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ABSTRACT

This paper analyzes identification conditions, and proposes an estimator, for a dy-
namic factor model where the idiosyncratic components are allowed to be mutually
non-orthogonal. This model, which we call generalized dynamic factor model, is novel
to the literature, and generalizes the static approximate factor model of Chamber-
lain and Rothschild (1983), as well as the exact factor model & la Sargent and Sims
(1977). We prove mean-square convergence of our estimator to the common factor as
the time cross-sectional dimensions go to infinity at appropriate rates. Simulations

yield encouraging results in small samples. An empirical example on the output
growth of US states illustrates the method.

JEL classification nos.: C13, C33, C43.

Keywords: dynamic factor models, panel data, dynamic principal components.

1. Introduction!

Dynamic factor models have been used extensively in finance for the a.na.ly.sis of asset
prices, and in macroeconomics to study the businesg cycl'e. The _assumptmn underé
lying these models is that the dynamics of multivariate tl'm_e series can be modele

as the effect of a small number of common fa,c‘r:ors ax}d of idiosyncratic componentsCi
This approach is particularly useful when the dl_mensmn of th-e system to be a,ggl-yse 1
is large, since it provides a parsimonious dynamic representation, whereas traditiona
VARMA models would require the estimation of too many para.x‘neters. In fact, many
problems in economics and finance require the dynamic analysis of la%*ge .numbe.r of
assets and many sectoral, regional or individual variables. Il’-l econoiics in par_tlcu-
lar, the researcher has to face data sets which typical.ly contain many cross-sectional
information (n large) and a relatively short time period (7 small). In such context,

the use of factor models scems to be particularly appropriate, as shown by a small

but growing recent literature in macroeconomics (Quah and Sargent, 1993, Forni
and Reichlin, 1996, 1997, 1998, Forni an Lippi, 1997, Stock and Watson, 1998).

In this paper, as in Forni and Lippi (1998), we propose a very .genera,l factor
model, which is novel to the literature. Since we allow the lldlosyncratlc components
to be cross-correlated, individual shocks may have dynamic effects t(? other sectqrs.
This is a more realistic assumption than the tradi_tionafl ?rthoggnallty a,'ssumpt%on
underlying the traditional exact factor representatlo_n; it Is particularly mterestu;g
for the analysis of that class of business cycle models in which local. s.hocks pro(;;aga e
throughout the economy because of spillovers and complementarities (.e.g., oopei
and Haltiwanger, 1990 and Davis and Haltiwanger, 1992), or because of .mput-outpT
relations {(e.g., Long and Plosser, 1982). The non—-or‘thogon.al case is cfommonly
considered in the financial literature, where, however,. it is restr'lcted to static mode Sj{
Our model encompasses, as a special case, the statl‘c approximate factor Il’.lOdel 0
Chamberlain (1983) and Chamberlain and Rothschild (1983), and generalizes thef
dynamic factor model of Sargent and Sims (1977) and Geweke (1977) to the case o

- | idiosyncratic components.
- gfﬁc}x‘i(;r;:sentat?on differs from Stock and WatS(?n (}998), where _factors (a_pa.rt
from time-varying coefficients) are static, but growing in number with the cross-
sectional dimension. An important feature of our model is that the common com-
ponent is allowed to have an infinite Moving Average (MA) repre§entat1on, 80 as1
to accommodate for both autoregressive (AR) and MA factors. It is more genez"a.1
than the finite dynamic factor model, which can b-e analyzed as a Stat}c faf;tor n}ode1
where lagged factors are treated as additional sf,atm factors. The 1nﬁ1.11te dlmens.lon.a
dynamic model is a relevant generalization, since AR factors are likely to arise In

1 Thig research has been supported by an A.R.C. contract of Fhe Commgnauté fraqgaise ::le
Beleique. We would like to thank Christine De Mol for generously giving us her tu’n}é, Dag Tjgstheim
for ie?lpfﬁl discussions and Jorge Rodrigues for very valuable research assistantship.

1




macroeconomic data with business cycle features.

We provide both identification and estimation results. We show that, although
the model for finite n is not identified in general, under certain conditions, it 1s
identified for n tending to infinity. We provide these conditions and we use them as
a basis for a heuristic method for the identification of the number of common factors.

For estimation, we propose a method which works well in situations where the
cross-sectional dimension is large and traditional estimation methods, based on max-
imum likelihood, are not appropriate. The basic idea of the estimator as an aggregate
is a development of Forni and Reichlin {1998}, who show uniform consistency for an
estimator constructed from cross-sectional averages. The estimator proposed here
is based on principal components, i.e., on a weighted average of observations. We
show that the projection of the variables onto the leads and lags of the dynamic
principal components converges to the common factor space for both n and T' going
to infinity.

In the static case, a principal component estimator has been used by Connor
and Korajczyk (1986), who build on results in Chamberlain and Rothschild (1983)
to show convergence for n going to infinity and 7" fixed. Stock and Watson (1998)
use the same estimator for a more general model and provide consistency results for
n and T going to infinity at some rate.

This paper is closely related to Forni and Lippi (1998), who develop the repre-
sentation theory for the same model we discuss in this paper.

2. The Model

All stochastic variables under study are members of the standard Hilbert space
Lo(Q, F, P), where (2, F,P) is some given probability space. We will consider a
double sequence x = {z;;, ¢ € N; t € Z}, whose model is

zir = by (LYuyy + big(L)uay + - - - + beg(LD)ugr + &as, (1)

where the following Assumptions 1-4 are made.

ASSUMPTION 1.

(I) The g-dimensional vector process {(u1t, Uzs, -, Ugt ), t € Z} is orthonor-
mal white noise, i.e. var(uj) = 1 for any j and ¢, uj L Uz for any 7, t and k& # 0,
uj, L ust—g for any s # j, t and k;

(II) &€ = {&, 1 € N, t € Z} is a double sequence such that, firstly,

€n:{(£lt1 6231 ey fnt)la tEZ}

is a wide-sense stationary vector process for any n, and, secondly, &t L uj—g for
any 1, j, t and k;
(IIT) the filters b;;(L) are square summable and bilateral.

Model (1) is a factor analytic model. The variables ujr and X5 = Zar — it
j=1,...,q, will be called the common factors and the common component of T,
respectively. The variable &;; will be called the idiosyncratic component of x;z.

Note that Assumption 1 implies that the n-dimensional vector process

Xﬂ:{(mlta Loty -0y Enf;)l, tEZ}

is stationary for any n. Note also that the filters b;;(L) may contain negative powers
of the lag operator L, so that in general b;;(L)u;; contains both lags and leads of
ujs. Clearly if (1) is interpreted as a structural representation, where the common
factors have an economic meaning, then it would be appropriate to assume unilat-
eral impulse-response functions. Since in this paper we are not concerned with the
structural interpretation, we allow for general bilater filters.

The following restriction, though not strictly necessary, will considerably sim-
plify the proofs of our results.

ASSUMPTION 2. Both the process &, and x»n = {(Xx1t» X2t, --+y Xm Y, teZ}
have rational spectral density for any n (thus, the filters b;;(L) are rational).

Obviously, Assumption 2 implies that the spectral density of x,, is rational for
any n, and therefore defined everywhere and continuous on [—m, 7.
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The main features of the model are the following. First, it is dynamic as in
Geweke (1977) and Sargent and Sims (1977). Second, in contrast with the tradi-
tional dynamic factor model, the cross-sectional dimension is infinite. This feature is
the same as in the static factor model of Chamberlain (1983) and Chamberlain and
Rothschild (1983). An infinite cross-section, together with Assumptions 3 and 4 be-
low, is crucial for identification of our model: indeed, and this is the third distinctive
feature of (1), which differentiates it from the traditional dynamic factor model, we
are not assuming mutual orthogonality of the idiosyncratic components &;;. Without
orthogonality, for fixed n, reasonable assumptions allowing for identification of the
idiosyncratic and the common component would be very hard to find.

Let X7 be the spectral density matrix of x,, and denote by A7, the function
associating with any 6 € [—m, 7] the real non-negative j-th eigenvalue of X2(9)
in descending order of magnitude. The functions AZ; will be called the dynamic

eigenvalues of £2.%2 In the same way, using obvious notation, Ax; and )‘fwj denote the

dynamic eigenvalues of $X and Xf, respectively. The latter will be called common
and idiosyncratic eigenvalues respectively.

AssuMPTION 3. The first idiosyncratic dynamic eigenvalue /\fu is uniformly
bounded, i.e., there exists a real A such that A5, () < A for any 6 € [~n, )
and any n.

AssuMPTION 4. The first ¢ common dynamic eigenvalues diverge almost everywhere
in [—m, 7], Le., limp_e0 AY;(6) = oo for j < ¢, a.e. in [-m, 7).

Assumption 3 is clearly satisfied if the z’s are mutually orthogonal at any lead
and lag and have uniformly bounded spectral densities, but is more general as it
allows, so to speak, for a limited amount of dynamic cross-correlation. Similarly, As-
sumption 4 guarantees a minimum amount of cross-correlation between the common
components. With a slight oversimplification, Assumption 4 implies that each u; is
present in infinitely many cross-sectional units, with non-decreasing importance. On
the contrary, Assumption 3 implies that idiosyncratic causes of variation, although
possibly shared by many (even all) units, have their effect concentrated on a finite
number of units and tending to zero as 4 tends to infinity.? -

These assumptions have the following crucial consequence, the proof of which
is given in the Appendix.

PrOPOSITION 1. Under Assumptions 1 through 4, the first q eigenvalues of 3=

? We use the terminology ‘dynamic eigenvalues’ to insist on the difference between the func-
tions A and the eigenvalues of the variance-covariance matrix employed in the static principal
component analysis. A standard reference for eigenvalues and eigenvectors of the spectral density
matrix is Brillinger {1981), Chapter 9.

3 As a further illustration of Assumptions 3 and 4 see the example in Remark 2, Section 3
below.

diverge, as n — c0, a.e. in [—m, m}, whereas the (g + 1)-th one is uniformly (with
respect to ) bounded.

The importance of Proposition 1 lies in the fact that it transforms statements
on the dynamic eigenvalues of the unobservable xn and &, into stgterpents on the
dynamic eigenvalues of the x,. Thus, if the analysis of the dynamic elgepvalues of
the observed process leads to the conclusion that the first g eigenvalues dlverge-a..e.
in [, =], whereas the (g -+ 1)-th one is uniformly bounded, then the hypothesis of

a model with g factors is plausible. . '
We call model (1), under Assumptions 1 to 4, the generalized dynamic factor

model (GDFM).
We will show that, under Assumptions 1 through 4, the common components

yi¢ and the idiosyncratic components §;; are asymptotically identified and can be es-
timated. On the other hand, the identification and estimation of the common factors
uj¢ and the filters bi; (L), while being obviously of great interest whef representation
(1) is interpreted as structural, are beyond the scope of this paper.

3. Averaging Sequences and Asymptotic Aggregates

In the next section, we prove that the common components X can be obtained
as limits of linear combinations of the observations. To get an idea of the linear
combinations we would like to use, consider the simple example

xit:ut+§it: Ier tEZ, (2)

where &, is assumed to be orthonormal white noise. This implies Fhat the spectral
density matrix £ is the nxn identity matrix, so that Assumption 3 is fulfille’d. In the
sequel, we will denote by X the vector of variables ( #1s, T2ty ..., ©nt) (sothat
for the vector process X, defined in the previous section, we have x,, = {Xnt, t € Z}).

Analogous meanings are to be given to Xnt and &n:.
Consider the arithmetic mean of X,:

1< 12”:
— = + — fz
n;g%t Ug ni___l t

When 7 tends to infinity, the variance of the second term on the right hand side,
which equals 1/n, tends to zero, so that '

1 T

lim — E Tip = Uy
n—oco 1 < 7
=

1 On the identification and estimation of the common factors in a related model, see Forni
and Reichlin (1998).




in the mean square. The same effect, asymptotic canceling of the idiosyncratic

component, is obtained by taking any system of weighting vectors {a,, n € N},.

with an, = {@n1, Gns, -, Gnn), instead of the uniform weights employed for
computing the standard average
=(1/n, 1/n, ---, 1/n},

provided that
: 2 _ 1 2 _
nlgr;o lap|® = nlil}léo E a,; =0

Going back to our general dynamic model, we not only will allow for general
weights, but also for linear combinations involving leads and lags of the z’s.
DEFINITION 1. A dynamic averaging sequence, DAS henceforth, is a sequence
{a,(L), n € N} where a, (L) is the row vector

(anl(L)a an?(L)? T a’nﬂ(L) ) ;

ani(L) being a square summable bilateral filter, with the condition
lim Z / lani(e”)}2d8 = 0.

DEFINITION 2. Suppose that {a, (L), n € N} is a DAS and that a,(L)x,; converges
in the mean square. We say that y; = lim,_ .o an{L}Xn: is an asymptotic aggregate
of the z’s.

4. Recovering the Common Components

The following result shows that, by averaging with any DAS, the idiosyncratic com-
ponent cancels asymptotically.

PROPOSITION 2. [f Assumptions 1, 2 and 3 are fulfilled, then

lim a,(L}n: =0 (3)

TL-=> 00

in the mean square for any DAS {a,(L), n € N}.

PrOOF. Denote by A the transposed complex conjugate of a matrix A. Moreover,
we recall that A%, (0) is the maximum of b ()b’ under the constraint |b| =1 (see

6

the proof of Lemma 1 in the Appendix for a more general result). Using Assumption
3, we obtain

kis

|| (D)Eme]|* = ] an (e )85 (0)an(e*)do

-

< ./._w )\i (@) (Z lani(e _16)|2> 6 < AZ/ |ans(e*)[2d6.

QED

Proposition 2 generalizes to variables fulfilling Assumption 3 the statement that
can be proved by elementary considerations when the components &;; are strictly
idiosyncratic, i.e. mutually orthogonal at any lead and lag and of uniformly bounded
spectral densities. Assumption 3 thus provides a good motivation for calling &;: the
idiosyncratic component of ;. As already noted in the Introduction, Assumption
3 allows for very interesting economic cases that lie between common and strictly
idiosyncratic components. Forni and Lippi (1998) show that Assumption 3 is also
necessary for (3) to hold for any DAS.

Given a subset Y of La(Q, F, P), let us denote by 5pan()) the minimum closed
subspace of Ly(€, F,P) containing Y, and set C = span{{xi, ¢ € N, ¢ € Z})
Moreover, let us denote by G(x) the set of all the asymptotic aggregates of the z’s.
Proposition 2 implies that G(x} C C, i.e. that if a, (L)X, converges, then the limit
is an element of C. In Proposition 3 we show that x;; € G(x)} for any 7 € N, so
that G(x) = €. Moreover, the proof provides a constructive procedure, based on
the spectral density matrices 32, leading to a DAS {K,;(L), n € N} such that
K., (L)xp: converges to xi, for any ¢ € N.

The construction will employ the dynamic principal components of the vector
%, Let us recall that there exists an n-tuple of functions py; : [~7, w] — C7,
j=1,...,n, such that

(i) p%,, (8} is a row eigenvector of £%(#) corresponding to A7 ;(0), ie.,

pZ (T3 (0) = A%, (0)py; () forany 6 €(—m, m;

(ii) |Png (6)]2 = 1 for any j and 8 € [~m, 7];

(iii) pm (9)pns(9) =0 for j # s and any 0 € {—m, 7;
(iv) py, is measurable on —m, m);
(see Brﬂhnger 1081, Chapter 9, and Forni and Lippi, 1998).
An n-tuple fulfilling properties (i} through (iv) will be called a set of dynamic
eigenvectors of £2. A consequence of (ii) and (iv) is that the Fourier expansion

oo

1 o=l —i
p'n.;l(g -é_ Z [[_ pn3(9 k9d91| ko
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converges in the mean square. Defining

. 1 m .
W0 =5r O | [ e oas) 1,
k=—oo T
the filter Ezj(L) is square summable. For j = 1,...,n, the scalar process

{Eﬁj (L)xnt, t € Z}, whose spectral density is

Pﬁjzﬁﬁﬁj = )\ﬁj;
will b'e f:aHed the j-th .dynamic principal component of x,. A consequence of (iii) is
that if j # k then the j-th and the £-th principal components are orthogonal at an
lead and lag. . y

In the sequel, given a function f : [-x, 7] = C®, whose components belong to
La([—=, 7],C), we will denote by £(L) the filter

w2 |

k=-—oa

/ ’ f(@)e‘““gdﬁ] L*

-

{a pa;tlculirtcase is that of the eigenvectors pj;; and the filters _E:’”. (L) defined above).
ow, le '

Tig = Xiton + Citmy

where xi:,» 18 the orthogonal projection of z; onto the subspace of Lo(Q, F P)
spanned by the first ¢ dynamic principal components of x,;, i.e. ,

Xitn = Pro] (:cz-t Span ({_Igﬁj(lf)xm, j=1,...,4, T€ L})) ,

and & pn t.he residual. To obtain an explicit expression for ¥;: », let us define I,, as
the n x n identity matrix and observe that since } "

L. = DPniPy1 + ProPre + -+ DPrapo,

(the vectors pf; are an orthonormal system for L,),

Xt = By (D)Rpy (L)%t o+ By (L) (L)Xne -+ B (L)R7 (L) %ne.

Since different principal components are orthogonal at any lead and lag then

Xit,n == [Eﬁl,i(L)Eﬁl(L) + E:lz’i(L)Ezz (LY +--+ ﬁﬁq,i(L)EZq(L)} Xnt,
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where pf; ; is the é-th component of pf,;. Let us set
K2, =Py Py + PnoiPrz t -+ Prg.iPrgr (4)

while K%, (L) is the corresponding filter.

PROPOSITION 3. Suppose that Assumptions 1 through 4 hold. Then {K,(L), n €
N} is a DAS and
nlwil%o Xit,n = nli—{%o K7 (L)Xnt = Xt (%)

in mean square for all i and .
PROOF. See the Appendix.

REMARK 1. Note that the filbers K7,(L) result from a simple rule involving the
dynamic eigenvectors of the matrices X7, with no intervention of the unobservable
y’s and &’s, and therefore can be estimated from the observed z's (see Section 7

below).

Now, let 4 = span({u;, j =1, ..., & t € Z}). The inclusion G(x) C U
immediately follows from Proposition 2. Proposition 4 proves the converse.

PROPOSITION 4. Under Assumptions 1 through 4,
G(x)=U. (6)

PrOOF. See the Appendix.
The following is an immediate implication of Propositions 3 and 4.

COROLLARY. Suppose that z; can be represented as in (1), and that Assumptions 1
through 4 are fulfilled. Suppose that T admits the alternative representation

Tit = bfil(L)ullt + 622(L)“,2t + bi;q' (L)u:;’t -+ &t: (7)
and that Assumptions 1 through 4 are also fulfilled for (7). Then, xi = Tt—E = Xits
so that &, = &;. Moreover, U = span({ul, J=1,..., g; t € Z}), and therefore
g =q

ProOOF. Uniqueness of the common component follows from (5) and the fact that
Xit.n depends only on the z’s. Equality (6) implies & = span({uj, j =1,..., q,te
Z}). QED

REMARK 2. An important consequence of the Corollary is that representation (1)
is non-redundant, i.e. no other representation fulfilling Assumptions 1 through 4
is possible with a smaller number of factors. In the following example we have a
common-idiosyncratic representation with one factor. However, since Assumption 4
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is not fulfilled, a representation with zero factors fulfilling Assumptions 1 through 4
is possible. Consider the model

Ty = byur + &,

where &, is orthonormal white noise. Now suppose that the sequence of coefficients
bi, 1 € N, is square summable, i.e., that 3 52, b? < co. If {an(L), n € N} is a DAS,

then
an (L)%n: = (Z @nj (L)bi) w+ Y ans(L)ée.
=1 i=1

The second term on the right hand side tends to zero by Proposition 2. The first
term has variance

*

‘/_w |Zam-(e_w)bz-|2d9 < (E b,f) (Z/_w |am(e—“’)|2d9) ,

and therefore tends to zero by the assumption on the coefficients b; and the definition
of a DAS. Thus, neither u;, nor the common component x,;; = b;us, can be recovered
in this case. On the other hand, Assumption 4 does not hold since the first eigenvalue
of XX is 3 7| b2, which is not divergent. Rather, the variables Xt fulfill Assumption
3 and therefore, in spite of the non-zero correlation among different X:t's, they are
idiosyncratic. In conclusion, a non-redundant common-idiosyncratic representation

of 23, i.e. a representation fulfilling Assumptions 1 through 4, must have the trivial
commeon component y; = 0 for all 4.

5. Dynamic versus Static Analysis

The possibility of recovering the common components by aggregation has been stud-
led in Chamberlain and Rothschild (1983) and Chamberlain (1983) for the model

Ti = Ci1UL 1 CiaU2 + - + CigUq + P4, (8)

which has no time dimension. Model (8) is “isomorphic” to model (1) under the
assumptions that b;;{L) is constant and that £, is a white noise process. If this is
the case, the spectral density of x,, its eigenvalues and eigenvectors do not depend
on #, and coincide with the variance-covariance matrix of x,, its eigenvalues and
eigenvectors, respectively (which are indeed the tools employed in Chamberlain and
Rothschild’s analysis). In this “static” case, our Assumptions 3 and 4 and Proposi-
tions 1 through 4 have a simpler form, in which reference to the frequency domain

10

can be avoided for eigenvalues and eigenvectors (as they are constant): for exam-
ple, Proposition 1 in the static case simply states that the first g eigenvalues of the
variance-covariance matrix diverge, and that the (g + 1)-th one is bounded. _

However, apart from the extreme white-noise case, there are specifications of
(1) for which a “static” analysis may be tempting. Consider for instance

T = Ut + QuUe1 + it (9)

with c; = 1 for 7 even, oz = 0 for ¢ odd, and &, orthonormal white noise: Defining
v = us_1, model (9) might be thought of as isomorphic to_ model (8) with ¢ = 2,
with the consequence that only the variance-covariance matru‘c of x, WOl‘lld be ta,lfen
into consideration. The first two eigenvalues of this matr'ix dlverge,‘whlle the 'thlrd
one is bounded (this results from direct analysis of the variance-covariance mat':rlces),
which is consistent with two static factors. However, this strategy is mlsie.ad.mg,. as
shown by the fact that variance-covariance matrices do not reveal any distinction

between (9) and .
Yit = Wit + Wt + T, (10)

where wy; and wo; are orthogonal at any lead and Iag. By co-ntrast,' dynamic analysis,
i.e. analysis of the eigenvalues of the spectral density matrices, yields: .
(A) The process yn, generated by (10), has copsltant spectral dens1ty, so that
dynamic and static analysis coincide. By Propo§1t10n 1, tl‘le first two eigenvalues
diverge, whereas the third one is bounded, consistently with two facto_rs. .
(B) By Lemma 1, Appendix, the first eigenvalue of the spectral density matrix

of x, is not smaller than

2
= [n(1 + @pe” )3,

T

Z(l + Qie#w)

i=1

where Gy, = 3., &;/n, and therefore diverges for any 6 [—7, «], w}_lile the
second dyna.micweigenvalue is uniformly bounded; this is consistent with one
dynamic factor. Thus, the difference between (9) and (10) is fully revealed.

Moreover, as soon as a model as simple as

1

mut + &t

Lix =
is considered, with a; drawn from the uniform distribution over {0, 1], dynamic anal-

ysis reveals that the first eigenvalue diverges everywhere in [—m, 7], whereas the
second one is uniformly bounded. By contrast, static analysis leads to the conclu-

. sion that all eigenvalues of the variance-covariance matrix diverge. This is consistent
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with an infinite number of static common factors, but also with completely different
models, as for example

Tit = Pit,

where the variables p;, 1 =1, ... ;o are mutually orthogonal (at any leads and lags)
white noises such that var(p;) = i.

6. The Choice of g

So far, we have assumed that ¢, the number of non-redundant common factors, is
known. In practice of course, ¢ is not predetermined, and also has to be selected
from the data. Proposition 1 links the number of factors in (1) to the ®igenvalues
of the spectral density matrix of Xn: precisely, if the number of factors is g and &
is idiosyncratic, then the first ¢ dynamic eigenvalues of £2 diverge a.e. in [—m,
whereas the (¢ + 1)-th one is uniformly bounded. Forni and Lippi (1998) prove that
the converse is also true: if the first q eigenvalues of 32 diverge a.e. in [-m, #] and
the (g +1)-th is uniformly bounded, then the z’s admit a representation of the form
(1) with g factors (and & idiosyncratic).

No formal testing procedure can be expected for selecting the number g of factors
in finite sample situations. Fven letting T — oo does not help much. The definition
of the idiosyncratic component indeed is of an asymptotic nature, where asymptotics
are taken as n — oo, and there is no way a slowly diverging sequence (divergence,
under the model, can be arbitrarily slow) can be told from an eventually bounded
sequence (for which the bound can be arbitrarily large). Practitioners thus have to
rely on a heuristic inspection of the eigenvalues against the number of series n.

More precisely, if T' observations are available for a, large number n of variables
Zit, the spectral density matrices 22T p < 7, can be estimated, and the resulting
empirical dynamic eigenvalues )\ff computed for a grid of frequencies. The following

two features of the eigenvalues computed from 27 r =1 ... .1, should be consid-

ered as reasonable evidence that the data have been generated by (1), with ¢ factors .

and that £ is idiosynecratic:
(a) The average over # of the first g empirical eigenvalues diverges, whereas the
average of the (g + 1)-th one is relatively stable.
(b) Taking r = n there is a substantial gap between the variance explained by
the ¢-th principal component and the variance explained by (g + 1)-th one. A
preassigned minimum, such as 10%, for the explained variance, could be used as
a practical criterion for the determination of the number of common factors to
retain. The 10% limit is used in the empirical exercise of Section 8.
To illustrate criteria (a) and (b), we have generated the following eight different
factor models. '
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Static model, one factor:
zit = agug + V265 Mia,

Static model, two factors:
Tt = QiUye + byuge + \/iﬁit- Ml1b
Static model with delay, one factor:
Tie = QiU + \/i&t for 7 even M2
@i = auie—1 + V2 for i odd.
Static with delay, two factors:

Ty = QU1 + biuge + \/int : for ¢ even -
Tip = QiU1e—1 + biUge—1 + \/5&1, for 7z odd.

MA(1) model, one factor:

Tyt = Qpitirr + G1iU1—1 + 285 M3a
MA(1) model, two factors:
Tip = QosUie + G1iU1e—1 + boitar + braUae—1 + 26 M3b
AR(1) common component, one factor:
aq
Tt = T ciLu” + V258 MA4a

AR(1) common component, two factors:

a; bz .
Tt = 1—CiLult+ l—diLUZt+ V2-5§zt- M4b

In all these models, u1¢, uat, @i, Qoi, @14, s, bos, b1y and & are iid. s_tandard
normal deviates, while ¢; and d; are uniformly distributed over [—0.8,0.8], in .ortfler
to ensure co-stationarity of the z’s. Note that the idiosyncratic shocks are multiplied
by a constant so that, on average, the cross sectional ?mits h_ave the same common-
idiosyneratic variance ratio in all models. This ratio is 1/2 in the models with one
factor and 1 in the models with two factors.

We have generated data from the above models with n = 100 and T = 200.
Then, we have estimated the spectral density matrix for a grid of frequencies and
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computed the true spectral density matrix for the same frequencies.? Lastly, we have
computed the eigenvalues of the upper-left r x r submatrix, r = 1,...,n, both for
theoretical and estimated spectral density matrices. :

Figure 6.1 below reports the plot of the average over frequencies of the theo-
retical and estimated eigenvalues. On the horizontal axis we indicate the number of
cross-sectional units r, which obviously is maximum when the whole sample n = 100
is considered. Features (a) and (b) emerge quite clearly for all models: the first q
averaged eigenvalues exhibit an approximately constant positive slope, while the re-
maining ones are rather flat; moreover, the variance explained by the g-th principal
component is substantially larger than the variance explained by the (g+1)-th, even
for small 7.

7. Estimation of the Common Component
7.1 Theory

Proposition 3 shows how the common component y;; can be recovered, asymptoti-
cally, from the sequences X,,;(L)xnt, where the filters K, (L) are obtained as func-
tions of the eigenvectors pn;(#), j=1,...,q, associated with the spectral density
matrices 3, (6) (for notational simplicity, from now on, we will drop the superscript
& when indicating spectral density, eigenvalues and eigenvectors associated with the
z’s). In practice, of course, these characteristics of the observed process are not avail-
able, and have to be replaced with empirical counterparts, based on finite realizations
of the form

ng(x’nla Xn2y ooy X?’LT)-

Denote by XI(0) an estimator of the spectral density X¥,,(#), based on the data in
X7

ASSUMPTION 5. Let 04j,n(6) and o} ,(8) denote the i, j entries of ,(0) and X7 (6)
respectively. We suppose that o}, () converges in probability to 7ijn(0) uniformly
in [~7, 7] for T'— o0, i.e.

lim P{ max |0, (8) —0i;n(0)} =0,

T—oo @€[—m, x} 7

forany 7,7 =1,...,n.

Under Assumption 5, the estimated counterpart of K,,;(6) allows for a consistent
reconstruction of the factor space. More precisely, we prove that the projection of

5 The spectral density has been estimated using the method described in Section 7.2, Bartlett
lag-window, size 14.

14

Figure 6.1. Dynamic eigenvalues averaged over frequencies, models (M1)
through (M4)
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Horizontal axis: r; vertical axis: variance/2m. Solid line: theoretical eigenvalues; dotted lines:
orizontal DT :

estimated eigenvalues.
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;¢ onto the space spanned by the first g empirical principal components converges
to the common component y;;.

Assumption 5 is fulfilled under quite general conditions by lag-window or
periodogram-smoothing spectral estimators (see, e.g., Grenander and Rosenblatt,
1957, p. 262).

Now, denote by A\”(6) and pZ;(8), respectively, the eigenvalues and eigenvectors
of the matrix %Z(8). Since eigenvalues and eigenvectors are continuous functions of
the entries of the corresponding matrix, Assumption 5 implies that AT ;(0) and pT.(6)
converge t0 An;(0) and pn;(6), respectively, in probability, uniformly in 8 € [—7, 7],
for T — co.

Moreover, considering

KL (0) = ﬁgl,i(e)pgl () + 1552,'5(9)1)7{'2 @)+ + ﬁgq,i (Q)qu (8)r

Le., the empirical counterpart of K,;(8), ¢ < ¢, KL, (#) converges to K,;(f) in
probability, uniformly in 6 € [, =], for T — co. Thus, for all € > 0 and 7 > 0,
there exists Ty = T1(n, €,%) such that, for all T > T},

Pl sup [IKZ(0) — Kni(8)] > ¢ <.
gc[—n, =l

Now, observe that, in principle, given the estimated spectral density matrix

27(8), KZ.(8) can be computed for any @, so that each of the coefficients of the
corresponding bilateral filter

‘e _1 S " T ~ikf k
Ki(L) = 5 > [/;WKM-(Q)B di| L

k=—o0

- T
can be obtained. However, in practice, the projection K ;(L)Xn; of z;; onto the space
spanned by the first g empirical principal components cannot be computed, since,
for t < 0andt > T, xp, is not available; K, .(L)xy; actually has to be truncated

at lag £ — 1 and lead T — ¢, respectively, yielding the finite-order filter _K_Z: {L). Due
to this truncation, the common component y;;, for fixed ¢, never can be recovered,
even as n and 7T tend to infinity: indeed, part of its variance is lost because of the
non-observability of x,¢, ¢ < 0 and t > 7. We therefore restrict our attention to the
“central part” of the observed series, i.e., to values of ¢ of the form ¢t = +* (T, with
* *
0<agliminfﬂ§lim8up£ﬂ@<b<l. (11)
T—oo T T

T-s00 o

The following result then provides the empirical counterpart of Proposition 3.
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PROPOSITION 5. Assume that Assumptions 1 through 9 are satisfied. Then, for all
e >0 and n > 0, there exists No(e,n) such that

P [ (D)ns = xatl > €] <

for all t = t*(T) satisfying (11), alln > Ny and oll T larger than some To(n,e,n).

ProoOF. For any t < T, we have

P [IKﬁ(L)xnt — Xit) > e]
< P [(7(2) = KoL) enel > /2] + P [Kpu(Lns = xatl > /2]
= RFt 4+ R,o, say.

Proposition 3 ensures the existence of an No(e,m) such that, for n > Ng, Rpa =< 2.
As for BTt it follows from Chebyshev’s theorem that, for T' > Ti(n, 6, 1),

nl?
RIE < P | (D) - Kl D) > /2 snd sup [KEHO) — Kni)] < 6]
+P | sup |KZHO) — Kni(0)] > 5}
_96[-—11', )
~ . ~ 7?
< 20 R0 - K(Dwal?] | sup  (OREO) Ko@) < 6] +
€ -, T

If the filter _I:{_:: (L) and the observation Xn; were independent, then, in view of
the classical properties of eigenvalues, the above expression would reduce to

2 ]
2B [|EA (D)~ KulD)xulP| sup [(REHO) - Ku0)) < 8| + 3
€2 = gcj—mn, =l
‘el & T <., (6) — KL (0))do
< E[ [ &0 - KRB 0) (Ko 0) - Ko 0)
~ ome2 |
o n
sup  [(KTH(0) - Kn(0))| <6 + 7
c[—mw, 7]
252 T ’I‘]
< L{ Anr(0)d6 + 5
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Thus, for n > Ny(e, and T > : 52=¢2
o(e, ), 2 T1(n,8,7m/4), with T A;(B}de’ we would obtain

Tt Tt * s
R -{‘ fnz <9 ff)r a-ﬂ t=t (T) satisfying (11). The proposition follows.

15 reasoning 1s essentially correct, and it carries the basic ides of the proof
below, since the dependence between _K:: (L)

and x,; vanishes as 7'
treatment, however, requires a slightly more e n — 00. A formal

laborate argument: see the Appendix.

7.2 The proposed estimator

In practice, the estimator of the common com

ning n OLS regressio.ns (equation by equation} of the observations on present, past
and future of the estimated dynamic principal components pT (L)Xne, 5 =1 ’ q
- . - . - / , - T ’ '
Proposition 5 applies provided that the estimated eigenvectorgjfulﬁll Assu;nption 5
We proceed as follows. For a fixed integer M, we compute the sample co-.

. . T

variance Igatrlx L. of xp and x,,_ . for k = 0,...,M and the 2M + 1 points dis
crete Fourier transform of the truncated bilateral sequence I'T ..., ITT r’ _
where I"), . = I',;.. This implies computing mTA e B

ponents can be constructed by run-

A
T -1
2 (0) = Y Thwpe o O =2mh/(2M +1), h=0,... 2M

k=—-AM , ’

_ k ;
where wy, = 1 — Orry are the weights corresponding to the Bartlett lag window

of size M. Provided that A i
Assumption 5. — o0 and M/T — 0as T — oo, 2T(6),) satisfies

Then we compute the first i oo
g eigenvectors p,., 7 =1,...,q, of X(9 _
0,...,2M. The proposed estimator of the filter pj (L), j = 1q n (0), for h =
L ng ¥ y -

‘ | : -4, 18 constructed
from the inverse discrete Fourier transform of the vector

(pZ;(61), ---, Pri(fanr)),

Le., from the computation of

2M

T _ L T i
Enj,k - 2M + 1 };}pnj(gh)e keh

for k= —M,..., M. The estimator of the filter is given by

M
T — T k
E-RJ(L) - Z Enj,kL : (12)
k=—M
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It must be pointed out that an estimator of the common components could be

obtained by computing KZ: (L), as suggested by (4), then applying this filter to x,;.
This estimator however gives poor results in small samples. The alternative proce-
dure we suggest here, i.e., the OLS estimates of the observations regressed on present,
past and future of the estimated dynamic principal components, seems preferable in
practice. Note that, for M = 0, pgj(L) is simply the j-th eigenvector of the {esti-
mated) variance-covariance matrix of x,;: the dynamic principal components then

reduce to the static principal components.
In order to render our procedure operational, we need a rule for fixing M as well

as the number of leads (s) and lags (g) of the principal components to be retained
in the regressions. We propose the following rule. First, take a maximum value for
M, s and g, say Mo{T), such that Mo(T) — oo and My(T)/T — 0 as T — co.
Second, estimate all of the specifications with 0 < M < Mo(T), 0 < s < Mp(T),
0 < g < My(T), and choose the one minimizing some dynamic specification criterion.

Here we propose
T 7L
;Zlog&i+2q(s—l—g+l), (13)

=1
where &; is the estimated variance of the residuals of equation :. This criterion is the
cross-sectional average of AICs. Note that we cannot use the multivariate AIC, since
the determinant of the covariance matrix of the residuals is very pocrly estimated
for large n (the estimate is 0 for n > T'). Neither do we propose BIC, since we found
that a richer dynamic specification such as the one implied by the AIC criterion gives
better results for our simulated models.

7.3 Simulation results

In order to evaluate the performance of our estimation procedure for finite val-
ues of n and 7', we have carried out Monte Carlo experiments on models (M1b)},
(M2b), (M3b) and (M4b) of Section 6. We generated data from each model with

n = 10,20,50,100 and T = 20,50, 100, 200 and applied the estimation procedure
described in Section 7.2 with Mu(T) = round[?]. Each experiment was replicated

400 times.
We measured the performance of our estimator, ¥, by means of the criterion

ng t(f‘it - Xz't)z
R(j&? X) = : "
Zi,t X:v,?t

Table 7.1 reports the average and the standard deviation (in brackets) of this statistic
across the experiments.
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For all models, we see that the fit improves as both n and T increase. To better
appreciate the results, we added a line reporting R(¥, x), where ¥;; is the unfeasible
estimate of the common components obtained by using the unobservable true com-
mon factors u;; in place of the dynamic principal components as the regressors;
is computed only for n = 100. The average AIC criterion (13) is used for dynamic
specification. Note that for the autoregressive model (M4b), the results obtained
with n > 50 are comparable with those obtained with the true factors.

Table 7.1. Average and standard deviation (in brackets)

of R(x,x) across 400 experiments

T=20

T =50

T =100

T =200

Model (M1b)

n =10
n =20
n =50
n = 100

R(%,x) with n = 100
Model (M2b)

n =10
n=20
7 =50
n = 100

R(%,x) with n. = 100
Model {M3b)

=10
n = 20
n = 50
n =100

R(Z,c) with n = 100
Model (M4b)

n =10
n =20
n = b
nn = 100

R(3%,%) with n == 100

0.636 (0.380)
0.462 (0.273)
0.363 (0.216)
0.320 (0.214)
0.197 (0.105)

0.754 (0.466)
0.651 (0.273)
0.569 (0.190)
0.563 (0.167)
0.347 (0.113)

0.718 (0.263)
0.637 {0.225)
0.568 {0.173)
0.556 (0.154)
0.362 (0.112)

0.684 (0.393)
0.549 (0.222)
0.485 (0.193)
0.456 (0.156)
0.405 (0.118)

0.344 (0.173)
0.188 (0.070)
0.106 (0.027)
0.084 (0.018)
0.062 (0.012)

0.502 (0.206)
0.383 (0.141)
0.291 (0.085)
0.269 {0.071)
0.103 (0.019)

0.500 (0.151)
0.389 (0.115)
0.306 (0.077)
0.283 (0.071)
0.106 (0.019}

0.440 (0.214)
0.289 (0.095)
0.196 (0.053)
0.165 (0.029)
0.183 (0.028)

0.273 (0.125)
0.145 (0.042)
0.073 (0.014)
0.052 {0.008)
0.031 (0.005)

0.406 (0.169)
0.259 (0.081)
0.177 (0.049)
0.151 (0.041)
0.052 (0.008)

0.384 {0.110)
0.277 (0.064)
0.196 (0.046)
0.170 (0.043)
0.052 (0.007)

0.334 (0.137)
0.208 (0.057)
0.132 (0.025)
0.107 (0.014)
0.112 (0.015)_

0.249 (0.095)
0.124 (0.033)
0.057 (0.010)
0.036 (0.005)
0.015 (0.002)

0.329 (0.130)
0.198 (0.063)
0.122 (0.032)
0.096 (0.027)
0.025 (0.004)

0.329 (0.087)
0.208 (0.043)
0.136 (0.032)
0.113 (0.028)
0.026 (0.003)

0.281 (0.106)
0.169 (0.044)
0.097 (0.016)
0.072 (0.009)
0.066 (0.007)

Finally, in order to evaluate the ability of the average AIC criterion (13) in
choosing the best dynamic specification, we computed R*, i.e., the minimum of R
over k, g and s, for each of the experiments of Table 7.1. The average R* is reported
in Table 7.2. The results are very good: comparing Table 7.2 with Table 7.1, we sce
that, for T' > 50 and n > 20, R is very close to R* for all models.
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Table 7.2. Average R*

T=20 T =350 T =100 T =200

Model (M1b)

n = 10 0.477 0.317 0.263 0.247
n =20 0.301 0.182 0.145 0.123
n = 50 0.212 0.106 0.073 0.057
n = 100 0.184 0.083 0.052 0.036
odel (M2b
%: 10( : 0.611 0.440 0.367 0.304
n =20 0.514 0.335 (.242 0.191
n = 50 0.436 0.264 0.169 0.120
n = 100 0.416 0.243 0.148 0.094
odel (M3b
nl\fI: 10( ) 0.595 0.442 0.356 0.313
n = 20 0.506 0.340 0.259 0.191
n = 50 0.432 0.271 0.188 0.133
n = 100 0.416 0.253 0.163 0.111
odel (M4b
71\f= 10( ) 0.527 0.385 0.312 0.269
n = 20 0.402 0.262 0.199 0.165
n =50 0.333 0.182 0.128 0.096
n = 100 0.305 0.158 0.106 0.072

8. Empirical Illustration

In this Section, we illustrate our method by estimating the generalyzed dynamic
factor model for a panel of annual real output growth of 49 US states from 1943
through 1993. The objective is to estimate the “natiqnal component” of the US
business cycle, and to extract information on its dynamic structure.
We proceed in two steps.
Step 1. We first identify g using the procedure outlined in Sectif)n 6..Figure 8.11is
a three-dimensional plot of the first ten averaged (over frequencies) eigenvalues for
cross-sectional groups of different size (random order). ‘
Note that two eigenvalues are increasing with n, while the rem'a.in.ing ones have a
flat shape. When the whole cross-section is considered, the first prmapal- component
explains on average 52% of the variance, the second one 20%_, and the third one, 7%.
Thus, according to both informal criteria suggested in Section 6, we may conclude
for a two common-factor model.
Step 2. Having identified ¢ = 2, we then proceed to the.estimation of the common
component following the methodology outlined in Section 7.2. The lag selectlpn
criterion suggests s = 1, g = 2. Regressions on leads a.x%d lags of the first t.wo. prin-
cipal components produce an average R? of 59.3%, with a standard deviation of
15.7%. Figure 8.2 reports the estimates for six large states. Due to the heterogenous
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Figure 8.1. Ten largest dynamic eigenvalues (increasing n-averaged over
frequencies)

x 10

f he 10th
States (otal of 49) PCs {from the 1st to the 10th}

propagation mechanism, the common components have different variances and dif-
ferent turning points. However, all states have downturns corresponding to the two
major oil shocks. A detailed analysis of turning points is beyond the scope of this
paper, but the empirical illustration conducted here indicates potentially interest-
ing applications of our method for the analysis of regional business cycles and their
synchronization.

From the estimated common components we also computed the average spectral
densities of the national and state-specific component of output changes. These are
presented in Figure 8.3. i

From this last exercise, we can observe that output fluctuations in US states
have a large common component with a clear peak at cycles of period ranging from
6 to 9 years. The idiosyncratic component is not only small, but also has no cyclical
shape.

9. Summary and Discussion

The generalized dynamic factor model analyzed in this paper is novel to the liter-
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Figure 8.2 Common component of six representative US states 1951-1992
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Figure 8.3 Average spectra of the common and idiosyncratic components
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ature since it allows for an infinite moving average representation of the common
component and for non-orthogonal idiosyncratic components. We have shown that,
although for a finite cross-sectional dimension this model Is not identified in general,
asymptotic identification conditions can be established as the cross-sectional dimen-
sion goes to infinity. These identification conditions are given on the spectral density
matrix of the process and therefore allow us to distinguish between static and lagged
factors.

For large cross-sections, dynamic factor models cannot be estimated on the basis
of traditional likelihood based methods. We have proposed a method of estimation
which is appropriate in such situations and simple to implement. This method
allows for consistent estimates of the components as the cross section and the time
dimension go to infinity at some rate. The common components are computed as
the projections of the observations onto the leads and lags of the dynamic principal
components of the observations and the idiosyncratic components are derived as the
orthogonal residuals.

Consistent estimation of the components is essential for “historical analysis”
and for the identification of the factors driving common and idiosyncratic dynamics,
In the empirical illustration we show, for example, the estimates of the “national
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component” of output growth of US states. This analysis can be exploite.d to .stl%dy
turnl;ng points in regional business cycles and it is a first necessary step ll?or(ﬁllen;ufimi
' i iving the components of the business cycle (the factor
the factors, i.e., the shocks driving : _ hess ¢ (the factors
i i tation). This analysis is beyon p
ly identified up to an orthogonal ro . ' ]
Ei}i’; galper but, given our results on estimation of the c_omponents, it can be easily
conducted al}ong the lines suggested by Forni and Reichlin (1998})1. e
Notice that the model and the estimation strategy proposgd here cannot
for forecasting purposes without imposing some further rest1‘1ctweda?smrmzjc101r1ts.1 02?
i difying the bilateral filters used for estimation.
he dynamics of the factors and mo '
1%oiecisting is the objective of a recent related paper by Stock and Watson (1998)
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APPENDIX

LeMMA 1. The following inequalities hold for any 0 € [—=, =], j and n:
A5 (0) < N55(6) + X5, (6);

Ani(8) = A5 (6);

Az (0) = X5 5(0).

ProOOF. Recall that the eigenvalues Ag, & = 4,...,n of a complex non-negative
definite n X n hermitian matrix ¥ solve the following minimax problem:

M= min max{b¥b|lb|=1,blc,....,bL Ci—1}

Ci el h—1

where ¢i,. .., cz—1 and b belong to C™ (see Brillinger, 1981, p. 84, Exercise 3.10.16).
Then the lemma follows immediately from the fact that £7 = X + 53¢ QED

Proor oF PROPOSITION 1. The statement on the first g eigenvalues of*E; follows
from the secor.ld inequality of Lemma 1. The statement on the (g + 1)-th one follows
from the first inequality and the fact the (¢ + 1)-th eigenvalue of X vanishes at any
frequency. QED
'To prove Propositions 3 and 4 we need some intermediate lemmas.
LEMMA 2. Let pi; ; be the i-th coordinate of p};. For j < g, lim, p%.,(6) =0 for §
a.e. in [—x, 7. w
PROOF. Let PZ be the n X n matrix having the eigenvectors Pri»i=1...,n0n
the rows. From the identity P7diag (A5, A%, -+, A% )PZ = %% we obtain

? T T

q n
Do OO+ S [02,.(0)2A2,(8) = o7 (6),
J=1

j=q+1

where o7 is tbe spectral density of z;. By Proposition 1, Ay (0) diverges, 6 a.e. in
[~m, 7], for § < g, so that, for j < g and 6 a.e. in [~=, 7], p®..(6)| converges to
ZEro. " QED

LEMMA 3. Stfppose. that {{vn1t Unat - Ung), £ € Z} is @ g-dimensional or-
thonormal white noise for any n € N, and that, given the orthogonal projection,

((U'n’lf” Un2t; "7y Ungt )’ = AH(L) (u'lfa U, vy Ugt ), - Rnt: (14)

with R.; ort:_’wgonal ?50 (Uit-k, Uop_g, ---, Ugt—k )' for any k € Z, the g x g
spectral density matriz of R,; converges to zero a.e. in [—m, 7). Consider the
orthogonal projection

! -
(ulta Uat, -y th) :An(L l)('l)n]_t, Un2t, **', U?’th)""snt, (15)
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with 8, orthogonal to (Unie—k, Vn2i—ks s Vngt—k )' for any k € Z. Then, the

spectral density of Sn: converges lo zero a.e. in {—m, .
PROOF. Since An(e *)A,(e") is Hermitian non-negative definite, there exists a

unitary matrix M, (e~*) be unitary and such that
Mn(e_ig)An(E_ia)An(ew)Mn(eie) = diag ( Vn1 (9): Vﬂz(g): Ty an(ﬂ) ) ;

the functions vn; being the non-negative eigenvalues of A, (e7)A,(e). From (14),

M'n(L) (U'nlt: Unat, 7 VUngt )I (16)
= M (LA (L) (s, sy -5 tg) + Mi(L)Rae

Since the entries of My, (e~%) are bounded uniformly in n, the spectral density of
M, (L)R.,¢ tends to zero a.e. in [-#, 7. Thus, taking the spectral densities of both
sides in (186),

lim (1 - I/n_:;(g)) =0

n-—00

a.e in[-m wjforg=1, ..., ¢ Uniform boundedness of the entries of My, (e~%)

implies that
lim [Iq - An(e“w)An(e""e)] ~0,
T— 00

a.e. in [~m, ). Moreover, since the eigenvalues of A, (e A, () coincide with

the eigenvalues of An(e®)A,(e7%) (see Brillinger, 1881, Theorem 3.7.2, p. 72),

lim [Iq - An(ei‘g)An(e—m)] =0

T 0O

a.e. in [—m, ], and therefore

=00

lim [Iq _ An(eﬁ’)An(e—“’)r =0 (17)

a.e. in [—w, w]. From (15), using (14),

{Iq - An(L“l)An(L)] ('Ulltp Uge, vy Ugt )I - An(L_l)Rnt = Spt-

The spectral density of the first term on the left hand side tends to zero a.e. in
[—m, ] by (17). Uniform boundedness of the entries of A, (e~%) implies that the

(L~ YR, tends to zero a.e. in [—m, 7]. Thus, the spectral

spectral density of A,
QED

density of S,; tends to zero a.e. in [—m, 7] as well.

With no loss of generality we can assume that
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ASSUMPTION A. X} (9) > 1 for any §, n and 6 € [, 7.

For, possibly by embedding L, (Q, F, P) into a larger space, we can assume
that L(€2, F, P) contains a double sequence {¢s, i € N, t € Z} such that ¢;; L
span({&;, 1 €N, t€Z}), ¢pir L U for any i, var(¢s) = 1 for any 4, and ¢y, L Dit—te
for any t, k and 7 # j. Defining éit = &it + ¢4, and

Yie = Xit + éita (18)
for i € N and ¢ € Z, we obviously have:

(1) Model (18) fulfills Assumptions 1 through 4, with Y5(0) = Z£(6) + L,
X5 (8) = Z7(0) + In, and therefore XS, (8) = AS.(6) + 1, X2,(6) = AZ.(6) + 1.
Moreover, p:t’lj = Py ; for any n and j, so that ?” = KZ, for any n and 1.

(2) As a consequence, if we prove that {KY (L), n e N} is a DAS and
that limp_co KV (L)Ynt = Xxu, then, since lim, K'.(L)pnt = 0, we have
limn—ﬂoo _I..{_:H(L)xnt = Xnt-

Under Assumption A the function Hn; (0) = [AZ,(0))72% is defined for any
8 € [—m, =], is bounded and therefore has a mean-square convergent Fourier repre-
sentation. Let us denote by E;n(L) the corresponding square-summable filter.

LEMMA 4. Under Assumptions 1 through 4 and Assumption A, setting Unjt =
Eﬁi(L)Eﬁj(L)xnt’ for 3 =1, ..., q, the vector (vUnit, Unat, ---, Ungt ) is or-
thonormal white noise. M, oreover, given the orthogonal decomposition

(vnlt) Vn2t, "7, U'rbqt )I = An(L) (ulta Ugt, -, Ugt )! + Rnt:l (19)

the spectral density of Ry converges to zero a.e. in [—m, =].
PrROOF. The first statement follows from the definition of dynamic eigenvectors.
Then note that, since the x’s belong to I/ and the £’s are orthogonal to U,

Ungt = g (D)5, (Dt = % (DD (D)t + 17 (D)p%s (1)

is the j-th orthogonal projection in (19). The spectral density of the second term on
the right hand side is

[t (D) Pi; (O)Z5.(0)BE,(60) < [Z;(0)]2X4(6),
which converges to zero ae. in [—m, 7] by Assumptions 3 and 4. QED
Incidentally, note that Assumption 4, together with pii(0) <1, 1e., Assumption

A, implies, by the Lebesgue dominated convergence theorem, thas e (L)Bfflj (L) is
a DAS.
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PRrROOF OF PROPOSITIONS 3 AND 4. We have
it = Xit + &it = Xitn + Eitns (20)

and B}
Xitn = Ko (D) xne = K2 (L)Xne + K5 (L)Ens- (21)

Let us show that the spectral density matrix of K} .(L)&,; tends to zero a.e. in
[, w]. By (4) and Lemma 2,

q
IK';EW;(B)F = Z |Pnj,i(9)|2
j=1

converges to zero a.e. in {—m, 7]. Thus the result follows from Assumption 3 and
K7, ()55 (0)KT,(8) < A1 ()[KZ,(6)°.

Moreover, since {K%.(8}|? < ¢ for any § € [-m, =], then the Lebesgue dominated
convergence theorem applies and

Lis

lim IKZ.(8)|d8 = 0,

n—oo f_

so that {K©. (L), n € N} is a DAS.
Now, from (20) and {21)

[xit — Koi (L) xnt] + [ — &itn] = K7 (L)Ene- (22)

Consider the spectral density of the left-hand side of (22). Since & is _o.rthogonal
to all x’s at any leads and lags, this is the sum of the spectral densities of the
two terms, minus two times the real part of the cross spectrum between &;, and
xie —~ K (L) xne). Consider firstly the cross spectrum between &;; » and x;;. Setting

bi(L) = (ba(L), bia(L), ---,big(L)), we have
A — !
xit = bi(L) (u1e, uge, -y g ) =L)AL (Vnie, Vnat, , Ungt)
+bi(L)S,,

A } .
where (ult: Uzg, vy Ugt ).r = An(L_l) (Unlt: Un2ty, "7y VUngt ) + S'n.t. 1S t]f_le
orthogonal decomposition analyzed in Lemma 3 and v,j; has the definition given in
Lemma 4. Since Xitn is orthogonal to the terms B':,jxnt’ for =1, ..., g, at any

lead and lag, it also orthogonal at any lead and lag to the terms v,;:. Thus the
cross spectrum between &, and x;: is equal to the cross spectrum between & p
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and bi(L)Sm'. The squared modulus of the latter is bounded by the product of the
spectral density of &;; », which is dominated by the spectral density of z;;, and the
spectral density of b;(L)S,,, L.e., by ,

b ™) D (9)Bi ().

By Lemma 3 , all the entries of 3J(6) tend to zero a.e. in [—m, 7}, so that the
cross spectrum between &t and xi: tends to zero a.e. in [—w, 7). Using the same
argument, considering the cross spectrum between & » and K7, (L)xn:, we end up
with the cross spectrum between &, and K7 ,(L)Bn(L)S,:, where B, (L) is the
;1, X g ma’;ri;{cmhz(wing the vectors b;(L), j = 1,...,q, on the rows. As for the spectral
ensity of K7.(L)B,(L)S,., first observe that, si X(0) = —iB,, (¥
et 4_)2?%((9))’ ¢ at, since £X(0) = B, (e *)B, () and

K7:(0)Bn(e™?)Bn(e”)K7:(0) = K, (0)ZX(0)KE(6) < KE,(0)52(6)KZ.(9)

= Ipha O 0),

&

which is bounded by the spectral density of z;; (see Lemma 2). Next, observe that
the maximum eigenvalue of L3 (6), which is a continuous function of the entries
tends to zero a.e. in [—=, 7. ,
As a consequence, since we have proved that the spectral density of the right
hand side in (22) tends to zero a.e. in [—m, 7|, so must the spectral densities of
Xit — Kni(L)Xnt and & — & n. Moreover, since both spectral densities are obvi-
ously bounded by integrable functions for any n, then, by the Lebesgue dominated
convergence theorem the variance of both terms tend to zero, so that £; ., converges
to & and Xit,n 10 X This completes the proof of Proposition 3. , QED
Let us now prove Proposition 4. Define

Cn =5pan ({xi, t=1,...,n, t€Z}).

Obviously, C,, € U. We want to show that there exists a 7 Sucfl that, forn > 7
Cn = U. For, observe that the first ¢ eigenvalues of TX(6) = Bn(e_w)ﬁn(e“w),
are equal to the eigenvalues of the ¢ x ¢ matrix B,(e ®)B,(e%) (see again
Brillinger, 1981, Theorem 3.7.2, p. 72}. Therefore, if dn(e7%) is the determinant of
B.(e"¥)B,(e™¥), then

dn (™) = N5 (B)N55(0) - - NE, (6).

On the other hand, d, is a rational function of ¢=*. Therefore, either d,, vanishes
for any 6 € [—x, 7], or for a subset of Lebesgue measure zero. But when d,, vanishes
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everywhere in [—, 7}, the smallest eigenvalue of 33X vanishes everywhere in [~m, 7],
and this, by Assumption 4, cannot occur for any n. Thus, there exists a 7 such that
for all n > 7 the first ¢ eigenvalues of XX are positive, except for a subset of [—m, 7]
ofmeasure zero. We have proved that, for n > #, the rank of the spectral density
matrix of ¥ is ¢ a.e. in [—m, 7]. As a consequence, C, contains a g-dimensional
orthonormal white noise (Rozanov, 1967, pp. 39-43), so that C, =. On the other
hand, by Proposition 3, C, C G(x), so that U = G(x) and Proposition 4 is proved.

QED

X . Tt
PROOF OF PROPOSITION 5. For fixed T (and n), the T’ random variables (K,,; (L) -
K, (L)%xne, t =1,...,T, are not identically distributed, due to two reasons: the
truncation of the flters, which depends on ¢, and the boundary effects, which imply

. T
that the joint distributions of (_K_Zq;(L),an) and (K.,;(L), x,7) are not the same as,

N T
e.g., those of (K,;{(L),Xnr/2). However, the filters K . (L) and K,;(L) are both
square-summable, and {xn;; t € 7} is stationary, so that the influence of truncation
is asymptotically negligible, as T" — oo, for central values of T, i.e., for sequences of

the form ¢ = ¢(T') such that
oT < (1) < VT (23)

(automatically satisfying (11}).
Thus, for T large enough, the difference between E [|(KZ: (L) —Km-(L))xnﬂ]

and E [|(K3;(L)) — (K_m(L))xm|] is arbitrarily small for any sequence ¢ = T'() sat-
isfying (23); note that expressions such as K, ; (L}xn: typically involve the complete,
non observed, process {Xn¢; ¢t € Z}. Similarly, the boundary effects affecting the
joint distribution of xp: and I_A{_ZZ(L) are asymptotically nil as T" — co.

Piecing these two facts together, for all n > 0, there exists a Ty = T(n,n) such
that, for all sequences #1(T) and to(T) satisfying (23), and all T > T3,

(B (L) — Ko (L))t |

sup K7;(8) — Kni(0)} < 5}

oe[—m,m]

}E

(KA (D) = Koy (1)) %t

-E sup  |KZ,(0) — Kni(0)] < 5} ‘ < 1.

96 [--TT,TI'}

It follows that, for 7' > Ta(n, 542-181),
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quantity, as an empirical variance, under fourth-order moments assumptions, has
uniformly bounded moment of order two. It follows (cf. Billingsley, 1995, p. 338)

that [7_ le (6)dd is uniformly integrable (as 7' — 00), so that

del—m

B [I(Kff (L) = Kpi (L))%ne] | sup ]fKEz-(e) — Kni(0)] < 5J - E{ " *le(g)dg} ZE{ " )\Zl(g)da} = f_ " T (0)db.

T —c0o —r —TT

<E [(bT — aT) 'S (KoL) ~ K, (L))Xntlj sup  |KZ(0) ~ Kni(6)| < 5} Thus, there exists some T(n) such that, for all T > T,
8€[—n,x]

2
€
)

E[ Xfl(a)do} <2 / XL, (6)d6.
52 _

— -7

where 2T . stands for a sum over t running from the smallest integer |aT’| larger Summing up, for n > No(e,n) and T = To, with Ty = To(n,e,n) =

2
than or equal to aT to the largest integer [6T'} smaller than or equal to 4T (a window max (Tl (n,6,2), Ta(n, 53%71), Ts(n,n), T3(n)) where 62 = = f"e. ;nl(e)d 5> we have
of width ([6T] — |aT']). For simplicity, we write (6T — aT)~! for ([bT] — laT"|) 1. o - QED
Hence, }{ proved that RYf < Z. The proposition follows.

] 4 o0 - _
Ry < G_QE [ Z Z (K g — Koy ) (0T — )~

k=—0o0 l=—00

bT
~T N

2 ittt By ~Kosr)| sup [KT(8) ~ Koa(0)] < 6
t—aT f€—m,m]

n.,.n
* 8 + 4

2 m

< ¥y [

€2

P (9)039] + 5’83

—r

where :\_Zl(é?) denotes the first dynamic eigenvalue associated whith the pseudo-

.. . . =nd — T
empirical cross-covariance function Iy, = (0T ~ o) ! t=ar (Xn,i—kX), ,_;). In

this pseudo-empirical cross-covariance structure, each cross-covariance matrix is es-
timated on the basis of a window of lenght (T — aT). Moreover, all covariances
are “estimated” using the same number of “observations”; as & consequence, we
can apply the argument used by Grenander and Rosenblatt, 1957 p. 262 to show
that, under the assumption of linearity of the observed process, we have convergence
(in the mean square) of the corresponding estimated spectral density ?Z (8) to its
theoretical counterpart, uniformly in [—m, 7], a8 T — oo.

Since eigenvalues and the components of eigenvectors are continuous functions

of the entries of the corresponding spectral densities, [ :T XZ:I (8)df converges in prob-

ability, as T' — 00, to ["_ A, (6)d0. Moreover, the sequence [”_ X:l (8)d8 is bounded

by [T trace[ff(@)]d@ = trace[Ty, | = (BT — aT) 32 5 z; ; ;- This latter 35
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