
Formal Verification of Neural Networks:
a Case Study about Adaptive Cruise Control

Stefano Demarchi, Dario Guidotti, Andrea Pitto, Armando Tacchella

KEYWORDS

Safety Evaluation, Dependable Systems, Neural Net-
works, Formal Verification.

ABSTRACT

Formal verification of neural networks is a promising
technique to improve their dependability for safety critical
applications. Autonomous driving is one such application
where the controllers supervising different functions in a car
should undergo a rigorous certification process. In this pa-
per we present an example about learning and verification
of an adaptive cruise control function on an autonomous car.
We detail the learning process as well as the attempts to ver-
ify various safety properties using the tool NEVER2, a new
framework that integrates learning and verification in a sin-
gle easy-to-use package intended for practictioners rather
than experts in formal methods and/or machine learning.

INTRODUCTION

Context and Motivation. Verification of neural networks
(NNs) is currently a trending topic involving different ar-
eas of AI, including machine learning, constraint program-
ming, heuristic search and automated reasoning. A rela-
tive recent survey [HKR+20] cites more than 200 papers,
most of which have been published in the last few years,
and more contributions are appearing with impressive pro-
gression — see, e.g., [DCJ+19], [KHI+19], [WWR+18],
[NKR+18], [LM17], [WPW+18]. The reason of this grow-
ing interest is that, while the application of NNs in various
domains [LBH15] have made them one of the most popular
machine-learned models to date, concerns about their vul-
nerability to adversarial perturbations [SZS+14], [GSS15]
have been accompanying them since their initial adoption,
to the point of restraining their application in safety- and
security-related contexts. Automated formal verification —
see, e.g., [LNPT18b] for a survey — offers an effective an-
swer to the problem of establishing correctness of a NN
and opens the path to their adoption in applications where
they are currently not popular. One such application is au-
tonomous driving where different functions can indeed be
learned from data. Examples include advanced functions
such as automatic steering and automatic speeding/braking,
and more mundane ones such as traction control, launch
control and anti-lock system for brakes. While it is possi-
ble to learn these functions with NNs, it is not clear whether

Stefano Demarchi, Dario Guidotti, Andrea Pitto and Armando Tacchella
are with Università degli Studi di Genova, DIBRIS (Department of Infor-
matics, Bioengineering, Robotics and Systems Engineering), Viale Causa
13, 16145 Genova. E-mail: stefano.demarchi@edu.unige.
it, dario.guidotti@edu.unige.it, s3942710@studenti.
unige.it (Andrea Pitto), armando.tacchella@unige.it. All
authors contributed equally to the paper. The corresponding author is Ar-
mando Tacchella.

the rigorous certification procedures prescribed for car con-
trollers can be passed by the learned controllers.

Objective. Our main research question is:
“Is it possible to leverage automated verification of neu-

ral networks in safety critical applications to improve con-
fidence in the correctness of learned controllers?”
Clearly, automated verification together with standard test-
ing techniques can provide reasonable confidence levels in
a network only if the whole process that leads to a learned
network is already bullet-proofed. In the following, we as-
sume that a rigorous safety-by-design approach insures that
scenario design, simulations, data-acquisitions and learning
have been carried out so as to minimize errors in each phase
and also in their integration. We do not expect to place blind
trust in verification alone, but we expect NEVER2 and simi-
lar tools to be an essential ingredient of any safety conscious
development process that involves learned controllers.

Contribution. This article is about learning and verifica-
tion of a NN that replicates the function of an adaptive cruise
control (ACC) similar to those used in real autonomous cars.
The goal of the ACC is to maintain the vehicle at a speed set
by the user and possibly adapt the speed considering other
vehicles proceeding in front of it. We use our tool NEVER2
to learn and verify the controller, all in a single package. Our
goal is to show how NEVER2 enables learning and verifica-
tion for field practitioners who do not need to be experts in
machine learning and/or verification. Our results show that
NEVER2 is able to learn reasonable implementations of the
ACC function (given the available data) and prove some in-
teresting design requirements using abstraction techniques.

BACKGROUND

A. Basic Notation and Definitions

We denote n-dimensional vectors of real numbers x ∈
Rn — also points or samples — with lowercase letters like
x, y, z. We write x = (x1, x2, . . . , xn) to denote a vec-
tor with its components along the n coordinates. We de-
note x · y the scalar product of two vectors x, y ∈ Rn

defined as x · y =
∑n

i=1 xiyi. The norm ‖x‖ of a vec-
tor is defined as ‖x‖ = x · x. We denote sets of vectors
X ⊆ Rn with uppercase letters like X,Y, Z. A set of vec-
tors X is bounded if there exists r ∈ R, r > 0 such that
∀x, y ∈ X we have d(x, y) < r where d is the Euclidean
norm d(x, y) = ‖x − y‖. A set X is open if for every
point x ∈ X there exists a positive real number εx such
that a point y ∈ Rn belongs to X as long as d(x, y) < εx.
The complement of an open set is a closed set — intu-
itively, one that includes its boundary, whereas open sets
do not; closed and bounded sets are compact. A set X is
convex if for any two points x, y ∈ X we have that also
z ∈ X ∀z = (1 − λ)x + λy with λ ∈ [0, 1], i.e., all the
points falling on the line passing through x and y are also

stefano.demarchi@edu.unige.it
stefano.demarchi@edu.unige.it
dario.guidotti@edu.unige.it
s3942710@studenti.unige.it
s3942710@studenti.unige.it
armando.tacchella@unige.it

in X . Notice that the intersection of any family, either finite
or infinite, of convex sets is convex, whereas the union, in
general, is not. Given any non-empty set X , the smallest
convex set C(X) containing X is the convex hull of X and
it is defined as the intersection of all convex sets contain-
ing X . A hyperplane H ⊆ Rn can be defined as the set of
points

H = {x ∈ Rn | a1x1 + a2x2 + . . .+ anxn = b}

where a ∈ Rn, b ∈ R and at least one component of a is
non-zero. Let f(x) = a1x1 + a2x2 + . . .+ anxn− b be the
affine form defining H . The closed half-spaces associated
with H are defined as

H+(f) = {x ∈ X | f(x) ≥ 0}
H−(f) = {x ∈ X | f(x) ≤ 0}

Notice that both H+(f) and H−(f) are convex. A polyhe-
dron in P ⊆ Rn is a set of points defined as P =

⋂p
i=1 Ci

where p ∈ N is a finite number of closed half-spaces Ci.
A bounded polyhedron is a polytope: from the definition, it
follows that polytopes are convex and compact in Rn.

B. Neural Networks

Given a finite number p of functions f1 : Rn →
Rn1 , . . . , fp : Rnp−1 → Rm — also called layers — we de-
fine a feed forward neural network as a function ν : Rn →
Rm obtained through the compositions of the layers, i.e.,
ν(x) = fp(fp−1(. . . f1(x) . . .)). The layer f1 is called input
layer, the layer fp is called output layer, and the remaining
layers are called hidden. For x ∈ Rn, we consider only two
types of layers:
• f(x) = Ax+ b with A ∈ Rm×n and b ∈ Rm is an affine
layer implementing the linear mapping f : Rn → Rm;
• f(x) = (σ1(x1), . . . , σn(xn)) is a functional layer f :
Rn → Rn consisting of n activation functions — also called
neurons; usually σi = σ for all i ∈ [1, n], i.e., the function
σ is applied componentwise to the vector x.
We consider the ReLU activation function defined as σ(r) =
max(0, r), which finds widespread adoption. For a neural
network ν : Rn → Rm, the task of classification is about
assigning to every input vector x ∈ Rn one out of m labels:
an input x is assigned to a class k when ν(x)k > ν(x)j for
all j ∈ [1,m] and j 6= k; the task of regression is about
approximating a functional mapping from Rn to Rm.

C. Verification task

Given a neural network ν : Rn → Rm we wish to ver-
ify algorithmically that it complies to stated post-conditions
on the output as long as it satisfies pre-conditions on the in-
put. Without loss of generality1, we assume that the input
domain of ν is a bounded set I ⊂ Rn. Therefore, the cor-
responding output domain is also a bounded set O ⊂ Rm

because (i) affine transformations of bounded sets are still
bounded sets, (ii) ReLU is a piecewise affine transformation
of its input, (iii) the output of logistic functions is always

1Input domains must be bounded to enable implementation of neural net-
works on digital hardware; therefore, also data from physical processes,
which are potentially ubounded, are normalized within small ranges in
practical applications.

bounded in the set [0, 1], and the composition of bounded
functions is still bounded. We require that the logic formu-
las defining pre- and post-conditions are interpretable as fi-
nite unions of bounded sets in the input and output domains.
Formally, given p bounded sets X1, . . . , Xp in I such that
Π =

⋃p
i=1Xi and s bounded sets Y1, . . . , Ys in O such that

Σ =
⋃s

i=1 Yi, we wish to prove that

∀x ∈ Π.ν(x) ∈ Σ. (1)

While this query cannot express some problems re-
garding neural networks, e.g., invertibility or equiva-
lence [LNPT18b], it captures the general problem of test-
ing robustness against adversarial perturbations [GSS15].
For example, given a network ν : I → O with I ⊂ Rn

and O ⊂ Rm performing a classification task, we have that
separate regions of the input are assigned to one out of m
labels by ν. Let us assume that region Xj ∈ I is classified
in the j-th class by ν. We define an adversarial region as
a set X̂j such that for all x̂ ∈ X̂ there exists at least one
x ∈ X such that d(x, x̂) ≤ δ for some positive constant
δ. The network ν is robust with respect to X̂j ⊆ I if, for
all x̂ ∈ X̂j , it is still the case that ν(x)j > ν(x)i for all
i ∈ [1,m] with i 6= j. This can be stated in the notation
of condition (1) by letting Π = {X̂j} and Σ = {Yj} with
Yj = {y ∈ O | yj ≥ yi + ε,∀i ∈ [1, n] ∧ i 6= j, ε > 0}.
Analogously, in a regression task we may ask that points
that are sufficently close to any input vector in a set X ⊆ I
are also sufficiently close to the corresponding output vec-
tors. To do this, given the positive constants δ and ε, we
let X̂ = {x̂ ∈ I | ∃x.(x ∈ X ∧ d(x̂, x) ≤ δ)} and
Ŷ = {ŷ ∈ O | ∃x.(x ∈ X̂ ∧ d(ŷ, ν(x)) ≤ ε)} to obtain
Π = {X̂} and Σ = {Ŷ }. Notice that, given our definition,
we consider adversarial regions and output images that may
not be convex.

D. Case Study

Technically, an adaptive cruise control (ACC) is an au-
tonomous driving function of level one2, which controls the
acceleration of the ego car — the car whereon the ACC is
installed — along the longitudinal axis. An ACC has two
competing objectives: keeping the ego car at the speed set
by the user (speed following mode) and keeping a safe dis-
tance from the exo car in front (car following mode). The
ACC that we consider has one output, i.e., the acceleration
a suggested to the ego car in m · s−2, and 6 inputs:
• vp[m · s−1]: the speed of the ego car.
• Sr[m · s−1]: the speed of the exo car relative to the ego
car; when there is no exo car, this input has the value 0.
• D[m]: the actual distance between the ego car and the exo
car; when there is no exo car or when the exo car is farther
than 150m this input has the default value of 150m.
• TH[s]: Minimum headway time; this is the minimum
time gap between the exo car and the ego car: TH · vp cor-
responds to Ds, i.e.,the minimum safety distance.
• D0[m]: A safety margin to be added to the minimum
safety distance Ds.

2“Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles”, SAE Standards, J3016 202104.

Fig. 1: Box plot for a million samples of the Adaptive Cruise Control data
set (TH = 1.5;D0 = 5)

In production vehicles the ACC function is implemented us-
ing classical control laws. We view the production function
— called ACCo in the following — as a black-box whose
behavior should be learned by a neural network.

LEARNING

Given the goal of learning ACCo using a NN, we should
generate several instances of input-output data using, e.g.,
a car simulator. Since a simulator was unavailable to us at
the time of this writing, we generated the dataset to learn
various NNs by drawing samples from uniform distributions
over the input values of ACCo, considering the following
lower and upper bounds for vp, vr and D:

0 ≤ vp ≤ 50 − 50 ≤ vr ≤ 50 0 ≤ D ≤ 150 (2)

The values of TH and D0 are kept fixed, and we obtain the
corresponding output a by feeding ACCo with the gener-
ated inputs. We generate 16 different data sets, each com-
posed by a million samples, that feature 16 different com-
binations of TH and D0, where TH ∈ {1, 1.5, 2, 2.5},
while D0 = {2.5, 5, 7.5, 10}. Figure 1 shows the distri-
butions of input and output samples using box plots in the
case TH = 1.5 and D0 = 5.

We tested three NN architectures comprised of affine and
ReLU layers: we refer to them as Net0, Net1 and Net2 in the
following. These NNs feature increasing complexity both in
terms of the number of layers and in the amount of neurons
per layer. An example is shown in Figure 2 for Net0 on the
canvas of NEVER2. The networks considered differs from
each other only for the details of the hidden layers, which
are the following:
• Net0: two affine layer of 20 and 10 neurons respectively,
each followed by a ReLU layer;
• Net1: two affine layer of 50 and 40 neurons respectively,
each followed by a ReLU layer;
• Net2: four affine layers of 20, 20, 20 and 10 neurons re-
spectively, each followed by a ReLU layer;
The input of the network is in all the cases a three dimen-
sional vector. All the networks present an output layers con-
sisting of a linear layer of dimension 1 (without a following
ReLU layer).

To learn the NNs we split the data sets in two parts,
one for training and one for testing, with the ratio of 4:1.
Our training phase lasts 100 epochs for each of the 16 data

Fig. 2: NEVER2 representation of Net0 architecture.

sets. We consider the Adam optimizer [KB14] and the Re-
duceLROnPlateau scheduler. For both our loss function and
our precision metric we leveraged the Mean Squared Error
(MSE) loss. We set batch sizes to 32 for training, validation,
and test sets. In our setup, we dedicated 30% of the train-
ing set to the validation process. Concerning the optional
parameters, we also set the learning rate to 0.01, the weight
decay to 0.0001 and the training scheduler patience to 3,
i.e., the number of consecutive epochs without loss decrease
that triggers training procedure abortion. All the training is
perfomed inside NEVER2 which, in turn, is based on the
PYTORCH library. 3 For this reason, all the remaining pa-
rameters required by the learning algorithms are set to their
default PYTORCH values.

VERIFICATION

To enable algorithmic verification of neural networks in
NEVER2, we consider the abstract domain 〈Rn〉 ⊂ 2R

n

of
polytopes defined in Rn to abstract (families of) bounded
sets into (families of) polytopes. We provide correspond-
ing abstractions for affine and functional layers to perform
abstract computations and obtain consistent overapproxima-
tion of concrete networks.

Definition 1: (Abstraction) Given a bounded set X ⊂
Rn, an abstraction is defined as a function α : 2R

n → 〈Rn〉
that maps X to a polytope P such that C(X) ⊆ P .

Intutively, the function α maps a bounded set X to a cor-
responding polytope in the abstract space such that the poly-
tope always contains the convex hull of X . Depending on
X , the enclosing polytope may not be unique. However,
given the convex hull of any bounded set, it is always pos-
sible to find an enclosing polytope. As shown in [Zhe19],
one could always start with an axis-aligned regular n sim-
plex consisting of n + 1 facets — e.g., the triangle in R2

and the tethraedron in R3 — and then refine the abstraction
as needed by adding facets, i.e., adding half-spaces to make
the abstraction more precise.

3https://pytorch.org

Definition 2: (Concretization) Given a polytope P ∈
〈Rn〉 a concretization is a function γ : 〈Rn〉 → 2R

n

that
maps P to the set of points cointained in it, i.e., γ(P) =
{x ∈ Rn | x ∈ P}.

Intutively, the function γ simply maps a polytope P to
the corresponding (convex and compact) set in Rn compris-
ing all the points contained in the polytope. As opposed
to abstraction, the result of concretization is uniquely de-
termined. We extend abstraction and concretization to fi-
nite families of sets and polytopes, respectively, as follows.
Given a family of p bounded sets Π = {X1, . . . , Xp}, the
abstraction of Π is a set of polytopes Σ = {P1, . . . , Ps}
such that α(Xi) ⊆

⋃s
i=1 Pi for all i ∈ [1, p]; when no am-

biguity arises, we abuse notation and write α(Π) to denote
the abstraction corresponding to the family Π. Given a fam-
ily of s polytopes Σ = {P1, . . . , Ps}, the concretization of
Σ is the union of the concretizations of its elements, i.e.,⋃s

i=1 γ(Pi); also in this case, we abuse notation and write
γ(Σ) to denote the concretization of a family of polytopes
Σ.

Given our choice of abstract domain and a concrete net-
work ν : I → O with I ⊂ Rn and O ⊂ Rm, we
need to show how to obtain an abstract neural network
ν̃ : 〈I〉 → 〈O〉 that provides a sound overapproximation
of ν. To frame this concept, we introduce the notion of con-
sistent abstraction.

Definition 3: (Consistent abstraction) Given a mapping
ν : Rn → Rm, a mapping ν̃ : 〈Rn〉 → 〈Rm〉, abstrac-
tion function α : 2R

n → 〈Rm〉 and concretization function
γ : 〈Rm〉 → 2R

m

, the mapping ν̃ is a consistent abstraction
of ν over a set of inputs X ⊆ I exactly when

{ν(x) | x ∈ X} ⊆ γ(ν̃(α(X))) (3)
The notion of consistent abstraction can be readily ex-

tended to families of sets as follows. The mapping ν̃ is a
consistent abstraction of ν over a family of sets of inputs
X1 . . . Xp exactly when

{ν(x) | x ∈ ∪pi=1Xi} ⊆ γ(ν̃(α(X1, . . . , Xp))) (4)

where we abuse notation and denote with ν̃(·) the family
{ν̃(P1), . . . , ν̃(Ps)} with {P1, . . . , Ps} = α(X1, . . . Xp)

To represent polytopes and define the computations
performed by abstract layers in NEVER2, we resort to
a specific subclass of generalized star sets, introduced
in [BD17] and defined as follows — the notation is adapted
from [TLM+19].

Definition 4: (Generalized star set) Given a basis matrix
V ∈ Rn×m obtained arranging a set of m basis vectors
{v1, . . . vm} in columns , a point c ∈ Rn called center and
a predicate R : Rm → {>,⊥}, a generalized star set is a
tuple Θ = (c, V,R). The set of points represented by the
generalized star set is given by

[[Θ]] ≡ {z ∈ Rn | z = V x+c such that R(x1, . . . , xm) = >}
(5)

In the following we denote [[Θ]] also as Θ. Depending on
the choice of R, generalized star sets can represent different
kinds of sets, but in NEVER2 we consider only those such
that R(x) := Cx ≤ d, where C ∈ Rp×m and d ∈ Rp

for p ≥ 1, i.e., R is a conjunction of p linear constraints

as in [TLM+19]; we further require that the set Y = {y ∈
Rm | Cy ≤ d} is bounded.

Given a generalized star set Θ = (c, V,R) such that
R(x) := Cx ≤ d with C ∈ Rp×m and d ∈ Rp, if the
set Y = {y ∈ Rm | Cy ≤ d} is bounded, then the set of
points represented by Θ is a polytope in Rn, i.e., Θ ∈ 〈Rn〉.
In the following, we refer to generalized star sets obeying
our restrictions simply as stars.

The simplest abstract layer to obtain is the one abstract-
ing affine transformations. As we have already mentioned,
affine transformations of polytopes are still polytopes, so we
just need to define how to apply an affine transformation to
a star — the definition is adapted from [TLM+19].

Definition 5: (Abstract affine mapping) Given a star set
Θ = (c, V,R) and an affine mapping f : Rn → Rm with
f = Ax+ b, the abstract affine mapping f̃ : 〈Rn〉 → 〈Rm〉
of f is defined as f̃(Θ) = (ĉ, V̂ , R) where

ĉ = Ac+ b V̂ = AV
Intuitively, the center and the basis vectors of the input

star Θ are affected by the transformation of f , while the
predicates remain the same. Given an affine mapping f :
Rn → Rm, the corresponding abstract mapping f̃ : 〈Rn〉 →
〈Rm〉 provides a consistent abstraction over any bounded
set X ⊂ Rn, i.e., {f(x) | x ∈ X} ⊆ γ(f̃(α(X))) for all
X ⊂ Rn. we observe that the set α(X) is any polytope
P such that P ⊇ C(X) — equality holds only when X is
already a polytope, and thus X ≡ C(X) ≡ P . Let ΘP =
(cP , VP , RP) be the star corresponding to P defined as

cP = 0n VP = In RP = CPx+ dP ≤ 0

where 0n is the n-dimensional zero vector, and In is the
n×n identity matrix — the columns of In correspond to the
standard orthonormal basis e1, . . . , en of Rn, i.e., ‖ei‖ = 1
and ei · ej = 0 for all i 6= j with i, j ∈ [1, n]; the matrix
CP ∈ Rq×n and the vector dP ∈ Rq collect the parameters
defining q half-spaces whose intersection corresponds to P .
Given our choice of c and V , it is thus obvious that ΘP ≡ P .
Recall that f = Ax + b with A ∈ Rm×n and b ∈ Rm;
from definition (5) we have that f̃(ΘP) = Θ̂P with Θ̂P =

(ĉP , V̂P , RP) and

ĉP = A0n + b = b V̂P = AIn = A

The concretization of Θ̂P is just the set of points contained
in Θ̂P defined as

γ(Θ̂P) = {z ∈ Rm | z = Ax+ b such that Cpx ≤ dP }
(6)

Now it remains to show that {f(x) | x ∈ X} ⊆ γ(Θ̂P).
This follows from the fact that, for a generic y ∈ {f(x) |
x ∈ X} there must exists x ∈ X such that y = Ax + b;
since x satisfies Cpx ≤ dP by construction of P , it is also
the case that y ∈ γ(Θ̂P) by definition (6).

Algorithm 1 defines the abstract mapping of a functional
layer with n ReLU activation functions in NEVER2. The
function COMPUTE LAYER takes as input an indexed list of
N stars Θ1, . . . ,ΘN and an indexed list of n positive inte-
gers called refinement levels. For each neuron, the refine-
ment level tunes the grain of the abstraction: level 0 corre-
sponds to the coarsest abstraction that we consider — the

Algorithm 1 Abstraction of the ReLU activation function.
1: function COMPUTE LAYER(input = [Θ1, . . . ,ΘN], refine =

[r1, . . . , rn])
2: output = []
3: for i = 1 : N do
4: stars = [Θi]
5: for j = 1 : n do stars = COMPUTE RELU(stars, j, refine[j], n)
6: end for
7: APPEND(output, stars)
8: end for
9: return output
10: end function

11: function COMPUTE RELU(input = [Γ1, . . . ,ΓM], j, level, n)
12: output = []
13: for k = 1 : M do
14: (lbj , ubj) = GET BOUNDS(input[k], j)
15: M = [e1 ... ej−1 0 ej+1 ... en]
16: if lbj ≥ 0 then S = input[k]
17: else if ubj ≤ 0 then S = M * input[k]
18: else
19: if level > 0 then
20: Θlow = input[k]∧z[j] < 0; Θupp = input[k]∧z[j] ≥

0
21: S = [M * Θlow,Θupp]
22: else
23: (c, V, Cx ≤ d) = input[j]
24: C1 = [0 0 ... − 1] ∈ R1×m+1, d1 = 0
25: C2 = [V [j, :] − 1] ∈ R1×m+1, d2 = −ck[j]

26: C3 = [
−ubj

ubj−lbj
· V [j, :] − 1] ∈ R1×m+1, d3 =

ubj
ubj−lbj

(c[j]− lbj)

27: C0 = [C 0m×1], d0 = d

28: Ĉ = [C0; C1; C2; C3], d̂ = [d0; d1; d2; d3]

29: V̂ = MV , V̂ = [V̂ ej]

30: S = (Mc, V̂ , Ĉx̂ ≤ d̂)
31: end if
32: end if
33: APPEND(output, S)
34: end for
35: return output
36: end function

greater the level, the finer the abstraction grain. In the case
of ReLUs, all non-zero levels map to the same (precise) re-
finement, i.e., a piecewise affine mapping. Notice that, since
each neuron features its own refinement level, algorithm 1
controls abstraction down to the single neuron, enabling the
computation of levels with mixed degrees of abstraction.
The output of function COMPUTE LAYER is still an indexed
list of stars, that can be obtained by independently process-
ing the stars in the input list. For this reason, the for loop
starting at line 3 can be parallelized to speed up actual im-
plementations. Given a single input star Θi ∈ 〈Rn〉, each
of the n dimensions is processed in turn by the for loop
starting at line 5 and involing the function COMPUTE RELU.
Notice that the stars obtained processing the j-th dimension
are feeded again to COMPUTE RELU in order to process the
j + 1-th dimension. For each star given as input, the func-
tion COMPUTE RELU first computes the lower and upper
bounds of the star along the j-th dimension by solving a
linear-programming problem — function GET BOUNDS at
line 11. Independently from the abstraction level, if lbj ≥ 0
then the ReLU acts as an identity function (line 13), whereas
if lbj ≥ 0 then the j-th dimension is zeroed (line 14). The
operator “star” takes a matrix M , a star Γ = (c, V,R) and
returns the star (Mc,MV,R).

The linear-programming problem we need to solve in the

Fig. 3: Representation of the OutBounds property in NEVER2. Detached
property blocks are treated as input pre-conditions, while property blocks

linked to the NN are the output post-conditions.

GET BOUNDS solver can be formalized as follows:

(min/max) zj = V[j, :]x + c[j]

with Cx ≤ d

The problem must be solved as minimization and maximiza-
tion to provide the lower bound and the upper bound respec-
tively. It should be noted that the complexity of the problem
increases with the number of variables of the predicate of
the star of interest. As consequence the computational com-
plexity of GET BOUNDS increases as over-approximation
increases, whereas for concrete stars the complexity remains
the same.

Given a ReLU mapping f : Rn → Rn, the corresponding
abstract mapping f̃ : 〈Rn〉 → 〈Rn〉 defined in algorithm 1
provides a consistent abstraction over any bounded set X ⊂
Rn, i.e., {f(x) | x ∈ X} ⊆ γ(f̃(α(X))) for all X ⊂ Rn.

EXPERIMENTS

We consider three properties for the ACC case study, and
we verify them in NEVER2 with different NNs. The first
property that we define, called OutBounds in the following,
simply checks that the output acceleration does not exceed
the bounds of the ACCo function. Stated formally, this
amounts to have NEVER2 check that, given the precondi-
tions

0 ≤ vp ≤ 50

−50 ≤ vr ≤ 50

0 ≤ D ≤ 150

(7)

the output a satisfies the postcondition

− 3 ≤ a ≤ 1. (8)

Figure 3 shows NEVER2 canvas with the additional prop-
erty specification.

The second property we consider is called Near0, and it is
aimed at making sure that the ACC system does not output

TABLE I: NEVER2 results for the ACC data set with TH = 1 and D0 = 5, with ε = 0 (left) and ε = 20 (right). CPU time is in seconds rounded to the
third decimal place. The best setting for each network and property is highlighted in boldface.

TH = 1, 5 — D0 = 5 — ε = 0
Network Property Setting Result CPU Time

over-approx True 5.139
OutBounds mixed True 5.055

mixed2 True 5.112
complete True 6.273

over-approx False 5.666
Net0 Near0 mixed False 5.251

mixed2 False 5.203
complete False 6.319

over-approx False 5.078
Far0 mixed False 4.986

mixed2 False 5.139
complete False 5.186

over-approx True 5.931
OutBounds mixed True 6.662

mixed2 True 7.309
complete True 51.683

over-approx False 5.906
Net1 Near0 mixed False 6.676

mixed2 False 8.071
complete False 50.469

over-approx False 5.709
Far0 mixed False 5.888

mixed2 False 6.301
complete False 13.041

over-approx True 9.525
OutBounds mixed True 10.482

mixed2 True 12.525
complete True 26.958

over-approx False 9.515
Net2 Near0 mixed False 10.292

mixed2 False 13.636
complete False 24.496

over-approx False 9.753
Far0 mixed False 9.944

mixed2 False 12.148
complete False 13.27

TH = 1.5 — D0 = 5 — ε = 20
Network Property Setting Result CPU Time

over-approx True 5.037
OutBounds mixed True 5.063

mixed2 True 4.996
complete True 6.203

over-approx False 5.034
Net0 Near0 mixed False 5.101

mixed2 False 4.965
complete False 5.345

over-approx False 5.008
Far0 mixed True 5.016

mixed2 True 5.068
complete True 5.62

over-approx True 5.948
OutBounds mixed True 6.934

mixed2 True 7.232
complete True 52.318

over-approx False 5.436
Net1 Near0 mixed False 5.797

mixed2 False 5.955
complete False 7.667

over-approx False 5.344
Far0 mixed False 5.776

mixed2 False 6.226
complete False 8.212

over-approx True 9.532
OutBounds mixed True 10.149

mixed2 True 12.065
complete True 26.794

over-approx False 9.379
Net2 Near0 mixed False 9.872

mixed2 False 11.653
complete True 10.696

over-approx False 9.453x
Far0 mixed False 9.848

mixed2 False 11.558
complete False 10.854

positive accelerations when the vehicle ahead is too close.
We frame this concept via the precondition

0 ≤ vp ≤ 50

−50 ≤ vr ≤ 50

0 ≤ D ≤ 150

TH · vr +D0 ≥ D + ε

(9)

where ε ∈ R+ is a positive tolerance value in the last in-
equality. Notice that the input bounds are the same as Out-
bound. The last inequality stems from the fact that TH · vr
is the safety distance required to stop the ego car in time
if the exo car brakes, and D0 is a buffer value which, like
TH , is constant for each data set. The corresponding output
postcondition for Near0 is

− 3 ≤ a ≤ 0. (10)

Intuitively, we do not want the network to output positive
accelerations in this case.

Finally, the last property we consider is Far0, which is
symmetrical with respect to Near0. The precondition is

0 ≤ vp ≤ 50

−50 ≤ vr ≤ 50

0 ≤ D ≤ 150

TH · vr +D0 ≤ D − ε

(11)

where ε ∈ R+ is still a tolerance value and the input bounds
coincide with OutBounds and Near0 properties. In this case,
we want to verify that when the ego car is too far from the
exo car (or there is no vehicle ahead at all), the NN does not
suggests negative accelerations. The output postcondition is

0 ≤ a ≤ 1. (12)

In addition to the properties themselves, we also define
different configuration for NEVER2 verification algorithms.
In particular we consider 3 settings: over-approximated,
mixed, and complete. The over-approximated setting cor-
responds to running algorithm 1 with level greater than zero
whereas the complete setting amounts to choose level = 0.
In the former case the output image of the NN computed by
NEVER2 given the input preconditions is an overapproxi-
mation of the concrete one. In this case, checking whether
the output image satisfies the postcondition gives us a suf-
ficient condition only, i.e., if the inequality holds the NN
is safe with respect to that property. On the other hand, if
the inequality is not verified, the NN may still be safe and
the check may have failed because of the loss of precision in
the abstraction process. In the complete setting, on the other
hand, NEVER2 computes the actual output image of the net-
work: if the inequality in the postcondition does not hold,
we are sure that the NN in not safe. However, the complete
setting in algorithm 1 potentially causes the exponential
blow-up in the number of stars generated, and thus the com-
putation might simply not be feasible. The mixed setting

strikes a trade-off between complete and over-approximated
setting: using an heuristic detailed in [GPT21], NEVER2
tries to concretize the least number of stars that enable prov-
ing the property without blowing the computation time. In
our experiments, we consider two different sub-settings for
mixed, called mixed and mixed2 which differ in the number
of neurons to refine, either 1 or 2, respectively.

We run our tests on a workstation featuring two In-
tel Xeon Gold 6234 CPU, three NVIDIA Quadro RTX
6000/8000 GPUs (with CUDA enabled), and 125.6 GiB of
RAM running Ubuntu 20.04.03 LTS. For the sake of brevity,
we are only going to report here a fraction of the experi-
ments we ran in Table I for the data set with TH = 1.5 and
D0 = 5, considering ε = 0 and ε = 20. The results we
show here are consistent with the results obtained on other
data sets that we do not report. In particular, looking at Ta-
ble I we can observe that:
• All the properties can be checked on all the networks in
reasonable time by NEVER2: less than one minute of CPU
time is required independently from the network architec-
ture and the specific setting considered.
• The complete setting is the most expensive in compu-
tational terms; given the considerations above this should
come at no surprise, but in one case, namely Net2 on prop-
erty Near0, the complete setting is able to prevail over the
others, i.e., it certifies that the property is true; indeed mixed
and over-approximated settings (shortened as over-approx
in Table I) take less time, but state that the property is false
because they do not manage to reach enough precision to
state the correct result.
• The over-approximated setting is often faster than the
other ones: 6 out of 9 cases for ε = 0 and 7 out of 9 cases for
ε = 20; however it must be noted that its results are definite
only when the property is true: 3 out of 9 cases for both val-
ues of ε and always for the (simplest) property OutBounds.
• The mixed setting is at times faster than the over-
approximated one, but only in one case, namely property
Far0 on Net0 it is able to provide a definite answer while
outperforming both the complete and over-approximated
settings.
Overall we can conclude that while further research is
needed to improve on the capability of NEVER2 to pro-
vide definite answers with faster techniques involving over-
approximation, still the tool is able to check a number of in-
teresting properties in networks involving hundreds of neu-
rons in a relatively small amount of CPU time. We view
this as a positive result and an enabler for preliminary test-
ing of NEVER2 at industrial settings featuring networks of
comparable size to our ACC case study.

CONCLUSIONS

In this article we developed a concrete example of how
our system NEVER2 can learn and verify NNs. The ap-
plication we consider is, to the best of our knowledge, one
of the examples of formal verification for NNs which are
closest to industrial application. We have shown convincing
experimental evidence that it is possible to learn an adaptive
cruise control function and verify some interesting proper-
ties, all in a single package that supports the process through
an easy to use graphical user interface. In future works, we

intend to deepen our research and find more applications
that require NNs to be learned and verified, possibly with
more complex architectures to stress NEVER2 capabilities.

REFERENCES
[BD17] Stanley Bak and Parasara Sridhar Duggirala. Simulation-

equivalent reachability of large linear systems with inputs.
In International Conference on Computer Aided Verification,
pages 401–420. Springer, 2017.

[DCJ+19] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankara-
narayanan, and Ashish Tiwari. Sherlock - A tool for veri-
fication of neural network feedback systems: demo abstract.
In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC, pages
262–263, 2019.

[GPT21] Dario Guidotti, Luca Pulina, and Armando Tacchella. pyn-
ever: A framework for learning and verification of neural net-
works. In Automated Technology for Verification and Anal-
ysis - 19th International Symposium, ATVA, pages 357–363,
2021.

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In 3rd In-
ternational Conference on Learning Representations, ICLR
(Poster), 2015.

[HKR+20] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James
Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping
Yi. A survey of safety and trustworthiness of deep neural net-
works: Verification, testing, adversarial attack and defence,
and interpretability. Computer Science Review, 37:100270,
2020.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Ju-
lian, Christopher Lazarus, Rachel Lim, Parth Shah, Shan-
tanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill,
Mykel J. Kochenderfer, and Clark W. Barrett. The marabou
framework for verification and analysis of deep neural net-
works. In Computer Aided Verification - 31st International
Conference, CAV, pages 443–452, 2019.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

[LM17] Alessio Lomuscio and Lalit Maganti. An approach to reacha-
bility analysis for feed-forward relu neural networks. CoRR,
abs/1706.07351, 2017.

[LNPT18a] Francesco Leofante, Nina Narodytska, Luca Pulina, and Ar-
mando Tacchella. Automated Verification of Neural Net-
works: Advances, Challenges and Perspectives. arXiv e-
prints, page arXiv:1805.09938, May 2018.

[LNPT18b] Francesco Leofante, Nina Narodytska, Luca Pulina, and Ar-
mando Tacchella. Automated verification of neural net-
works: Advances, challenges and perspectives. CoRR,
abs/1805.09938, 2018.

[NKR+18] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid
Ryzhyk, Mooly Sagiv, and Toby Walsh. Verifying prop-
erties of binarized deep neural networks. In Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-18), pages
6615–6624, 2018.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In 2nd Interna-
tional Conference on Learning Representations, ICLR, 2014.

[TLM+19] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau,
Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and
Taylor T Johnson. Star-based reachability analysis of deep
neural networks. In International Symposium on Formal
Methods, pages 670–686. Springer, 2019.

[WPW+18] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang,
and Suman Jana. Efficient formal safety analysis of neu-
ral networks. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada, pages 6369–6379, 2018.

[WWR+18] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang,
and Marta Kwiatkowska. A game-based approximate veri-
fication of deep neural networks with provable guarantees.
CoRR, abs/1807.03571, 2018.

[Zhe19] Yu Zheng. Computing bounding polytopes of a compact
set and related problems in n-dimensional space. Computer-
Aided Design, 109:22–32, 2019.

	Basic Notation and Definitions
	Neural Networks
	Verification task
	Case Study

