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Abstract. Nowadays, micro-mobility sharing systems have become extremely popular. Such systems consist in fleets of dockless
electric vehicles which are deployed in cities, and used by citizens to move in a more ecological and flexible way. Unfortunately,
one of the issues related to such technologies is its intrinsic load imbalance, since users can pick up and drop off the electric
vehicles where they prefer.

In this paper we present ESB-DQN, a multi-agent system for E-Scooter Balancing (ESB) based on Deep Reinforcement
Learning where agents are implemented as Deep Q-Networks (DQN). ESB-DQN offers suggestions to pick or return e-scooters
in order to make the fleet usage and sharing as balanced as possible, still ensuring that the original plans of the user undergo only
minor changes.

The main contributions of this paper include a careful analysis of the state of the art, an innovative customer-oriented rebal-
ancing strategy, the integration of state-of-the-art libraries for deep Reinforcement Learning into the existing ODySSEUS sim-
ulator of mobility sharing systems, and preliminary but promising experiments that suggest that our approach is worth further
exploration.
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1. Introduction

The adoption of Electric Vehicles (EV) has been
constantly growing in the last few years and this trend
is expected to accelerate exponentially. From the anal-
ysis of the electric vehicle market growth across U.S.
cities published in September 2021, it turns out that

The electric vehicle market in the United States
has grown from a few thousand vehicles in 2010
to more than 315 thousand vehicles sold annually
from 2018 to 2020. In 2020, the electric share of
new vehicle sales was approximately 2.4%, an in-
crease from about 2% in 2019 [4].

Similar figures, at a global scale, are reported in
Global EV Outlook issued in April 2021 by the Inter-
national Energy Agency, IEA1.

While these reports deal with any kind of electric ve-
hicles including cars and public transportation means,
lightweight two-wheels vehicles play a very important
role in boosting the green trend by changing the way
we conceive mobility in our cities.

As reported in the SLOCAT Transport and Climate
Change Global Status Report 2nd Edition published in
June 20212,

1https://www.iea.org/reports/
global-ev-outlook-2021, accessed on January 10th, 2022.

2https://tcc-gsr.com/, accessed on January 10th, 2022.
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Electric-assisted bicycles (e-bikes) are by far the
most popular electrified road transport mode in
Europe and North America; e-bike sales in Europe
surpassed 4.8 million units in 2020, three times the
number of electric passenger cars sold in the Eu-
ropean Union (EU) that year.

Instead of owning personal electric vehicles, many
citizens prefer to take advantage of sharing systems.
Quoting the SLOCAT Report again,

The use of e-bikes in shared systems has also
grown strongly since 2017 and a study found that
35% of shared electric bike trips substituted car
travel, while 30% substituted walking. As of Au-
gust 2020, some 2,015 bike-sharing systems were
in operation around the world.
In 2019, nearly 140 million trips were taken on
shared bicycles and scooters in the USA, up 60%
from 2018. Shared scooter use grew more than
100%, while shared bike use increased around
10%.

It is a matter of fact that in the last few years micro-
mobility sharing systems have become extremely pop-
ular. More and more companies are purchasing fleets
of electric vehicles to be deployed in many cities
around the world, allowing users to easily rent ve-
hicles via a smartphone app. From 2017, the grow-
ing trend is to offer a so-called “free-floating” or
“dockless” service related to e-scooters, e-bikes or e-
moped3: the vehicles can be picked-up or dropped-off
anywhere within an operative area designed by the ser-
vice provider to cover most of the busiest areas of cities
[6,24].

Dockless shared vehicles have a huge potential, but
their great flexibility comes with the challenge of un-
predictable usage patterns, with the risk of an im-
balanced distribution of the electric vehicles around
the city. Moreover, battery capacity is limited and
many vehicles can rapidly run out-of-charge during the
course of the day, if overused in quick succession. In
order to preserve a good quality of service despite of
imbalance problems and battery limitations, compa-
nies need to devote a large operational effort for an ef-
ficient fleet management [27].

3While in this paper we will mainly refer to e-scooters, the prob-
lems raised by their adoption in a dockless context and the solution
that we propose apply to any small electric vehicle suitable to be
shared and used in a limited operational area.

Typically, specialised workers are employed to ac-
complish two different, yet complementary tasks,
namely battery swap and relocation. Battery swap
refers to the process of inserting new batteries into out-
of-charge vehicles, whereas relocation refers to the
process of moving vehicles from one zone to another
in order to rebalance the fleet distribution [7].

Quantity of workers, modality and frequency as-
sociated with battery swap and relocation operations
represent crucial aspects in the definition of an effi-
cient fleet management policy. A critical trade-off is
required to avoid high operational costs and, at the
same time, maximize the usage of vehicles. Recently,
user’s engagement has been proposed as a viable solu-
tion to alleviate the aforementioned problems. As a re-
sult, nowadays several companies engage users in var-
ious ways to solve the imbalance and the battery limi-
tation problems [11,22,26].

In this work, that extends the “WOA: From Ob-
jects to Agents” 2021 workshop paper [19], we present
ESB-DQN (for “E-Scooter Balancing based on Deep
Q-Networks”), a multi-agent system based on Deep
Reinforcement Learning, Deep RL for short, capable
of proposing convenient alternative locations for pick-
ing up or returning e-scooters. Every time users are
willing to rent an e-scooter, they are encouraged to ac-
cept alternative pick-up or drop-off points in exchange
for incentives. The alternative points that ESB-DQN
considers as valid ones are located in adjacent zones
w.r.t. those originally planned by the user. This means
for example that a user will never be invited to drop the
e-scooter off in a point that is more distant than 2l

√
2

meters from the planned one, being l the length of the
square zone side. Indeed, users are not meant to be-
come the relocators of vehicles, but just to improve the
relocation process without significant changes to their
original plans.

Based on demand forecast models and artificial in-
telligence techniques, the ESB-DQN system learns
convenient recommendations for the users, in order
to maximize the vehicle availability and, at the same
time, minimize the number of battery swap and relo-
cation operations. The system is intended to improve
service efficiency and to increase the service provider’s
long-term revenue. Provided with a smart monetary
incentive mechanism, the system is also meant to im-
prove customers’ satisfaction and fidelity.

Albeit our study is still in its early stages, and is only
related with the suggestion of alternative pick-up and
drop-off locations, our long-term vision of ESB-DQN
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is ambitious, as summarized in Figure 1: a user inter-
acts in natural language with the system whose front-
end is an app; the system proposes alternative adjacent
pick-up and drop-off locations with incentives, based
on the Deep Reinforcement Learning algorithm imple-
mented in the back-end; the user either agrees or de-
clines, always interacting in natural language; the sys-
tem is also available to answer general questions on the
terms and conditions of use of the e-scooter and may
provide touristic suggestions on points of interest and
on services available in the area.

Fig. 1. The ESB-DQN vision, with the front-end implemented as an
app interacting via voice with the user, and the back-end integrating
the approach presented in this paper. The zone of Piazza Colombo
(top rectangle in the representation of the ESB-DQN back-end) is
highlighted with a cold color, meaning higher expected deficit of
vehicles, while the zone of Piazza della Vittoria (bottom rectangle in
the representation of the back-end) is highlighted with a warm one.

The code that supports the findings of this study is
available to the research community on GitHub4 and
extends the ODySSEUS simulator developed by the
SmartData lab at the Polytechnic University of Torino,
Italy5. The choice of extending ODySSEUS was a nat-

4https://github.com/DiTo97/
odysseus-escooter-dqn, accessed on January 10th, 2022.

5https://smartdata.polito.it/
odysseus-an-origin-destination-simulator-of-

ural one given that — as discussed in Section 2 — it
has been designed as an origin-destination simulator
of shared e-mobility in urban scenarios, being hence
conceived for the same application domain that we ad-
dress. The kind support provided by the ODySSEUS’
developers, who reacted to all our requests in a timely
and helpful fashion, represented a further positive ele-
ment of our choice.

The main contributions of this paper are the follow-
ing:

– a careful analysis of the state of the art has been
carried out;

– an innovative customer-oriented rebalancing strat-
egy has been defined through a multi-agent sys-
tem based on deep Reinforcement Learning;

– an existing simulator of mobility sharing systems,
ODySSEUS, has been integrated with a state-of-
the-art library for deep Reinforcement Learning;

– simulations based on real data have been carried
out to preliminarily quantify the benefits of the
proposed approach.

The paper is organized as follows: Section 2 con-
tains an overview of related works. Section 3 de-
scribes the data used throughout this research. Section
4 describes the simulator we implemented, extending
ODySSEUS, to simulate the e-scooter sharing dynam-
ics while Section 5 describes the ESB-DQN multi-
agent system. Section 6 presents the experiments that
have been carried out as well as the corresponding re-
sults. Finally, Section 7 concludes the paper with a dis-
cussion of potential and limitations of the proposed ap-
proach, and of its future extensions. An Appendix re-
ports details om the simulator parameter and how to
use it to reproduce the experiments presented in this
paper.

With respect to the WOA 2021 paper, this version
adds almost eighty percent new contents including a
more thorough analysis of the state of the art, further
technical details on the system, and a deeper and more
critical discussion of its advantages and disadvantages.

2. Related works

This section deals with three kinds of related works:
those that further motivate the interest in the domain

shared-e-mobility-in-urban-scenarios/, accessed
on January 10th, 2022.

https://github.com/DiTo97/odysseus-escooter-dqn
https://github.com/DiTo97/odysseus-escooter-dqn
https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-
https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-
shared-e-mobility-in-urban-scenarios/
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addressed by this study, those specifically oriented to-
wards rebalancing strategies, and those that address the
e-scooter domain as we do, but from different perspec-
tives.

2.1. Works motivating our study

The raising interest in the adoption of vehicle shar-
ing systems is witnessed, besides by documents and re-
ports by national and international agencies like those
mentioned in the Introduction, by many recent scien-
tific papers.

In 2020 Aguilera-García et al. [1] collected data
from Spanish cities through an online survey in order
to identify the drivers for adoption and frequency of
use of moped scooter-sharing services in urban areas.
Among their conclusions, we mention that age in the
range 26-34 and university level education play a key
role in determining a positive attitude towards this mo-
bility approach.

The analysis by Eccarius and Lu [10] is instead
targeted towards university students: survey responses
from 471 university students in Taiwan were collected,
and their analysis showed that lack of perceived com-
patibility with personal values, mobility needs and life-
style particularly drives students with low usage in-
tention, while awareness-knowledge about the sharing
system and environmental values influence the forma-
tion of usage intention in indirect ways.

Comparisons of the performance of bike and scooter
sharing have been carried out on data from the Tri-
City metropolitan area in northern Poland [3] and
from Singapore [27]. The first study concluded that e-
scooters are more often used for leisure rides, while
e-bicycles are mainly used as first and last mile trans-
port and to commute directly to various places of in-
terest; respondents that adopted shared micromobility
are generally young, and e-scooter users are on aver-
age younger than e-bike users. The second study con-
firms the high maintenance cost for rebalancing and
charging e-scooter fleets, which is the motivation for
our work.

2.2. Works on rebalancing strategies

The recent work by Wen et al. [26] provides a com-
prehensive overview of the rebalancing strategies used
to alleviate the imbalance problem in bike sharing sys-
tems. Such strategies have been classified according
to two main categories: truck-based rebalancing and
customer-oriented rebalancing. Truck-based rebalanc-

ing refers to the relocation operations mentioned in
Section 1. A specialized group of workers is in charge
of moving vehicles from one zone to another by means
of trucks. On the other hand, customer-oriented rebal-
ancing is the process of encouraging users to adopt ef-
ficient behaviours by providing incentives. The latter
category is the main topic of our investigation.

Most past works on rebalancing strategies are not
targeted towards “free floating” systems. Regue and
Recker [23] addressed the dynamic bike sharing repo-
sitioning problem with demand prediction; although
their proposal is consistent with an agent-oriented
view, being proactive as demands are anticipated,
and being self-adaptive as more precise predictions
can be made as new data are available, repositioning
takes place in existing stations, and hence the prob-
lem they address is different from ours. Junming et al.
[18] developed a Meteorology Similarity Weighted K-
Nearest-Neighbor regressor to predict the station pick-
up demand based on large-scale historic trip records
and proposed an inter-station bike transition model to
predict the station drop-off demand. Incentive propos-
als mechanisms are also taken under consideration in
papers investigating the role of stations in customer-
oriented rebalancing [11,22,26].

In our work, both truck-based and customer-oriented
strategies have been taken into account: truck-based
rebalancing is implemented through the simulator,
whereas customer-oriented rebalancing is implemented
through the Reinforcement Learning system. Few
other works employ deep RL to investigate user incen-
tives in bike sharing systems, including those by Duan
and Wu [9] and by Pan et al. [21]. However, their ob-
jective is to determine an optimal pricing mechanism,
whereas the objective of our work is to determine con-
venient pick-up/drop-off zones for each booking re-
quest.

In particular, Duan and Wu [9] consider rebalancing
the dockless bike sharing system by providing users
with monetary incentives with the long-term goal of
maximizing the number of satisfied users who success-
fully complete their rides over a period of time. The lo-
cations of sources and destinations are extracted from
a selected dataset named Mobike containing more than
100k trip records of Shanghai, and the experiment re-
sults are promising. W.r.t. our work, Duan and Wu’s
simulator is driven by less parameters and the model of
the domain is less precise: neither battery swap costs
(in terms of needed workers and employed time), nei-
ther relocation cost (again, in terms of workers and
time needed to relocate vehicles) seem to be taken
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Table 1
Summary of the main features of the works on rebalancing; details
are provided for those dealing with dockless fleets only, character-
ized by “yes” in the Dockless column. They include the information
if Battery swap and Relocation are modeled, the used Dataset, and
whether the proposed tool Employs Deep RL or not.

Reference Year Dockless Battery swap Relocation Dataset Employs Deep RL
Pfrommer et al. [22] 2014 no / / / /

Regue and Recker [23] 2014 no / / / /

Junming et al. [18] 2016 no / / / /

Fricker and Gast [11] 2016 no / / / /

Yi et al. [26] 2019 no / / / /

Duan and Wu [9] 2019 yes no no Mobike yes

Pan et al. [21] 2019 yes no no Mobike yes

Ciociola et al. [7] 2020 yes yes yes Louisville and Minneapolis no

ESB-DQN 2021 yes yes yes Louisville yes

into account. The same Mobike dataset was used by
Pan et al. [21] for developing their Hierarchical Re-
inforcement Pricing, building upon the Deep Deter-
ministic Policy Gradient algorithm. Their pricing algo-
rithm captures both spatial and temporal dependencies
using a divide-and-conquer and outperforms state-of-
the-art methods in both service level and bike distribu-
tion.

The motivation behind the use of deep Reinforce-
ment Learning for our task is mainly related to the pos-
sibility of combining many interesting aspects at once.
The deep RL system can indeed incorporate demand
forecasting models as a baseline to drive agents’ be-
haviours and, at the same time, can learn efficient sug-
gestions based on past experience and adapt to real-
time demand and availability of the system. In this
way, the decision process behind the offered sugges-
tions can capture complex information about the dy-
namics of the mobility system. Furthermore, by formu-
lating the problem as a game, several constraints may
be introduced to enforce specific objectives in the mo-
bility system (e.g., a target service availability).

Compared to previous works, the innovative con-
tribution of our paper is thus twofold. On one side,
few works address the imbalance problem inside “free-
floating” e-scooter mobility systems. Most rebalancing
strategies proposed so far in the literature have been
adapted from station-based sharing systems. On the
other side, a deep RL multi-agent system in charge of
suggesting pick-up/drop-off zones constitutes an origi-
nal solution which does not build on any existing work.
The work that mainly influenced our proposal is the
one by Ciociola et al. [7], in which the ODySSEUS

simulator has been introduced (Section 4) — an essen-
tial component of the ESB-DQN system.

Ciociola et al. created a flexible, data-driven de-
mand model by using modulated Poisson processes for
temporal estimation, and Kernel Density Estimation
for spatial estimation. The demand model was used
in conjunction with a configurable e-scooter sharing
simulator to compare performance of different elec-
tric scooter sharing design options, such as the impact
of the number of scooters and the cost of managing
their charging. Experiments were carried out on open
data about e-scooter sharing rides in Minneapolis and
Louisville.

Table 1 summarizes the main features of both the
systems discussed in this subsection and ESB-DQN.

2.3. Related works on urban decorum, dockless
e-scooter flows, self-repositioning

Other works that are related with ours albeit focus-
ing on different issues, include the study by Carrese et
al. [5] who observe that leaving electric vehicles in the
wrong position not only interferes with pedestrians and
other vehicles, but also reduces urban decorum. They
suggest introducing “beautificators”, namely employ-
ees that fix inappropriate and disordered parking made
by users, by moving vehicles close to the place where
they had been left, but in safer, and more acceptable
from the urban decorum point of view, place. The repo-
sitioning that they propose is different by traditional re-
location made to rebalance fleets; their approach could
be merged with ours, by recognizing more incentives
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to users who park their vehicles in the right zone, and
also in the right way.

In a paper published in 2021, He and Shin [13] ana-
lyze e-scooter distribution features and flow dynamics
for the data-driven designs, and propose a novel spatio-
temporal graph capsule neural network to predict fu-
ture dockless e-scooter flows given the reconfigured
regions. They the data from the Louisville database of
trips that we also employed (see Section 3), plus data
from other cities in the US. Although by predicting e-
scooter distribution one might also devise strategies for
rebalancing, He and Shin do not address rebalancing as
their main goal. Also, by exploiting neural networks,
they use a different learning approach.

A visionary development of fleet rebalancing in-
volves self-repositioning shared personal mobility de-
vices [17], namely small electric vehicles that can
move autonomously at slow speed to reposition them-
selves, but require to be driven by their user during
trips. While the adoption of such self-repositioning de-
vices would boost the efficiency of fleet operations,
there are many obstacles to their application ranging
from engineering challenges such as self-stabilization
of two-wheels vehicles [12] to infrastructural require-
ments, to regulatory issues involving self-driving elec-
tric vehicles.

3. Data used in this study

To investigate the free-floating imbalance problem,
we rely on actual e-scooter trips open data published
by the Municipality of Louisville6, Kentucky. The data
comes fuzzed both in time and space for privacy rea-
sons; in particular, each trip has any time-related infor-
mation rounded to the closest quarter of an hour and
any space-related information rounded at the 3rd deci-
mal for both latitude and longitude. Hence, we follow
the disaggregation procedure described in [7] such that
each trip retains a unique Id, the duration, the distance,
the start time, the end time, the start location and the
end location. The main characteristics of the dataset
are summarized in Table 2. They refer to a training set
of observations registered over the whole year 2019.
The number of trips we used in the simulation, denoted
as N trips sim, refers to observations used in the sim-
ulation, namely those that took place on January 01,
2020.

6https://data.louisvilleky.gov/dataset/
dockless-vehicles, accessed on January 10th, 2022.

Louisville’s e-scooter ecosystem has rather lim-
ited complexity, reflecting heterogeneous temporal and
spatial demands at the same time. Nonetheless, in or-
der to further ease the formulation of the problem,
the whole operative area in the city of Louisville has
been quantized in a set Z of l × l square zones as
proposed in [7], with l the side of the squares, a pa-
rameter later clarified in Section 6. As a result, the
start/end locations of each trip report the Id of the cor-
responding zone membership. Each zone zi ∈ Z is
associated with a set of valid 1-hop neighbours Nzi ,
i.e. the zones among the 8 adjacent zones registering
at least one booking request within the training set of
observations. These zones are valid pick-up/drop-off
alternatives because — being adjacent to them — they
are not too distant from the pick-up/drop-off points
that the user had planned to start from/end to, respec-
tively. As it can be seen in Figure 2, many of the zones
do not have a full set of valid 1-hop neighbours, i.e.
|Nzi | 6= 8. In fact, almost all of them do not, with a
grand total space of valid neighbours,Nvalid, amount-
ing to only the 60.6% of the whole space of possible
neighbours N ?, with |N ?| = 279 ∗ 8 = 2232.

Both the large subset of invalidity,Ninvalid, and the
small number of observations used in the simulation
(over January 01, 2020 only), are further discussed in
Section 6 as they play a key role in the reasoning be-
hind the training of the ESB-DQN multi-agent system.

4. Simulator of the e-scooter sharing dynamics

A modified version of ODySSEUS, the SimPy-
based simulator presented in [7], has been used to sim-
ulate e-scooter sharing system dynamics in Louisville.
A formal description of the simulator follows; the most
relevant symbols used in this section are summarized
in Table 4, along with the name of the corresponding
parameters in the implemented simulator, when avail-
able.

Fleet and zones. Let S be the fleet of e-scooters. At
any time t, each e-scooter s ∈ S is characterised by
a unique plate Id, the state of availability, the state of
charge of the battery b(s) ∈ [0, β], with β being the
battery capacity, and the location l(s) as a zone Id in
Z .

Trip requests. The simulator processes trip request
events by directly reading them from the input trace

https://data.louisvilleky.gov/dataset/dockless-vehicles
https://data.louisvilleky.gov/dataset/dockless-vehicles
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Table 2
Main characteristics of Louisville dataset.

City N scooters Avg trip dur. (s) Avg trip dist. (m) N zones N trips train N trips sim
Louisville 800 814 1601 279 199 789 154

Table 3
Summary of most relevant symbols used in this section and corresponding parameters in the simulation (if they exist).

Parameter Symbol in formulae Parameter’s name in the simulator
Pick-up agent P (none)

Pick-up agent action at time t aP,t (none)

Drop-off agent D (none)

Drop-off action at time t aD,t (none)

Pick-up zone of the ith generated trip request p(i) (none)

Drop-off zone of the ith generated trip request d(i) (none)

Alternative pick-up zone of the ith generated trip request p̂(i) (none)

Alternative drop-off zone of the ith generated trip request d̂(i) (none)

Side length of the square zones l bin_side_length

Number of vehicles in the environment |S| n_vehicles

Number of battery swap workers nswap n_workers

Number of relocation workers nrel n_relocation_workers

Acceptance probability for each incentive proposal w incentive_willingness

Battery capacity β beta

Battery level to mark vehicles as dead (percentage of β) α alpha

over 2019. When the i-th trip request event fires at time
ti, the simulator checks whether there is any e-scooter
s with enough residual energy, i.e., b(s) ≥ ei, being
ei the energy to complete such trip, either available in
the same zone or in the 1-hop neighbouring zones (i.e.,
the 8 surrounding zones). This is equivalent to assume
that customers will by default rent the nearest available
e-scooter having enough battery charge.

Incentive proposals. In alternative, users are incen-
tivized to pick-up and/or drop-off the vehicle from/to a
different zone in a limited nearby area identified by ad-
jacent zones (“1-hop neighbouring zones”). They ran-
domly accept or decline the proposal according to a
willingness factor w ∈ [0, 1], and eventually get their
incentive once the trip has been completed. If no al-
ternative pick-up proposal is accepted and no scooter
is available in the 1-hop neighbouring zones, the trip
request is marked as unsatisfied.

Trip completion. Once the pick-up zone p(i) and
the drop-off zone d(i) are defined, a trip-end event is
scheduled at time ti +δti, being δti the duration of the
rental - drawn from a Gaussian distribution with mean
µ equal to the duration of the trip reported in the trace,

and standard deviation σ equal to 4 minutes, as a form
of variability. When the trip-end event fires, the simu-
lator makes the e-scooter s back available in position
d(i), and updates its battery charge b(s) = b(s)−e(i).
If b(s) < αβ, with α the operability threshold ∈ [0, 1],
the scooter s is marked as dead and is no longer avail-
able until a battery swap operation is performed.

Battery swap. Once every Ts time steps, a fleet of
nswap battery swap workers is triggered to perform bat-
tery swaps operations. Each worker is assigned a bat-
tery swap schedule, which consists of up to nv ve-
hicles to be re-charged inside several zones. Battery
swap schedules are created and assigned with the fol-
lowing criteria: we compute the battery charge deficit
for each zone z at time t, ∆s(t, z), with t = kTs, as
the number of dead vehicles waiting for service in z.
Then the zone zo with the least deficit is identified, and
a priority 0 queue is constructed for all the other n− 1

zones, with priority defined as:

p(t, z) =
1

∆s(t, z)
+

d(z, zo)

max(d(zj , zo)j=1,...,n)
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Fig. 2. Characterisation of zones in the city of Louisville, following
a heatmap colour scale on the number of trips starting form each
zone in 2019 in a decimal logarithmic scale (exponent reported in
the legend). The warmer the color, the higher the number of trips
starting from the zone. Credits to [7].

with d(zi, zk) being the Haversine distance between
the i-th and the k-th zone. Each worker is then as-
signed a subset of the queue, potentially across mul-
tiple zones, following a lump sum costs policy whose
goal is to construct a schedule that keeps the expected
profit in the next Ts time steps, Pswap,t+Ts

, higher
than the expected battery swap costs, Cswap,t: an av-
erage cost of service has to be assumed for each vehi-
cle, Cv . As soon as all the workers have an assigned
schedule as a sequence of zone Ids, the shortest path
to completion is computed for each of them by solv-
ing an equivalent Traveling Salesperson Problem op-
timization. Once all the battery swap operations are
completed, the workers wait as idle in their last zone
on schedule.

Relocation. Once every Tr time steps in a limited
working time interval Twork, a fleet of nrel relocation
workers is triggered to perform relocation operations.
Each worker is assigned a relocation schedule, which
consists of up to nv vehicles to be moved from some
zones to others in order to balance the system. Reloca-
tion schedules are created following a similar criteria
to what has been described above: a deficit ∆(t, z) is
computed for each zone z, a priority 0 queue is com-
puted off of that and a number of schedules are first

generated following a lump sum costs policy and then
optimized via TSP. In this case, ∆(t, z) is computed
observing the availability of e-scooters with respect to
the expected inward and outward flows for the zone
z at time t computed over 2019 following the predic-
tive model proposed in [7]. Relocation time is mod-
eled in the system following the original approach of
the ODySSEUS simulator, with minor adjustments:
the ESB-DQN parameters include the average time
employed by any relocator to put the e-scooter onto
the van used for the relocation task, and the average
time employed by any relocator to reach the destina-
tion point. Values for these parameters were set as in
the ODySSEUS simulator.

Initialization. At start time, e-scooters are randomly
placed among the zones of the grid with uniform ran-
dom charge b(s) ∈ [β/2, β]. Afterwards, both relo-
cation and battery swap workers are similarly placed
with uniform random among the 30 zones that have
registered the highest demand in the training data over
2019. This is equivalent to assume the existence of
landmarks within the city of Louisville that require a
higher concentration of e-scooters.

In the ODySSEUS simulator, battery swap opera-
tions were treated differently from relocation ones, as
battery swap workers were modelled as a FIFO queue
that would react on the fly to out of charge events. In
our work, we have leaned towards the hourly schedul-
ing approach already followed by relocation workers,
as this would allow us to have a rough idea of the
hourly workforce of battery swap workers that is nec-
essary to do any sort of planning whose long-term ob-
jective is to reduce the overall maintenance costs of the
system.

5. The ESB-DQN multi-agent system

A multi-agent system has been designed, in charge
of proposing alternative pick-up/drop-off zones to the
users in change of incentives. In particular, two agents
are defined: a pick-up agent, P , and a drop-off agent,
D. At every generated trip request i with pick-up zone
p(i) and drop-off zone d(i), the pick-up agent proposes
an alternative pick-up zone p̂(i), whereas the drop-off
agent proposes an alternative drop-off zone d̂(i). Both
proposals share the same ultimate goal of improving
the long-term balance of the system, while reducing
the overall costs of service due to general maintenance,
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battery swap ops and relocation ops.

Intuitively, if the system recognizes that there is
even a slight imbalance between p(i) (or d(i)) and
some nearby zones, the respective agent, P (or D), is
encouraged to offer the users a proposal in change of
an incentive based on the added Euclidean distance.
Or again, if there are a certain number of out of charge
vehicles gathered in some other areas, and the clock t
is close to the next service schedule, (k+ 1) ∗Ts, then
both agents are likely to offer the users a proposal.

The next three paragraphs describe the fundamental
components of the ESB-DQN multi-agent system.

5.1. Environment

The environment wraps the modified simulator de-
scribed in Section 4 to make it compliant with Deep-
Mind’s DQN Zoo library for Reinforcement Learn-
ing [8]. The major change we have made to the
ODySSEUS simulator is conceptual: rather than simu-
lating the whole cascade of trip requests between two
time intervals of start and finish, t0 and tN , collecting
a certain number of statistics about the run afterwards,
as the original in [7] does, our simulator moves step
by step across the states of the Louisville environment.
The state, Xt, is observed as soon as an environment-
changing event fires, i.e., a trip request is scheduled;
such observation is available to P and D, which will
consequently pick an action, at. The simulator will
then move forward of one step into the state Xt+1 by
applying such action. Formally, it is a fully observable
environment which produces a n × 3 state vector Xt

at every trip request i at time t:

Xt
n×3

=
[
A(n×1) B(n×1) C(n×1)

]
=



a1 b1 0
a2 b2 0
...

...
...

ap bp 1
...

...
...

ad bd 1
...

...
...

an bn 0


(1)

with n = |Z| the total number of zones, A the n×1
column vector with the number of available vehicles
per zone z at time t,B the n×1 column vector with the

deficit ∆(t, z) per zone z with respect to the expected
optimal baseline at time t, introduced in Section 4, and
C is a binary n × 1 column vector with 1s in corre-
spondence of p(i) and d(i) only, indicating if a certain
zone is the start or the end zone of the trip (the position
corresponding to some zone z contains 1 in vector C
if z == p(i) or z == d(i)).

VectorsA andB are standardized via z-normalization
to achieve a mean of 0 and a standard deviation of 1. C
plays the role of a de-facto attention mechanism within
the state Xt itself. Indeed, it signals which zones of the
operative area may be subject to alterations in the near
future leading towards the state transition Xt to Xt+1,
which may reflect in how knowledgeable the alterna-
tive proposals are.

In our initial design of the system, we planned the
ESB-DQN environment to emit a fourth column vec-
tor, D, with the number of dead vehicles per zone z at
time t. Indeed, we believed that D could enhance the
agents’ understanding of the need of re-balancing of
z, whereas A and B alone would already take care of
the trend of usage of z. Eventually, since this informa-
tion is highly negatively correlated with A, we opted
to leave it out.

Despite a detailed action space definition follows
in the next paragraph, it is important to note that the
ESB-DQN environment belongs to the family of con-
strained environments, i.e., the setting of our problem
falls within constrained deep Reinforcement Learning
[25], namely the integration of constraint models and
RL techniques, such that the RL agent, also the learner,
is guided by an encapsulating constraint model that de-
scribes safety constraints for the agent’s task. There are
a number of ways to approach constraint-guided inter-
actions to lead RL agents towards safe behaviour in
their exploration. For example, an exploration pattern
often persevered is to pretend those unsafe actions do
not exist altogether, by strictly avoiding them from the
range of actions the agents can pick. Or again, a termi-
nal state may be invoked each time an invalid action is
taken, and a new episode started over hoping for bet-
ter fortune. Here instead, we focus on the third popu-
lar paradigm of constrained RL, that is, to let the in-
valid action pass through, but awarding the agent com-
mitting it a strongly penalized reward. Indeed, Spieker
[25] shows that this approach is actually the most ben-
eficial under most constrained RL settings to augment
the interaction capabilities of the agents with the sur-
rounding environment, while not altering nor interrupt-
ing too abruptly their perception of it. The only limi-
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tation of this approach is that the harshly penalized re-
ward should be ensured to be at least an order of mag-
nitude smaller than the lowest possible reward achiev-
able as a result of a valid action. Our approach is sim-
ilar to the one by Spieker, as we define a fall-back ac-
tion, or NOP, that the agents can fall back to when-
ever they pick an invalid action, getting severely penal-
ized as a result, to prompt the continuity of the simu-
lation. In our setting, invalid actions for the agents in-
clude proposing zones that are not valid in the opera-
tional area, proposing a drop-off zone that is identical
to the pick-up one or vice-versa, suggesting a pick-up
zone where no suitable vehicles are available. In Sec-
tion 5.4 we further explore this continuity while train-
ing the ESB-DQN system, by introducing the concept
of lives, borrowed from Atari games [20].

5.2. Agents architecture

The agents are Deep-Q-Networks (DQN) imple-
menting an ε-greedy policy with experience replay
[20] belonging to the family of Q-learning. It is an off-
policy approach towards deep RL wherein the agent
estimates the expected reward for future actions from
a given state without following an actual greedy pol-
icy, but instead relying on a behaviour policy enriched
from direct experience with the environment to update
the online policy, by satisfying Bellman’s optimality
equation. Such an approach is better suited for large
state spaces, S, against rather limited action spaces,A,
which we will see to be our case. In fact, they are Rain-
bow agents [14], a state-of-the-art DQN agents, which
we have found beneficial for the three following main
features: double Q-learning helps in preventing over-
estimation of the action values which may lead to very
unpleasant proposals; distributional Q-learning helps
in investigating the importance of the value distribu-
tion, which we find necessary to achieve long-term bal-
ance of the ESB-DQN system; prioritized experience
replay helps in selecting the subset of previously expe-
rienced observations that are the most relevant, which
we find necessary to characterize the complexity of the
dynamics behind a free-floating sharing system .

Both the pick-up agent P and the drop-off agent D
comprise a funnel-like three-layer fully connected net-
work with ReLU activation functions, whose role is to
flatten the input and extract a latent representation as a
single vector of 256 units. The input of the network is
the last observed environment state, Xt, whereas the
output feeds the standard Rainbow network that pro-

duces a distribution of logits, whose maximum value
identifies the action picked by each agent, aP,t and
aD,t, respectively. The action space is limited to 9 dif-
ferent choices, corresponding to the 8 cardinal direc-
tions mapping the 8 adjacent zones (i.e., 1-hop neigh-
bourhood) plus the calling zone, p(i) or d(i) respec-
tively, which function as the NOP actions.

Following this formulation of the action space, and
recalling Figure 2, it becomes clear why the ESB-DQN
environment is constrained by a large set of invalid
actions. In fact, in the early stages of the RL agents
life-cycle, the expectation of picking an invalid action
from any given zone z at any given time t far exceeds
its complementary (for example, many zones that the
agent may select are not inside the e-scooter opera-
tional boundaries in the Louisville city, a pick-up zone
may be identical to the drop-off one), which is further
evidence of the need for outer aid for the RL agents to
well characterize the dynamics of the system.

5.3. Reward

The rationale behind our reward function is the fol-
lowing, with ∆ being the expected deficit of e-scooters
in the zone and time under consideration:

– Pick-up case with ∆ < 0. If the agent confirms
the pick-up when there is an expected surplus of
vehicles, then the reward is positive. As delta de-
creases the reward increases because the surplus
condition of the zone is improved. Similarly, if
the number of available vehicles is high, then the
rebalancing for that area is encouraged. As the
demand increases, the reward decreases because
this may negatively affect the long-term balance
of the zone.

– Pick-up case with ∆ > 0. If the agent confirms
the pick-up when there is an expected deficit of
vehicles, then the reward is negative. As delta and
the demand increase, the negative reward is larger
because the deficit condition of the zone is wors-
ened. In both cases if the number of available ve-
hicles is higher, then the curves rise more slowly
because this can have a less negative impact on
the long-term deficit of vehicles in the zone.

– Drop-off case with ∆ > 0. If the agent suggests
the drop-off when there is an expected deficit of
vehicles, then the reward is positive. As delta or
the demand increases the reward increases and the
curve flattens out more smoothly, i.e., with larger
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delta or with larger demand the deficit condition
will be more difficult to solve, and as a conse-
quence the reward is higher than the number of
vehicles currently available.

– Drop-off case with ∆ < 0. If the agent suggests
the drop-off when there is an expected surplus of
vehicles, then the reward is negative. As delta de-
creases the reward is smaller, and the curve falls
down faster, i.e. if delta is larger, the surplus con-
dition of the zone will be more difficult to solve,
thus the reward falls down based on the number
of vehicles currently available. As the demand in-
creases there is a less negative reward because the
surplus condition could be useful even if an addi-
tional vehicle is added to the zone. For this reason
the curve falls down less quickly.

– Dead-vehicle case at the end of the trip.

* Drop-off case: the larger the number of dead
vehicles the larger the positive reward because
the efficiency of battery swap operations may
be improved. The reward decreases with the
number of available vehicles because this in-
creases the imbalance of the zone (caused by
large numbers of available and dead vehicles in
the same zone).

* No Drop-off case: the larger the number of
dead vehicles the larger the negative reward be-
cause the efficiency of battery swap operations
may be decreased. The reward increases with
the number of available vehicles because this
can avoid the imbalance of the zone (caused by
large numbers of available and dead vehicles in
the same zone).

The following functions are defined to compute the
reward:

(2) ω(z, t) =

∆(z, t) exp

[
−
(

1

d(z, t)+
NA(z, t)+

)sign(∆(z,t))
]

(3) ψ(z, t) =

ND(z, t) exp

(
− 1

d(z, t)+
NA(z, t)

)
where:

– ∆(z, t): expected deficit of e-scooters at zone z at
time t;

– d(z, t): future demand of e-scooters in z at time t
(in a time interval t+ ∆t);

– NA(z, t): number of available e-scooters in z at
time t;

– ND(z, t): number of dead e-scooters in z at time
t;

– (·)+ denotes the function max(· , 1) and is used
to prevent from division by zero.

Drop-off agent. Let d̂(i) be the chosen alternative
drop-off zone for trip i at time t, Nd̂(i) be the set of

valid neighbours around d̂(i). If the state of charge of
the vehicle s at the end of the trip is greater than the
battery swap threshold, i.e. b(s) − ei ≥ αC, then the
reward corresponding to each of the alternative zones
z ∈ Nd̂(i) is:

RD

(
z, t
)

=

{
ω
(
z, t
)

if d̂(i) = z

−ω
(
z, t
)

otherwise

Otherwise:

RD

(
z, t
)

=

{
ψ
(
z, t
)

if d̂(i) = z

−ψ
(
z, t
)

otherwise

The overall reward for the choice d̂(i) is:

R̄D

(
d̂(i), t

)
=



1∣∣∣Nd̂(i)

∣∣∣ ∑z∈Nd̂(i)
RD(z, t)

if drop-off action is valid

−γD maxz∈Nd̂(i)
|RD(z, t)|

otherwise

with γD being a constant which modulates the
penalty of an invalid drop-off action.

Pick-up agent. Let p̂(i) be the chosen alternative
pick-up zone for trip i at time t, Np̂(i) be the set of
valid neighbours around p̂(i). The reward correspond-
ing to each of the zones z ∈ Np̂(i) is:

RP

(
z, t
)

=

{
−ω
(
z, t
)

if p̂(i) = z

ω
(
z, t
)

otherwise

The overall reward for the choice p̂(i) is:
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Fig. 3. Pick-up action: some examples of the reward function RP for different values of the parameters ∆, d. (Upper row) Negative reward:
the agent suggests to pick-up a vehicle from a zone having an expected deficit of vehicles (∆ > 0). As ∆ and d increase, the reward is smaller
because the expected deficit condition will be worsened. In both cases, the larger the number of available vehicles the higher the curve, as the
deficit condition will be alleviated. (Bottom row) Positive reward: the agent suggests to pick-up a vehicle from a zone having an expected surplus
of vehicles (∆ < 0). The larger ∆ the larger the reward, reflecting how problematic the surplus being improved. Similarly, when the number
of available vehicles is high, the rebalancing effect is considered more valuable. As the demand d increases, the reward decreases because the
pick-up may negatively affect the long-term balance of the zone.

R̄P (p̂(i), t) =



1∣∣Np̂(i)

∣∣ ∑z∈Np̂(i)
RP (z, t)

if pick-up action is valid

−γP maxz∈Np̂(i)
|RP (z, t)|

otherwise

with γP being a constant which modulates the
penalty of an invalid pick-up action. Figure 3 shows
some examples of the reward functionRP for different
values of the parameters ∆, d.

5.4. Lives mechanism

As we have anticipated in Section 5, a major role
during the training of the ESB-DQN system has been
played by the parameter regarding the number of lives,
k. The continuity of the simulation is a key factor for
the eventual learning of the RL agents, as interrupting
the simulation to just start it over too often, as soon as
an invalid action happens, would slow down the con-
vergence by a considerable margin, given how full of
potential invalid actions ESB-DQN environment is.
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To overcome this limitation, we have borrowed the
concept of lives from Atari: every time one of the two
agents or both commit an invalid action, the whole en-
vironment loses a life.
By doing so, an invalid action does not immediately
lead to a terminal state, but takes it closer to the ESB-
DQN state. On life loss, the discount for the timestep t
is zeroed, cancelling any connection between the pre-
vious and later events, and the agents are set to per-
form a NOP.

Let at = (at,P , at,D) be the generic action for the
simulator taken at time t, defined as the resulting com-
bination of the action picked by the pick-up (P) agent,
aP,t, and the action picked by the drop-off (D) agent,
aD,t. The set of invalid actions has been set as follows:

– either zone corresponding to aP,t or aD,t is in-
valid: zP,t /∈ Z∪zD,t /∈ Z, with Z the set of valid
zones of the city of Louisville;

– the zones corresponding to aP,t and aD,t are
equal: zP,t = zD,t;

– the zones corresponding to aP,t and aD,t are
equal to the original zone of opposite type: zP,t =
ẑD,t ∪ zD,t = ẑP,t;

– the original zones ẑP,t and ẑD,t are equal: ẑP,t =
ẑD,t;

– the suggested pick-up zone does not have a suit-
able vehicle ready: VP,avail = ∅

As soon as k reaches 0, then the simulation is
stopped. Indeed, we would not want our RL agents to
learn the dynamics of the environment while commit-
ting thousands of errors.
It is important to note that by implying the concept of
lives, the training framework of RL agents has turned
into a sort of collaborative RL framework, wherein
both P and D cannot rely solely on their capabilities
to reach the goal, but even on the other’s to reach a
common goal: if D was to lose a life, P would lose it
as well, and vice-versa.

6. Experiments and results

The ESB-DQN system has been trained to learn the
best alternative zone proposals throughout simulations
with the Louisville dataset. The aim of the experiments
has been to evaluate whether motivating users to pick-
up/drop-off vehicles in alternative zones can preserve
a good number of satisfied trips with a reduced number

(a)

(b)

(c)

Fig. 4. Evaluation of the satisfied demand during the learning proce-
dure for training and validation agents versus a baseline model with
no incentive policy (user willingness w = 0). The value of the pa-
rameters is shown in the titles. (a) Model trained from scratch, (b),
(c) Transfer learning.

of relocation and battery swap workers.
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Table 4
Results of the experiments.

Satisfied demand Dsat

Parameters Training mode N iterations ESB-DQN No incentives

nswap = 12, nrel = 6 from scratch 30 0.92 0.89
nswap = 6, nrel = 3 transfer learning 6 0.91 0.88
nswap = 1, nrel = 1 transfer learning 12 0.90 0.86

We measured the satisfied demand Dsat, defined as
follows:

Dsat =
Ntrips −Nunsat

Ntrips

where Ntrips is the total number of trips, Nunsat is the
number of unsatisfied trips (no available vehicles in
the pick-up zone and in the 1-hop neighbourhood),
both measured over a given fixed time interval Tsim.
Through all our experiments, Tsim is equal to 1 day.

6.1. Parameters of the simulator

The parameters of the simulator have been set as fol-
lows:

– the number of available e-scooters is |S| = 400
(almost half of the Louisville fleet, that amounts
to 850 vehicles, scaled down having a medium
size city like Genova in mind);

– the size of the zones is l = 200m (value often
found in the literature [7,9]: given that alterna-
tives among adjacent zones are proposed to users,
this value means that — in the worst case where
adjacent zones have just one corner in common
— the user might need to face a 2 ∗ 200 ∗

√
2 =

566m walk from the planned pick-up/drop-off
point to the most distant point in the alternative
zone, walk that can be acceptable by an e-scooter
driver that, according to the literature [1,3], is
usually young);

– the battery capacity is β = 425 Wh with α = 0.3,
whereas the energy required to complete a trip is
proportional to the driving distance by a factor of
11 Wh/km (realistic data, as suggested in [7]);

– the user willingness is w = 0 for obtaining the
“No incentives” baseline data, and w = 1 for ob-
taining the other data discussed in this section;

– the battery swap operations are scheduled every
Ts = 1h (realistic value, considering the number
of trips and vehicles);

– the relocation operations are scheduled every
Tr = 1h in a working time interval Twork =
[9AM-6PM] (realistic value, considering the num-
ber of trips and vehicles).

The fleet size |S| and the user willingness w imme-
diately stand out from the lot of parameters. The for-
mer has been set to half the nominal fleet size granted
by the city of Louisville. Indeed, as further experi-
ments on cities with more complex dynamics have not
been conducted for the time being, we have decided
to restrict Louisville to a worst case scenario, as the
satisfied demands would remain strong nonetheless
(88%). The latter has been set to 1 for measuring the
advantage of an incentives mechanism, as in the train-
ing phase we wanted to let both RL agents experience
as much of the environment as possible, regardless of
whether they would be actually asked to do so. Base-
line results have been obtained by setting willingness
to 0.

6.2. Parameters of the Reinforcement Learning
system

The parameters of the Reinforcement Learning sys-
tem have been set as follows:

– the optimizer is Adam [16] with a learning rate of
6.25× 10−5;

– the learning period is 16;
– the batch size is 32;
– the timesteps are aggregated to look back to the

last 3 timesteps before any decision process takes
place;

– the global gradient norm clipping is 10;
– the importance sampling exponent ranges in

[0.4, 1];
– the experience replay buffer has size 5.2 × 103,

amounting to almost 30 full repetitions of the
same day over and over, with priority exponent of
0.5;

– the target network update period is 1.6× 102;
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– the number of iterations is 48;
– the number of trips per episode is 1.3 × 103,

amounting to almost 10 full repetitions of the
same day over and over;

– the number of validation trips is 2.6× 103;
– the number of training trips is 5.2× 103;
– the number of total lives k has been set to 100.

Moreover, concerning the reward function, the fu-
ture demand is computed in a time interval ∆t = 1h,
whereas the constants modulating the penalties are
γD = γP = 2. Also, every 3 iterations a checkpoint
has been stored locally for evaluation purposes.

6.3. Results of the experiments

In the first experiment, the model has been trained
from scratch with the number of battery swap work-
ers being nswap = 12 and the number of relocation
workers being nrel = 6. Other two experiments have
been performed, by drastically reducing the number of
workers and applying transfer learning from the pre-
trained P andD agents. In particular, in the second ex-
periment we have fixed nswap = 6, nrel = 3 and in the
third experiment nswap = nrel = 1.

The final results in validation are shown in Table 4.
The evolution of the satisfied demand during the learn-
ing procedure is represented in Figure 4.

Our ratio between validation and training trips is
1 : 2: for example, if a training episode would experi-
ence 1000 trips, a validation episode would experience
only half of those. A single iteration took over 1 hour
on a PC equipped with a GeForce GTX 1650 Ti GPU
with 4GB of memory along with an Intel i7-10750H
CPU with 32GB of RAM. Both CPU and GPU specs
are crucial, as the SimPy processes undergoing the
simulation run solely on CPU, whereas the forward
and backward pass of the RL agents’ networks happen
on GPU.

As shown in Figure 4(a), the two agents trained from
scratch cause a decrease in the satisfied demand dur-
ing the first iterations, due to their random behaviour
with no previous experience. After around 25 itera-
tions their policies have been efficiently updated. The
level of satisfied demand has improved with respect
to the baseline - referred to a standard mobility ser-
vice with no user incentives. More interestingly, by
reducing the number of workers and applying trans-
fer learning, it is possible to observe again a bene-

ficial effect over the satisfied demand. In particular,
Figure 4(c) shows that in the critical scenario with
nswap = nrel = 1 the satisfied demand is constantly
larger with respect to the baseline. This means that by
following the proposal of alternative pick-up and drop-
off zones, users are actively participating in the system
rebalancing and contributing to a positive increase of
the satisfied demands.

7. Discussion and future works

In this paper, we presented ESB-DQN, a multi-agent
system based on deep Reinforcement Learning able to
interact with a simulator in order to learn alternative
pick-up and drop-off zones in e-scooter sharing ser-
vices. The main objective is to combat the imbalance
problem by providing user incentives in order to opti-
mize vehicle availability as well as battery swap and
relocation operations. At present, ESB-DQN expects
to know the original pick-up and drop-off locations of
each generic scheduled trip, p(i) and d(i), beforehand,
in order to produce proper suggestions. Of course, such
a constraint poses a strong limitation to the effective-
ness of the system, as it is impractical to always ex-
pect users to know their future drop-off location be-
fore initiating the trip. Nevertheless, following the way
the original ODySSEUS simulator handles the notion
of booking requests as pairs of pick-up and drop-off
locations, forcing both pick-up and drop-off agents, P
andD, to operate synchronously was a necessary start-
ing point. The natural evolution of the ESB-DQN sys-
tem requires the untying of this synchrony, to let P and
D affect the state of the environment independently at
different stages.

Preliminary experiments on real e-scooter data from
Louisville have shown encouraging results on the sat-
isfied demand of the system, even with a strongly re-
duced number of workers. To assess the impact of
the presence/absence of some elements and parameters
and to increase our confidence in the current results
an ablation study should be carried out. In the future
we plan to evaluate how the system performs without
the lives mechanism, to assess the impact and benefits
of having them. Further experiments are required for
a comprehensive evaluation of the ESB-DQN system.
By varying different parameters of the simulator, e.g.,
the number of e-scooters |S|, the number of relocation
workers nrel or battery swap workers nswap, it is possi-
ble to study how each of them, in turn, affects the user
incentives policy. It is worth mentioning that more ac-
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curate demand forecasts for the computation of δ(z, t)
in Eq. (2), (3) can be adopted with the aim of getting
further improvements on the overall performance of
the ESB-DQN system.

As a future work, it would also be worth studying
the (monetary) amount of the incentive, as an exam-
ple: give a lower incentive if the balance is not heavily
affected by the particular trip (and so the user willing-
ness to accept is low) while giving a higher incentive if
a new pick-up or drop-out zone can heavily ameliorate
the balancing (thus a higher chance that the user accept
the new plan proposed by the RL agent).

A fundamental effort should be devoted to scale-up
experiments on a larger temporal scale and on larger
datasets (e.g., Austin open data [2]). A larger num-
ber of iterations would reflect in a better characterisa-
tion of the ε-greedy policy. Indeed, despite both RL
agents have reached some sort of convergence with
even a few iterations, there may be a few specific
corner cases of states that leave them both unable to
decide with high consistency. Concerning a possible
speed-up, since SimPy processes run on the CPU, there
is a lot of time left to gain by optimizing the underlying
simulator to fasten the run time of a single day. On the
other hand, the code related to the multi-agent system
is already optimized for GPUs and TPUs.

Another interesting possibility for the future is to
apply the ESB-DQN system to other mobility shar-
ing systems with different vehicles (e.g., e-bikes, e-
moped). Provided with the right data and the proper
scenario parameters (e.g., fuel type, fuel consumption,
maintenance costs) both the simulator and the multi-
agent system can be directly applied to such problems.

The proposed approach may be deployed in real
mobility systems as a real-time service following the
REST paradigm, integrated into existing app used by
mobility service providers. Currently, many sharing
electronic vehicles systems take advantage of chat-
bots for assisting their users. As the chatbot market is
expected to grow at a compound annual growth rate
of around 25% during 2021-2026 [15], making the
services offered by our ESB-DQN system accessible
through a natural language interface is part of our long-
term vision.

Besides the many existing frameworks for build-
ing chatbots from scratch, including PandoraBots7, Di-

7https://home.pandorabots.com/home.html,
accessed on January 10th, 2022.

alogFlow8, Wit.ai9 , tools targeted towards the urban
mobility domain exist, such as MindSay10, also exist.

A preliminary working prototype of the chatbot
that should provide an interface towards the user, and
should also be extended to deal with pick-up and
drop-off proposals, has been built using DialogFlow,
able to answer questions inspired to the FAQ of the
GoVolt company11. The “where-can-i-circulate” and
the “can-another-user-ride-my-scooter” intents and the
sentences used to train them are shown in Figure 5.
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Appendix: Configuration of the simulator
parameters and short user’s guide

ESB-DQN repository on GitHub

https://github.com/DiTo97/odysseus-
escooter-dqn

Input parameters

Input parameters take into account both simulation
parameters of the ODySSEUS environment and pa-
rameters for the training/test of the Rainbow agents.

Simulation parameters

Simulation parameters can be found in the folder
esbdqn\configs\escooter_mobility under
the name sim_conf_<City>.py with identical
structure. Each file comprises two Python objects,
named General and Multiple_runs.

General object

– city, name of the city, either Louisville or
Austin;

– relocation_workers_working_hours,
shift hours for relocation workers;

– bin_side_length, side length of the square
zones each operative area is split into;

– year, year of the trip requests to consider;
– month_start, month_end, start and end of

the month of the trip requests to consider;
– day_start, day_end, start and end of the day

of the trip requests to consider;
– save_history, whether to save the results

CSV after each iteration.

Multiple_runs object

– n_vehicles, number of vehicles to spawn in
the environment;

– incentive_willingness, acceptance prob-
ability for each incentive proposal;

– beta, battery capacity;
– alpha, threshold on the battery level to mark ve-

hicles as out-of-charge in percentage between 0
and beta;

– battery_swap, toggle for battery swap events
in the environment, either True or False;

– n_workers, number of battery swap workers;
– battery_swap_capacity, maximum num-

ber of vehicles each battery swap worker can pro-
cess hourly;

– scooter_relocation, toggle for relocation
events in the environment, either True or False;

– n_relocation_workers, number of reloca-
tion workers;

– relocation_capacity, maximum number
of vehicles each relocation worker can move
hourly;

All the parameters that have not been modified or are
unused with respect to the original ODySSEUS simu-
lator have been omitted here.
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Agents parameters

Agents parameters can be found in the file esbdqn\-
train.py. Also, they can be submitted at runtime
when launching esbdqn\train.py via CLI.

– learning_rate, learning rate of the Adam
optimizer;

– learn_period, learning period of the Rain-
bow agents;

– batch_size, batch size of the networks with-
ing the agents;

– n_steps, how many steps to look in the past
when agents take decisions;

– max_global_grad_norm, global gradient
norm clipping of the networks weights;

– importance_sampling_exponent_be-
gin_value (and similar parameter with end-
_value), range of the importance sampling ex-
ponent;

– replay_capacity, experience replay buffer
capacity. Should amount to about 30 repetitions
of any given day;

– priority_exponent, priority of the timesteps
stored in the experience replay buffer;

– target_network_update_period, update
period from the online network to the offline net-
work within each agent;

– num_iterations, number of training itera-
tions;

– max_steps_per_episode, number of trips
per episode;

– num_eval_frames, total number of validation
trips per iteration;

– num_train_frames, total number of training
trips per iteration (should be at least double the
validation trips);

– n_lives, total number of lives per iteration; de-
faults is 50.

Experiment parameters

Each call of esbdqn\train.py can be named as
a different experiment with its own checkpoints.

– exp_name, name of the experiment directory;
– checkpoint, toggle on whether to store a

checkpoint, either True or False;
– checkpoint_period, period of storage of a

new training checkpoint.
Output

Run esbdqn\train.py to train a new ESB-
DQN model from scratch. Otherwise, to train starting
from a checkpoint, set the checkpoint toggle to True,
and ensure that there is a checkpoint within the exper-
iment directory in the form: <Experiment_dir>
\models\ODySSEUS-<City>.

Results of each run will be stored as CSV files
within the automatically generated directory <Expe-
riment_dir> \results.

To reproduce the experiments in the paper:

1. Set incentive_willingness to 0 to obtain
all the No incentives data.

2. Set incentive_willingness to 1 and track
the columns eval_avg_pct_satisfied_de-
mand and train_avg_pct_satisfied_de-
mand from the CSV files for the Validation and
Training data, respectively.

All our experiments have been run on Ubuntu 18.04.


