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Abstract 

This paper compares two volatility models for returns, i.e. a log-normal AR(1) stochastic 

volatility (SV) model and a GARCH (1,1) model, both from a theoretical and empirical point 

of view. The two models are estimated on UK stock data: a series of the British equity index 

FTSE100 is used to estimate the relevant parameters.  Diagnostic tests are implemented in 

both cases to evaluate how well the models fit the data. Both models are used to get daily 

volatility forecasts and these volatilities are used to estimate the Value at Risk on a simple 

one-unit position on FTSE100. The VaR accuracy is tested by means of backtest and 

appropriate Likelihood Ratio tests: the results do not lead to a straightforward preference for 

any of the two models. 
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Introduction 

 

In many financial applications, the specification of a model to represent returns’ 

behaviour is of crucial importance. According to the traditional market efficiency hypothesis, 

the returns are defined as zero-mean serially uncorrelated and hence unpredictable random 

variables, but the empirical evidence suggests that returns, even if linearly independent, show 

a significant higher order dependency: more precisely, the squared returns are autocorrelated 

and ‘clustering’ in returns is very common: this means that volatility changes over time 

depending on its past values and hence it is predictable. 

The issue of modelling returns accounting for time-varying volatility  has been widely 

analysed in financial econometrics literature. Since the introduction by Engle (1982) of the 

ARCH (Autoregressive Conditional Heteroscedasticity) model, a wide range of extensions 

and modifications to the original model have been developed. Stochastic volatility models 

(SV), the most popular of which is due to Taylor (1986), are more sophisticated then  ARCH-

type models, and from a theoretical point of view they are more appropriate to represent the 

behaviour of the returns in real financial markets, the main drawback being a more 

statistically and computationally demanding implementation. As concerns the out-of-sample 

predictive performances the evidences are not clearly conclusive: for example, Gonzalez-

Rivera, Lee, Mishra (2002) find a preference for SV in Value at Risk (VaR) computation. On 

the other hand Bluhm and Yu (2001) find that SV is not preferred to GARCH in a VaR 

framework, while SV is preferred in option pricing. Lehar, Scheicher and Schittenkopf (2002) 

show a preference for GARCH in option pricing, while no notable differences are found in 

VaR.  

The aim of this paper is to contribute to this issue by drawing a VaR-based comparison 

of SV and GARCH on UK stock data (FTSE100 stock index). To this end, two simple models 

are estimated and the related volatility forecasts are used to estimate VaR on an artificial 

portfolio containing a unit position on FTSE100: the performances of the two alternative 

models are evaluated on the relative backtest.  

The paper is organised as follows: the first section presents a brief description of 

volatility models, focusing on the stochastic volatility models definition and estimation. In the 

second section the data are presented and two models, a log-normal first order autoregressive 

(AR(1)) SV and a GARCH(1,1), are estimated. The last section presents the implementation 
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of  VaR estimation and related backtest using alternatively the volatilities coming from the 

two models estimated. The last section concludes. 

 

 

1. Volatility Models 

 

The easiest assumption to model daily returns is a zero-mean normal random variable. 

While the zero mean is a credible assumption that is generally confirmed by financial data, 

many empirical findings show that the stock returns have a negatively skewed and leptokurtic 

distribution.  The leptokurtosis can be handled by incorporating conditional heteroscedasticity 

into a Gaussian process. A model commonly adopted for returns is defined by 

                                         )1;0(~ IIDr tttt εεσ=                                                      (1.1)  

In (1.1) tε  is a zero-mean white noise often assumed to be normal and tσ  is the time-varying 

volatility.1  

Assuming that tε  is a normal white noise, the returns conditional on tσ  are normal: 

                       ( )2;0~|)1;0(~ ttttttt NrNIDr σσεεσ ⇒=                                (1.2) 

While the normality is often assumed for the conditional distribution, by modelling tσ  as 

being time varying the unconditional distribution is leptokurtic. Different specifications for 

tσ  define different volatility models. Following Shephard (1996), two main classes of 

volatility models can be identified: observation-driven and parameter-driven volatility 

models. 

Observation-driven models define tσ  as a deterministic function of past observations of 

the returns: these are mainly the ARCH-type models, which in the most general formulation 

define the conditional variance as ),...,,,...,( 22
1

22
1

2
qttpttt rrf −−−−= σσσ . One of the most appealing 

features of the observation-driven models is that the one-step-ahead forecast density is 

defined explicitly; assuming normality: 

                                 ( ) ),.....,(;0~| 111
2

1 −−− = ttttt rrRNRr σ                                   (1.3) 

                                                 
1 This model handles the dynamics in the variance, while ignores the possible dynamics in the mean: even if the 

autoregressive structure of the return can be significant at least in the first order term, here the mean dynamics is 

neglected since the purpose of this work is to model the variance.  
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The ARCH models were introduced by Engle (1982). Many ARCH-type models have been 

developed, among which one of the most popular is the GARCH(1,1), originally proposed by 

Bollerslev (1986)   

                                            
2

1
2

1
2

)1;0(~

−− ++=

=

ttt

tttt

r

NIDr

βσαγσ

εεσ
                                                (1.4) 

Since tε  is assumed to be normal, the returns are normally distributed conditionally on the 

variance which depends on the information up to the previous period. The value of the 

parameters 1<+ βα  defines the stationarity condition. While returns are modelled as being 

serially uncorrelated, the squared returns can be expressed as an autoregressive process 

(specifically an ARMA(1,1)). The unconditional distribution is symmetric around a zero 

mean, with variance )1/( βαγ −−  and kurtosis greater then 3 (i.e.leptokurtic distribution). 

Similar features apply to the generic ARCH(p) and GARCH(p,q) models.  

The normality assumption allows estimating an ARCH-type model very easily by maximum 

likelihood. The estimation becomes more complex if the normality assumption is relaxed: 

most commonly a Student-t distribution for tε  is assumed, which increases the ability of the 

model to capture the fat tails of the actual distribution of the returns (Baillie, Bollerslev 

(1989)). In this case an additional parameter that represents the degree of freedom of the t 

distribution has to be estimated. 

The forecast of the variance is based on the conditional variance equation: the fact that the 

one step ahead forecast is fully determined is one of the main simplifications characterising 

GARCH compared to SV models. 
Parameter-driven models, represented by SV models, define the volatility as an 

unobserved random variable driven by a latent stochastic process, that means a 

contemporaneous innovation appears in the equation defining volatility. The stochastic 

component in the log-variance equation accounts for the random new information that 

characterises financial markets. The statement in (1.2) is still valid, but the forecast density 

1| −tt Rr  is not defined explicitly. 

The simplest SV model is the log-normal AR(1), due to Taylor (1986), which is formulated 

as:  

                              
)1;0(~

)1;0(~)2/exp(

1 Nhh
Nhr

tttt

tttttt

ηησφγ
εσεσ

η++=
==

−

                                    (1.5) 



 4 

The logarithmic formulation ensures the positiveness of the variance. In the simplest case tε  

and tη  are assumed to be independent: a correlation between these two terms would heavily 

complicate the estimation of the model, but would allow the conditional variance to respond 

asymmetrically to rises and falls in the returns. The parameter φ  represents the persistence of 

the log-variance: if 1<φ  the log-variance is stationary. Assuming this stationarity condition, 

the log-variance follows an autoregressive process AR(1) with unconditional mean 

φγ −= 1/)( thE  and unconditional variance  22 1/)( φση −=thVar .  

As in the case of GARCH the returns are conditionally normal: 

                                               ( ))exp(;0~| ttt hNhr                                                     (1.6) 

The main difference compared to GARCH is that in the SV model 

)|())2/exp(|( 1−≠= ttttt Rrfhrf σ which is not defined explicitly and hence makes the 

likelihood intractable, with the consequence of estimation difficulties. Formally, the 

distribution of the returns conditional on the series of returns up to the previous period is 

defined as: 

                    ( ) ( ) ( )∫ −−−−− = 11111 )|(||| tttttttttt dhdhRhfhhfhrfRrf                            (1.7) 

where ( )tt hrf |  is a normal as  in (1.6), and ( )1| −tt hhf  is a normal with mean 1−+ thφγ  and 

variance 2
ησ .  

The unconditional distribution of return is a non-standard one 2 as in the case of GARCH. As 

in GARCH all the odd moments are zero, so that the unconditional distribution is symmetric 

and centred on zero. Moreover the kurtosis results to be higher then 3. While the returns are a 

white noise by definition, if the stationarity condition 1<φ  is satisfied the squared returns 

dynamic is driven by an autocorrelation function very close to the one of an ARMA(1,1), as 

pointed out in Shephard (1996).  

Hence both the SV model and the GARCH model are able to explain some common 

features of the daily returns, which can be summarized as follows: 

                                                 
2 In Taylor (1994) the unconditional distribution of the returns is defined as a lognormal mixture of normal 
distributions: it can in fact be argued that the returns are normally distributed conditionally on each realization of  

th , and these possible realizations are defined by the stochastic process which drives the logvariance. A mixture 

of normal distributions has fat tails by definition, so that the unconditional distribution of the return has excess 
kurtosis whenever the stochastic variance has positive variance and is independent of tε  (see Taylor (1994)). 

This means that the leptokurtosis of the unconditional distribution, while it derives just from the persistency 

coefficient βα + in the case of GARCH, it comes both from φ  and from 
2
ησ  in the case of SV.  
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1) High kurtosis (fat tails); 

2) Small autocorrelation in level; 

3) Positive and statistically significant autocorrelation in the squared returns, slowly 

decreasing as the time- lag increases. 

By contrast to GARCH, SV accounts for contemporaneous shocks affecting volatility, which 

can be interpreted as the random new information in the stock market.  

The main disadvantage of SV compared to GARCH is the difficulty of estimation and of 

forecasting, due to the untractability of the predictive density )|( 1−tt Rrf .  

 

SV Estimation 
While the ARCH-type models can be estimated by maximum likelihood due to the 

explicit definition of the predictive density, the SV model estimation is much more 

statistically demanding. Many different estimation methods have been developed and 

analysed: some of them only deliver the estimates of the model’s parameters, while other 

methods also estimate the log-variance th . The log-variance can be computed using the full 

sample ),...,,...,( 1 TtT rrrR = , in which case the estimate Tt Rh |)2/exp(  is called ‘smoothed 

volatility’, or it can be based on the observations up to the considered period producing the 

‘filtered volatility’ tt Rh |)2/exp( . Among the most popular estimation methods are the 

Generalized Method of Moments (GMM), the Quasi Maximum Likelihood Estimation and 

the Markov Chain Monte Carlo (MCMC) which is implemented in the present work 

following Chib, Kim, Shephard (1998).  

MCMC in the context of SV estimation is used within a Bayesian framework and it 

consists in drawing correlated samples (Markov Chain) form the required distributions . 

MCMC provides both the estimates of the parameters and of the smoothed volatility from a 

unique algorithm, by simulating the conditional densities ( )Tt Rhf |  t=1,...,T and ( )TRf |θ  

and taking the averages (posterior mean). As pointed out in Jaquier, Polson, Rossi (1994), a 

Markov Chain sampler can be built by splitting the joint posterior density )|,( TRhf θ  in the 

two marginal densities ),|( hRf Tθ  and ),|( θTRhf  and then alternating them in the 

simulation. The present work implements an MCMC procedure with Gibbs sampler, as 

presented in Chib, Kim, Shephard (1998). 
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Volatility Filtering and Forecasting 

While in the case of ARCH-type models the forecasting is straightforward since the 

one-step-ahead variance is fully deterministic, this task is much more statistically demanding 

in the case of SV models, since the log-variance equation is stochastic.  

The process of computing the log-variance conditional on the observations up to the 

current time tt Rh | , for t=1,...,T, is called ‘filtering’ 3. Hence the outcome of the filtering is the 

density function ( )tt Rhf | . The filtering procedure assumes known values for the parameters 

θ  of the model: in the following the parameters will not be mentioned, implicitly assuming 

that all the densities are meant to be conditional also on the parameters values.  

Following Pitt and Shephard (1999), the filtering density ( )tt Rhf |  is obtained by repeating 

over time a two-stage procedure: 

1. Define the prediction density through the  ‘transition density’ )|( 1 tt hhf + :                             

∫ ++ = ttttttt dhRhfhhfRhf )|()|()|( 11                                                                     (1.8) 

2. Use Bayes theorem to compute the filtering density:                         

)|()|(
)|(

)|()|(
)|( 111

1

111
11 tttt

tt

tttt
tt Rhfhrf

Rrf
Rhfhrf

Rhf +++
+

+++
++ ×∝

×
=                      (1.9) 

    where 

                                     11111 )|()|()|( +++++ ∫= ttttttt dhRhfhrfRrf                            (1.10) 

In the context of SV models, the so called ‘particle filters’ are commonly used. Particle 

filters are a particular class of simulation filters which approximate the filtering variable, the 

log-variance tt Rh |  in the SV model,  by ‘particles’, that is by a finite number M of values 

M
tt hh ,.....,1 ,  associated with discrete probabilities M

tt ππ ,.....,1 . The filtering density is 

approximated with the discrete set of values Mjh j
t ,...,1=  which are considered like samples 

from that density. This allows computing the prediction density in (1.8) with the 

approximation  

                                       ∑
=

++ =
M

j

j
tt

j
ttt hhfRhf

1
11 )|()|(ˆ π                                            (1.11) 

                                                 
3 In general, given a time series nty t ,...,1= modelled as independent conditionally on an unobserved state 

tα , ‘filtering’ means “to learn about the state given contemporaneously available information” (quote from Pitt, 

Shephard 1999). 
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Clearly the higher is the number of simulated values M the more accurate is  the filtering 

sampler. The density in (1.11) is an ‘empirical prediction density’, that can be used to 

formulate an ‘empirical filtering density’: 

                            ∑
=

+++++ ×∝
M

j

j
tt

j
ttttt hhfhrfRhf

1
11111 )|()|()|(ˆ π                              (1.12) 

In the literature the probabilities M
tt ππ ,.....,1  are usually assumed to be equal, i.e. 

MjMj
t ,...,1/1 =∀=π . Usually some accept/reject algorithm is performed to sample 1+th .  

Once the structure to filter volatility is available, the one-step-ahead forecast is based on 

the prediction densities Mjhhf j
tt ,...,1)|( 1 =+ .  

 

 

2. GARCH and SV Estimation on UK stock data 

 

The Data 

The data consist of FTSE100 daily prices covering the period 01/01/1990 – 

31/12/2001.4 The first eleven years have been considered as estimation sample, while the last 

year of data has been used as out of sample period for volatility forecasting and VaR 

estimation.  The prices have been downloaded from DataStream.  

The volatility models deal with returns, the series of which is presented in Fig. 2.1.5  
 

 

 

 

 

 

 

 

 

 

 

                                                 
4 It has to be noted that the 11th September 2001 is included in the observations: the decision of not eliminating it 
from the sample is due to the consideration that there are other ‘outliers’ in the sample, similar in absolute 
magnitude, which have not been eliminated. 
5 The DataStream series excludes the week-ends but contains holidays like Christmas, where the markets are 
closed and so there are no new prices. On these holidays the prices are set equal to the previous day, so that the 
corresponding returns turn out to be zero. Following Shephard (1996) the zeros have not been taken out from the 
series. 
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Fig. 2.1  FTSE 100 percentage log-returns series: 01/01/1990-31/12/2001 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 suggests that the returns are moving around an approximatively zero mean 

with time-varying volatility and a clustering phenomenon is quite evident. Table 2.1 presents 

some basic statistics describing the data. The sample mean, very close to zero, supports the 

assumption made in the return model. The ADF test gives a strong rejection of the null 

hypothesis of unit root, meaning that the series is stationary. The negative skewness and the 

high kurtosis, and the consequent rejection of the normality hypothesis, confirm the common 

empirical finding that daily returns are very far from being Gaussian. 

 
Table 2.1 Basic Statistics for Percentage Returns 

Mean 0.024508 

Std. Deviation 0.96967 

Skewness -0.075289 

Excess Kurtosis 2.2206 

Minimum -5.8853 

Maximum 5.4396 

Normality test6 Chi^2(2) = 380.08 (0.0000) 

Augmented Dickey-Fuller (5 lags) ADF = -24.55 

 

According to the market efficiency hypothesis, the returns are expected to be serially 

uncorrelated: the series considered here presents significant autocorrelation as table 2.2.A 

shows, but the values of the F statistic are not very high and the coefficients are quite low as 

can be seen in figure 2.2. 

-6

-4

-2

0

2

4

6
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Table 2.2  Test of serial correlation at different lags 

(2.A) H0: no autocorrelation in returns  (2.B) H0: no autocorrelation in returns 

Lag F value p-value  Lag F value p-value 

1 8.5089 0.0036  1 8.5089 0.0036 

up to 2 10.209 0.0000  2 10.791 0.0010 

up to 3 7.2972 0.0001  3 2.4511 0.1175 

up to 30 2.0592 0.0006  from 3 to 30 1.5637 0.0300 

 

 

Fig. 2.2 Returns Correlogram 
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It can be argued that the autocorrelation, even if statistically significant, is not economically 

significant, at least beyond the first lag: this dynamic is ignored in this work. The 

autocorrelation is much more important in the squared returns: commonly squared returns 

have positive skewness, very high kurtosis and a strong positive autocorrelation, and these 

‘rules’ are confirmed on this data set. Skewness and Excess Kurtosis are 6.1151 and 63.288 

respectively and the hypothesis of no autocorrelation is strongly rejected at any lag tested. 

 

Table 2.3 Test of autocorrelation 

H0: no autocorrelation in squared returns  

Lag F value p-value 

1 103.68 0.0000 

up to 2 95.233 0.0000 

up to 3 92.763 0.0000 

up to 30 15.315 0.0000 

 

 

 

 

 

                                                                                                                                                         
6 PcGive normality test: modification of Jarque-Bera presented in Doornik and Hansen (1994). 
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Fig. 2.3 Squared Returns Correlogram 
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The features of the FTSE 100 returns series as highlighted above suggest to use a model 

in which the volatility can change over time: this aim can be reached both adopting an 

ARCH-type model or a stochastic volatility model. Two simple models, a GARCH(1,1) and a 

log-normal AR(1) SV, will be estimated and discussed in the next two sections. 

 

GARCH Estimation 

A simple GARCH(1,1) is implemented, as it is one of the most popular in applications. 

Hansen and Lunde (2001) find that, despite its simplicity, GARCH(1,1)  is not outperformed 

from other more complex ARCH/GARCH-type models. The first eleven years of the sample 

are used to estimate the  model defined as follows: 

2
1

2
1

2).1.2(

)1;0(~).1.2(

−− ++=

=

ttt

tttt

rB

NIDrA

βσαγσ

εεσ
                                              (2.1).     

 

Table 2.4  GARCH(1,1) Estimation Results 

parameter Estimate Std. Error p-value 

gamma 7.95E-07 3.14E-07 0.117 

alpha 0.0491 0.00906 0.002 

beta 0.9420 0.01145 0.000 

alpha+beta 0.9911     

 

The parameters in table 2.4 are estimated through maximum likelihood7. The constant is very 

small and not significant, while the two coefficients are significant. The sum of the two 

estimated coefficients α  and β  (persistency coefficient) is very close to one, meaning that 

                                                 
7 The estimation has been implemented by PcGive (Ox). The parameters have been restricted to be positive, 
according to a common practice to avoid negative variances. 
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even if there is stationarity, the variance is highly persistent. It is interesting to note that the 

parameter estimates are very close to the fixed parameter values used in RiskMetrics, which 

can be interpreted as an IGARCH. The conditional variance can be estimated and forecast 

one-step-ahead through (2.1.B) by adding new information (returns) day by day.  

According to the model defined in (2.1), the standardized returns should be distributed 

as a standard normal: based on this observation, the standardized returns computed with the 

estimated variance ttr σ̂/  are tested for normality and independence in the squares.  

 

Figure 2.4  Squared Normalized Returns Correlogram 
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The model succeeds in accounting for second order dependence since the squared 

standardized returns present no significant autocorrelation, as in figure 2.4 and table 2.5. 

 

 

Table 2.5  Autocorrelation test on squared standardized returns 

H0: no autocorrelation in 
22 ˆ/ ttr σ  

Lag F value p-value 

1 0.094221 0.7589 

up to 2 1.797 0.1660 

up to 3 2.0609 0.1033 

up to 30 1.0476 0.3954 

 

The standardized returns present skewness –0.102 and excess kurtosis 1.284. Even if the 

kurtosis has been reduced by standardizing the returns, the normality hypothesis is still 

rejected. This is not surprising, since most of the literature on ARCH-type (e.g. Hsieh (1991)) 
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models conclude that a GARCH can only partly account for fat tails in the distribution of the 

returns.  

 

SV Estimation 

        The following SV model (from Taylor (1994)) is estimated:  












−

+−+=
=

−

2

2

1

1

1
,~).2.2(

;,);1,0(~)().2.2(
);1,0(~)2/exp().2.2(

φ

σ
µ

ηεηησµφµ
εε

η

η

NhC

eduncorrelatNhhB
NhrA

tttttt

tttt

         (2.2) 

The formulation of equation (2.2.B) follows Chib, Kim, Shephard (1998).8 The log-variance 

th  is modelled as a stationary (assuming 1|| <φ ) first order autoregressive process with  

normal white noise independent from the returns noise. Under the stationarity assumption, the 

initial value for the log-variance can be drawn from the unconditional distribution defined in 

(2.2.C). 

The first step in estimating the SV model consists in the estimation of the parameters of 

the log-variance equation (2.2.B): a Gibbs sampler (as described in Chib, Kim, Shephard 

(1998)) is used in the present work. Secondly the log-variance is filtered and forecast through 

the application of a particle filter.9  

 

Estimation of the parameters 

The estimation of the parameters consists in the simulation of a posterior density for 

each parameter, so that the mean of the simulated distribution can be seen as a posterior mean. 

Following Chib, Kim, Shephard (1998), the prior distribution for the parameters 2
ησ , φ  and 

µ  are respectively an inverse gamma, a beta and a normal.  

The main problem using MCMC is that the simulated samples are correlated: many 

iterations are required to reach the accuracy that could be obtained with independent draws. In 

this application the first  2,500 iterations (sweeps) have been performed at the beginning 

without recording the results (burn- in period), in order to ensure that the initial values do not 

influence the final outcome; then 50,000 sweeps have been performed and recorded. The 

                                                 
8 The program treats de-meaned returns, but since the mean is quite close to zero the difference can be 
considered negligible. 
9 The SV model is estimated through an Ox code related to Chib, Kim, Shephard (1998) and available at 
http://www.nuff.ox.ac.uk/users/shephard/ox/ . 
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parameters are estimated based on the first eleven years of data and the results are 

summarised in the table 2.6. 

 

Table 2.6 Estimation Results 

parameter Mean MC Std Error Inefficiency   Covariance   

r|φ  0.98708 0.000296 238.24 0.0000174 -0.669 0.0625 

r|ησ  
 

0.10208 0.00153 601.12 

 

-0.0000379 0.000185 -0.0648 

r|)2/exp(µβ = 10 0.83814 0.00144 20.56 0.0000181 -0.0000611 0.00482 

 

Even if the log-variance results to be stationary, the coefficient of persistency φ  is very 

close to one, indicating that shocks in the log-variance are highly persistent as in the case of 

GARCH. The numerical standard errors of the sample mean deriving from the Monte Carlo 

simulation11 are considered as a measure of the accuracy of the estimates. Clearly the 

accuracy could be improved by increasing the simulation sample size, i.e. the number of 

iterations, and by using more complex algorithms: here a choice of 50,000 iterations and of a 

simple algorithm has been done in order to obtain results in a limited time. 

The simulation inefficiency factors measure how well the Markov Chain mixes. The 

inefficiency factor is defined as the ratio of the numerical variance (i.e. square of the Monte 

Carlo standard error) and the variance of the sample mean that would derive from drawing 

independent samples12: as independent random draws would be the optimal outcome of the 

simulation procedure, the most desirable inefficiency factor is the one closest to one. The 

                                                 
10 The parameter µ  is expressed )2/exp(µβ =  in Chib, Kim, Shephard (1998) because this has an economic 
interpretation as the modal instantaneous volatility.  
11 To take into account the serial correlatoin between successive samples, the Monte Carlo standard errors are 
calculated as 

 ∑
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inefficiency factor can be interpreted as the number of times the algorithm needs to be run to 

produce the same accuracy in the estimate that would derive from independent draws. The 

inefficiency factors can in general be reduced by increasing the number of iterations13. The 

inefficiency factor for the constant scaling factor )2/exp(µβ =  is massively lower then for 

the other two parameters, following the results normally found in other empirical works (e.g. 

Kim, Shephard and Chib (1998)14).  

The last three columns of table 2. contain the parameters’ covariance matrix; in the 

upper triangle the correlations have been reported instead of the covariance, because they give 

a more explicit information on the relation between the parameters.  

Figure 2.5 gives a graphical illustration of the simulation results. 

 

 

Fig. 2.5 Gibbs sampler outcome 
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The upper graphs  represent the full sample of iterations for each parameter, which give 

the simulated marginal densities )|(),|(),|( rfrfrf βσφ  respectively in (a), (b) and (c). 

The three graphs in the middle (d), (e), (f) show the histograms of the simulated marginal 

                                                 
13 In this case the magnitudes of these factors are similar to the ones obtained in Kim, Shephard and Chib (1998)  
with 1,000,000 iterations: this suggests that the number of  iterations used should be appropriate. 

14 In Kim, Shephard and Chib (1998) it is shown that more complex estimation algorithms are definitely 
more efficient (lower inefficiency factors) for all the parameters. In the present work the simplest and quickest  
algorithm has been chosen, considering that the resulting estimated parameters are anyway very close even using 
more efficient algorithm in Kim, Shephard and Chib (1998). 
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densities: the histogram corresponding to β  (f) looks perfectly symmetric and very 

concentrated on the mean, while the other two look slightly skewed. For the simulation 

sample mean to be a good estimate of the parameter the iterations should be like draws from 

independent random variables. The correlograms, showed in the bottom graphs, report the 

best performance for β . The degree of serial correlation in the draws is an indicator of how 

well the simulation algorithm behaves. While for β  the autocorrelation is almost inexistent, 

there is significant autocorrelation for the other two parameters: in particular σ  presents (h) 

very important serial  correlation until 800 lags. This result is just a graphical confirmation of 

the information already contained in the inefficiency factors. An improved algorithm 

proposed by Chib, Kim, Shephard (1998), an offset mixture with appropriately adapted Gibbs 

sampler, is also implemented: the resulting parameter estimates are not very different 

(0.98762, 0.096769, 0.8387), while there is a significant improvement in the inefficiency 

factors (82, 175, 13) and in the standard errors (0.000174, 0.000848, 0.000351). The 

algorithm is more complex and hence slower. 

Volatility Estimation and Diagnostic Checks 

Filtering the volatility tt Rh |)2/exp(  means finding the filtering density ),|( θtt Rhf , 

where the parameters, indicated synthetically as θ , are considered constant and known. The 

information consists of the series of returns up to time t.  Once the log-variance has been 

initialised according to (2.3.C), a particle filter algorithm is applied to sample draws from 

θ,| tt Rh  given a sample from θ,| 11 −− tt Rh : the output consists of M (=2000) simulated 

values for each θ,| tt Rh  t=1,...,T. Analogously M values for each forecast log-variance 

θ,|1 tt Rh +  can be computed as draws from ( )2
1 ˆ);ˆ(ˆˆ~| ησµφµ −++

j
t

j
t

j
t hNhh . The mean of the 

simulation samples are considered as estimates of the filtered and forecast volatility15.  

Unlike the case of GARCH where the estimated and the one-step-ahead forecast volatility are 

computed exactly in the same way since all the components of the variance equation are 

known in t, in the case of SV the forecast volatility 1| −tt Rσ  is different from the filtered one 

                                                 
15 The expected volatility is calculated as  ( ) ∑

=

==
M

j

j
tttt h

M
RhE

1

)2/exp(
1

,|)2/exp(ˆ θσ  and 

( ) ∑
=

+++ ==
M

j

j
tttt h

M
RhE

1
111 )2/exp(

1
,|)2/exp(ˆ θσ   respectively for t covering the full sample and the number of 

simulation M equal to 2000.  
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tt R|σ , as the filtered volatility is computed through the particle filter and the forecast one is 

then obtained from the transition equation (2.3.B) by simulation. 

According to the model defined in (2.3), since the conditional returns tt hr |  are 

distributed as a normal ))exp(;0( thN , the standardised returns )2/exp(/ ttt hry =  should be 

distributed as an IID N(0;1). Hence the goodness of the model in representing the data can be 

evaluated by checking the features of  ty . Unlike the case of GARCH, in the SV filtering 

framework the final output for the log-variance is not just a series of number, but is an n× m  

matrix containing m draws from the distribution of th  for every t=1,...,n. 

In the literature about SV tests consider the full simulated distribution of the variance.  

Considering the M draws on 1+th  from the predictive density, the probability of 2
1+ty  being 

less than its observed value is  

             ( ) ( ) M
t

M

j

j
t

oss
ttt

oss
tt uhyy

M
Ryy 1

1
1

2
1

2
1

2
1

2
1 ,|Pr

1
,|Pr +

=
+++++ =≤=≤ ∑ θθ                         (2.3) 

The random variable M
tu 1+  converges to an IID uniform (0,1) random variable for ∞→M  if 

the model is correctly specified. All the diagnostic tests are based on the variable 

)( 1
1

1 +
−

+ Φ= t
M

t
M uv   for t=1,...,n-1 that should turn out to be N(0;1) if the SV model has been 

correctly defined and estimated. 

 
Fig. 2.7  Diagnostic tests 
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The comparison between graph (a) and (c) shows that the dependence in the data, which 

emerges as serial correlation in the squared returns, is captured effectively by the SV model 

because the correlogram of the transformed variable v is almost flat at zero. Graph (b) 

illustrates the series of the transformed data, i.e. the series 1+t
Mv  for t=1,...,n-1. For the SV 

model to be correct this series should come out from a standard normal distribution. A QQ 

plot is presented in graph (d), which compares the actual distribution with a standard normal: 

the middle values are almost perfectly represented by the normal, but the outcome is worst for 

extreme values of v: a similar result is found in Chib, Kim, Shephard (1998). The normality  

hypothesis is accepted on v: the skewness and excess kurtosis are in fact 0.0231 and 0.0456 

respectively. These results proved that the SV quite well. 

 

 

 
3. Value at Risk 

 

The main issue in VaR estimation is the definition of the one-step-ahead portfolio return 

distribution: on the future distribution of the profits and losses (portfolio value changes), the 

quantile corresponding to the confidence level chosen α  represents the estimated maximum 

loss. Formally, the VaR estimated in t for the following period t+1 can be defined to be the 

quantity such that16   

                                      ( ) %|Pr 11 α=−≤∆ ++ ttt IVaRV                                                (3.1) 

where tI  is the information available in t, tV  is the portfolio value in t and ttt VVV −=∆ ++ 11  

represents the portfolio profits and losses. 

        In the present work a unit position on FTSE100 has been considered, so that the value of 

the portfolio is just the index price, and the profits and losses are given by its changes. 

Assuming the conditional normality of the returns 

                                                            ( )2
11 ;0~| ++ ttt NRr σ                                                    (3.2) 

VaR can be easily calculated following the standard variance-covariance approach as17 

                                                      1
1

1 )( +
−

+ ××Φ−≅ ttt PVaR σα                                            (3.3) 

                                                 
16 The VaR is taken with the negative sign because it is always calculated as an absolute value, but in this 
expression it represents a loss. 
17 The common approximation 11 ++ ≅∆ ttt rPP  is adopted. 
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In this work a confidence level of 95% is used, i.e. 65.1)(1 −=Φ − α , and the one step ahead 

forecast volatility is estimated alternatively with the GARCH(1,1) and SV as seen above. The 

conditional volatility in t+1 is estimated on the information up to time t, and the returns are 

assumed normal conditionally to this estimate.  

Hence it is evident the crucial importance of forecasting volatility one-step-ahead. Figure 3.1 

shows the forecast volatility coming from the two models: the GARCH volatility is generally 

higher then the SV volatility, particularly during the period of high volatility following the 

11th September. An explanation could be related to the persistency coefficient which is higher 

in GARCH (alpha+beta=0.991) then in SV (phi=0.987), that is a typical result as pointed out 

by Shephard (1996). 

 

Fig. 3.1 Volatility Forecast 

 

 

 

 

 

 

 

 

 

 

 

 

VaR is estimated day by day on the last year of data (01/01/2001-31/12/2001) and the 

backtest is analysed. Since the return distribution is symmetric around zero, a symmetric 90% 

confidence interval for each period can be built centred on zero and delimited by VaR± . 

Even if the attention commonly focuses on losses, from a statistical point of view profits and 

losses can be treated in the same way as realizations of the returns, and given the symmetry 

hypothesis the limit on profits is the same as the limit on losses. The backtest is performed 

comparing the VaR calculated with both models and the realized price changes: VaR±  define 

a symmetric 90% confidence interval, and the attention focuses on the realized proportion of 

profits and losses which fall outside of this confidence interval (misses). A perfect model 
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should produce a confidence interval that contains exactly 90% of the realizations, that is 10% 

of the outcomes should be misses. Figure 3.2 illustrates the outcome of the backtest. 

The confidence interval defined by GARCH is in general wider then the one defined by 

SV. The percentage of misses is in fact about 11.5% for GARCH and 13.8% for SV. Both the 

models underestimate the extreme price changes, since both present an actual proportion of 

misses greater then 10%.18  The basic assumption for both models is the conditional normality 

of the returns: the unconditional distribution has fat tails, but this is not enough to account for 

the fat tails of the actual distribution. Both GARCH and SV model can be modified to account 

for a greater proportion of leptokurtosis by changing the distribution of tε  from a normal in a 

Student-t: this goes beyond the scope of the present work, because the estimation would 

become much more complex, especially in the case of SV, and also because the VaR 

estimation, according to the RiskMetrics methodology, relies on the conditional normality 

hypothesis, so that changing this hypothesis would change the VaR computation.  

 

Fig. 3.2 VaR and backtest on the last year: 01/01/2001-31/12/2001 

 

 

 

 

 

 

 

 

 

 

A formal comparison of the performances of the two models can be done through 

appropriate Likelihood Ratio tests. Following Christofersen (1998), the goodness of an 

interval forecast is evaluated on the basis of two main requirements which need to be 

satisfied: 

• Correct coverage: the observed proportion of misses is approximately equal to α %, 

assuming independence. 

                                                 
18 It has to be noted that the forecast period includes the 11th September 2001: the absolute return is 

obvoiusly very high on that day producing a miss. 
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• Independence: hits and misses are independently distributed (clustering ruled out). 

The implementation of the two mentioned criteria requires the definition of an indicator 

function: 

                         
[ ]
[ ]




−∉∆

−∈∆
=

+++

+++

)(;0

)(;1

111

111

missVaRVaRPif

hitVaRVaRPif
I

ttt

ttt
t                                (3.4)                                         

Based on the proportion of misses and hits compared to the predefined probability of 90%, 

two LR tests can be performed, with the null hypothesis of correct coverage and independence 

respectively. The results of the two tests, i.e. the tests values and relative p-values, are 

presented in table 3.1. 

 
Table 3.1 LR tests on the two interval forecast 

  GARCH SV 

  Correct Coverage (LRcc) 

LR (
2
1χ ) 0.6208 (0.431) 3.7772 (0.052)

  Independence (LRind) 

LR (
2
1χ ) 8.8171 (0.003) 3.8167 (0.051)

 

As expected the value of the first LR test is much lower in the case of GARCH, even if the 

null of correct coverage is accepted in both cases.  Hence GARCH performs better according 

to the correct coverage criterion, but the opposite conclusion is reached according to the 

independence criterion. The null of independence is in fact accepted for SV but rejected for 

GARCH: this means that in the case of SV, even if the interval forecast is not wide enough to 

contain the predicted proportion of realizations, the misses are independently distributed over 

the period considered, that is not true for GARCH. The conclusion is that none of the two 

models produce an optimal interval forecast: in the case of SV both the hypotheses of correct 

coverage and independence are accepted but quite weekly, while in the case of GARCH the 

correct coverage is definitely accepted but the independence is rejected. In conclusion, despite 

at a first look GARCH  appears to perform better, from a statistical point of view the choice 

between the two models is not straightforward. Moreover, using the results from the improved 

SV algorithm to estimate variance, the LR tests produce a better output: LRcc=2.3556 

(0.118), LRind=3.3437 (0.07). Combining the two tests, a single statistic is obtained which is 

distributed as a )2(2χ . The results are presented in table 3.2. Only the SV model with 

improved algorithm doesn’t reject the joint hypothesis of correct coverage and independence. 
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Table 3.2 Joint LR test 

 
LRcc+LRind 

2
2χ  

GARCH 9.4379 (0.009) 

SV 7.5939 (0.022) 

SV improved 5.7313 (0.057) 

 

It has to be noted that SV VaR has been estimated using the expected value as a 

volatility forecast: since the outcome of the SV model by applying a filtering algorithm is a 

vector of M draws ].....[ 1
2

1
1

1
M
ttt hhh +++  for each period t, a loss of information occurs when taking 

the average, which could lead to a reduction in the ability of the SV model to capture the fat 

tails. In fact in the previous section the distribution of the one-step-ahead return is assumed to 

be normal given the forecast value 1ˆ +tσ , but the returns are normally distributed conditionally 

on the volatility distribution. It could be argued that the return are normal conditionally on 

each single realisation from the simulation sample ].....[ 1
2

1
1

1
M
ttt hhh +++  

                                                  jhNhr j
t

j
tt ∀+++ ))exp(;0(| )

111                                      (3.5) 

The predictive distribution given the information up to time t could then be approximated 

through the filtering output as follows19 

                                ∑∫
=

+++++++ ≅=
M

j

j
ttNttttttt hrf

M
dhRhfhrfRrf

1
1111111 )|(

1
)|()|()|(        (3.6) 

Starting again from the definition in (3.1):  
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+
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 (3.7)  

The right hand side of (3.7) is an approximation deriving from the application of a particle 

filter. The conditional distribution )|( 1 tt Rhf +  is in fact approximated by the simulated 

sample ].....[ 1
2

1
1

1
M
ttt hhh +++  and the probability of each value is 1/M. By imposing the expression 

in (3.7) to be equal to the predefined probability 0.05 the VaR can be computed for each t in 

order to build a forecast interval over time. The equation 

                                                 
19 In Shephard (1996) it is stated that ( ) ( )∑

=
+++ ≤==≤

+

M

j

j
ttRrtt hxrMxFRxr
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05.0
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is solved numerically using the Excel solver. Coherently with the ex ante expectations, the 

interval is larger then the one defined before by using the average SV volatility. However the 

increase in the wideness of the interval is not relevant enough to improve substantially the 

performances of the SV model in estimating VaR. The percentage of misses only drops to 

13.4%, which is still much higher then the percentage of misses in the GARCH case.  

     Another way of comparing the forecasting performances related to VaR is through a loss 

function. Following Gonzalez-Rivera at al (2002), a loss function from quantile estimation is 

adopted: this function focuses only on the loss-side and considers the magnitude of the loss: 

                       { } { }[ ]∑
=

−>∆−<∆++ ++++
+−×+∆=

n

t
VaRPVaRPtt tttt

VaRP
n

V
1

11 1111
11)1(||

1
αα                      (3.9) 

The results are quite similar for the two models with a slight preference for GARCH 

(GARCH: V=8.32, SV: V=8.33). The improved SV performs better (V=8.26). 

 

 

 

Conclusions 

Two volatility models are discussed and estimated: GARCH(1,1) and log-normal AR(1) 

SV. Since the SV estimation is definitely more computationally demanding, this paper 

analysed their performances within a simple VaR calculation in order to evaluate if the use of  

SV models in contrast to GARCH is worthwhile. The VaR estimated on FTSE 100 data does 

not presents clear evidence in favour of SV: on the contrary GARCH, looks quite useful, even 

if both the models underestimate losses, probably due to the common underlying assumption 

of conditional normality. The results anyway are not fully conclusive: they could be related to 

the particular data set used on one hand, and on the estimation procedure on the other hand, as 

it is evident from the two different algorithms used in SV. Moreover the results are sensible to 

the particular evaluation techniques adopted to analyse the performances, which can focus on 

different aspects of the issue. 
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