensatz ILK(ZLK(I)) =
√
I, the result follows then by 2.11.1. �

2.14.5. Corollary. — Let L be a algebraically closed field, and let V = Z(I) ⊆ AnL and

W = Z(J) ⊆ AmL two K-algebraic sets. Let Φ: V −→ W be a K-regular map induced by

F = (f1, . . . , fm) ∈ K[X1, . . . , Xn]m. Then the vanishing ideal of the graph of Φ is

I(ΓΦ) =
√
IK[X,Y ] + (y1 − f1(X1, . . . , Xn), . . . , ym − fm(X1, . . . , Xn)) ⊆ K[X,Y ],

and I(Φ(V )) = (
√
IK[X,Y ] + (y1 − f1, . . . , ym − fm) ) ∩K[Y ], where K[X] = K[X1, . . . , Xn]

and K[Y ] = K[Y1, . . . , Ym].

Proof. — It immediately follows from 2.11.6 b) as, by Hilbert Nullstellenstz, I(V ) =
√
I. �

2.14.6. Corollary. — Let L be an algebraically closed field, and let V = Z(I) ⊆ AnL and

W = Z(J) ⊆ AmL two K-algebraic sets If Φ: V −→ W is a K-regular map induced by

F = (f1, . . . , fm) ∈ K[X]m, then, for any ideal I ′ ⊆ K[X1, . . . , Xn] containing
√
I, we have

Φ(Z(I ′))
Z

= Z(Φ∗−1(I ′)) and

I(Φ(Z(I ′))
Z

) = I(Φ(Z(I ′))) = (
√
I ′K[X,Y ] + (y1 − f1, . . . , ym − fm)) ∩K[Y ].

Proof. — From 2.11.6 a), with S = Z(I ′), Hilbert Nullstellensatz, and 1.9.5 k), we have

Φ(Z(I ′))
Z

= Z(Φ∗−1(I(Z(I ′)))) = Z(Φ∗−1(
√
I ′)) = Z

(√
Φ∗−1(I ′)

)
= Z(Φ∗−1(I ′)).

The first equality in the second statement is clear (cf. 2.12). Then, by Hilbert Nullstellensatz

and 2.11.6 b) we get I(Φ(Z(I ′))) = (
√
I ′K[X,Y ] + (y1 − f1, . . . , ym − fm) ) ∩K[Y ] �
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2.14.6.1. Critical example. — Let L = R, K = Q and V = R2, W = R be Q-algebraic

sets. We have a Q-regular dominant map pr1 : V −→ W, (a1, a2) 7→ a1 which induces the ring

injection pr∗1 : Q[W ] = Q[Y ] ↪−→ Q[V ] = Q[X1, X2], f(Y ) 7→ f(X1). Let I := (X1, X
2
2 + 1) in

Q[X1, X2], then ZR
Q(I) = ∅ ⇒ pr1(ZR

Q(I))
Z

= ∅. On the other hand,

pr∗1
−1(I) = {f(Y ) ∈ Q[Y ] | f(X1) ∈ I} = (Y ) ⇒ ZR

Q(pr∗1
−1(I)) = {0} ) ∅.

Therefore the hypothesis on L in 2.14.6 is essential.

2.15. Irreducible components over an algebraically closed field

If L is algebraically closed, and I is a radical ideal, the two decompositions mentioned in 2.8.2

and 2.8.3 do coincide. That is, if I = Q1∩· · ·∩Qr is a minimal primary decomposition of I with

Qi pi-primary ideals and V = ZLK(I) = V1 ∪ · · · ∪ Vs is the decomposition of V into irreducible

components Vi, then r = s and (up to reordering) ZLK(pi) = Vi for i = 1, · · · , r.
Indeed, starting from I = Q1 ∩ · · · ∩Qr and taking its zeros we get

V = ZLK(Q1) ∪ · · · ∪ ZLK(Qr) = ZLK(p1) ∪ · · · ∪ ZLK(pr) = V1 ∪ · · · ∪ Vr

where, now, all the Vi = ZLK(pi) are irreducible because, thanks to Nullstellensatz, their vanishing

ideals are all prime: ILK(Vi) = ILK(ZLK(pi)) =
√
pi = pi. As we started from a minimal primary

decomposition we don’t have repetitions of Vi and as I is a radical ideal there are no embedded

primes, therefore the irreducible Vi are maximal, and hence they are the irreducible components

of V = ZLK(I).

2.15.1. Critical Example: I not radical. — If I is not radical the result does not hold.

For I = (XY, Y 2) (Z(I) = {Y = 0}) a minimal primary decomposition is I = (X,Y )2 ∩ (Y ),

yielding Z(I) = Z((X,Y )2)∪Z(Y ) = {(0, 0)} ∪ {(a, 0) | a ∈ K} which is not the decomposition

of V = Z(I) into its irreducible components. Indeed V has only one irreducible component,

Z(Y ), while the ideal I has two associated prime, one of which is embedded (the maximal ideal

(X,Y )). This is due to the fact that I is not a radical ideal: Y 2 ∈ I but Y 6∈ I.

2.15.2. Critical Example: L not algebraically closed. — If L is not algebraically closed

the result does not hold. Let L = K = R, and I := ((X2 − 1)2 + X2) ⊆ R[X,Y ]. It is a
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prime ideal of R[X,Y ] because f(X,Y ) := (X2−1)2 +Y 2 is an irreducible (11) polynomial in the

unique factorization domain R[X,Y ]. Being I a prime ideal of R[X,Y ], it coincides with its own

minimal primary decomposition, while Z(I) = {(−1, 0), (1, 0)} = Z((X + 1, Y ))∪Z((X − 1, Y ))

has two irreducible components.

2.16. Removing K-algebraic sets

In applications, we can be interested in subsets of AnL which are defined not only by polynomial

equations, but rather, by a combination of polynomial equations and polynomial inequations

(and, over R, also inequalities); in other words we are interested in set difference of varieties:

{P ∈ ANL | f1 = · · · = fr = 0 ∧ g1 · · · gs 6= 0} = Z(I) \ Z(J) = V \ U

where I := (f1, . . . , fr), J := (g1, . . . , gs) ⊂ K[X], V = Z(I) and U = Z(J).

2.16.1. Remark. — As, for example, Df = AnL \Z(f) = Z(0) \Z(f) it is clear that this kind

of subset, V \ U , is not a K-algebraic sets of AnL in general (at least set-theoretically), but we

can nonetheless consider its Zariski closure: V \ UZ = Z(I(V \ U)).

Things go smoothly for vanishing ideals, in fact, the following result holds true over any field.

2.16.2. Proposition. — If V , U are K-algebraic subsets of AnL then I(V ) : I(U) = I(V \U).

Proof. — If f ∈ I(V ) : I(U) (that is f I(U) ⊆ I(V )) and P ∈ V \ U (that is v(P ) = 0 for any

v ∈ I(V ) and there exists u ∈ I(U) such that u(P ) 6= 0), then (fu)(P ) = f(P )u(P ) = 0 because

fu ∈ I(V ), but as u(P ) 6= 0 it must be f(P ) = 0. Hence f ∈ I(V \ U). For the converse: let

f ∈ I(V \U) and let u ∈ I(U), we need to show fu ∈ I(V ). Consider the obvious decomposition

V = (V \ U)
⋃

(V ∩ U), and let P ∈ V . If P ∈ V \ U then (fu)(P ) = f(P )u(P ) = 0 because

f ∈ I(V \U), if instead P ∈ V ∩U ⊆ U then (fu)(P ) = f(P )u(P ) = 0 because u ∈ I(U); hence

fu ∈ I(V ). �

11. Indeed, thinking f(X,Y ) ∈ (R[X])[Y ] as a degree two monic polynomial, it should split as (Y + a(X))(Y +

b(X)) with a(X), b(X) ∈ R[X]. Expanding out and comparing coefficients of same degree, one get the relations

a(X) + b(X) = 0 and a(X)b(X) = (X2 − 1)2. The last one implies that a(X) and b(X) assume the same sign

on each real value, while from the first they must be opposite. Hence we would get a(X) = b(X) = 0, which

eventually gives a contradiction.
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On the other hand, at the level of point sets, things depend on the property of the field extension

K ⊆ L.

2.16.3. Proposition. — Let I and J be ideals of K[X], then

a) Z(I) \ Z(J) ⊆ Z((I : J∞));

b) Z(I) \ Z(J)
Z ⊆ Z((I : J∞));

c) if I is a radical ideal then Z(I) \ Z(J) ⊆ Z((I : J)) and Z(I) \ Z(J)
Z ⊆ Z((I : J)).

Proof. — a) We actually prove that Z(I) \Z(J) ⊆
⋂
k∈N+

Z((I : Jk)) = Z((I : J∞)) ⊆ Z(I). If

P ∈ AnL is such that f(P ) = 0 for each f ∈ I and g(P ) 6= 0 for some g ∈ J , and if h ∈ (I : Jk)

(i.e. hJk ⊆ I), as hgk ∈ I and g(P ) 6= 0, we have 0 = (hgk)(P ) = h(P )g(P )k in L then h(P ) = 0.

As this holds true for any h ∈ (I : Jk) and for any k ∈ N+, then P ∈ Z((I : J∞)). The last

inclusion follows by the inclusion-reversing property of Z applied to the I ⊆ (I : J∞).

b) It follows from a) as I ⊆ (I : J∞) and Z((I : J∞)) is Zariski closed.

c) They follow from a, b and 1.9.7 c), by which (I : J∞) = (I : J) as I is radical. �

2.16.4. Critical Example: L not algebraically closed. — The inclusion in b) of 2.16.3 may

be strict. Indeed, taking, as in 2.13.2, K = L = R, and I := ((X2−1)2 +Y 2), J := (X+1) ideals

in R[X,Y ], in A2
R we find: V = Z(I) = {(−1, 0), (1, 0)} and U = Z(J) = {(−1, a) | a ∈ R},

hence V \ U = {(1, 0)} = Z(I) \ Z(J)
Z
. While, being I a prime ideal such that (X + 1)t 6∈ I

for every t ∈ N, (I : J∞) = I, hence Z((I : J∞)) = V . This shows that, if L is not algebraically

closed, then Z((I : J∞)) may not be the smallest (Zariski) closed subset containing Z(I) \ Z(J)

(thereby disproving a claim in [KO13, Comment to Thm. 2.1]). Again this is a "pathology" of

non algebraically closed fields.

2.17. Removing K-algebraic sets: L an algebraically closed field

Everything works smoothly over algebraically fields, thanks to Hilbert Nullstellensatz. A second,

more geometric proof (cf. 2.17.2), of the following will be based on the comparison (cf.2.15)

between minimal primary decomposition and minimal irreducible decomposition over an alge-

braically closed field.
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2.17.1. Proposition. — If L is algebraically closed, then for any pair of ideals I, J ⊆ K[X]

we have:

a) I(Z(I) \ Z(J)) =
√

(I : J∞);

b) Z(I) \ Z(J)
Z

= Z((I : J∞));

c) if I is a radical ideal then I(Z(I) \ Z(J)) = (I : J) and Z(I) \ Z(J)
Z

= Z((I : J)).

Proof. — a) To show "⊇", as any vanishing ideal is radical, it’s enough to show that we have

(I : J∞) ⊆ I(Z(I)\Z(J)), and from 2.16.2 it suffices to show that f I(Z(J)) ⊆ I(Z(I)) for each

f ∈ (I : J∞). So let’s assume that g ∈ I(Z(J)) and there exists t ∈ N+ such that fJ t ⊆ I, we

need to show that fg ∈ I(Z(I)). By Hilbert’s Nullstellensatz I(Z(J)) =
√
J , hence there exists

k ∈ N+ such that gk ∈ J and so fgmax{k,t} ∈ fJ t ⊆ I ⊆ I(Z(I)) implies (fg)max{k,t} ∈ I(Z(I)),

but I(Z(I)) is a radical ideal, therefore fg ∈ I(Z(I)); we conclude that f ∈ Z(I) \ Z(J). Let’s

now consider the "⊆" part. From 2.16.3 we get Z(I) \ Z(J) ⊆ Z(I : J∞), applying I we thus

get I(Z(I) \ Z(J)) ⊇ I(Z(I : J∞)) =
√

(I : J∞), where the last equality is, again, Hilbert’s

Nullstellensatz.

b) By 2.12.3 and part a) above, we have:

Z(I) \ Z(J)
Z

= Z(I(Z(I) \ Z(J))) = Z(
√

(I : J∞)) = Z((I : J∞))

c) As I is radical, from 1.9.7 c) we get (I : J∞) = (I : J) and (I : J) itself is a radical ideal,

hence by a) we conclude I(Z(I) \ Z(J)) =
√

(I : J∞) =
√

(I : J) = (I : J). Then, 2.12.3 and

the previous identity yield Z(I) \ Z(J)
Z

= Z(I(Z(I) \ Z(J))) = Z((I : J)). �

2.17.2. A second proof of b). — We now give an other proof of 2.17.1 b) exploiting primary

decomposition. Notice that, once b) is established, then a) follows just by taking the vanishing

ideals and applying the Nullstellensatz, together with the already mentioned trivial fact that

I(S
Z

) = I(S).

Proof. — From 2.15, we have I = Q1 ∩ · · · ∩Qr (minimal primary decomposition of I with Qi
pi-primary ideals) and V = ZLK(I) = V1∪· · ·∪Vr (minimal irreducible decomposition of V ) with

Vi = Z(Qi) and I(Vi) =
√
Qi = pi for every i = 1, · · · , r. Then we find (as the union is finite)

Z(I) \ Z(J)
Z

=
⋃
i=r

Vi \ Z(J)
Z

=
⋃
i=r

Vi \ Z(J)
Z

=
⋃
i=r

Z(Qi) \ Z(J)
Z
.

Hence we start by considering the case I = Q is a p-primary ideal and V = Z(Q) is irreducible

(we have, by Nullestellensatz I(V ) =
√
Q = p). Now V \ Z(J) is a Zariski open subset of V .
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But V is irreducible, hence V \ Z(J)
Z

= V as soon as V \ Z(J) 6= ∅, which is equivalent to

V 6⊆ Z(J). Hence

V \ Z(J)
Z

=

 ∅ ⇔ V ⊆ Z(J)

V ⇔ V 6⊆ Z(J)

But, by the Nullstellensatz, Z(Q) ⊆ Z(J) ⇔ I(Z(Q)) ⊇ I(Z(J)) ⇔ p =
√
Q ⊇

√
J ⇔ p ⊇ J.

Hence, by 1.10.6, (Q : J∞) = (1), and thus V \ Z(J)
Z

= Z((Q : J∞)) if V ⊆ Z(J). If instead,

V \ Z(J)
Z

= V , then V 6⊆ Z(J). Again, by the Nullstellensatz, I(V ) = p 6⊇
√
J , and therefore

p 6⊇ J . Thus, again by 1.10.6, (Q : J∞) = Q, and therefore V \ Z(J)
Z

= Z((Q : J∞)) if

V 6⊆ Z(J). Now, returning to the general case, we can split the previous decomposition as

Z(I) \ Z(J)
Z

=
⋃

{i|Vi⊆Z(J)}
Z(Qi) \ Z(J)

Z ∪
⋃

{i|Vi 6⊆Z(J)}
Z(Qi) \ Z(J)

Z
=

⋃
{i|Vi 6⊆Z(J)}

Vi.

On the other hand

Z((

r⋂
i=1

Qi : J∞)) = Z(

r⋂
i=1

(Qi : J∞)) =

r⋃
i=1

Z((Qi : J∞))

=
⋃

{i|pi⊇J}
Z((Qi : J∞)) ∪

⋃
{i|pi 6⊇J}

Z((Qi : J∞))

=
⋃

{i|pi 6⊇J}
Z(Qi).

As, by Nullstellensatz, Vi 6⊆ Z(J)⇔ pi 6⊇ J , and Z(Qi) = Vi for each i = 1, · · · , r, the argument

is complete. �

2.17.3. Remark: geometric interpretation of the second proof. — This argument

clearly shows that, over an algebraically closed field, the closure of the set difference V \ U ,

of two K-algebraic sets V and U , is the union of those irreducible component of V which are not

completely contained in U .

2.17.4. Critical Example: L not algebraically closed. — The following example shows

that the hypothesis on L is essential, the result in 2.17.1 is, in general, false over non algebraically

closed fields. To deal with that case we need a deeper understanding of the composite I ◦Z
(see 2.18). As in Example 2.13.2, let L = K = R, I := (X2(X − 1)2 + Y 2) (prime) ideal

of R[X,Y ] and J := (X − 1). The real loci in A2
R are V = ZR(I) = {(0, 0), (1, 0))}, two

points, and U := ZR(J) = {X = 1}, a line. Clearly V \ U = {(0, 0)} (Zariski closed), hence

IR(V \ UZ) = IR((0, 0)) = (X,Y ). Let’s compute
√

(I : J∞) and compare the result with
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IR(V \ UZ). Note that, as I is prime we have the following two facts: i) it is a radical ideal,

hence (I : J∞) = (I : J) is a radical ideal (see 1.9.7 c)) and moreover ii) (I : J) = I whenever

J 6⊆ I (see 1.7.4 h)). As X − 1 6∈ (X2(X − 1)2 + Y 2) we get
√

(I : J∞) = (I : J) = I, but then√
(I : J∞) = I ( IR(ZR(I)\ZR(J)) = (X,Y ), contrary to what expected from 2.17.1 a). Let’s

check what happens over C:

V C := ZC(I) = ZC((X(X−1)+iY )(X(X−1)−iY )) = ZC(Y −iX(X−1))∪ZC(Y +iX(X−1))),

decomposes as a union of two (infinite complex) curves meeting in the two real points

{(0, 0), (1, 0)}, and UC := ZC(J) = {X − 1 = 0} = {(1, z) | z ∈ C} is a (complex) line. Clearly,

again, V C ∩ UC = {(1, 0)}, but now V C \ UC = V C \ {(1, 0)} is an infinite set which is not even

a Zariski closed one. Though, it is clear that V C \ UCZ = V C \ {(1, 0)}
Z

= V C, which is now

coherent with 2.17.1 a) and the previous colon computation
√

(I : J∞) = I. Indeed

IC(V C \ UCZ) = IC(V C) = IC(ZC(I)) =
√
I = I (as I is prime, for last equality).

2.18. Real Nullstellensatz

2.18.1. Proposition. — Let L be a real field and I an ideal of K[X], then

a) ILK(ZLK(I)) is a real ideal and R
√
I ⊆ ILK(ZLK(I));

b) ZLK( R
√
I) = ZLK(I).

Proof. — a) If f2
1 + · · · + f2

r ∈ I(Z(I)) with fi ∈ K[X], then f2
1 (P ) + · · · + f2

r (P ) = 0 for all

P ∈ Z(I). As L is a real field, it must be fi(P ) = 0 for all i = 1, · · · , r, and for all P ∈ Z(I).

This means fi ∈ I(Z(I)) for all i = 1, · · · , r. Since I ⊆ ILK(ZLK(I)) then R
√
I ⊆ ILK(ZLK(I)).

b) As I ⊆ R
√
I, it is ZLK( R

√
I) ⊆ ZLK(I). On the other hand, let P ∈ ZLK(I) and f ∈ R

√
I. Since

f2m + σ ∈ I for some m ∈ N and σ ∈
∑
K[X](2), then f2m(P ) + σ(P ) = 0. As f2m(P ) is a

square and σ(P ) is a sum of squares, each summand of f2m(P ) + σ(P ) has to be zero, hence

f2m(P ) = 0 and thus f(P ) = 0. This shows that ZLK( R
√
I) ⊇ ZLK(I) also, and therefore one

concludes ZLK( R
√
I) = ZLK(I). �

The references for the following are [Kri64], [Dub70], [Ris70], [Lam84, Thm. 6.7], [BCR98,

Cor. 4.1.8].
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2.18.2. Theorem (Real Nullstellensatz (Krivine-Dubois-Risler)). — Let L be a real

field, the following facts are equivalent:

a) The field L is a real-closed.

b) For every n ∈ N+ the only real maximal ideals of L[X1, . . . , Xn] are those corresponding to

L-rational points of AnL, i .e. the map AnL −→ {real maximal ideals of L[X1, . . . , Xn]}

P = (a1, . . . , an) 7→ (X1 − a1, . . . , Xn − an) = ILL (P )

is bijective.

c) For every n ∈ N+ and every subfield K of L, if I is an ideal of K[X1, . . . , Xn] then

ZLK(I) = ∅ if and only if (1 +
∑
K≥0 ·K[X](2))∩ I 6= ∅, that is there are h1, . . . , ht ∈ K[X]

and non-negative elements µ1 . . . , µt ∈ K≥0 such that 1 + µ1h
2
1 + · · ·+ µth

2
t ∈ I.

d) For every n ∈ N+ and every subfield K of L, if J = (f1, . . . , fr) is any ideal of

K[X1, . . . , Xn], then

f ∈ ILK(ZLK(J)) ⇔ f2N +
t∑

j=1

µj h̃j(X1, . . . , Xn)2 =
r∑
i=1

g̃i(X1, . . . , Xn)fi,

for suitable h̃j , g̃i ∈ K[X1, . . . , Xn] and non-negative elements µ1 . . . , µt ∈ K≥0.

In particular, if K = L is a real-closed field then ILL (ZLL (J)) = R
√
J .

e) For every n ∈ N+ the assignment

ILL : {K-algebraic sets of AnL} −→ {real ideals of L[X1, . . . , Xn]}, V 7→ ILL (V )

defines a bijection of the set of all L-algebraic sets V ⊆ AnL onto the set of all ideals I of

L[X1, . . . , Xn] such that I = R
√
I, with inverse the map

ZLL : {real ideals of L[X1, . . . , Xn]} −→ {L-algebraic sets of AnL}, I 7→ ZLL (I);

in this bijection irreducible algebraic sets correspond to real prime ideals, and vice-versa.

Proof. — The proof will follow the line of the classical Hilbert Nullstellensatz as close as possible,

but the real case has some specific subtleties that need to be taken into account, therefore we

will give full details at each step.

a)⇒ b) The map P = (a1, . . . , an) ∈ AnL 7→ mP := (X1−a1, . . . , Xn−an) is well defined because

mP is a real maximal ideal of L[X1, . . . , Xn], indeed the factor ring L[X]/mP
∼= L is a real field,

and we showed in 2.10.2 that mP = ILL (P ) for any L-rational point of AnL. Moreover, the map

is clearly injective. We need to show that it is also surjective, i.e. that for every real maximal
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ideal m of L[X1, . . . , Xn] there exists a L-rational point P ∈ AnL such that m = I(P ). As m

is maximal, from the field theoretic version of the Nullstellensatz, 2.10.3, it follows that for

each i = 1, . . . , n the contracted ideal m ∩ L[Xi] is nonzero. As L[Xi] is a Euclidean domain,

by 1.4.4 and 1.5.21, the contraction is then a maximal ideal of L[Xi] and by 1.14.1 f) it is

also a real ideal, therefore m ∩ L[Xi] = (Xi − ai) for some ai ∈ L as L is a real-closed field (cf.

1.14.7). Therefore m contains (X1 − a1, . . . , Xn − an), as the latter is itself a maximal ideal we

get m = (X1 − a1, . . . , Xn − an) as required.

b)⇒ a) By definition 1.13.25, we need to show that if L′ is any real algebraic extension of L then

L′ = L. Let α ∈ L′ then we have the composite of real algebraic field extensions L ⊆ L(α) ⊆ L′.
Thus L(α) ∼= L[X]/Ker(evα), as L(α) is a real field we have that Ker(evα) = IL(α) is a

maximal ideal of L[X] which is also a real ideal. Hence, by b), there exists a ∈ L such that

Ker(evα) = (X − a). But then L(α) ∼= L[X]/Ker(evα) ∼= L, and being L(α) a finite dimensional

vector space on L, it must be L = L(α), that is α = a ∈ L. Therefore L′ = L and L is real-closed.

a) ⇒ c) Let us fix n ∈ N+, a subfield K of L and an ideal I ⊆ K[X]. Assume that I is not

disjoint from the (multiplicative) set SK := 1 +
∑
K≥0 ·K[X](2), hence there are polynomials

hj ∈ K[X] and non-negative coefficients µj ∈ K≥0 (for j = 1, . . . , t) such that 1 +
∑
µjh

2
j ∈ I.

We contend that then ZL(I) = ∅, else there is a P ∈ ZL(I) and then 1 +
∑
µjh

2
j (P ) = 0 in the

real field L, a contradiction. The converse is proved in [Kri64, Applications. I. Théorème, p.

311] making use also of Tarski’s Theorem ([Tar48], [Col75], [Col98], [Rob63]).

c) ⇒ d) We argue as is the already quoted [KR00, Thm. 2.6.12] with suitable modifications.

Let J = (f1, . . . , fr) be an ideal of K[X1, . . . , Xn]. The necessity part follows easily as L is real.

Let then f ∈ I(ZL(J)). If f = 0 the claim is trivial, hence assume f 6= 0 and consider the new

ideal

J ′ : = JK[X1, . . . , Xn, Xn+1] + (Xn+1f − 1)

= (f1(X1, . . . , Xn), . . . , fr(X1, . . . , Xn), Xn+1f(X1, . . . , Xn)− 1)

in the polynomial ring K[X1, . . . , Xn, Xn+1]. We claim that ZL(J ′) = ∅. By contradiction, let

P ′ = (P, an+1) ∈ ZL(J ′), with P ∈ AnL and an+1 ∈ L, then

fi(P ) = 0 for every i = 1, . . . , r and an+1f(P ) = 1.

Hence P ∈ ZL(J) and f(P ) 6= 0, which contradicts f ∈ I(ZL(J)). Therefore ZL(J ′) = ∅
as claimed, and by c) there must be h1, . . . , ht ∈ K[X1, . . . , Xn+1], non-negative elements
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µ1 . . . , µt ∈ K≥0 and polynomials g1, . . . , gr+1 ∈ K[X1, . . . , Xn+1] such that

1 +

t∑
j=1

µjhj(X1, . . . , Xn+1)2 =

r∑
i=1

gi(X1, . . . , Xn+1)fi + gr+1(X1, . . . , Xn+1)(Xn+1f − 1).

This relation holds also in the field K(X1, . . . , Xn+1), where it can be evaluated under the

substitution Xn+1 7→ 1
f , yielding

1 +

t∑
j=1

µjhj

(
X1, . . . , Xn,

1

f

)2

=

r∑
i=1

gi

(
X1, . . . , Xn,

1

f

)
fi.

If uj ∈ N, respectively vi ∈ N, is the degree of hj , respectively gi, with respect to Xn+1, and

N :=
∑t

j=1 uj +
∑r

i=1 vi, then multiplying both sides by f2N we get an identity

f2N +
t∑

j=1

µj h̃j(X1, . . . , Xn)2 =
r∑
i=1

g̃i(X1, . . . , Xn)fi,

with suitable h̃j , g̃i ∈ K[X1, . . . , Xn].

In particular, if K = L is real-closed, then each µj is a square in L and hence f ∈ K
√
J .

d) ⇒ e) In the given situation, by 2.12.3 we have Z ◦I = Id on K-algebraic subsets. Thanks

to d), if I is a real ideal of K[X1, . . . , Xn] we get also I ◦Z(I) = R
√
I = I, that is I ◦Z = Id on

real ideals. Hence the two maps are reciprocal inverse.

e)⇒ a) To show that L is real-closed we will check that it fulfills the conditions of 1.13.28 v).

Let f ∈ L[X] be an odd degree polynomial, then f has a zero α in a real-closed extension L′

of L by 1.13.28. Assume, by contradiction, that ZL(f) = ∅. Then 1 ∈ I(ZL(f)) = R
√

(f)

by e). Hence we have an equation 1 +
∑
hi(X)2 = f(X)g(X) with hi, g ∈ L[X] which yields

1 +
∑
hi(α)2 = 0 in the real field L′, which is an absurd.

Let a ∈ L \ {0} and assume ZL(X2 − a) = ∅ and ZL(X2 + a) = ∅, then X2 − a, X2 + a

are both irreducible in L[X] and by e) we have 1 ∈ I(ZL(X2 − a)) = R
√

(X2 − a) and 1 ∈

I(ZL(X2 + a)) = R
√

(X2 + a). As L is a real field, by 1.13.24 a), for every a ∈ L \ {0} we have

that at least one of the field extensions L(
√
a) ∼= L[X]/(X2 − a) or L(

√
−a) ∼= L[X]/(X2 − a)

is real, that is at least one of the ideals (X2 − a) or (X2 + a) of L[X] is a real ideal, which in

turns is equivalent to R
√

(X2 − a) = (X2 − a) or R
√

(X2 + a) = (X2 + a). Therefore, for every

a ∈ L it can’t be 1 ∈ R
√

(X2 − a) and 1 ∈ R
√

(X2 + a), that is a is a square in L or −a is a

square in L. Moreover, they can’t be both squares: indeed if a = b2 and −a = c2 with b, c ∈ L,
then 0 = b2 + c2 in L. As L is real, b = c = 0 and then a = 0. Therefore, for every a ∈ L \ {0}
exactly one of a, −a is a square in L. �
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2.18.3. Remark. — If L is real closed, then every non-negative element of L is a square, i.e.

L≥0 = L(2). Hence SL = 1 +
∑
L≥0 · L[X](2) = 1 +

∑
L[X](2) and so, taking K = L, condition

c) above simplifies as follows:

For every n ∈ N+ and every ideal I of L[X1, . . . , Xn] then

ZLK(I) = ∅ ⇔ (1 +
∑

L[X](2)) ∩ I 6= ∅,

that is there are h1, . . . , ht ∈ L[X] such that 1 + h2
1 + · · ·+ h2

1 ∈ I.
If K is not real closed the reference to K≥0 cannot be omitted.

2.18.4. Example. — (a) Let I := (X2 + 1) ∈ R[X], then R
√
I = I(Z(I)) = I(∅) = R[X] (cf.

1.13.32).

(b) Let I := ((X2−1)2+Y 2) ∈ R[X,Y ], then R
√
I = I(Z(I)) = I({(−1, 0), (1, 0)}) = (X2−1, Y ),

which, by the way, shows that (X2 − 1, Y ) is a real ideal (cf. 2.13.2).

2.18.5. Theorem. — Let L be a real-closed field. Let I be an ideal of L[X1, . . . , Xn], and let

p1, . . . , pr be its minimal primes. The ideal I is real if and only if I is radical and each ZL(pi)

has a nonsingular point.

Proof. — See [Lam84, Thm. 6.10] �

2.18.6. Proposition. — Let L be a real-closed field, K a subfield of L and f ∈ K[X1, . . . , Xn]

an irreducible polynomial. Then the following properties are equivalent:

i) The principal ideal (f) is real;

ii) (f) = ILK(ZLK(f));

iii) The polynomial f has a nonsingular zero in Ln (i.e. there is a P ∈ AnL such that f(P ) = 0

but ∂f
∂Xi

(P ) 6= 0 for some i);

iv) The sign of f changes on Ln (i.e. there are P,Q ∈ AnL such that f(P )f(Q) < 0);

v) dim(Z(f)) = n− 1.

Proof. — See [BCR98, Theorem 4.5.1]. �
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2.18.7. Corollary. — Let L be a real-closed field and f ∈ K[X1, . . . , Xn] be any non-constant

polynomial. Then the following properties are equivalent:

i) The principal ideal (f) is real;

ii) (f) = ILK(ZLK(f));

iii) f is a square-free product of irreducible indefinite (over K) polynomials.

Proof. — See [Lam84, Thm. 6.11], where f indefinite is used to mean that it changes sign on

Kn. The so called "Changing sign criterion", i.e. the equivalence i)⇔ iii), is a result of Dubois

and Efroymson (cf. [DE70]). �

2.18.8. Critical Example: f irreducible but not indefinite. — We already saw that

f = Y 2 + (X − a)2(X − b)2, with a, b ∈ R, although being irreducible, does not generate a real

ideal. This is coherent with the previous result, as f clearly violates 2.18.6 iv) (and it’s not

difficult to directly check that, of course, it violates 2.18.6 iii) too). It is also straightforward

to verify that R
√

(f) = (Y, (X − a)(X − b)) if a 6= b and R
√

(f) = (Y,X − a) if a = b (indeed: in

the first case R[X,Y ]/(Y, (X − a)(X − b)) ∼= R × R is a real ring, as well as in the second case

R[X,Y ]/(Y, (X − a)) ∼= R).

2.18.9. Critical Example: f indefinite but not irreducible. — We also note that the

hypothesis "f irreducible" is a necessary one. To find an example of reducible f satisfying 2.18.6

iii), iv) we could start from a product f = f1f2 with, at least f1 not proportional to f2, and

even better gcd(f1, f2) = 1, and not both of degree one and/or such that (f1) and (f2) are real

(in which case we would have: K[X]/(f) ↪−→ K[X]/(f1) × K[X]/(f2) real ring). Note that,

then, X2 − Y 2 = (X + Y )(X − Y ) cannot do the job. Hence, the easiest first candidate appears

to be the reducible polynomial f = X3 − Y 3 = (X − Y )(X2 + XY + Y 2) ∈ R[X,Y ]. But for

the irreducibility request, it satisfies 2.18.6 iii, iv) and v). We will give two proofs that its real

radical is bigger than (f), one is very quick but does not show directly a sum of squares in (f)

whose summands’ bases do not belong to (f), while the second does exactly that.

Proof. — Since (X3 − Y 3) = (X − Y )(X2 +XY + Y 2), as ideals of R[X,Y ], from 1.14.4 h) we

get: R
√

(X3 − Y 3) = R
√

(X − Y ) ∩ R
√

(X2 +XY + Y 2) = (X − Y ) ∩ (X,Y ) = (X − Y ). �

Proof. — To have a chance to find a sum of squares in (f) we have, at least, to find g ∈ R[X,Y ]

such that the product fg has constant non negative sign, hence we can take g = (X − Y )h with
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h a sum squares in R[X,Y ]. Let’s start with the obvious candidate g = X − Y (12):

(X3 − Y 3)(X − Y ) = X4 + Y 4 −XY 3 −X3Y

= (X − Y )4 + 4X3Y − 6X2Y 2 + 4XY 3 −XY 3 −X3Y

= (X − Y )4 + 3( X3Y − 2X2Y 2 +XY 3 )

= (X − Y )4 + 3(X3Y +X4 − 2X2Y 2 + Y 4 +XY 3−X4 − Y 4)

= (X − Y )4 + 3[(X2 − Y 2)2 +X3Y +XY 3−(X − Y )4 − 4X3Y + 6X2Y 2 − 4XY 3]

= (X − Y )4 + 3[(X2 − Y 2)2 − (X − Y )4 − 3( X3Y − 2X2Y 2 +XY 3 )],

and we notice that

X3Y − 2X2Y 2 +XY 3 = (X2 − Y 2)2 − (X − Y )4 − 3(X3Y − 2X2Y 2 +XY 3)

⇒ X3Y − 2X2Y 2 +XY 3 =
1

4
[(X2 − Y 2)2 − (X − Y )4].

Hence

(X3 − Y 3)(X − Y ) = −2(X − Y )4 + 3(X2 − Y 2)2 − 9

4
[(X2 − Y 2)2 − (X − Y )4]]

=
1

4
(X − Y )4 +

3

4
(X2 − Y 2)2 =

(
1

2
(X − Y )2

)2

+

(√
3

2
(X2 − Y 2)

)2

,

that is (f) 3 [(X −Y )2]2 + [
√

3(X2−Y 2)]2 = 4(X −Y )(X3−Y 3) a sum of squares in (f) whose

summands do not have bases belonging to (f). Therefore (f) is not a real ideal, despite f clearly

satisfies 2.18.6 iii), iv) . Moreover, being that R
√

(f) is a real ideal containing (f), it clearly must

be X−Y ∈ R
√

(f). But (X−Y ) is a real ideal and f ∈ (X−Y ), hence R
√

(X3 − Y 3) = (X−Y ).

�

2.19. Irreducible components over a real-closed field

If L is real-closed, and I is a real ideal, the two decompositions mentioned in 2.8.2 and 2.8.3

do coincide. That is, if I = Q1 ∩ · · · ∩ Qr is a minimal primary decomposition of I with Qi

pi-primary ideals and V = ZLK(I) = V1 ∪ · · · ∪ Vs is the decomposition of V into irreducible

components Vi, then r = s and (up to reordering) ZLK(pi) = Vi for i = 1, · · · , r (note moreover

12. Note that f and g are not, separately, symmetric functions of X,Y , but their product is.



2.20. REMOVING K-ALGEBRAIC SETS: L A REAL-CLOSED FIELD 103

that, as I is a real ideal, then each minimal prime pi =
√
Qi is now a real prime ideal (cf. 1.12.6

i)). Indeed, starting from I = Q1 ∩ · · · ∩Qr and taking its zeros we get

V = ZLK(Q1) ∪ · · · ∪ ZLK(Qr) = ZLK(p1) ∪ · · · ∪ ZLK(pr) = V1 ∪ · · · ∪ Vr

where, now, all the Vi = ZLK(pi) are irreducible because, thanks to 1.12.6 i) and the Real

Nullstellensatz, their vanishing ideals are (real) primes: ILK(Vi) = ILK(ZLK(pi)) = R
√
pi = pi. As

we started from a minimal primary decomposition we don’t have repetitions of Vi and as I is

a real ideal (hence also radical) there are no embedded primes, therefore the irreducible Vi are

maximal, and hence they are the irreducible components of V = ZLK(I).

2.19.1. Critical Example: I not real. — The two examples given before (cf. 2.15.1 and

2.15.2) show the necessity of the hypothesis also over a real-closed field. Let L = K = R. For

I := (XY, Y 2) ⊆ R[X,Y ] (as in 2.15.1) a minimal primary decomposition is I = (X,Y )2 ∩ (Y ),

yielding Z(I) = Z((X,Y )2)∪Z(Y ) = {(0, 0)}∪{(a, 0) | a ∈ K} which is not the decomposition of

V = Z(I) into its irreducible components. Indeed V has only one irreducible component, Z(Y ),

while the ideal I has two associated prime, one of which is embedded (the maximal ideal (X,Y )).

This is due to the fact that I is not a real ideal since it is not even a radical ideal: Y 2 ∈ I but

Y 6∈ I. The ideal I = p := ((X2−1)2 +X2) ⊆ R[X,Y ] (as in 2.15.2) is a prime ideal of R[X,Y ],

hence radical at least, but not a real one (as already seen f(X,Y ) = (X2−1)2 +X2 is irreducible,

but clearly R
√

(f) = (X, (X + 1)(X − 1)) ) (f)). Being p = (f) a prime ideal of R[X,Y ],

it coincides with its own minimal primary decomposition, while Z(p) = {(−1, 0), (1, 0)} =

Z((X + 1, Y )) ∪ Z((X − 1, Y )) has two irreducible components.

2.20. Removing K-algebraic sets: L a real-closed field

Let’s now state and prove a real analogous of 2.17.1, which is suitable to deal with the case

L = K = R.

2.20.1. Proposition. — If L is a real-closed field, then for any pair of ideals I, J ⊆ K[X] we

have:

a) I(Z(I) \ Z(J)) = R
√

(I : J∞);

b) Z(I) \ Z(J)
Z

= Z((I : J∞));

c) if I is a real ideal then I(Z(I) \ Z(J)) = (I : J) and Z(I) \ Z(J)
Z

= Z((I : J)).
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Proof. — a) Let’s consider the "⊆" part. From 2.16.3 we get Z(I)\Z(J) ⊆ Z(I : J∞), applying

I we thus get I(Z(I) \ Z(J)) ⊇ I(Z(I : J∞)) =
√

(I : J∞), where the last equality is Real

Nullstellensatz. To show "⊇", as any vanishing ideal is real by 2.18.1, it’s enough to show

that we have (I : J∞) ⊆ I(Z(I) \ Z(J)), and from 2.16.2 and 1.14.2 it suffices to show that

f I(Z(J)) ⊆ I(Z(I)) for each f ∈ (I : J∞). So let’s assume that P ∈ Z(I), g ∈ I(Z(J))

and there exists t ∈ N+ such that fJ t ⊆ I, we need to show that (fg)(P ) = 0. By Real

Nullstellensatz I(Z(J)) = R
√
J , hence there exists k ∈ N+ and a sum of squares σ ∈

∑
K[X]2

such that g2k +σ ∈ J and therefore f(g2k +σ)t ∈ fJ t ⊆ I ⊆ I(Z(I)). By the binomial theorem,

and the fact that non negative elements of L are squares, the polynomial (g2k + σ)t is itself a

sum of squares, as it is also f2kt(g2k + σ)t = ((fg)kt)2 + σ′ ∈ I(Z(I)) (with σ′ ∈
∑
K[X]2). As

I(Z(I)) is a real ideal, and recalling that every real ideal is also radical (see ??), it follows that

fg ∈ I(Z(I)).

b) By 2.12.3 and part a) above, we have:

Z(I) \ Z(J)
Z

= Z(I(Z(I) \ Z(J))) = Z( R
√

(I : J∞)) = Z((I : J∞)).

Note that also the "second proof" (see 2.17.2) of 2.17.1 b) can be adapted to this case with

slight modifications.

c) By ?? e), the analogous of the same proof of 2.17.1 c) works.. �

2.21. Summary formulas for the coordinate ring

2.21.1. Proposition. — The coordinate ring construction verifies the following properties:

a) K[S]L ∼= K[X1, · · · , Xn]/ ILK(S) is an affine reduced K-algebra, i.e. a finitely generated

K-algebra with no nilpotent elements, for every subset S of AnL;
b) K[S]L = K[S

Z
]L for every subset S of AnL;

c) K[AnL]L = K[X1, · · · , Xn] whenever L is an infinite field;

d) K[AnL]L = K[X1, · · · , Xn]/(Xq
1−X1, . . . , X

q
n−Xn) if L = Fq finite field with q = pk element

(p prime integer);

e) K[∅]L = (0) the zero ring;

f) If P is K-rational point of AnL, then K[P ]L ∼= K;

g) For every ideal I of K[X1, · · · , Xn] we have K[Z(I)]L ∼= K[X1, · · · , Xn]/ ILK(ZLK(I)).

h) If L is algebraically closed then K[ZLK(I)]L ∼= K[X1, · · · , Xn]/
√
I, for every ideal I of K[X].

k) If L is real-closed then K[ZLK(I)]L ∼= K[X1, · · · , Xn]/ R
√
I, for every ideal I of K[X].
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i) V is an irreducible K-algebraic set of AnL if and only if K[V ]L is a domain;

j) If S1 ⊆ S2 then K[S1]L ∼= K[S2]L/ IS2(S1) where IS2(S1) := {f ∈ K[S2] | f|S1
= 0}.

l) If P is a point of AnL whose coordinates all are algebraic over K, then K[P ]L ∼=
K[X]/ ILK(P ) is a subfield of L, also denoted K(P ), and K ⊆ K(P ) is a finite ex-

tension of fields, i.e. dimK K(P ) is finite;

m) K[∆AnL ]L = K[X,Y ]/dn = K[X1, . . . , Xn, Y1, . . . , Yn]/(X1−Y1, . . . , Xn−Yn) for every field

extension K ⊆ L;
n) If V = Z(I) ⊆ AnL, then K[V × AmL ]L = K[X,Y ]/ I(V × AmL ) = K[X,Y ]/ I(V )[Y ] ∼=

K[V ][Y1, . . . , Ym] for every field extension K ⊆ L;
o) If L is algebraically closed, V = Z(I) ⊆ AnL and W = Z(J) ⊆ AmL then ILK(V ×W ) =
√
I[Y ]+

√
J [X] and K[V ×W ]L ∼= K[X,Y ]/(

√
I[Y ]+

√
J [X]). If, moreover, K is a perfect

field then K[V ×W ]L ∼= K[X,Y ]/(
√
I[Y ] +

√
J [X]) ∼= K[V ]L ⊗K K[W ]L.

p) If L is real-closed, V = Z(I) ⊆ AnL and W = Z(J) ⊆ AmL then ILK(V × W ) =
R

√
R
√
I[Y ] + R

√
J [X] and K[V ×W ]L ∼= K[X,Y ]/( R

√
R
√
I[Y ] + R

√
J [X])

q) If F : V −→W is a polynomial map with coefficients in K between K-algebraic set, then F

induces a ring homomorphism in the opposite direction F ∗ : K[W ]L −→ K[V ]L, α 7→ α ◦ F
such that (IdV )∗ = IdK[V ]L and (G ◦ F )∗ = F ∗ ◦G∗.

r) If L is algebraically closed, K ⊆ H ⊆ L is a tower of field extensions, and V is a K-algebraic

set in AnL, then ILH(V ) =
√
ILK(V )H[Y ] and H[V ]L ∼= (H⊗KK[V ]L)red. If, moreover K is

a perfect field (e.g. if it is finite, or it has characteristic zero, or it is algebraically closed),

then H[V ]L ∼= H ⊗K K[V ]L.

s) If L is algebraically closed then K[Z(I) \ Z(J)]L = K[Z(I) \ Z(J)
Z

]L ∼= K[X]/
√

(I : J∞)

for every pairs of ideals I, J of K[X]. Moreover, if I is radical then K[Z(I) \ Z(J)]L ∼=
K[X]/(I : J).

t) If L is real-closed then K[Z(I)\Z(J)]L = K[Z(I) \ Z(J)
Z

]L ∼= K[X]/ R
√

(I : J∞) for every

pairs of ideals I, J of K[X]. Moreover, if I is real then K[Z(I) \ Z(J)]L ∼= K[X]/(I : J).

Proof. — This is essentially a summary, in terms of coordinate rings, of what developed so far.

In particular, g), h), l), o), r) and s) are consequences of Hilbert Nullstellensatz ( 2.14.3) and

hold true if we are dealing with zeros in an algebraically closed field. s) follows from 2.17.1. For

o) and r) we used 1.9.5 h) and o), see also [Kun85, Ch. 1, Rules 3.12].

Instead, k), p and t) need L to be real-closed (for example L = R) and follows from Dubois-Risler

Real Nullstensatz ( 2.18.2). For t) we used 2.20.1.
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More specifically, for p): using 2.10.7, Real Nullstellensatz, and 1.14.4 j) and o) we get

I(Z(I)×Z(J)) = R
√
I(Z(I))[Y ] + I(Z(J))[X] =

R

√
R
√
I[Y ] +

R
√
J [X]

The result now follows from k).

Similarly, for o), we have the canonical isomorphism

K[X,Y ]/(
√
I[Y ] +

√
J [X]) ∼= (K[X]/

√
I)⊗K (K[Y ]/

√
J).

If K is a perfect field, then the tensor product of two reduced K-algebras is still such ([Bos18,

7.3, Ex. 6]), hence
√
I[Y ] +

√
J [X] is already a radical ideal and then o) follows from h). For

perfect fields we refer to [Bos18, 3.6, Def. 3, Oss. 4]. �



CHAPTER 3

DYNAMICAL SYSTEMS

General references for this chapter are [BR05], [CHS10] [Kai80], [Kha02], [Isi95] and

[Isi99], [Nv90], [Son79b], [Son98], for control theory and dynamical system theory in the en-

gineering area, and [Arn92], [PS94], [PSV84], [Tes12], [Tur98], [War83] for the mathematical

and mathematical physics point of view.

3.1. Generalities on dynamical systems: the unforced case

3.1.1. Definition (dynamical system, state equation). — A (continuous time) dy-

namical system is a system whose state depends on time and it is modeled by one or more

ordinary differential equations. In general, we are thus interested in a system of n ordinary dif-

ferential equations, in normal form, of first order, with initial condition (Cauchy problem) under

hypotheses of existence and unicity: ẏ = f(t,y)

y(t0) = y0

where f = (f1, . . . , fn) is a vector value function of many real variables, defined (at least) on an

open subset Ω of Rn+1, often a "cylinder" of the form Ω = I×D, with I ⊆ R and D a connected

open subset of Rn (t0 ∈ I, y0 ∈ D). The equation ẏ = f(t,y) is called the state equation of

the system.

3.1.2. Definition (linear dynamical system). — We say that the above system is a linear

(dynamical) system if all components fi are linear functions, i.e. there exists a matrix-valued
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function A = A(t) ∈ Matn(R) such that

f(t,y) = A(t)y.

3.1.3. Definition (polynomial dynamical system). — We say that the above system is a

polynomial dynamical system if all components fi are polynomials with real coefficients, i.e.

fi = fi(Y1, . . . , Yn) ∈ R[Y1, . . . , Yn].

3.1.4. Definition (solutions of a dynamical system). — A solution, or integral curve,

of the above system is a (vector value) function

y : Iy −→ Rn

of one real variable, defined on a interval Iy ⊆ I (depending on y in general), such that it is

(t,y(t)) ∈ Ω and ẏ(t) = f(t,y(t)) for each t ∈ Iy, and y(t0) = y0.

3.1.5. Definition. — The graph of any such solution

Γy := {(t,y(t)) ∈ Ω | t ∈ Iy} ⊆ Ω ⊆ Rn+1

is said an integral curve of the ordinary differential equation ẏ = f(t,y), while its image

y(Iy) := {y(t) | t ∈ Iy} ⊆ Rn

is called orbit, or trajectory, or characteristic of the integral curve (or of the dynamical

system).

3.1.6. Definition (equilibrium points). — The constant solutions, if any, corresponding to

points y0 ∈ D ⊆ Rn such that f(t,y) = 0 for each t ∈ I, are said equilibrium points, or

critical (or also singular or stationary) points of the system. Any such solution correspond

to a point orbit of the system.
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3.1.7. Remark. — As it is known, the theory of first order normal ordinary differential

equations systems includes the case of scalar ordinary differential equations, in normal form,

of order n ∈ N+:

y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)).

Indeed, by the substitutions (change of variables)

y1 := y, y2 := y′ = y′1, . . . , yn := y(n−1) = y′n−1,

one gets

y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t))⇔



y′1 = y2

y′2 = y3

...

y′n−1 = yn

y′n = f(t, y1, y2, . . . , yn)

where the system has f(t, y1, y2, . . . , yn) := (y2, y3, . . . , yn, f(t, y1, y2, . . . , yn)), that is fn = f

and fi = yi+1 for i = 1, . . . , n− 1. Obviously f is polynomial if f is such.

The nth-order equation and the system are equivalent in the following sense: any real valued

function y which is a solution of the former "gives raise" to a solution y := (y, y′, . . . , y(n−1)) of

the latter by means of the above described change of variables. And, vice versa, any given vector

valued function y := (y1, y2, y3, . . . , yn) which is a solution of the latter identifies a solution

y := y1 of the former. In general, however a system of n equations of the first order cannot be

tracked back to a single equation of nth- order. The notion of a system is more general.

3.1.8. Typical hypotheses. — As in the present work we are mainly concerned with poly-

nomial dynamical systems, though too conservative to cover all applications ([BR05, Preface]),

we will generally assume that: f is continuous on Ω, locally Lipschitz continuous in y uniformly

wrt t. In this way we have local existence and unicity for the given Cauchy problem or, when f

is defined on a "strip" Ω = I × Rn with I a real interval, there continuous and locally Lipschitz

continuous in y uniformly wrt t in every strip [a, b]× Rn for every [a, b] ⊆ I, or having granted

the existence and unicity of local solutions that ||f || grows sublinearly in y uniformly wrt t, so to

have existence and unicity of globally defined solutions on the whole of I. In the aforementioned

cases, thanks to Gronwall’s Lemma, it holds moreover a Theorem of Kamke ([PSV84, Ch. 1,
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1.9]) on the continuous and uniformly continuous dependance of the solutions on initial data and

any parameters, as well as on the function f itself.

3.1.9. Geometric and cinematic interpretation. — A geometric interpretation of the

equation ẏ = f(t,y) is the following: trough the equation, to each point (t,y), thought of

as an "event" (given by "when" and "where"), it is associated the vector (1, ẏ) = (1,y), which

is tangent to the solution curve at that point. Therefore the equation determines a field of

directions in its domain and solve the equation means to find those curves that pass through the

points being tangent to their prescribed direction vectors. From a cinematic point of view, y can

be thought of as the time-position law of a particle and the vector field f(t,y) can be regard as

the "wind velocity" at time t and position y.

3.2. Autonomous system

3.2.1. Definition (autonomous system). — A dynamical system is said to be autonomous

if its differential equation is of the form

ẏ = f(y)

where the vector valued function f = f(t,y) = f(y) is independent on time.

3.2.2. Remark (autonomous linear system). — An autonomous linear system is one of

the form

ẏ = Ay

for some time-invariant real square matrix A ∈ Matn(R).

3.2.3. Remark. — This happens quite often in many models of natural laws (at least, some-

times, in first approximation). In this case f : Ω ⊆ Rn −→ Rn is a vector field on Rn, and
hence the solutions of the dynamical system can be thought of as its flow lines, that is curves

in Rn passing through y with velocity given by f(y), for each y ∈ Ω.
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3.2.4. Remark. — Every not autonomous equation ẏ = f(t,y) can always be thought of as

an autonomous one by means of the following coordinate change

z0 := t, zi := yi for i = 1, . . . , n

together with the "extra equation" ż0 = 1, so that

ẏ = f(t,y)⇔ ż = f∗(z)

where f∗ : Ω ⊆ Rn+1 −→ Rn+1 is defined by

f∗(z) := (1, f1(z0, z1, . . . ,n ), . . . , fn(z0, z1, . . . ,n )).

Therefore WLOG we can bound our attention to the study of autonomous systems.

3.2.5. Phase space, or state space, and phase curves. — If the equation ẏ = f(t,y)

models whatever process or phenomenon, any solution of it represents the evolution of the

modelled process or phenomenon as the independent variable t, often regarded ad a time, varies.

The vectors y(t) ∈ Rn of the corresponding orbit represent as "time" t varies the different

"phases" of that process. Hence, in the whole vector space Rn all "possible states" of a system

are represented, and therefore it is called phase space or state space. Besides, this is in

agreement with the cinematic-mechanic interpretation of a system coming from an autonomous

equations of the second order y′′(t) = f(y(t), y′(t)), as in classical mechanics, in which the "phase

space" is the space representing both the position and the momentum of a particle. Coherently,

if y = y(t) is a solution, then it is also called phase curve of the system ẏ = f(t,y).

3.2.6. Solutions structure for autonomous systems, phase portrait. — The structure

of the solutions of an autonomous dynamical system can be understood analyzing their orbits in

the connected Ω of the phase space Rn: under the stated hypotheses, Ω is covered by trajectories

of the system, necessarily disjoint, which can be classified in the following three classes ([Tes12,

6.3]):

a) Equilibrium points, corresponding to the constant solutions of the state equation. They

are given by the zeros of the vector field f(t,y).

b) Cycles, corresponding to the non-constant periodic solutions of the state equation. Their

orbits are given simple (i.e. with no self-intersections) closed curves inside Ω in the state

space.
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c) Open trajectories, corresponding to the non-periodic solutions of the state equation.

Their orbits are neither points nor cycles, but non-closed simple curves in Ω. They can

approach an equilibrium point or go to infinity. Sometimes, they can also spiral around a

closed orbit (limit cycle) form the inside or from the outside of it (in dimension two). In

dimension higher than two their behavior can be quite hard to grasp.

Moreover, there are no self-intersecting non closed orbits. The configuration of the system’s orbits

inside Ω is the phase portrait of the autonomous system. Hence it is a geometric representation

of the trajectories of the system in the state space.

3.2.7. Lie derivative: the derivative along a trajectory and first integrals. — In the

analysis of the solutions structure of a dynamical system are of crucial importance the concepts

of derivative along a trajectory, or Lie derivative, of a scalar field (i.e. a function)

E : Ω ⊆ Rn −→ R

of class C1 on Ω, and of first integral, or constant of motion for the system ([Arn92, Ch.

2, §2], [Kha02, 13.2], [PS94, Vol. 2, Ch. 4, Def. 3.2], [Tes12, 6.6], [War83, 2.24]).

a) The (Lie) derivative of E along the trajectories of the system ẏ = f(y) is defined as

LfE(y) = Ė(y) :=< ∇E(y),f(y) >,

that is

Ė(y) =< ∇E(y(t)),f(y(t)) >=< ∇E(y(t)), ẏ(t) >=
d

dt
E(y(t))

for each y ∈ Ω.

b) If Ė(y) = 0 for each y ∈ Ω, the field E is said to be a first integral (or a "constant of

motion") of the system.

3.2.8. Remark. — One finds that E is a first integral of the system if and only if each one of

its orbits is entirely contained in a unique fibre (level set) of E or, equivalently, if and only if E

is constant on each solution of the system ([PS94, Vol. 2, Ch. 4, Prop. 3.4]).
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3.2.9. The Lie derivative of a polynomial subset/ideal. — For future use let us note

the following construction, given a subset G of the polynomial ring R[W1, . . . ,Wn], and let

f = (f1; . . . ; fn) ∈ R[W1, . . . ,Wn]n be a polynomial vector field. Then we define the following

ideals of R[W1, . . . ,Wn]

L0
f (G) := (G), Lf (G) = L1

f (G) := (G∪{Lfp | p ∈ G}), . . . , Lsf (G) := ({Lrfp | r ∈ N, r ≤ s, p ∈ G}), . . .

then clearly:

1. each Lsf (G) is an ideal of R[W1, . . . ,Wn] (by definition);

2. for any subset G of the polynomial ring R[W1, . . . ,Wn] we have Lsf (G) = Lsf ((G));

3. L1
fL

s
f (G) = Ls+1(I) (by the algebraic properties of Lie derivatives);

4. (G) ⊆ L1
f (G) ⊆ · · · ⊆ Ls(G) ⊆ Ls+1(G) ⊆ · · · is an ascending chain of ideals in

R[W1, . . . ,Wn];

5. L∞f (G) :=
⋃
s∈N L

s
f (G) is an ideal of R[W1, . . . ,Wn] (as it directly follows by the previous

point);

6. The chain of ideals stabilizes after the first equality, that is there is a finite r ∈ N such that

(G) ⊂ Lf (G) ⊂ · · · ⊂ Lr−1
f (G) ⊂ Lrf (G) = Lr+1

f (G) = · · · = Lsf (G) = · · · = L∞f (G)

for each s ∈ N such that s ≥ r. This is a straightforward consequence of Hilbert Basis

Theorem, the previous definitions and the previous results;

7. By Groebner basis theory (see [CLO15], [KR00]) it is then possible, in a finite number of

steps, to find a finite number of generators for L∞f (G) = Lrf (G) given a finite subset G of

R[W1, . . . ,Wn].

3.3. Stability

A central role in the study of dynamical systems, as well as in control theory, is played by

the notion of stability for a solution (typically an equilibrium point) of an autonomous system.

The point is that, when one models a situation, a process, or a problem in a mathematical

framework by means of a dynamical system, the relevant "data" are identified: initial or boundary

conditions, any parameters, the function f itself, the "algorithm", could be regarded as datum

of the problem. Any variation on these data causes a variation in the solution. It is therefore of

interest to study the correspondence

data 7→ solution,
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from this point of view, also by defining a suitable "continuity" notion (in the vein of Kamke’s

Theorem, for example). The concept of stability embodies this notion: do small variations on

data reflect in small (or, at least, controllable) variations on solutions? The practical interest of

this is apparent, for example, if one thinks to any mechanical appliance: there the stability of

the appliance becomes insensibility to perturbations of any kind. Kamke’s Theorem represents a

first result in this direction, but it has a limit in the fact that it holds on bounded time intervals,

while the main interest is on long time or standard use. Hence it is necessary to develope suitable

tools to ensure control on perturbed solutions on unbounded time. This is what Lyapunov has

developed.

3.3.1. Definition (Lyapunov stability). — Given a state equation (autonomous system)

ẏ = f(y) and a solution y = y(t; 0,y0) of it (corresponding to the initial datum (0,y0) and

assuming y defined on [0,+∞[), we say that ([Arn92, Ch. 3, §23], [Kha02, 4.1], [PS94, Vol.

2, Ch. 4, Def 3.3], [Tur98, Ch. 11], [Tes12, 6.5]):

a) The solution y is (Lyapunov) stable if for each ε > 0 there exists δ > 0 such that for

every initial data z0 with ||z0−y0|| < δ the corresponding solution z = z(t; 0, z0) is defined

on [0,+∞[ and satisfies ||z(t)− y(t)|| < ε for each t ∈ [0,+∞[.

b) The solution y is (locally) attractive if there exists δ0 > 0 such that

lim
t−→+∞

||z(t)− y(t)|| = 0

for every solution z with ||z(0) − y0|| < δ0. The solution is globally attractive if this

holds for every solution z.

c) The solution y is asymptotically stable if it is stable and attractive.

d) The solution y is exponentially stable if there are constants α, δ,M > 0 such that

||z(t; 0, z0) − y(t)|| < Me−αt||z0−y0|| whenever ||z0 − y0|| < δ (any exponentially stable

solution is stable as well).

e) The solution y is unstable if it is not stable. This means, essentially, that there are

solutions "starting" however close to y which do not stay definitely close to it.

3.3.2. Stability of equilibrium points. — This notion is clearly crucial in classifying the

nature of equilibrium points of the system, i.e. of the solutions y0 of the equation f(y) = 0.

Let us check that we can always assume y0 = 0. Indeed, if f(y) = 0, then under the
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change of variable z(t) := y(t) − y0 the given state equation is equivalent to ż = g(z) where

g(z) := f(z + y0), and this last has 0 as an equilibrium point.

In the analysis of the stability of asymptotically stable equilibrium points the previous termi-

nology is completed as follows.

e) If y0 is an asymptotically stable equilibrium point, its basin of attraction is the set of

points z0 ∈ Ω such that limt−→+∞ ||z(t; 0, z0)− y0|| = 0.

f) A point y0 is said to be globally asymptotically stable (GAS) if it is an asymptotically

stable equilibrium point and its basin of attraction is the all of Ω.

3.4. Stability analysis: linear case

Stability analysis can be very difficult in general. In the special, but relevant, case of linear

systems, as we have an explicit representations of the solutions, the stability analysis of the origin

as an equilibrium point can be studied directly. For nonlinear systems we do not have usually an

explicit form for the solutions, therefore the stability analysis must be performed in an indirect

way, a main tool to this end is the so called "Lyapunov method".

3.4.1. Stability analysis for linear systems. — For an autonomous linear system ẏ = Ay,

if the (complex) spectrum of A is

spC(A) = {λ1, . . . , λk}

(where the λi are the distinct complex eigenvalues of A), then ([Kai80, 2.6], [PS94, Vol. 2, Ch.

4, Teo. 3.6], [Tes12, 3.2, 6.5], [Tur98, 11.2]):

a) The origin 0 is an asymptotically stable equilibrium point if and only if A is an Hurwitz

matrix, that is spC(A) ⊂ {z ∈ C | R(z) < 0}. In this case, its basin of attraction is Rn.
b) The origin 0 is a stable equilibrium point, but not asymptotically stable, if and only if

spC(A) ⊂ {z ∈ C | R(z) ≤ 0} and each eigenvalue is a regular (1) one.

c) The origin 0 is an unstable equilibrium point in all other cases.

1. An eigenvalue is regular if its algebraic multiplicity, as a root of the characteristic polynomial, equals its

geometric multiplicity, i.e. the dimension of its eigenspace.
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3.5. Stability analysis: Lyapunov method

3.5.1. Lyapunov method for stability analysis in general. — To analyze the stability

of the origin for a dynamical system can be very difficult in the general case. A. M. Lyapunov

devised a method to tackle this task, generalizing a classic Theorem of Langrange-Dirichelt (built

upon an observation of Torricelli) giving a sufficient condition for the stability of an equilibrium

point: if the potential energy of a conservative mechanical system has a strong local minimum

in a given point, the equilibrium of that point is stable ([Lei10]).

In Lyapunov generalization of this result the role of the potential energy is played by the so

called "Lyapunov function".

3.5.2. Definition (Lyapunov function). — A Lyapunov function for the autonomous

system ẏ = f(y) is a scalar field

V : U ⊆ Rn −→ R

such that the following properties hold true:

a) 0 ∈ U , and U is an open subset of Rn,
b) V (0) = 0 and V (y) > 0 for each y ∈ U \{0},
c) V is of class C1 and LfV = V̇ (y) ≤ 0 for each y ∈ U .

If, moreover, V̇ < 0 in U \{0}, then V is said to be a strict Lyapunov function.

The main result is the following ([Kha02, 4.1, Thm. 4.1, Thm. 4.2], [PS94, Vol. 2, Ch. 4,

Sec. 3.5, Teo. 3.7, Prop. 3.11, Prop. 3.12], [Tes12, 6.6]).

3.5.3. Lyapunov method. — Given a locally lipschtiz autonomous system ẏ = f(y) on an

open subset Ω ⊆ Rn, such that 0 ∈ Ω and f(0) = 0. Then:

a) If there exists a Lyapunov function V for ẏ = f(y) defined in an open neighborhood of the

origin 0 ∈ U ⊆ Ω, then 0 is a stable point for the system.

b) If there exists such a V as in a) which, moreover, is a strict Lyapunov function, then 0 is

an asymptotically stable point for the system.

c) If Ω = Rn, 0 is the unique equilibrium point of the system, and there exists a strict Lyapunov

function such that V is defined on Rn and V (y) −→ +∞ as ||y|| −→ +∞, then 0 is a

globally asymptotically stable point for the system.

d) If Ω = Rn, 0 is an equilibrium point of the system, there exists a Lyapunov function such

that V is defined on Rn, V (y) −→ +∞ as ||y|| −→ +∞, and 0 is the unique invariant
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subset (2)of {y ∈ Rn | V (y) = 0}, then 0 is an asymptotically stable point for the system.

Moreover, the stability is global if 0 is the unique equilibrium point of the system.

3.5.4. Remark. — There is no general strategy for the search of a Lyapunov function, cir-

cumstance that bounds the applicability of the method and constitutes the main weakness of

this theory.

In general, the search of a Lyapunov function is difficult: sometimes one can take the total

energy of the system or a first integral, if it is positive defined at least in an open neighborhood

of the origin. More generally, if the system admits one or more first integrals simultaneously

vanishing only at the origin, then the sum of the squares of these integrals is a Lyapunov function

for the system.

From an algorithmic point of view the "sum of squares" (SOS) strategy is largely studied and

exploited (cf. [Las10], [ABCR20]). But, on the other end, there are examples of polynomial

systems having the origin as a globally asymptotically stable (GAS) equilibrium point not

admitting any Lyapunov function of polynomial type (cf. [BR05, Prop. 5.2] and [AKP11]).

It could then be of interest to have a characterization of those polynomial systems for which

a polynomial Lyapunov function does exist, in the style of [BR05, Prop. 5.3].

3.6. Converse Lyapunov theorems

The conditions given are only sufficient ones. Although it can be proven that they are also

necessary in a sense (cf. [Kha02, Sec. 4.7], [Mas49], [Mas56], [Mas58], [Hah67] and [BR05]),

these kind of results are more of theoretical interest. A thorough discussion of the problem and

a presentation of the known results can be found in [Hah67, Ch. VI], where it is also said (cf.

[Hah67, Ch. VI, n. 47]):
[. . . ] We also mention that the converse theorems are primarily of theoretical significance.

They find no application in the treatment of stability problems in practice, for the converse

theorem assumes as known the solution of the practical problem, the stability behavior. Even

the constructive procedures of the converse theorems give in general no hint (except in the

linear case) as to how a Liapunov function can practically be obtained. It is obvious that

knowledge about the existence of a Liapunov function can still occasionally be important [. . . ]

2. A subset S ⊆ Ω is (positively) invariant if every semiorbit starting in S stays in S as t→ +∞.
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An updated discussion on this line of research, as well as several generalizations of the notion

of "stability" and its treatment in the time variant case, can be found in [BR05].

3.7. Basic examples

3.7.1. Example (Malthus Model, 1798). — It is a proposed model for the growth of an

isolated population with infinite resources, where:

• N(t) is the number of member of the population at time t;

• b is the number (rate) of new borns per unit of population per unit time;

• d is the number (rate) of deaths per unit of population per unit time;

• p = b− d represents the "biological potential" of the population;

then

Ṅ = pN.

Hence

N(t) = N(0)ept.

The constant solution N(t) = 0 is an unstable equilibrium point.

This model is quite unrealistic in many cases if by "population" is meant a biological popu-

lation, it is instead quite accurate if we are dealing with a population of a radioactive element

(then p = −d is the radioactive decay count rate).

3.7.2. Example (Logistic Growth Model of Verhulst, 1845). — It is a proposed model

for the dinamic of an isolated population with linear competition for resources, where:

• N(t) is the number of member of the population at time t;

• p = b−d > 0 is corrected by the term ("interspecific competition") − 1
KN(t) (with K > 0),

linearly decreasing as a function of N ;

then

Ṅ = pN

(
1− N

K

)
.

The term − p
KN(t)2 mitigates the exponential growth caused by pN(t) and therefore it can be

regarded as the model, in this context, of the "social friction", which is assumed be proportional

to the number of encounters among individuals (competing for the resources) per unit time.
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Solving the differential equation, one finds

N(t) =
KN(0)ept

K −N(0) +N(0)ept
.

If N(t) 6= 0, then N(t) −→ K as t −→ +∞, and therefore K is called "carrying capacity of the

environment".

The constant solution N(t) ≡ 0 is a unstable, while N(t) ≡ K is asymptotically stable with

basin of attraction [0; ,+∞[

3.7.3. Example (Predator - Prey model of Lotka, 1925 - Volterra, 1924). — This

model was independently developed by Lotka (1925), originally in connection with a chemical

kinetics problem, and by Volterra (1924), to explain certain consequences of the absence of fishing

during the World War I on the marine population of the Adriatic Sea.

• x(t) is the number of predator at time t;

• y(t) is the number of prey at time t;

• A is the relative rate of growth of prey, assumed to be positive and constant in absence of

predator, but linearly decreasing, with relative rate B > 0, as a function of the number of

predator;

• C is the relative rate of growth of predator, assumed to be negative and constant in absence

of prey, but linearly increasing, with relative rate D > 0, as a function of the number of

prey.

Then one finds the time invariant nonlinear system:
ẋ
x = A−By
ẏ
y = −C +Dx

⇒
ẋ = (A−By)x

ẏ = (−C +Dx)y
⇔

ẋ = Ax−Bxy

ẏ = −Cy +Dxy


It has

(x0, y0) =

(
C

D
,
A

B

)
,

as its only equilibrium point. Taking the difference of the first equation times (−C + Dx) and

the second times (A−By) one gets

0 =

(
C

x
+D

)
ẋ−

(
A

y
−B

)
ẏ =

d

dt
[−C ln(x) +Dx−A ln(y) +By],

hence

E(x, y) := −C ln(x) +Dx−A ln(y) +By
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is a first integral of the system. It is a strictly convex scalar field in the first quadrant (x > 0, y >

0), the equilibrium point (X0, y0) is its global minimum, and E −→ +∞ as x or y go to 0+ or

+∞. Therefore, the level sets {E = c} with c > E(x0, y0) , which are the orbits of the system,

are regular closed curves "winding" counter clokwise around the equilibrium point (x0, y0) (as

one deduces by the sign of the second members of the equations of the system) with a period

depending on the "level" c. The equilibrium is neutrally stable, that is it is not asymptotical. A

"positively defined" first integral for the system is given by:

V (x, y) := E(x, y)− E
(
C

D
,
A

B

)
.

3.7.4. Example (One Dimensional Dinamic). — Newton’s equation of one dimensional

dynamics

ÿ =
F

m

where ÿ represents the acceleration of a material point of mass m subject to a net force F =

F (t, y, ẏ), function of time, position and velocity in general, is equivalent to the system of two

equations ẏ1 = y2

ẏ2 = F (t,y1,y2)
m

(hence f(t, y1, y2) =
(
y2,

F (t,y1,y2)
m

)
).

It has, among many others, some interesting special cases:

3.7.4.1. Free Fall Motion (near Earth). — The motion of a heavy body acted upon by the

force of gravity in the proximity of the surface of a planet:

ÿ = −g ⇔ y(t) = y(0) + ẏ(0)t− 1

2
gt2

3.7.4.2. Harmonic Oscillator. — The motion of a mass (m) - spring (k) (undamped) system(
ω2 = k

m

)
, or of a hanging pendulum (of length `) under small angular displacements

(
ω2 = g

`

)
:

ÿ = −ω2y ⇔ y(t) = y(0) cos(ωt) +
ẏ(0)

ω
sin(ωt) =

√
y(0)2 +

(
ẏ(0)

ω

)2

sin(ωt+ φ)

(where tan(φ) = − ẏ(0)
y(0)ω )
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3.7.4.3. van der Pol equation. — It describes the motion of a perturbed harmonic oscillator

by a forcing term ε(1− y2)ẏ (ε > 0):

ÿ = −ω2y + ε(1− y2)ẏ.

If |y| > 1 (high values of y), the forcing term represents an active resistance (it dissipates energy),

while for small values of y (|y| < 1) it represents a "negative resistance" (it supplies energy). In

this case, the system presents self-sustained oscillations. It can be shown by linearization that

the origin is an unstable equilibrium point for it and, by ad hoc method, that it has a limiting

cycle.

3.7.5. Example. — Let f be the polynomial vector field on R2 such that

f(X1, X2) := (−X1 +X1X2,−X2).

As shown in [AKP11] then the dynamical system ẋ = f has the origin has a globally asymp-

totically stable equilibrium point, having V (X1, X2) := ln(1 +X2
1 ) +X2

2 as a Lyapunov function

vanishes at the origin ([Kha02], ), but it does not admit any polynomial Lyapunov function.

3.8. Observability and an algebraic approach to it for polynomial systems

Let now the dynamic equations be given by

(3)

{
ẋ = f(x(t), u(t)), x(t0) = x0

y = h(x(t))
, t ≥ 0

where f : Rn × Rp → Rn and h : Rn → Rm are polynomial functions; x(t) ∈ Rn, u(t) ∈ Rp,
and y(t) ∈ Rm are the state, input, and measurement vectors, respectively.

Note that the initial state x0 may be taken in a fixed algebraic subset V = ZR
R (p1, . . . , pl),

with no extra effort, but we will not go trough this possibility here.

The observability of a system is defined as follows ([HK77], [Son79a], [Nv90], [Isi95]).

3.8.1. Definition (Observability and distinguishability). — A system is observable if

the initial state x0 is uniquely determined by the knowledge of y(t) on a finite time interval.

We say that two initial states x0,1, x0,2 ∈ Rn are distinguishable if the corresponding output

signals y1 and y2 differ. If this property is satisfied by all couples of initial states then the system

is observable.
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3.8.2. An algebraic criterion for observability. — It is well known that in the algebraic

case, as well as in the analytic case, more generally, observability can be characterized by means

of iterated Lie derivatives of h along f ([HK77],[Son79a], [Bai81], [Nv90], [Bar95], [Bar16]):

h(x), Lfh(x) =< ∇h(x), f(x) >=
n∑
i=1

fi(x)
∂h

∂xi
, L2

fh(x) = Lf (Lfh(x)), . . .

That is ([HK77], [Son79a], [Nv90], [Isi95]), letting

Φ(x) :=


h(x)

Lfh(x)

L2
fh(x)
...


be the (infinite dimensional) observability mapping, we have

x0,1 and x0,2 are indistinguishable ⇔ Φ(x0,1) = Φ(x0,2).

In our polynomial case this provides an infinite set of polynomial equations defining the locus of

indistinguishability (or "non-observability locus") of the system, which is therefore an R-algebraic
set as in the previous chapter, indeed

{(x1;x2) ∈ Rn × Rn | Φ(x1) = Φ(x2)} = ZR
R (J )

where J is the ideal of R[X1, . . . , Xn, Z1, . . . , Zn] generated by the (infinitely many) polynomials

h(Z)− h(X), Lfh(Z)− Lfh(X), L2
fh(Z)− L2

fh(X), . . .

where h(Z)− h(X) := h(Z1, . . . , Zn)− h(X1, . . . , Xn), · · · ∈ R[X1, . . . , Xn, Z1, . . . , Zn].

Hence, we can say that the system is observable if and only if ZR
R (J ) = ∆n = ZR

R (dn) (the

diagonal of Rn × Rn, 2.2.3 and 2.10.5). But, as it always trivially is ZR
R (dn) ⊆ ZR

R (J ), then:

the system is observable ⇔ ZR
R (J ) \ ZR

R (dn) = ∅.

3.8.3. Remark. — Note that, as quoted in chapter one, by Hilbert Basis Theorem this ideal is

generated by a finite subset of the previous infinite set of polynomials, but as Hilbert’s Theorem

does not give us an explicit finite generating set for J , it is relevant to this concern to exploit

the construction introduced in 3.2.9.
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3.8.4. Algebraic criterion for observability.— From the above, and 2.18.2, we can conclude

that the system

(4)

{
ẋ = f(x(t), u(t)), x(t0) = x0

y = h(x(t))
, t ≥ 0

is observable if and only if

R

√
L∞
f∆(h∆) = R

√
dn,

where h∆ := h∆ := h(Z1, . . . , Zn) − h(X1, . . . , Xn), f∆ :=

(
f(Z1, . . . , Zn)

f(X1, . . . , Xn)

)
, and dn = (Z1 −

X!, . . . , Zn − Xn). But, as R[X1, . . . , Xn, Z1, . . . , Zn]/dn ∼= R[X1, . . . , Xn] is a real ring (see

1.12.4), the ideal dn is a real ideal (as in 1.12.2) and hence R
√
dn = dn (by 1.14.4). Therefore, the

above system is observable if and only if

R

√
L∞
f∆(h∆) = dn.

3.8.5. Remark. — Depending on the difficulty of the computation with polynomials, a slightly

different approach can be followed using result from 2.20.1: a major bottle-neck always is the

real radical of an ideal.

3.8.6. Example.— Let us consider the system defined by (see [Bar16, Example 20.])

f = x, h = x3,

it clearly is an observable system as h is a bijective function. Now

f∆ =

(
Z

X

)
, h∆ = Z3 −X3

then

Lf∆(h∆) = 3h∆ and therefore L∞f∆(h∆) = (Z3 −X3),

and we already saw (2.18.9) that R
√

(Z3 −X3) = (Z −X).



124 CHAPTER 3. DYNAMICAL SYSTEMS

3.8.7. Example.— Let us consider the system defined by (see [Bar16, Example II.5])

f = x, h = x3,

it clearly is an observable system as h is a bijective function. Now

f∆ =

(
Z

X

)
, h∆ = Z3 −X3

then

Lf∆(h∆) = 3h∆ and therefore L∞f∆(h∆) = (Z3 −X3),

and we already saw (2.18.9) that R
√

(Z3 −X3) = (Z −X).



CHAPTER 4

ISS LYAPUNOV FUNCTIONS FOR STATE OBSERVERS OF

DYNAMIC SYSTEMS USING HAMILTON–JACOBI

INEQUALITIES

4.1. Input-to-State Stability for State Observers

Estimation for nonlinear noise-free continuous-time systems is usually accomplished by using

observers, which are dynamic systems that aim at tracking the state variables by using only

incomplete information on the state. Let the dynamic equations be given by

(5)

{
ẋ = f(x, u)

y = h(x)
, t ≥ 0

where f : Rn × Rp → Rn and h : Rn → Rm are smooth functions; x(t) ∈ Rn, u(t) ∈ Rp,
and y(t) ∈ Rm are the state, input, and measurement vectors, respectively. A full-order state

observer is in general described by the dynamic equation

(6) ˙̂x = γ(x̂, y, u) t ≥ 0

where x̂(t) ∈ Rn is the estimate of x(t) at time t and γ : Rn×Rm×Rp → Rn is a smooth function

to be chosen in such a way as to ensure that the estimation error e :=x− x̂ with dynamics given

by

(7) ė = f(x, u)− γ(x− e, h(x)) =: Fγ(e, x, u)

being asymptotically stable to zero. Moreover, usually m < n, i.e., roughly speaking, not all

of the state variables are accessible. Notice that Label (7) depends in general on the system

trajectory and it would always be preferable to ensure the global asymptotic stability to zero fro

the estimation error. In line with [SJT03], the interest concerns observers for (5) with globally

asymptotically stable estimation error by finding a suitable mapping γ and a smooth Lyapunov
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function (e, x) 7→ V (e, x) such that

α1(|e|) ≤ V (e, x) ≤ α2(|e|)(8)

∇eV · Fγ(e, x, u) +∇xV · f(x, u) ≤ −α3(|e|)(9)

for all t ≥ 0, e ∈ Rn, and x ∈ Rn, where α1, α2 of class K∞ and α3 is continuous positive

definite (A continuous function α : R≥0 → R≥0 is positive definite if it is null only in zero.

Moreover, it is said to belong to class K if it is strictly increasing. It is said to belong to class

K∞ if it is of class K and also lim
r→+∞

α(r) = +∞. A continuous function β : R≥0 × R≥0 → R≥0

is said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K with

respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect to s and

lim
s→+∞

β(r, s) = 0.)

If the system is affected by disturbances, the performances deteriorate in such a way as to

make the estimation error increase with the growth of the uncertainty. Anyway, it is expected

to keep the estimation error asymptotically stable to zero without noise. This combination can

be given with mathematical rigor by using the notion of ISS. Thus, in lieu of (5) we focus on

(10)

{
ẋ = f(x, u) + g(x)w

y = h(x) + k(x)w
t ≥ 0

where w(t) ∈ Rp is the disturbance; g : Rn → Mn×p(R) and k : Rn → Mm×p(R) are smooth.

Therefore, the dynamics of the estimation error is given by

(11) ė = f(x, u) + g(x)w − γ(x− e, h(x) + k(x)w) =: Fγ(e, x, u, w)

where Fγ(e, x, u, w) is used instead of Fγ(e, x, u) as in (7) with a little abuse of notation. Based

on the aforesaid, we say that the observer (6) is ISS if there exists a function β of class KL and

a function χ of class K∞ such that

(12) |e(t)| ≤ β (|e(0)|, t) + χ
(
|w|∞(0,t)

)
t ≥ 0

where |w|∞(0,t) := ess sup
0≤τ≤t

|w(τ)|. The above ISS statement can be equivalently expressed by

means of an ISS Lyapunov function [Son00]: (12) holds if and only if there exist functions α1,

α2 of class K∞ and α3, η of class K such that

α1(|e|) ≤ V (e, x) ≤ α2(|e|)(13)

∇eV · Fγ(e, x, u, w) +∇xV · f(x, u) ≤ −α3(|e|) if |e| ≥ η(|w|)(14)
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for all t ≥ 0, e ∈ Rn, w ∈ Rq, x ∈ Rn, and u ∈ Rp. The observer problem needs to be more

reliably formulated in an ISS framework since a system may admit a Lyapuonv function in a

noise-free case, while being not ISS. By contrast, an input-to-state stable system is asymptotically

stable to zero if the external input is null. As pointed out in [SJT03], small noises can cause

the instability of the estimation error and thus an observer with a globally asymptotically stable

error may exist in the absence of disturbances, whereas the error dynamics turns out to be not

ISS, as shown the following nice example presented in [SL15].

4.1.1. Example. — Considering for the system (Example 3, p.50, [SL15])

(15)



ẋ1 = −x1 + 2

ẋ2 = x1x3

ẋ2 = −x1x2 + u

y1 = x1 + w1

y2 = x2 + w2

with u(t) = sin(t), the observer

(16)


˙̂x1 = −x̂1 + 2 + y1 − x̂1

˙̂x2 = x̂1x̂3 + y1(y2 − x̂2)

˙̂x3 = −x̂1x̂2 + u+ y1(y2 − x̂2)

provides an estimation error that is asymptotically stable to zero if w1(t) = w2(t) = 0 for all

t ≥ 0. If, instead, we chose x1(0) = 1, w1(t) = −x1(t), and w2(t) = 0 for all t ≥ 0, it follows that

lim
t→+∞

w1(t) = −2 lim
t→+∞

w2(t) = 0

and the state is bounded, but the dynamics of the observer turns out to be with x̂1(t) = 1 for

all t ≥ 0 and {
˙̂x2 = x̂3

˙̂x3 = −x̂2 + sin(t)

and hence the second and third observer state variables are divergent, thus showing that ISS

for the estimation error does not hold since the estimation error is unbounded with a bounded

disturbance.

The above example suggests constructing observers together with an ISS Lyapunov function

for the dynamics of the associated estimation error. Toward this end, instead of (14), let us
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consider the equivalent inequality

∇eV · Fγ(e, x, u, w) +∇xV · f(x, u) ≤ −α3(|e|) + α4(|w|)(17)

where α3, α4 are of class K∞. Once the ISS Lyapunov functions are chosen, one may analyze

the effect of attenuation and the disturbances on the estimation error. Thus, using (17), let us

consider

V (e(t), x(t))− V (e(t0), x(t0)) ≤ −
∫ t

t0

α3(|e(s)|)ds+

∫ t

t0

α4(|w(s)|)ds(18)

for all t ≥ t0 ≥ 0, which provides an upper bound on V (e(t), x(t)) based on the initial conditions

and a measure of the “energy” of the noises. If V is a continuously differentiable function, (18)

holds if (17) is satisfied. The function V is thus a storage function, while α3 and α4 have to be

regarded as dissipation and supply rates, respectively. If w(·) and e(·) belong to the L2 space of

functions of time, the link between ISS and the H∞ approach is easily found [GSW99]. Let us

now focus on the case with the dynamics of the estimation error affine in the noises.

4.1.2. Theorem. — Consider the observer (6) for (10) such that

(19) Fγ(e, x, u, w) = Hγ(e, x, u) +Gγ(e, x)w

where Hγ : R2n → Rn and Gγ : R2n× → Mn×p(R). If there exists a continuously differentiable

function (e, x) 7→ V (e, x) such that (8) is satisfied for some functions α1, α2 of class K∞ and

the Hamilton–Jacobi inequality

∇eV ·Hγ(e, x) +
|∇eV ·Gγ(e, x) +∇xV · g(x)|2

2µ2
+∇xV · f(x, u) +

|e|2

2
≤ 0(20)

holds for some µ > 0 and all t ≥ 0, x ∈ Rn, u ∈ Rp, and e ∈ Rn. Then, V (e, x) is an ISS

Lyapunov function and the L2 to L2 dissipative inequality (18) is satisfied with α3(r) = 1
2r

2,

α4(r) = µ2

2 r
2, i.e.,

V (e(t), x(t))− V (e(t0), x(t0)) ≤ −1

2

∫ t

t0

|e(s)|2ds+
µ2

2

∫ t

t0

|w(s)|2ds(21)

for all t ≥ t0 ≥ 0 and thus the observer (6) is ISS.
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Proof. — From (11) and(19), we obtain

d

dt
V (e, x) = ∇eV ·Hγ + (∇eV ·Gγ +∇xV · g)w +∇xV · f

= ∇eV ·Hγ +
µ2

2

(
2 (∇eV ·Gγ +∇xV · g)w

µ2

)
+∇xV · f

= ∇eV ·Hγ +
µ2

2

(
− |w|2 +

2 (∇eV ·Gγ +∇xV · g)w

µ2
− |∇eV ·Gγ +∇xV · g|2

µ4

+
|∇eV ·Gγ +∇xV · g|2

µ4
+ |w|2

)
+∇xV · f

= ∇eV ·Hγ −
µ2

2

∣∣∣∣w − ∇eV ·Gγ +∇xV · g
µ2

∣∣∣∣2 +
|∇eV ·Gγ +∇xV · g|2

2µ2
+∇xV · f +

µ2

2
|w|2

≤ ∇eV ·Hγ +
|∇eV ·Gγ +∇xV · g|2

2µ2
+∇xV · f +

µ2

2
|w|2 .

Using (20), the previous inequality yields

(22)
d

dt
V (e, x) ≤ −1

2
|e|2 +

µ2

2
|w|2

and hence we can conclude about ISS with (21) as a final result. �

We say that the observer admits an L2-gain µ w.r.t. w if (21) holds. Clearly, a small gain is

preferable since it entails a stronger noise attenuation. In the following, we will analyze how to

take care of the Hamilton–Jacobi inequality (20), starting with the following example.

4.1.3. Example. — Let us consider

(23)


ẋ1 = x1 + sin(x2)w

ẋ2 = x1 − 2x2 + exp(−x2)

y = x1 + x2

and let

(24)

{
˙̂x1 = x̂1 + 2 (y − x̂1 − x̂2)

˙̂x2 = x̂1 − 2 x̂2 + exp(−x̂2)− (y − x̂1 − x̂2)

be a candidate observer for (23). It is straightforward to obtain

ė = H(e, x) +G(e, x)w
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where

H(e, x) =

(
−e1 − 2e2

2e1 − e2 + exp(−x2) (1− exp(e2))

)

G(e, x) =

(
sin(x2)

0

)
.

Let us consider V (e) = 1
2 e

2
1 + 1

2 e
2
2 as a candidate ISS Lyapunov function. We have

∇eV ·H +
(∇eV ·G)2

2µ2
+
|e|2

2
= −1

2
e2

1 −
1

2
e2

2 + exp(−x2) (1− exp(e2)) e2 +
sin(x2)2

2µ2
e2

1 .(25)

Since exp(−x2) (1− exp(e2)) e2 ≤ 0, ∀e2, x2 ∈ R, and sin(x2)2 ≤ 1, ∀x2 ∈ R, (25) yields

∇eV ·H +
(∇eV ·G)2

2µ2
+
|e|2

2
= −1

2

(
1− 1

µ2

)
e2

1 −
1

2
e2

2 < 0

for e 6= 0 if µ > 1. Thus, observer (24) is ISS with an L2-gain larger than 1.

The next section regards the application of what has been presented so far to observers for a

class of polynomial systems.

4.2. State Observers for Polynomial Systems

After choosing a given observer structure, the problem reduces to find an ISS Lyapunov

function that satisfies (20). Unfortunately, the satisfaction of conditions like (20) is not easy to

be attained, which has motivated the investigation on the weaker notion of practical L2-gain such

as proposed in [RA02]. We will address the problem of constructing observers with practical

L2-gain for a class of polynomial systems.

More specifically, instead of (10), let us focus on

(26)

{
ẋ = Ax+ f(x) + g(x)w

y = C x+ k(x)w
, t ≥ 0

where A ∈ Rn×n, C ∈ Rm×n, f(x) ∈ R[x]n×n, g(x) ∈ R[x]n×p, k(x) ∈ R[x]m×p, and the pair

(A,C) is detectable. To estimate the state, we rely on observers given by

(27) ˙̂x = A x̂+ f(x̂) + L(y − C x̂), t ≥ 0
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with the gain L ∈ Rn×m chosen such that A − LC has eigenvalues with a strictly negative real

part. Such a condition can be satisfied owing to the detectability assumption and ensures that

the estimation error dynamics

(28) ė = (A− LC) e+ f(x)− f(x̂) + (g(x)− Lk(x))w

is locally asymptotically stable to zero in the absence of noise, i.e., with w(t) ≡ 0 for all t ≥ 0.

More specifically, we have

ė = (A− LC) e+ f(x)− f(x− e) .

In the noisy setting, for the sake of brevity, let us rewrite (28) as

ė = H(e, x, L) +G(x, L)w

with

H(e, x, L) := (A−LC) e+ f(x)− f(x− e) ∈ R[x, e]n×1 G(x, L) := g(x)−Lk(x) ∈ R[x]n×p .

Therefore, it is convenient to search for a polynomial ISS Lyapunov function V (e, x) such

that (21) holds for some µ > 0. Given a candidate Lyapunov function, we may apply the SOS

decomposition of such a function and of the opposite of its time derivative by using a positivity

certification, which does not depend on the characteristics of the chosen polynomial since the

following holds [BPT13, Las15] .

4.2.1. Theorem. — A polynomial p(e) ∈ R[e]2d in e = (e1, . . . , en) ∈ Rn has sum-of-squares

decomposition (or is said to be SOS) if and only if there exists a real symmetric and positive

semidefinite matrix P ∈ Rs(d)×s(d) such that p(e) = vd(e)
>P vd(e), where vd(e) is the vector of

all the monomials in the components of e ∈ Rn of degree equal to or less than d ∈ N, i.e.,

vd(e) := (1, e1, . . . , en, e1e2, . . . , en−1en, e
2
n, . . . , e

d
1, . . . , e

d
n)

of dimension

s(d) :=
(

n+d
d

)
.

Proof. — See (Proposition 2.1, p. 17, [Las10]). �
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Thus, from now on, we will refer to well-established definitions as follows [PPPP02]. A poly-

nomial p(e) ∈ R[e]2d is ε-SOS polynomial if p(e) − ε
∑n

i=1 e
2
i ∈ R[e]2d with d ∈ N, d ≥ 1 is

SOS for some “small” tolerance ε > 0. In addition, a polynomial, square matrix M(x) with

Mij(x) ∈ R[x] for i, j = 1, . . . , s(d) is said to be an ε-SOS matrix if the bipartite polynomial

p(e, x) := vd(e)
>M(x)vd(e) is ε-SOS for all x ∈ Rn. In this respect, p(e, x) is said to be a

bipartite ε-SOS polynomial.

4.2.2. Theorem. — Consider observer (27) for system (26). If there exist a bipartite ε-SOS

V (e, x) and µ > 0 such that

η(e, x)>Π>e H(e, x, L) + η(e, x)>Π>x (Ax+ f(x)) + |η(e, x)|2 +
|e|2

2
≤ 0(29) (

2I Π>e G(x, L) + Π>x g(x)

G(x, L)>Πe + g(x)>Πx µ2I

)
> 0(30)

for all x ∈ Rn and e ∈ Rn, where η(e, x) ∈ Rq is the column vector of all the monomials in e

and x appearing in ∇eV (e, x) and ∇xV (e, x) with Πe,Πx ∈ Rn×q such that

(31) ∇eV (e, x) = Πe η(e, x) ∇xV (e, x) = Πx η(e, x) .

Then, observer (27) is ISS with L2-gain equal to µ.

Proof. — The proof is line with [Reh15]. The time derivative of V (e, x) is given by

d

dt
V (e, x) = ∇eV (e, x) ·H(e, x, L) +∇eV (e, x) · (G(x, L)w) +∇xV (e, x) · (Ax+ f(x))

+∇xV (e, x) · (g(x)w)

and, using (31), we obtain

d

dt
V (e, x) = η(e, x)>Π>e H(e, x, L) + η(e, x)>Π>x (Ax+ f(x)) + η(e, x)>

(
Π>e G(x, L) + Π>x g(x)

)
w(32)

Using (Lemma 4.2, p. 861 in [Reh15]), from (30), it follows that

η(e, x)>
(

Π>e G(x, L) + Π>x g(x)
)
w ≤ η(e, x)>η(e, x) +

µ2

2
w>w

and, after replacing this upper bound in (32), it follows that (22) (see the proof of Theorem

4.1.2) holds if (29) is satisfied, which allows for concluding. �

Based on the aforesaid, one can proceed with the observer design. Let be d ∈ N with d ≥ 1

and ε > 0, and the problem to solve is the following.
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4.2.3. Problem. — Find a bipartite ε-SOS V (e, x), L ∈ Rn×m, and µ ≥ 0 such that (29) and

(30) hold and µ is minimized.

Indeed, the available SOS tools do not allow for solving Problem 4.2.3. Thus, we will address

the observer design by relying on the so-called practical L2-gain proposed in [RA02]. However,

first of all consider the pure linear case by dealing with (26) without f(x) and with g(x) and

k(x) being real matrices, as follows:{
ẋ = Ax+Dw

y = C x+ E w
t ≥ 0

where the pair (A,C) is detectable, D ∈ Rn×p, and E ∈ Rm×p. The observer equation is as

follows:
˙̂x = A x̂+ L(y − C x̂) t ≥ 0 .

Since the dynamics of the estimation error is

ė = (A− LC)e+ (D − LE)w

and, after a little algebra and using the Schur complement ( [BBFG94]), (20) becomes(
AP − C>Y > + PA− Y C + I

2 PD − Y E

(PD − Y E)> −µ2

2 I

)
< 0

with P = P> ∈ Rn×n, P > 0 and Y = PL ∈ Rn×m. Since the pair (A,C) is detectable, the above

linear matrix inequality (LMI) admits a solution in P and Y , and it follows L = P−1Y . Moreover,

using popular LMI-based tools [BBFG94], it is straightforward to minimize µ2 exactly since the

problem is convex. Thus, one may search for approximate solutions to Problem 4.2.3 for (26)

and (27) by relying on the solution obtained by neglecting the nonlinearities, which thus holds

only locally. Thus, instead of Problem 4.2.3, let us consider the much simpler LMI problem

min δ w.r.t. Y, P > 0, δ > 0(33a) (
AP − C>Y > + PA− Y C + I

2 PD − Y E
(PD − Y E)> − δ

2I

)
< 0 .(33b)

After finding the solution denoted by Y ∗, P ∗, δ∗, the gain is given by L∗ = (P ∗)−1Y ∗, which

provides a local L2-gain µ =
√
δ∗ with the Lyapunov function V (e) = e>P ∗e for (26) and (27).

Since it is difficult to ensure a constant L2-gain over all the operating points, we will rely on

the notion of practical L2-gain proposed in [RA02]. Based on the practical L2-gain, one can
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overcome the problem of finding a globally fixed L2-gain. More specifically, assume that there

exists a bipartite ε-SOS function V (e, x) such that

(34) ∇eV ·H(e, x, L∗) +∇xV · (Ax+ f(x)) +
|e|2

2
< 0

for e 6= 0, then

(35) ∇eV ·H(e, x, L∗) +
|∇eV ·G(x, L∗) +∇xV · g(x)|2

2µ(e, x)2
+∇xV · (Ax+ f(x)) +

|e|2

2
≤ 0

holds if (e, x) 7→ µ(e, x) : Rn × Rn → R≥0 is chosen such that

(36) µ(e, x) ≥ µ(e, x)∗ :=
|∇eV ·G(x, L∗) +∇xV · g(x)|√

−2∇eV ·H(e, x, L∗)− 2∇xV · (Ax+ f(x))− |e|2

and thus µ(e, x)∗ is referred to as practical L2-gain. Based on the aforesaid, the problem to solve

reduces to the following.

4.2.4. Problem. — Given L∗ ∈ Rn×m as a solution of (33), find a bipartite ε-SOS V (e, x)

such that (34) holds.

The solution of Problem 4.2.4 allows for adopting a more flexible notion of attenuation w.r.t.

the noises by using an L2-gain that may depend on both e and x. Following the same reasoning

of the proof of Theorem 4.1.2, instead of (22), we obtain

(37)
d

dt
V (e, x) ≤ −1

2
|e|2 +

µ(e, x)2

2
|w|2

from (35) if (34) holds with µ(e, x) subject to (36). Thus, (37) may be used whenever the

L2-gain cannot be bounded from above in the usual sense such as in Example 4.1.3, for which

the lower bound given by 1 holds globally, i.e., for all e, x ∈ Rn. In practice, the attenuation

w.r.t. the disturbances are left to vary in the state space. Moreover, (35) is easier to be satisfied

as compared with (34). Indeed, additional constraints can be introduced by constraining the

estimation error to belong to suitable compact sets and/or taking into account the boundedness

of the state trajectories [Reh15]. This allows for facilitating feasibility when solving Problem

4.2.4.

In the next section, we will show numerical results obtained in a simulation case study.
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4.3. Numerical Results

In this section, we will show how to apply the proposed approach by exploiting the polynomial

structure of the system and observer equations. Thanks to the use of SOS toolbox [PPPP02],

we will find an ISS polynomial Lyapunov function, which guarantees stability, as illustrated so

far. The numerical results are obtained by dealing with the Van der Pol oscillator, which is

an interesting example of a polynomial system with a stable limit cycle ( [Kha02]) and is thus

well-suited for the purpose of testing.

Let us consider a system with two coupled Van der Pol oscillators with the first and third

state variable as outputs, i.e., {
ẋ = Ax+ f(x) +D w

y = C x+ Ew

where x ∈ R4, w ∈ R4, y ∈ R2,

A =


0 1 0 0

−1 1 1 0

0 0 0 1

1 0 −1 1

 f(x) =


0

−x2
1x2

0

−x2
3x4

 D =


0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0


C =

(
1 0 0 0

0 0 1 0

)
E =

(
0 0 1 0

0 0 0 1

)
.

The observer is thus given by

˙̂x = A x̂+ f(x̂) + L(y − C x̂)

with the gain

L =


3.0189 0.2703

3.9558 0.6106

0.2703 3.0189

0.6106 3.9558


obtained by solving (33) with Yalmip [Lf04]. The solution provides a value of µ equal to 4.6575.

Using the SOS toolbox [PPPP02], we solved Problem 4.2.4 with ε = 10−9 and additional
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constraints e ∈ Br(
√

10) and x ∈ Br(10), thus obtaining the Lyapunov function

V (e, x) = −1.0962e−10 e1e2x
2
1 + 2.0092e−11 e1e4x

2
3 + 2.6663e−10 e2

2x
2
1 + 2.6452e−12 e2e3x

2
1

− 4.5329e−11 e2e4x
2
1 + 2.2772e−11 e2e4x

2
3 + 7.7374e−11 e3e4x

2
3 − 2.8571e−10 e2

4x
2
3 + 4.3459e−6 e2

1

− 2.0934e−6 e1e2 − 1.3632e−7 e1e3 − 1.6176e−7 e1 e4 + 8.6434e−7 e2
2 − 1.6176e−7 e2e3 + 3.9843e−8 e2e4

+ 4.3459e−6 e2
3 − 2.0934e−6 e3e4 + 8.6435e−7 e2

4

which certifies that this observer is ISS.
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