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It has been an open question for 6 decades whether a 
Moore graph of diameter 2 and degree 57 exists. In this 
paper the question is posed as an optimization problem 
and an algorithm is described. The algorithm converges to 
solutions which are massively short of the number of edges 
required. This, and other supporting work, tend to suggest 
that the graph does not exist. The formulation presented is 
a particularly hard testbed for optimization algorithms. It is 
left as a challenge to others to develop alternative algorithms 
that may support the claim, or find solutions with more edges, 
or even construct the Moore graph.
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Fig. 1. The Petersen Graph.

1. Introduction

The possible existence of a Moore graph of diameter 2 and degree 57 has been an 
open problem for more than 60 years. Many have tried to construct such a graph, and 
others have tried to prove its non-existence. In 1974 Biggs [1] wrote “many claims of its 
non-existence have been made, but none published”, and this situation has continued to 
the present day.

The Moore bound M(Δ, D) is an upper bound on the largest possible number of 
vertices of a graph G with maximum degree Δ and diameter D. For Δ > 2 the Moore 
bound is

M(Δ, D) = 1 + Δ(Δ − 1)D − 1
Δ − 2 .

A graph whose number of vertices equals the Moore bound M(Δ, D) is called a Moore 
graph. This paper focuses on regular Moore graphs of diameter 2 and degree k.

Definition 1. A regular Moore graph of diameter 2 and degree k is a simple undirected 
graph with the maximum number 1 + k2 of vertices.

In 1960 Hoffman and Singleton [3] proved that such a Moore graph exists if k = 2
(the pentagon), k = 3 (the unique Petersen graph with 10 vertices shown in Fig. 1), 
k = 7 (the unique Hoffman-Singleton graph with 50 vertices) or possibly k = 57 (the 
open case). This last case is referred to in [2] as the “missing Moore graph”. Further 
information on Moore graphs and the degree 57 case can be found in [1,2,4].

Let Γ(u) denote the neighbourhood of vertices at distance 1 from any vertex u and 
Γ2(u) denote the set of vertices at distance 2 from vertex u. Construction of a Moore 
graph will start from a tree with |Γ(u)| = k and |Γ2(u)| = k(k − 1) as shown in Fig. 2. 
The edges to be added must all be incident with two vertices of Γ2(u).

The structure of the Moore graph of diameter 2 and degree k is also represented by 

the intersection matrix: 

⎛
⎜⎝

0 1 0
k a1 c2
0 b a

⎞
⎟⎠ =

⎛
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0 1 0
k 0 1
0 k − 1 k − 1

⎞
⎟⎠ (see [1]). The integers 
1 2
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Fig. 2. Starting tree with 1 + k2 vertices. The Petersen graph shown in Fig. 1, for example, can be redrawn 
highlighting such a starting tree independent of which vertex is chosen as root.

ci, ai, bi are defined as follows: let u and v be two vertices for which d(u, v) = i, then 
the number of vertices w such that d(w, v) = 1 and d(w, u) = i −1, i, i +1 respectively is 
defined to be ci, ai, bi respectively. For a regular Moore graph of degree k and diameter 
2 the matrix must be 3 × 3 and the column sums are k. Note also that a1 must be 0 
and c2 must be 1 or the number of vertices would be strictly less than 1 + k2. Thus 
the intersection matrix shows that each vertex of Γ(u) is adjacent to u and to k − 1
vertices of Γ2(u), and also that each vertex of Γ2(u) is adjacent to 1 vertex of Γ(u) and 
k− 1 vertices of Γ2(u). In fact the eigenvalues of the intersection matrix are the distinct 
eigenvalues of the adjacency matrix A [1]. These are k and (−1 ±√

(4k − 3))/2 (λ1 and 
λ2 say).

As (A2 − kI)ij gives the number of paths of length 2 from vertex i to vertex j it can 
be seen that

A2 + A− (k − 1)I = J

so

(A2 + A− (k − 1)I)(A− kI) = J(A− kI) = 0

and the minimal polynomial of A is

(x2 + x− (k − 1))(x− k)

giving an alternative derivation of the eigenvalues, not needing properties of the inter-
section matrix.
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As readers with expertise in optimization may be unfamiliar with ideas in algebraic 
graph theory, the proof of existence of these Moore graphs [3,4] will be indicated here. 
As A is a (1 + k2) × (1 + k2) matrix, the multiplicities m1 and m2 of λ1 and λ2 satisfy:

m1 + m2 = k2 (1)

As the sum of the eigenvalues of a matrix equals the trace (the sum of the elements on 
the main diagonal) and A has all diagonal elements zero, the multiplicities m1 and m2
of λ1 and λ2 satisfy:

0 = trace(A) = k + m1λ1 + m2λ2 (2)

If λ1 and λ2 are irrational then m1 = m2 = k2/2 so Equation (2) gives k = 2. If λ1 and 
λ2 are rational then let 4k − 3 = m2, where m must be an integer. Solving Equations 
(1) and (2) using k = (m2 + 3)/4 gives the equation:

m5 + m4 + 6m3 − 2m2 + (9 − 32m1) − 15 = 0 (3)

From the constant term −15 it can be seen that the integer m must be a divisor of 15, 
so m =1, 3, 5,or 15, giving k = 1, 3, 7, or 57. Ignoring the trivial case of k = 1 gives the 
required result.

2. Near Moore graphs and a different formulation

Miller and Sirán [4] describe extensive work to find graphs smaller than, but close 
to, the Moore bound (here 1 + k2). In this work a quite different approach is adopted. 
Recalling that the girth g of a graph is the length of a smallest cycle, it can be seen 
from the intersection matrix that a regular graph of degree k and girth 5 with 1 + k2

vertices is necessarily a Moore graph of diameter 2. These degree and girth conditions 
are the properties of the Moore graph used in the algorithm presented here. Consider 
non-regular graphs of girth 5 with maximum degree k, |E| edges and 1 + k2 vertices. 
Define the deficit of such a graph as k(k2 + 1)/2 − |E|. The challenge is to minimize the 
deficit. If some algorithm reduces the deficit to zero for k = 57 the missing Moore graph 
will have been constructed.

3. Algorithmic approaches

Before development of the main algorithm described below, both a genetic algorithm 
and a tabu search approach were considered. However, any check for small cycles when 
adding edges is demanding, unless it fails early. Thus maintaining multiple candidate 
solutions in a genetic algorithm would be expensive. Similarly, worsening moves in a 
tabu search algorithm would be expensive. It should also be noted that cycling is very 
unlikely given the nature of the search space.
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Fig. 3. Layout of ordered list of potential edges.

3.1. The main algorithm

It is clear that the algorithm can start from a tree as in Fig. 2, where the root vertex 
u has degree k = 57 and each vertex of Γ(u) is also adjacent to k − 1 = 56 leaf vertices 
in Γ2(u) with all leaf vertices distinct. Also, without loss of generality, it was possible to 
add a further (k−1)2+1 edges as follows. After labelling the leaf vertices of the tree from 
k + 2 to k2 + 1, these edges were (i, i + j(k − 1)), i ∈ {k + 2, . . . , 2k}, j ∈ {1, . . . , k − 1}. 
The algorithm then took the remaining edges incident with two leaf vertices, but ignored 
edges that would immediately increase the maximum degree to k+1 or create a cycle of 
length < 5. There remained p = 4743199 potential edges that could be added in order to 
reduce the deficit. These were arranged in an ordered list. In any current solution, the 
potential edges that are in the solution are referred to as the selected edges, the potential 
edges not in the solution are non-selected edges. At the general step, when the current 
solution has p − q selected edges and q non-selected edges the list was always re-ordered 
with the non-selected edges first (otherwise in the order in which they appeared) and 
the selected edges second (again in the order in which they appeared).

The objective function to be reduced by the algorithm is the deficit of the current 
solution. At the first iteration, and at subsequent iterations after a permutation to be 
defined below, a new solution is created greedily as follows. Non-selected edges are added 
starting from the last in the list down to the first, provided they do not cause the 
maximum degree to exceed k and do not create a cycle of length 3 or 4. This last check 
accounts for around 94% of the run time. If the deficit does not increase the new order 
of potential edges (re-ordered as above) and deficit is accepted. Otherwise the previous 
order and deficit is retained for the next iteration.

Initially the permutation consisted of a single transposition of potential edges. With 
the relevant parameters this algorithm was able to find the unique Hoffman-Singleton 
graph of degree 7 in a matter of seconds. The degree 57 case is much more demanding. 
As progress slowed the single transposition was replaced by permutations of the list 
consisting of a number t of disjoint directed cycles, as illustrated for t = 2 in Fig. 3.

Here there are t = 2 disjoint directed cycles defined by 4 distinct random numbers 
r1, r2, r3, r4, with r1, r3 selected edges and r2, r4 non-selected edges. The permutation 
was defined by (1, r2, q + 1, r1)(2, r4, q + 2, r3). The generalisation for t > 2 distinct 
directed cycles should be clear, with the i’th directed cycle being (i, r2i, q+i, r2i−1). Then 
|selected| reduces by t, |non − selected| increases by t and the effect of the permutation 
is to change t of the selected edges to non-selected edges and to reorder the list of 



6 D.H. Smith, R. Montemanni / EURO J. Comput. Optim. 11 (2023) 100060
non-selected edges. The rationale behind the choice of permutation is to remove edges 
randomly from the current solution and give priority to the insertion of non-selected 
edges over the re-insertion of removed edges. Eventually it was found that t selected 
randomly in the range 200 ≤ t ≤ 400 was a good choice. If t was larger than 400 the 
solutions tended to become much worse.

3.2. Restarting and parallelism

An advantage of the algorithm is that it can be restarted and continued from a current 
solution. Every few hundred iterations the current minimum deficit and the order of 
potential edges that gave it can be written to a file, and used for restarting. This also 
allowed a parallel version. Up to 8 processes were run with access to a single common 
file. Every few hundred iterations the file was examined. If the current minimum deficit 
of the process was smaller than that in the file, the deficit and the order of potential 
edges that gave it were written to the file. If the current minimum deficit of the process 
was greater than that in the file, the deficit in the file and the order of potential edges 
recorded in the file were used by the process in subsequent iterations.

3.3. A useful check

The implementation of the main algorithm allows the output of a symmetric (3250 ×
3250) (0, 1)-matrix that should be the adjacency matrix of a valid solution. This allows 
a useful check. If a solution with deficit 0 has been found, the row sums of this matrix 
should be 57 and A2 + A − (k − 1)I = J should be satisfied as described in Section 1. 
For a solution with deficit > 0 the relevant check is that the row sums should be ≤57 
and (A2 + A − (k − 1)I)ij ≤ 1 ∀{i, j}.

3.4. Results

The longest run of the main algorithm extended over around 18 months, with several 
improvements to the implementation to speed the algorithm in the early part of this time. 
For most of this time the parallel version of Section 3.2 was used, with 8 processes running 
in parallel. The computer used was an Intel(R) Core(TM) i7-4770 CPU with 4 cores, and 
8 logical processors running at 3.40 GHz and with 8Gb RAM. A small number t of disjoint 
directed cycles was used for the first months, but as the solution improved the choice of a 
randomly selected t in the range 200 ≤ t ≤ 400 seemed most effective. Improvements to 
the deficit were fast initially, but slowed as the deficit reduced, with the last improvement 
taking 29 days. It appeared that there were fewer and fewer permutations of t disjoint 
directed cycles giving an improvement as the algorithm proceeded. The final deficit 
obtained was 41482. This value is so large that a deficit of 0 may be unachievable.

The deficit begins at around 48000 and (with the latest version of the algorithm) will 
reduce to around 43000 in under a day. The reduction from 43000 to 41482 over time is 
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Fig. 4. Reduction of deficit with time. One unit of time is approximately two weeks.

illustrated in Fig. 4. Initially some improvements to the implementation are apparent. 
Then it can be seen that progress slows markedly, with the algorithm apparently con-
verging to 41482 (or perhaps a value slightly smaller than 41482 given an even longer 
run). The important question arises of whether 41482 is (or is close to) a local minimum 
or a global minimum. The run described above started from the order of potential edges 
in the order they were generated. To provide some evidence of whether there may be 
much better solutions in a distant part of the search space a further 8 processes were 
started, each beginning from a different random order of potential edges. It should be 
noted that these were independent processes, not the parallel version described in Sec-
tion 3.2. In consequence progress may be even slower. After 85 days of computation the 
deficits of the 8 processes are 42364, 42347, 42375, 42349, 42377, 42378, 42379, 42390, 
and progress has slowed in a similar way to the original run. This suggests that they 
may all converge to a similar value to the original run.

3.5. An experiment with subsolutions

An experiment was applied to the final two solutions of the main run, with deficits 
41483 (51142 edges) and 41482 (51143 edges) respectively. The permutation described 
in Section 3.1 was applied to the initial solution for several hours, for each value of 
t ∈ {1000, 2000, . . . , 15000}. The initial aim was to determine the solution (with t fewer 
selected edges) that gave the maximum number e of non-selected edges that could be 
added individually to the reduced solution. For this solution the selected edges were 
fixed and a slightly modified version of the main algorithm was used to recover a good 
solution (or possibly improve the starting solution). The results are shown in Table 1, 
including the timings for the second part of the algorithm.
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Table 1
Results of subsolution experiments.

Initial deficit t e final deficit time to final 
deficit (seconds)

total run 
time (seconds)

41483 1000 1034 41483 27 26820
41483 2000 2113 41483 105 23400
41483 3000 3281 41483 200 21180
41483 4000 4599 41483 410 21000
41483 5000 6144 41483 790 35460
41483 6000 8069 41483 1170 29940
41483 7000 10603 41483 860 20340
41483 8000 14042 41483 1500 12000
41483 9000 18713 41483 2230 36960
41483 10000 24843 41483 2340 22620
41483 11000 33556 41483 4560 31200
41483 12000 45163 41483 6060 41280
41483 13000 60877 41483 25200 32400
41483 14000 80283 41483 28800 50400
41483 15000 107102 43767 154800 154800

41482 1000 1035 41482 45 30600
41482 2000 2110 41482 180 22860
41482 3000 3270 41482 240 16680
41482 4000 4573 41482 240 37200
41482 5000 6148 41482 360 19200
41482 6000 8074 41482 600 30780
41482 7000 10539 41482 720 31320
41482 8000 14102 41482 1200 29340
41482 9000 18594 41482 1740 31920
41482 10000 24943 41482 1620 20100
41482 11000 33562 41482 2820 10800
41482 12000 45362 41482 2700 30600
41482 13000 61021 41482 5400 68400
41482 14000 81040 41482 24000 35220
41482 15000 106680 44710 194400 194400

The results are consistent between the two starting solutions. For t ≤ 14000 a solution 
with the same deficit as the starting solution is found quickly, although in general it is not 
the same solution as the starting solution. No improvements were found. For larger t the 
problem of recovering a good solution appears to become very difficult. Two conclusions 
can be drawn. Firstly, the main algorithm appears to be very effective for the subproblems 
addressed. Secondly, it appears that if a solution has more than 73% of the edges of a 
good solution, then the minimum deficit achievable is essentially determined.

3.6. A heuristic

Prior to the experiments described in Section 3.5 a promising heuristic was investi-
gated. Given a solution of deficit 41483 or 41482 a fixed permutation as described in Sec-
tion 3.1 with t ≤ 3200 was applied. Then each non-selected edge was considered in turn. 
After temporarily adding it to the set of selected edges the number of edges that could be 
added individually at the next step was counted. For one edge that gave the maximum 
number, the addition to the set of selected edges was confirmed and the iteration was 
repeated. Other edges were removed from the set of selected edges after consideration. 
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The heuristic appeared promising, often recovering the starting deficit, but never finding 
an improvement. For larger values of t run times were excessive. The experiment in Sec-
tion 3.5 explains why no improvement was found for practical values of t. If the heuristic 
could be applied from the beginning (with |selected| = 0) it might be very promising. 
However, even the selection of a single edge requires (p − |selected|)(p − |selected| − 1)
checks for cycles of length 3 or 4, and so is impractical. A variation of this heuristic 
starting with |selected| = 0 is practical. Take a starting tree with maximum degree 57, 
root u, Γ(u) = 57 and Γ2(u) = 3192. Note that of the 56 potential edges joining a leaf 
of one branch to the leaves of a different branch, only one can be selected in a solution 
or a cycle of length 4 is created. Taking these sets of 56 edges in order, and using the 
criterion of the heuristic to select the best, this variation only takes around 30 hours. 
The variation is not effective though, giving a deficit of 44410.

4. Discussion

When considering whether the local minimum of, or close to, 41482 provides strong 
evidence for the non-existence of the Moore graph it is useful to consider whether im-
proved solutions would be rare. Assume that the Moore graph of degree 57 exists (with 
92625 edges, so the deficit is 0). It is possible that it would be unique. However, there will 
be many solutions with deficit < 41482 simply by taking subsets of between 51144 and 
92624 edges. Furthermore, for each such solution except those with deficit very close to 
41482 it is possible to add edges as follows. Add an edge not in the Moore graph, which 
may lead to a breaking of the degree condition or the girth ≥ 5 condition. It requires at 
most 58 edges to be removed to restore the conditions, so the deficit increases by at most 
57. This can be repeated until the deficit becomes too close to 41482. Thus solutions with 
deficit < 41482 will not be rare. It should also be noted that even when the algorithm 
described here struggles to find an improved solution, it finds it very easy to obtain 
different solutions with unchanged deficit. This must be a result of the existence of more 
complex rearrangements of edges in incomplete solutions. Even if a solution with deficit 
0 is well hidden in the search space, it does not seem plausible that the multiplicity of 
solution with deficit less than 41482 described above could all be well hidden.

5. The challenge

Using the new formulation, the algorithm presented here appears to work well and 
suggests non-existence of the Moore graph. There are many other optimization algo-
rithms that could be applied that may support this suggestion. Alternatively, they may 
find massively reduced deficits or maybe construct the Moore graph. Even if the Moore 
graph does not exist, the task of finding the minimum possible deficit is an interesting 
and challenging optimization problem. It would be particularly useful if highly parallel 
algorithms were developed by those with access to suitable computer resources.
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6. Conclusions

A formulation has been presented and an algorithm developed that attempts to find 
the Moore graph of diameter 2 and degree 57. The main algorithm and related algorith-
mic work tend to support the view that the Moore graph does not exist. A challenge to 
other authors to support or counter this claim is proposed.
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