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Abstract—An approach for measurement-based modeling of
nonlinear devices is proposed. The method that is commonly used
for linear time-invariant systems, namely, parametric modeling
and nonparametric verification, is hereby extended to a class of
nonlinear systems. The applicability of the method is illustrated
on the baseband modeling of a radio-frequency amplifier over a
wide power and frequency range.

Index Terms—High frequency, measurement, modeling, nonlin-
ear systems, semiparametric.

I. INTRODUCTION

DURING THE last years, there has been an increasing
interest in modeling of nonlinear behavior of subsystems

that are “close” to being linear. Mainly, these systems were
designed to be linear. However, a description of the deviation
from this ideal behavior is vital for the evaluation or simu-
lation of the performance of the global system to which the
considered system belongs. In telecommunication applications,
for example, data error rate is linked to the in-band distortion
of the power amplifier that is used in the transmitter. As a
consequence, a nonlinear model for the operation of the device
in baseband (the neighborhood of the fundamental frequency) is
needed by RF system designers to analyze, optimize, and tune
the system.

For such a system, there is a lot of prior model information
available. The model class that is considered here is further
restricted to the class of the systems that, when excited by a
periodic excitation, produce a periodic output with the same
period. This class of systems is called the periodic in, same pe-
riod out (PISPO) system. It is clear that this definition excludes
“nasty” behaviors such as chaos or bifurcation [1].

In applications such as modeling for telecommunication, the
class of signals that is used during device operation is known in
advance. The class of narrowband modulated signals (signals
with a modulation bandwidth of a few percent proportional to
the carrier frequency) covers most practical applications and
will be used here.

To obtain a model that is useful in a design context, one
needs more than “just a model.” It should be validated in the
frequency band and power range where the model will be
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used later on. Therefore, a robust visualization and validation
tool for the comparison of the measured system response to
the estimated model response is mandatory. In this paper, a
measurement-based nonparametric validation tool that is based
on the Volterra theory is proposed.

Parametric models for PISPO systems based on measured
input/output characteristics were already obtained earlier, fol-
lowing two main tracks: the polynomial models (including
Volterra models) and the behavioral models such as neural nets
or wavelet models [2], [3]. The approach used here is a combi-
nation of both approaches: It extends Volterra-type models with
neural netlike kernel functions to obtain a parsimonious model
for devices operating under hard nonlinear conditions.

The proposed three-step approach consisting of experiment
design, measurement visualization, and finally model extraction
and validation is experimentally illustrated on the identification
of a power amplifier in a frequency band from 500 to 2500 MHz
and for an input power range from −15 to 5 dBm.

II. MEASUREMENT AND EXPERIMENT DESIGN

The signal has to persistently excite the device over the user-
specified frequency and power ranges for it to become an eli-
gible excitation signal for model identification. Both spectrally
rich signals and sine waves can be used to meet this.

Spectrally rich excitations, such as random phase multisines
[4] or noise signals, are extensively used for baseband devices
up to a few megahertz. In RF measurements that rely on the
harmonic sampling principle, the use of noise excitation is not
an option, as a harmonic sampler requires a periodic excitation
signal to properly downconvert the signal. Multisine signals
enable a fast device characterization over the analysis frequency
band in one single take. Inclusion of a power sweep then
realizes the requested experiment. The back side is that the
generation of these multisine signals requires highly specialized
RF generators to cover the modulation bandwidth that is consid-
ered here. For the extraction of the nonlinear model that is used
in this paper, the use of a spectrally rich signal significantly
complicates the processing.

Ease of generation and model extraction are the driving
forces in using sine waves as an excitation signal. Of course,
both the frequency and the power have to be swept now.
This results in a much higher number of experiments to be
performed: A separate experiment is required for each (power,
frequency) pair.

However, the information that can be obtained by both exci-
tation signals is different, as the multisine allows measurement
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Fig. 1. LSNA-based measurement setup.

of intermodulation products that contribute at frequencies that
are close to the carrier and therefore appear without attenuation
at the output of the device due to the bandpass nature of the
device under test (DUT).

A multicarrier signal is, therefore, a first choice whenever it is
technologically realizable. However, in the RF and microwave
example considered here, it is almost impossible to generate
the arbitrary wideband signal that is needed to cover the whole
frequency band. A first brand of arbitrary waveform generators
covering the frequency band from dc to 2 GHz became available
only recently and is not yet widely used. Sine wave generators,
on the other hand, are the most common signal sources in the
gigahertz frequency range and will therefore be used in this
paper.

The measurement setup is build up around the large sig-
nal network analyzer (LSNA) that can be assimilated to a
Fourier analyzer for microwave applications. The schematic
diagram of the setup is shown in Fig. 1. The incident and
reflected waves at both device ports are separated by couplers.
The signals are then downconverted using a harmonic sam-
pler and are digitized by VXI-based Agilent E1437 digitizers.
These devices sample at 20-MHz sampling frequency, with a
spurious-free dynamic range exceeding 90 dB. The data are
then directly transferred to MATLAB for the processing. Note
the presence of a synchronization between the RF generator
and the LSNA. This phase reference is mandatory to keep
the whole system phase-coherent and to remove leakage er-
rors when the spectrum of the measured time waveforms is
calculated.

III. MEASUREMENT VISUALIZATION

Once the measurements are taken at nF frequencies and nP

power levels, one possesses nF nP input and output spectra
describing the DUT. The major question now is how to extract
the information out of these data. To this end, a nonparam-
etric approach that is comparable to the frequency response
function (FRF) of the linear time-invariant (LTI) systems
is used.

Assume that the Volterra theory gives a qualitatively valid
description of the frequency mixing. This is a very weak
hypothesis as the system is assumed to be a PISPO system.

A sine wave excitation with a complex amplitude equal to
U(f0) will be used as an example to illustrate the proposed

Fig. 2. Magnitude of the measured ETF1(f0, |U(f0)|) as a function of the
input power and frequency.

method. Consider the response at frequency f0, as it is obtained
using a Volterra representation [5]

Y (f0) =
L∑

k=0

Kk(f0)Uk+1(f0)U
k
(f0). (1)

Note that only output contributions that fold back to the
initial input frequency are considered here. All these terms have
the same structure, namely, U(f0)|U(f0)U(f0)|2. Therefore,
the previous equation can be rewritten as

Y (f0) = U(f0)

{
L∑

k=0

Kk(f0) ‖U(f0)‖2k
2

}
. (2)

The last factor on the right-hand side is a polynomial with
complex coefficients that has the (real) power of the input as
an independent variable. Dividing this equation by U(f0), one
obtains

ETF1 (f0, |U(f0)|) =
Y (f0)
U(f0)

=

{
L∑

k=0

Kk(f0) |U(f0)|2k

}
.

(3)

This quantity is defined here as an energy transfer function
and would be equal to the FRF if the system is linear. Due to
the nonlinearity of the system, ETF1(f, |U(f0)|) is no longer
a constant but rather a smooth complex-valued surface that
is phase coherent with the input signal. The shape of this
surface (both magnitude and phase) gives a lot of insight into
the behavior of the device, as shown in Figs. 2 and 3, where
the magnitude and the phase of this quantity are shown as a
function of the input power and frequency.

This approach nicely extends to multicarrier excitation sig-
nals or contributions that shift the frequency of the output. As an
example, consider that a second harmonic (3f0) is also present
in the input signal. The Volterra equation for this two-tone input
signal can be obtained in analogy to the single sinewave and
becomes

Y (f0) = U(f0)ETF1 (f0, |U(f0)|) + U(3f0)U
2
(f0)

× ETF31

(
f0, |U(f0)| , |U(3f0)| ,

∣∣∣U(3f0)U
3
(f0)

∣∣∣) (4)
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Fig. 3. Phase of the measured ETF1(f0, |U(f0)|) as a function of the input
power and frequency.

with

ETF31

(
f0, |U(f0)| , |U(3f0)| ,

∣∣∣U(3f0)U
3
(f0)

∣∣∣)

=
L∑

k=0

L−k∑
l=0

L/2−k−l∑
p=0

γpkl(f0) |U(3f0)|2l |U(f0)|2k

×�
(
U(3f0)U

3
(f0)

)p

. (5)

The function ETF31(f0, U(f0), U(3f0)) appears again to
be a 3-D polynomial function of real independent variables.
Even if this can be strange from an intuitive point of view,
the reason for it is quite obvious. Remember that, for a real-
valued time signal, U(f) = U(−f). This means that the factor

U(3f0)U
2
(f0) in (4) contributes to the spectrum at f0. The

spectral contributions that appear in ETF31 therefore cannot
contribute to the output frequency at all. Hence, besides the
power contributions |U(3f0)|2 and |U(f0)|2, the only pos-

sible contributions with zero frequency are U(3f0)U
3
(f0),

U(3f0)U3(f0) or powers thereof. As the Volterra kernels
can always be symmetrized, these contributions always ap-
pear in complex conjugate pairs, whose sum is again a real
variable. A smooth surface that is phase coherent with the
input spectrum results again. Evaluating Y (f0)/U(f0) and
Y (f0)/(U(3f0)U(f0)U(f0)) only yields a coherent surface
in the range of (input power, frequency), where one energy
transfer function (ETF1 or ETF31) dominates the other con-
tributions. This yields a lot of insight in the operation of the
device.

These ideas can be extended to a general response with more
than two excited lines at the cost of a complex mathematical
formalism that is out of the scope of this paper.

IV. IDENTIFICATION AND MODEL VALIDATION

In the context of this paper, an output error noise model
is used. This ensures consistency of the estimates [6]. Using
repeated experiments, the variance of the noise source can be
used to improve the estimators’ efficiency.

For the considered class of PISPO systems, a Volterra-
like description is flexible enough to yield appropriate models
(in mean-square sense) but fails to describe device saturation
(also called compression). This is very similar to the observa-

tion that a polynomial cannot give a high-quality description
for a static system that is driven into deep saturation. Since the
systems used in this context are driven up to deep saturation or
high compression levels, the plain Volterra series is bound to
the impossible.

To get around this problem, one can start from the equations
derived in the previous paragraph. Reading in between the lines,
a simple and accurate model should be obtained by replacing
the polynomial function ETF by some other real function which
adequately matches the effects of amplitude saturation. This
new set of functions should behave like a polynomial for
moderate power levels, but saturate outside the measured power
range.

Here, the contribution of type U(f) is replaced by
U(f)/(g + |U(f)|), with g as a real gain factor. For the first
example used earlier, the model used in the identification of the
semiparametric model at test frequency fl becomes

Y (fl) =
L∑

k=0

Klk

{
U(fl)

gl + |U(fl)|

}k+1 {
U(fl)

gl + |U(fl)|

}k

.

(6)

To extend this model to the general case discussed earlier,
each nonzero input spectral line is assigned one separate gain
factor.

Three successive modeling steps are used, and each step
delivers a model that can be used on its own. The number of
parameters contained in the model decreases in each step.

1) In the first step, a separate parametric model is separately
estimated for each of the nF test frequencies using the
model of (6). This model is, from now on, called non-
parametric versus frequency.

2) To obtain a more parsimonious model in the second step,
a parametric polynomial representation of the gain g
versus frequency is introduced. In this hybrid parametric/
nonparametric representation, the (L + 1)nF values Klk

and the parametric representation of g are now estimated
together using the data of the nF nP experiments. Be-
cause of its hybrid structure, this model is called semi-
parametric versus frequency.

3) To obtain a parsimonious model, a parametric LTI model
is used to model each Kl-factor versus frequency. The
parametric models for the Kl and g are simultaneously
extracted, based on the nF nP available measurements.

A. Nonparametric Model versus Frequency

The proposed model is parametric in the input power but non-
parametric in the frequency variable fl. One model is therefore
evaluated at each measured frequency fl. The estimation for
each frequency reduces to the optimization of the following cost
function:

LN (Y (fl), U(fl), θ) = eH
w ew

with ewk =
Yk(fl) − M (θ, Uk(fl))

Wk(θp)
(7)

where N is the number of power levels measured at each
frequency, θ = [Kl1, . . . ,KlL, gl] is the parameter vector, and
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M(θ, U(fl)) is the model equation, as defined in (6). The
weight Wk(θ) is set equal to the experimental standard de-
viation of the equation error Yk(fl) − M(θp, Uk(fl)) that is
obtained from repeated experiments. Note that this model is
linear in Klj . gl is the only parameter that enters the model
in a nonlinear way. The model is, hence, a semilinear model, as
considered in [4]. This significantly simplifies the optimization.
A 1-D nonlinear optimization remains to be solved after the
elimination of the linear parameters. The estimates for this first
step, which is nonparametric over the frequency, are

θ̂l = argmin
θ

(LN (Y (fl), U(fl), θ)) . (8)

B. Semiparametric Model versus Frequency

In this second step, the parameters gl are replaced by a
parametric polynomial model

g(f) =
G∑

m=0

γmfm. (9)

Optimization is now performed together over the nF fre-
quencies and is still linear in the parameters Klk. Using the
elimination scheme of the aforementioned nonparametric case
for the parameters that linearly appear in the model equation,
only the parameters γm need to be optimized.

C. Parametric Model versus Frequency

Finally, the nonparametric kernel values Klk are also re-
placed by a parametric LTI model Kl(f). The parameters that
linearly appear in the model are again eliminated as earlier,
leaving a reasonable amount of parameters to be optimized. Of
course, the resulting set of parameters involves the estimation
of LTI systems. This problem is nonlinear in the parameters but
is readily solved using the techniques in [4].

For the validation of the model, the same technique is used as
for the visualization of the measurement, but this time, modeled
and measured validation outputs are displayed on the same
surface plots together with the magnitude of the complex error
between the model and measurement.

V. SAMPLE SYSTEM

A GSM band power amplifier of type MAR6 (Mini-Circuits)
is modeled. The supply voltage is set to 4 V, whereas the device
output is terminated in a 50-Ω load. Absolutely calibrated1

incident and reflected wave spectra at both ports of the DUT
are measured by the LSNA [7].

The amplifier input is excited by a sine wave. The frequency
is stepped from 600 to 2500 MHz in 20–MHz steps. The input
power is stepped from −15 to 5 dBm in steps of 0.2 dB. At
5 dBm, the 2-dB compression point is reached in the passband
of the device. Sample variances for the measured spectra are
obtained by using only five repeated measurements. Even if this

1For vectorial network analyzers that measure S-parameters, the calibration
of the ratio of waves is sufficient. This is no longer the case for a nonlinear DUT,
where calibrated waves are needed. This wave calibration is called “absolute.”

Fig. 4. Magnitude of (upper surface) the measured output and the nonparam-
etric model output and (lower surface) the norm of the complex residual
between them for the nonparametric model.

yields only a crude approximation of the variance, this can be
proven to be sufficient in estimating an FRF with a minimal loss
of statistical efficiency [4]. The relation

ETF1 (f0, |U(f0)|) =
Ym(f0)
Um(f0)

(10)

is analyzed. In this equation, the subscript m denotes a mea-
sured quantity. The full model equation is given in (6).

A total of 9696 spectral measurements are now condensed in
one measured complex ETF1 surface: The magnitude and phase
of the surface are shown in Figs. 2 and 3. Note that the magni-
tude of the response has a large gain at both 900 and 1800 MHz,
which is quite obvious for a dual-band GSM amplifier. The
gain compression is much higher close to 900 MHz than to
1800 MHz. Phase dependence shows an important phase non-
linearity close to 1800 MHz.

A nonparametric model containing four terms is estimated
for the 96 test frequencies

Y (fl) =
5∑

k=0

Klk

{
U(fl)

gl + ‖U(fl)‖2

}k+1 {
U(fl)

gl + ‖U(fl)‖2

}k

.

(11)

To visualize the quality of the model, the measured out-
put of the system Ym(fl, |U(f0)|) and the modeled output
Y (f1, |U(f0)|) that is obtained using the noisy measured signal
as an input to the model are plotted on top of each other in
Fig. 4. Visually, the match is so good that the curves fall on top
of each other. To indicate the level of agreement, the magnitude
of the complex error ‖Ym(f1, |U(f0)|) − Y (f1, |U(f0)|)‖ is
plotted on the same plot (lower curve). Over the whole band,
the relative complex modeling error is down by 35 dB. In the
context of this paper, this model quality is very good for a model
that is valid over a wide range of frequencies and input power
levels. As shown in the figure, the remaining differences are
almost at the noise level.

The first four corresponding normalized Klk and the gl

parameters that were estimated for each excited frequency are
shown in Fig. 5. Even if the model response is very close to
the measured response, the behavior of the gain factor gl and



ROLAIN et al.: ESTIMATION AND VALIDATION OF SEMIPARAMETRIC DYNAMIC NONLINEAR MODELS 399

Fig. 5. Normalized estimated Klk and gl for the nonparametric model.

Fig. 6. Magnitude of (upper surface) the measured output and the nonparam-
etric model output and (lower surface) the norm of the complex residual
between them for the semiparametric model.

the linear kernel Kl0 contain several jumps and can hardly be
interpreted in a physical context. This potentially indicates that
gain and linear kernel are not totally independent.

In the second step, a semiparametric model with a parametric
gain g = γ0 is extracted. Again, the quality of the resulting
model is shown using an overlay of the measured and modeled
system responses (upper surface in Fig. 6) and the magnitude
of their complex difference (lower surface in Fig. 6). When the
residual in Fig. 6 is compared to the residual in Fig. 4, a slight
increase can be noted, especially for frequency and parameter
values that are close to the boundaries of the measured ranges.
In fact, the difference is quite marginal when one considers that
96 parameters were removed from the model. This points in
the direction of a very high correlation between the parameters
g and K0. The parametrization of g therefore acts as a regu-
larization in the identification step. The first four normalized
Klk parameters that are separately estimated for all frequencies
are shown in Fig. 7. In this plot, the kernels K now all have a
smooth behavior as a function of frequency. The linear kernel
K0 gets close to the linear behavior of the DUT that has been
measured using a vectorial network analyzer.

The smooth behavior of the functions now allows us to
separately extract an LTI model in the Laplace plane for the five
K functions. To this end, the frequency domain identification
toolbox for MATLAB has been used. The estimated model
frequency responses are shown together with the nonparametric
“measurements” of the K-values in Figs. 8 and 9. Note that,
at this time, the values are not normalized. This explains the

Fig. 7. Normalized estimated Klk for the semiparametric model.

Fig. 8. Estimated (lines) and measured (gray dots) K0, K1, and K2 for the
parametric LTI model.

Fig. 9. Estimated K3, K4, and K5 for the parametric LTI model.

very high dynamic range in between the different functions.
The maximal order of the rational forms that are used is 7/7,
and the model order is automatically estimated by the toolbox.
All the proposed models pass the whiteness-of-residuals test
provided. Based on this parametric model, the output spectrum
of the model is again evaluated as earlier, which is based on
the measured input signal. The result is shown in Fig. 10. Note
that the mean residual error did increase by more or less 6 dB,
whereas the number of parameters decreased by a factor of
seven when compared to the semiparametric case.

To further validate the results, the model is used afterward
on a validation data set with results that are similar to what has
been shown earlier.

VI. CONCLUSION

A three-step approach is proposed to model nonlinear
systems in the frequency domain. In the first step, a set of
experiments is designed, and a large amount of data is acquired.
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Fig. 10. Magnitude of (upper surface) the measured output and the nonparam-
etric model output, and (lower surface) the norm of the complex residual
between them for the parametric model.

In the second step, energy transfer functions are introduced
to condense the data in a few characteristics that allow us to
gain insight into the device operation using only the measured
data. Building up this measurement-based knowledge is a vital
and often overlooked part of nonlinear modeling. Finally, a
modified Volterra-type model is proposed, which allows us to
appropriately model systems in deep compression. Validation
of the proposed models is performed using the visual tools.
The modeling approach is illustrated on the identification of an
RF power amplifier operating between 600 and 2500 MHz and
between −15 and 5 dBm input power.
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