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ABSTRACT

This paper, along with the companion paper Forni, Hallin, Lippi and Reichlin (1998), in-
troduces a new model—the generalized dynamic factor model—for the empirical analysis of
financial and macroeconomic data sets characterized by a large number of observations both
cross-section and over time. This model provides a generalization of the static approximate
factor model of Chamberlain (1983) and Chamberlain and Rothschild (1983) by allowing
serial correlation within and across individual processes, and of the dynamic factor model (or
index model) of Sargent and Sims (1977) and Geweke (1977) by allowing for non-orthogonal
idiosyncratic terms. While the companion paper concentrates on identification and estima-
tion, here we give a full characterization of the generalized dynamic factor model in terms of
observable spectral density matrices, thus laying a firm basis for the empirical implementation
of the model.

JEL classification nos.: C13, C33, C43.
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1. Introduction®

1.1 Data sets with many data points both over time and across sections are becoming in-
creasingly available. Think for instance of macroeconomic series on output or employment
which are observed for a large number of countries, regions or sectors, or of financial time
series such as the returns on many different assets. Such data sets typically present a good
deal of regularity along the time dimension, so that each time series, taken in isolation, can be
successfully handled by using standard stationary models or their extensions. By contrast,
along the cross sectional dimension, data do not have a natural ordering and correlations
do not present any regular structure. Yet, the series are strongly dependent on each other,
iaplying that uni. ariate modeling would waste information.

We do not have a satisfactory theoretical framework for extracting and analyzing the
enormous amount of information embedded in such large cross sections of time series. VAR
models would be suitable for a small subset of time series, but are inadequate for the whole
data set, because of the huge number of parameters to estimate. The dynamic factor analytic
or index model (Sargent and Sims, 1977, Geweke, 1977) is much better suited, since it is both
flexible and parsimonious: each variable is represented as the sum of a common component—
i.e. a term depending, possibly with heterogeneous dynamic responses, on a small number
of unobserved factors which are common to all variables—and an idiosyncratic component,
which is orthogonal at any lead and lag both to the common factors and to the idiosyncratic
components of all the other variables.

This feature, mutual orthogonality of the idiosyncratic components at any lead and
lag, represents a serious weakness of the index model. The assumption is necessary for
identification, but is severely restrictive. As a first example, consider the output of different
industries linked to each other by input-output relations. The output of sector A may well
be related to the output of sector B in a way which is intimately ‘cross-regressive’, so that
an idiosyncratic shock originated in B propagates, possibly with a lag, to sector A. Similar
local interactions can also arise when there are ‘intermediate’ shocks, i.e. shocks which are
neither common nor strictly idiosyncratic, such as local events affecting directly more than
one area, or technological shocks affecting a few sectors. Finally, consider a data set including
both employment and income for many regions, and assume that each variable is driven
by a national and a regional shock, the second being orthogonal to the first. The regional
components of employment and income, while being orthogonal for different regions, are likely
to be correlated for the same region. In such a case, although employment, or income, taken
in isolation would satisfy the orthogonality assumption, the index model could not be used
to handle the whole data set.

[n this paper, and in the companion paper Forni, Hallin, Lippi and Reichlin (1998),
a new model, that we will call the generalized dynamic factor model, is introduced and
analyzed. The model has three important features: (1) it is a finite dynamic factor model,
i.e. the variables depend on a finite number of factors with a quite general lag structure;
(2) it is based on an infinite sequence of variables and is therefore specifically designed for
the analysis of large cross sections of time series; (3) it allows for both contemporaneous and
lagged correlation between the idiosyncratic terms, and is therefore more general than the
traditional index model.

I This paper is part of a research supported by an A.R.C. contract of the Communauté francaise de
Belgique. The first Author also wishes to acknowledge financial aid by MURST (Ministero per I’Universita
e la Ricerca Scientifica e Tecnologica). We would like to thank Christine De Mol, Marc Hallin and Lucrezia
Reichlin for constant help and support.



1.2 Let us briefly summarize the results of the paper. In Section 2 we give our basic definitions
and assumptions. We start with a double sequence of stochastic variables {z;;, 1 € N, t € Z}.
We assume that {z;, t € Z} is stationary for any ¢ and costationary with {z;, t € Z} for
any j. We do not assume an ARMA structure for the z’s. We only require the existence of
a spectral density matrix 32 for the vector (zy; 2t --- :cm)

In Section 3 we introduce idiosyncratic sequences. To give a simple illustration of the
definition of idiosyncratic sequences adopted here, let us consider a sequence {y;, 7 € N}
of mutually orthogonal variables, such that Var(yz) = ¢?. Taking a sequence of averages
Y, = > i, ani¥y;, the variance var ( = 023", a2, tends to zero if and only if Y 1, a?
tends to zero; this occurs typically W1t11 the amthmetlc mean, a,; = 1/n. Now, the property
of a vanishing variance for sequences of averages whose squared weights tend to zero does
not require that the y’s be mutually orthogonal: for example, if y; and y; are correlated with
the correlation declining as |7 — j|, then the var(Y;,) vanishes asymptotically. This vanishing
variance of averages, not orthogonality, is precisely what we need in our construction. Thus,
in our definition, the sequence of the z’s is idiosyncratic if convergence to zero occurs for any
weighted average, both cross-section and over time,

n k
5 E AnihTit—hs

i=1 h=—k%

provided that the sum of the squared weights tends to zero. We prove, Theorem 1, that x;;
is idiosyncratic if and only if the maximum eigenvalue of X7 is dominated by an essentially
bounded function of the frequency 4.

In Section 4 we introduce our generalized dynamic factor model, i.e. a sequence {z;, 7 €
N, t € Z} such that

Ty = b (D)use + bio(L)uge + -+ - + big(L)ug + &z,

where b;;(L) is a square-summable filter, (uy; ug - ug ) is an orthonormal vector
white noise, & is idiosyncratic and orthogonal to the u’s at any lead and lag, with the
filters b;;(L) fulfilling a condition ensuring that no representation with a smaller number of
“common factors” is possible. We prove in Theorem 2 that a sequence has a generalized
dynamic factor structure with ¢ factors if and only if: (I) the (¢ + 1)-th eigenvalue of 32, in
decreasing order, is dominated for any n by an essentially bounded function of the frequency
g; (II) as n tends to infinity, the ¢-th eigenvalue diverges for § almost everywhere in [—m, 7].

Thus the unobservable factor structure is completely characterized in terms of properties
of the observable matrices 3%. This result has a very important consequence for empirical
analysis, as it provides the theoretical basis for heuristic criteria or formal tests in which
the sequence of nested matrices 37 is employed to determine whether the model has a finite
dynamic factor structure and what is the number of factors. More precisely, evidence in favor
of conditions (I) and (II), with the eigenvalues computed from estimated spectral density
matrices, can be interpreted, given the “if” part of Theorem 2, as evidence that, firstly, the
variables follow a generalized dynamic factor model, and, secondly, that the number of factors
is q.

Theorems 3 and 4 establish uniqueness of the idiosyncratic component &;; and of the
common component z;; — &;;. It must be pointed out that this identification result holds for
the whole infinite sequence of the variables z;, not for its finite subsets: otherwise stated,
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identification occurs in the limit, when the size of the cross-section tends to infinity. Moreover,
note that identification of x; does not imply identification of the u’s or of the filters b;;(L),
that might be achieved only by imposing further, economically motivated, restrictions. Such
an issue will not be discussed in this paper. Finally, in Theorem 5 we show that the common
component of z;; can be recovered as the limit of the projection of z;; on the dynamic
principal components. This result provides a firm basis for estimation theory.

The case in which the z’s are either difference or trend stationary is shortly discussed
in Section 5. Finally, some results that appear as common knowledge but for which no easy
reference was available are gathered in the Appendix.

1.3 In spite of some inevitable overlapping this paper is complementary with respect to the
companion paper mentioned above. The latter concentrates on identification and estimation
of the common and idiosyncratic components, while the main aim of this paper is the full
characterization given in Theorem 2. Moreover, the assumption of rational spectral density,
made in the companion paper, is dropped completely here.

Correlated idiosyncratic factors, along with infinite cross sectional size, have been in-
troduced in a static model for asset markets by Chamberlain (1983) and Chamberlain and
Rothschild (1983). Our Theorem 2 is a generalization to stochastic processes of results proved
in the static case by Chamberlain and Rothschild. Related models can also be found in Quah
and Sargent (1993), Forni and Reichlin, (1996, 1998), Forni and Lippi (1997), Stock and
Watson (1998).

2. Notation, Basic Definitions and Lemmas

Given a complex matrix D, we denote by D the complex conjugate of the transpose of D.
Inner product and norm in C* are the usual Euclidean entities (v,w) = 77, v;w; and
v = /i, |ui|? respectively.

Let P = (Q,F,P) be a probability space and let La(P,C) be the linear space of all
complex-valued, zero-mean, square-integrable random variables defined on 2. We recall that
Lo(P,C), with the inner product defined as (z,y) = E(zy) = cov(z,y), and the norm as
|zl = E(Jz[]?) = /var(z), is a Hilbert space on the complex field C. If Q is a subset
of Ly(P,C) we shall denote by span(Q) the minimum closed linear subspace of Lq(P,C)
containing Q. If V is a closed linear subspace of Ly(P,C) and = € Ly(P,C), we denote by
proj(z|V') the orthogonal projection of z on V.

Now consider a double sequence
x = {zg4, 1 €N, t € Z},

where z;; € Lo(P,C). We adopt the following notation: X = Span(x); x,; is the n-
dimensional column vector (z1; 22 -+ Tpt )'. Often, when no confusion can arise,
we speak of the process z;, meaning the process {z;, t € Z}. We also speak of the spectral
density of z;. Moreover, considering the m-dimensional vector process

y:{(y].t Yot o YUmt )/7 tGZ}:

we say that y belongs to Y C Ly(P,C) if y;; belongs to Y for any j and t. In the same way,
we use Span(y) to indicate spatn({y;, j=1,...,m, t € Z}).

Assumption 1. For any n € N: (1) the process X, is covariance stationary; (2) the spectral
measure of X, is absolutely continuous (with respect to the Lebesgue measure on [—7, 7)),
i.e. x,; has a spectral density (see Rozanov, 1967, pp. 19-20).

3



We denote by X7 the spectral density matrix of x,; and recall that 3% is Hermitian,
non-negative definite for any 8 € [—m, 7|, Lebesgue-measurable, and that fir E(6)d is
equal to the variance-covariance matrix of x,;.

Remark 1. Given y and z in X, by definition ||y — z||? = var(y — z). On the other hand,
we can define in a natural way two stochastic processes y; and z such that |jy — z||? =
llye — z:||* = [7_ f(0)d0, where f is the spectral density of y; — z,. For, the definition of X
implies the existence of square-summable filters ay;(L) and b,;(L) such that

y = liTEnZanj(L)xjo, z = liTILannj(L)zjo.
j=1 j=1

Defining
yT— liTan Z an;(L)z e, Zy = Iiygn Z bnj(L)zt,
G=1 =1

the processes y; and z; are stationary and costationary with x,; for any n € N. Moreover,
Y=Y, 2=z and ||y — 2||* = ffﬂ f(8)df, where f is the spectral density of y; — z; (for the
existence of the spectral density of y¢, z: and y: — 2, see the Appendix, Fact S). With the
above argument in mind, the generic element of X will be often referred to as y;, z:, etc.,
rather than y, z, etc., where y;, z;, etc. are stationary and costationary with x,;, for any n.
Identical considerations hold if we consider a vector y belonging to X.

Definition 1. Fori=1,...,n let

X[, - R
be defined as the function associating with @ € [—m, 7| the i-th eigenvalue, in descending
order, of 3%:(0). The functions A%, will be called the dynamic eigenvalues of ¥Z.

[n the Appendix we prove the following lemmas.

e, are Lebesgue-measurable in [~7, «] for anyn € N and i <n
in Remark 3 below we show that AL, has finite integral).
ne

Lemma 1. The functions A%,

Lemma 2. Given 1, for n > 1, A% (0) is non-decreasing as a function of n for any 6 € [—m, 7],
le. ATi(0) < A7 44(0).

A consequence of Lemma 2 is that lim, AZ,(8) exists for any ¢ and 6, and equals
Supn /\fm(g)

Definition 2. For any i we define the function A} by
A7 (0) = sup A7;(6).
n
[t must be pointed out that A7 is an extended real function, i.e. its value may be infinite.

Note also that {6 : A?(#) = co} may be of null or positive measure, and even coincide with
[—m, 7.

Now consider the space LY ([—n, 7],C) of all functions f : [—7, ] — C", with
£0) = (f1(0) f2(0) -+ ful(6))
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(a row vector) and f; : [—m, 7] +— C, such that

/ﬂ|( l2d0~/— S 1A(0)]2d0 < oo,

-1 71'1]

With the inner product of f and g and the norm of f defined respectively as

(t.e) = (em)™ [ S 100500 and iF] = | (2m) v S 17:0)2d8,
T =1 T =1
Ly ([~m, n],C) is a Hilbert space. In the Appendix we prove the following results.

Lemma 3. There exist n functions p%,, ¢ = 1,...,n, belonging to LY ([—=, ], C), such that
(1) Ip%:(0)] = 1, for any 0 € [-m, 7];

(2) P5:(0)Py;(0) = 0, for i # j and any 0 € [—7, 7);

(3) L, (0)52(9) = A5 (0)phi(0) for any 0 € [—m, 7.

Definition 3. An n-tuple of functions p%, fulfilling (1), (2) and (3) of Lemma 3 will be
called a set of dynamic eigenvectors.?

Given f € LZ([—m, 7],C), consider the Fourier expansion

oG
2 : —1k6
er y

k=-—00

where Fy = [T f(0)e’*®d0 € C". We shall indicate by f(L) the square summable n-

dimensional filter -~
5w

k=—00

We have
o0 7r

SR = (2m)"! / 1£(0)1%d0 = |[£|1°

k=-—00 -

[n particular, Ezj(L> is the filter associated with the dynamic eigenvector py, . : [-m, 7] — C™.

i ALLF

k=00

Conversely, if

is a square summable n-dimensional filter, consider the function A° defined as

A°(0) = A(e™™) Z Agetk

k=—o0

2 We use “dynamic” for eigenvectors and eigenvalues of ©Z and related matrices to insist on the dif-
ference between the dynamic analysis developed here and the static approach, based on the eigenvalues of
variance-covariance matrices. For a general treatment of eigenvalues and eigenvectors of spectral density
matrices, and related filters, see Brillinger (1981).



Obviously A° belongs to L ([—m, 7],C). Moreover A°(L) = A(L).
Definition 4. If the functions py,;, 7 = 1,...,7n form a set of dynamic eigenvectors, then
EZ]‘ (L)Y%ne, 7 =1,...,n is a set of dynamic principal components of z,;.

The main results presented below will employ the filters Ef”;(L)? derived from the dy-
namic eigenvectors. In general, being obtained from the Fourier expansion of expressions
involving polynomial roots, such filters are bilateral and infinite, even when the vector pro-
cess X, is a finite moving average.

3. Dynamic averaging sequences, aggregation space, idiosyncratic variables

Definition 5. Consider a sequence of positive integers {s,, n € N} and a sequence
{an(L), n € N},

where

a, = (ag; apy - ap,) € Ly*([=m, 7, C).

We say that {a,(L), n € N} is a dynamic averaging sequence, DAS henceforth, if

lim [[a°]]2 = lim/ 122 (6)[2d0 = 0.

Definition 6. Let y; € X. We say that vy, is an aggregate if there exists a DAS {a, (L), n €

N} such that
1iTrln an(L)Xs,t = Yy

The set of all the aggregates will be denoted by G(x) and called the aggregation subspace
of X.

Remark 2. In Assumption 1 and in Definition 5 we have not supposed that the entries of 3%
or of a are bounded in [—7, 7]. As a consequence, the elements of the sequence a, (L)X, ¢
does not necessarily have finite variance, i.e. the integrals [" a2 (0)X% (9)aS(0)d6 are not
necessarily finite, which means that a,(L)xs,; is not necessarily an element of Ly(P,C).
However, convergence of {a,(L)xs,t, 7 € N} has an obvious definition: {a,(L)xs, ¢, n € N}
converges if a,(L)xg,: has finite variance for n greater than some n; and if the sequence
{a,(L)xs,t, n € N, n>ny} converges.

Remark 3. Dynamic averaging of X, according to Definition 5, is nothing other than aver-
aging simultaneously both in the cross-section and the time dimension. Precisely

Sn

Sn oo}
an(L)Xsnt = Zani(L)xit = Z Z AnikTit—k
i=1

i=1 k=—o0

where the coefficients a,;; are complex numbers fulfilling the condition

Sy [o.o]

“}PZ Z Iam-k{z = 0.
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Infinite averaging in the time dimension is convenient since, as anticipated above, the aver-
aging sequences that we are going to employ are typically infinite, but not strictly necessary.
It is easily seen that the same aggregation space would be obtained by taking finite averages
of any length in the time dimension

Sn Tni

5 g AnikTit—k,

=1 k=ppn,

with the condition
Sq T
lim E E |am-k|2 = 0.
n
1=1 k:—'pui

Lemma 4. The set G(x) is a closed subspace of X.
Proof. Assume that z; = limey, Yme, With yrme € G(x). Let yme = limp amn (L)X, ¢, where

{amn(L), n € N}

is a DAS. Let m; be such that |[2; — yml| < 1/4 and n; such that |lap, . || < 1/7 and
Ymat — @mn, (L)X, ¢l < 1/i. The sequence

(amyn, (L) @myny (L) 0 )

is a DAS and
| |20 = @m;n, (L)Xs'rn,initH < 2t = Ymatl] + [|[Ymar — @min, (L)Xsrninit“ < 2/i.
QED

Definition 7. Suppose that x fulfills Assumption 1. We say that x is idiosyncratic if
lim, a,(L)xs,: = 0 for any DAS {a, (L), n € N}.

If x is idiosyncratic then obviously G(x) = {0}. However, as the next example shows,
the converse does not hold.
Example 1. Assume that 2;; L zj;_ for any < # 7 and any k € Z, that x;; is a white noise
for any 4, and that ||z;||? = i. Define

cn(L):-l\/—g(O 0 - 0 1)

The sequence {c,(L), n € N} is a DAS. Moreover |lc,(L)x||? = 1, so that x is not
idiosyneratic. Now let y; be an aggregate, so that

Sn Sn (e

Y = lirrln an(L)xs,¢t = 1iTanZanj(L):rjt = liyrinz Z njkT -k, (1)
j=1

J=1lk=—0cc
where {a,(L), n € N} is a DAS. Since y; € X and the z4’s are mutually orthogonal white
noises, then
o [ee]
ye=_ > biTi—k (2)
j=1l k=—00
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Moreover, representations (1) and (2) are unique and lim, ap;r = b for any j and k. On
the other hand,

Sy o)

i [ @ Pds =i |50 3 fanul?| <0,

7=1 k=—o00
so that b, = 0 for any j and k, i.e. y = 0. Thus G(x) = {0} although x is not idiosyncratic.

If the vector x,; is a white noise for any n, i.e. if the matrix X and its eigenvalues
are constant as functions of @, then x is idiosyncratic if and only if A%, is bounded as a
function of n (see Chamberlain, 1983, Chamberlain and Rothschild, 1983). The theorem
below generalizes this result to any x fulfilling Assumption 1: x is idiosyncratic if and only if
the functions AZ; are uniformly bounded in [—m, ] — D, where D has null Lebesgue measure,
i.e. if there exists a real M such that A\%Z,(8) < M for any n € N and 8 € [—m, w] — D.

In the sequel £ will denote the Lebesgue measure on R, Let us recall that an extended
real function f is essentially bounded if there exists a real ¢ and a subset D of [—m, 7]
such that £(D) = 0 and [f(0)| < ¢ for 6 € [—7, 7] — D (Halmos, 1958, p. 86). Obviously, if
f is essentially bounded the set where f is not finite has null measure.

Remark 4. If ¢ € L}([~m, 7],C) and |c(8)|? is essentially bounded, then, since the entries
of 3% have finite integral, the variance of ¢(L )Xy is finite. In particular,

s

pZ,(6)52(6)p%,(6)d6 = / X2 (6)d0 < oo.

—T

ver(p?, (Do) = [

-7
We will invoke the following two results, the first known as the Lebesgue dominated
convergence theorem.

Fact L,. Assume that {f,, n € N} is a sequence of integrable functions (ie. having
finite integral) defined on [—m, =], such that (a) lim, f,(0) = f(0) a.e. in [-7, 7], and
(b) 1fn(0) < g(8) ae. in [—7, w|, where g is non-negative and integrable. Then f is
integrable and

li}:n/ﬂ Fo(0)dO = ) F(0)do

(see Apostol, 1974, p. 270).

Fact Ly. Suppose that {f,, n € N} is a sequence of integrable functions defined on [—m, =},
that f is an integrable function defined on [—w, |, and that

1;331/'77 1/0(0) — F(OPAI=0 or 1131/7r 1 (8) = £(6)]d6 = 0.

Then there exists an increasing sequence s, such that lim,, fs, (6) = f(6) a.e. in [—m, 7] (see
Apostol, 1974, p. 298; Halmos, 1958, p. 103, Theorem A, p. 93, Theorem D, p. 89, Theorem

B).

Theorem 1. x is idiosyncratic if and only if AT is essentially bounded.
Proof. Let {a,(L), n € N} be a DAS. By Fact My (Appendix),

o [Caomemews [ 0Roras s [ oo
” ” ” ®)

a(L)nXs,.t




If A¥ is essentially bounded, the RHS of (3) tends to zero, so that x is idiosyncratic.
Conversely, assume that AT is not essentially bounded. This means that for any positive
integer n, there exists an integer s, such that

o= LUB: AZ,4(8) 2 n)) > 0
Define h,, by

0 otherwise,

hn(8) = { 1/ \/Fm i AT (0) 2 n

and Hy, = [T A% ;(0)h,(0)?d0, so that F', > n. Then define b, (L) = h,(L)p® (L)/vH,.
Clearly b, (L) is a DAS, while ||b,(L)xs, ¢||> = 1, so that x is not idiosyncratic. QED

Corollary. If x is idiosyncratic then

sup Ar1(6)df = lim AZ1(0)do < co.

n —1r n -7

Proof. Since A7 is essentially bounded, we have f AT(0)dO < co. AZ, converges a.e. in
[—7, 7] to A} and is bounded a.e. in [—m, 7] by AY. Applymg Fact L1,
lim r.(0)do = AT (0)dl < 0.

oS -7

QED
The following example shows that the converse of the Corollary is false.

Example 2. Assume that z;; is orthogonal to zj_x for any k& and any ¢ # j, and suppose
that the spectral density of the stationary process z;; is |8|*, for |8] > 1/i, zero other-
wise, with —1 < o < 0. In this case the matrix X% is diagonal, A{(8) = |0]* for 6 # 0,
zero for 6 = 0, which is not essentially bounded. Thus x is not idiosyncratic, even though
sup, /7 A%, 9)d0 J7191%df < oo.

Definition 8. Assume that x fulfills Assumption 1. Consider the orthogonal projection
zip = proj(z|G(x)) + dit. (4)
Decomposition (4) will be called the canonical decomposition of x.

4, A Finite Number of Dynamic Common Factors
4.1 Let us now give a formal definition of the generalized dynamic factor model and now
state our main results.

Definition 9. Let g be a non-negative integer. The double sequence x is a ¢g-dynamic
factor sequence, gq-DFS henceforth, if Ly(P,C) contains an orthonormal g-dimensional
white-noise vector process

u={(uir Uy - uqt)', teZ} = {u, teZ},
and a double sequence € = {&it, 1 € N, t € Z} fulfilling Assumption 1, such that:
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(i) for any i € N,

Ty = Xit + &it (5)
Xait = bt (D)ugy + biog(L)uge + -+ - + big(L)uge = by(L)uy,

where b} € Lo([—w, 7],C7);

(ii) )ﬁ is essentially bounded, i.e. € is idiosyncratic;

(iii) putting x = {Xa, 1 €N, t € Z}, \¥(0) = o0 a.e. in [~m, 7|

The double sequences x and & are referred to as the common and the idiosyncratic component
of representation (5).

Theorem 2. The double sequence x is a ¢-DFS if and only if:
(I) Ay, is essentially bounded;
(1) s = oo a.e. in [~m, =],

Remark 5. Forni, Hallin, Lippi and Reichlin (1998) propose a heuristic criterion to determine
in empirical cases the number ¢ such that (I) and (II) hold. Since they only rely on the ‘only
if” part of Theorem 2, their criterion provides evidence on the number of common factors,
under the assumption of a generalized dynamic factor model. Ounce the ‘if’ part is proved,
evidence that for some ¢ (I) and (II) hold becomes evidence both that the series follow a
generalized dynamic factors, and that the number of factors is ¢.

Theorem 3. Ifx is a ¢-DFS with representation (5) then

span(x) = Span(u) = §(x).

Moreover
Xit = proj(z|G(x)). (6)

An immediate but very important consequence of (6) is that if x is a ¢-DFS then the
components y;; and &; are uniquely determined. Precisely:

Theorem 4. Suppose that x is a ¢-DFS with representation (5). Suppose further that there
exists an s-dimensional orthonormal white-noise vector process v, with v;¢ € Lo(P,C), such
that

Tip = wit + Git

Wiy = Ci(L)Vt;

where ¢ € Lo([—m, 7],C%), and that A$ and X fulfill, respectively, conditions (ii) and (iii)
of Definition 9. Then s = q, wy = Xit and (i = Eiz.

Remark 6. It must be pointed out that the components are identified, not u; or the filters
b,;(L). If (5) holds, and C(L) is ¢ x ¢ and such that C°(8)C°(0) = I, then x;; = b} (L)uf,
with b¥(L) = b;(L)C(L) and u} = C(L™Hu,.

Remark 7. Note that in Definition 9 the filters b;;(L) are in general bilateral. If repre-
sentation (5) must have a structural interpretation then it is reasonable to assume that the
filters b;;(L) are one-sided. However, one-sidedness of the b;;(L) has no consequences on the

eigenvalues A,;, nor fulfillment of conditions (I) and (II) has implications on the existence
of one-sided representations of the common component. In this paper we deal only with
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the number of common shocks, i.e. the dimension of uy, which is identified (Theorems 2, 3,
4), and with the reconstruction of x;; and &; (Theorem 5). Existence and identification of
one-sided representations of the common component are left to further study.

Remark 8. The result in Theorem 4 can be restated by saying that if x is ¢-DFS, then
g is minimal, i.e. no representation fulfilling Definition 9 is possible with a smaller number
of factors. It is important to point out that condition (iii) in Definition 9 is crucial. For
example, suppose that

Tyt = biug + &it,
with £ idiosyncratic and Y |b;]? < oco. In this case A < co. As a consequence, bju; + & is
idiosyncratic, so that a representation with zero factor is possible.

Remark 9. Suppose that x,: is a vector white noise for any n, so that the model is
“isomorphic” to the static model in Chamberlain and Rothschild (1983). Then the eigenvalues
AF - are constant as functions of §. As a consequence, if AZ < oo, the model has ¢ factors, with
g < s. Unfortunately, in the general dynamic case, there exist cases where A? is essentially
bounded, but the sequence does not fulfill Definition 9 for any ¢ < s. Consider

zie = b(L)ue + &ie,

with £ idiosyncratic and

50(9):{1 if 0 e[-1,1]

0 otherwise.

In this case A5(0) is essentially bounded, but Af(0) is infinite for 8 € [—1, 1], finite elsewhere.
However, such cases do not seem to deserve further consideration.

The proof of Theorems 2 and 3 will require several steps. In Section 4.2 we introduce an
additional assumption on x and show that it does not imply any loss of generality. In Section
4.3 we prove that conditions (1) and (II) are necessary for a ¢-DFS, which is relatively easy.
The converse is much more complicated. In 4.4 we prove that G(x) contains a ¢-dimensional
orthonormal white-noise vector process z, so that G(x) O §pan(z). In 4.5 we prove that
actually G(x) = §pan(z), so that the canonical decomposition has the form

Tip = pTOJ(QSZtig(X)) + 5“ = Ci(L)Zt + 5“.
Lastly, in 4.6 we show that § is idiosyncratic, thus completing the proof of Theorem 2. In
4.7 we prove Theorem 3.
4.2 Theorems 2 and 3 will be proved supposing that
Assumption 2. Foranyn €N, j<nand0 € [-n, 7], \},(0) > 1.

To show that Assumption 2 does not imply any loss of generality, observe that, possibly
by embedding P into a larger probability space, we can assume that Ly(P,C) contains a
stationary sequence {fzt, i € N, t € Z} such that &; L X for any ¢ and ¢, var(€;) = 1 for
any 7 and ¢ , and &, L fjt i for any t and i # j. Now define y = {z; + fm 1€ N, t ez},
and suppose that Theorems 2 and 3 have been proved under Assumption 2. We have.
(a) XY = X7 + In, \}; = A%, + 1. Thus if conditions (I) and (I1) hold for x, then they hold
for v as well. By Theorem 2 y is a ¢-DFS with representation y;; = ¥t + fn. By Theorem
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3, Ya = proj(yi|G(y)). But the definitions of £ and y imply that ¥; = proj(z|G(x)).
Therefore

it = proj(zit|G(x)) + (& — ézt) (7)

Since fit is orthogonal to X and £ —-é is idiosyncratic, then (7) is a ¢-DFS representation.
Thus if (I) and (IT) hold for x, then x has a ¢-DFS representation.

(b) If x has the ¢-DFS representation z;; = ¥y + &, then y has the ¢-DFS representation
Yir = Xie + (&t + éit). Applying Theorem 2 to y, we obtain conditions (I) and (II) for
Ay = A7 + 1 and /\g +1 = Agp1 + 1 and therefore for A7 and A7,,. In conclusion, if Theorems
2 and 3 hold under Assumption 2, then Theorem 2 holds in general.

(c) In the same way, applying Theorems 2 and 3, supposedly proved under Assumption 2, to
v, Theorem 3 can be proved in general.

4.3 Let us prove that if x is a ¢-DFS then (I) and (II) hold. By Definition 9, X%(8) =
TX(0) + 35,(0). By Fact M3 (Appendix), A% () > XX, (0), so that (II) is proved. Moreover,
by Fact Mas,

A1 (0) S XXea(0) + X5 (0) = X5, (6), (8)

so that (1) is proved. Moreover, (8) implies the following interesting inequality:
Agr1(0) < X5 () 9)

(the opposite inequality is proved in 4.7).

4.4 Now we start assuming (I) and (I1). Firstly we prove that G(x) contains a g-dimensional
white-noise vector. The proof goes as follows. We start with a ¢- dimensional orthonormal
white noise, call it 1);, whose entries are linear combinations of the principal components of
Xont, 1.€. P_‘T‘nj(L)xmt, for j = 1,...,9, t € Z. Then we project 1 on the space spanned
by the principal components of x4, i.e. EZJ.(L)XM, j=1,...,q,t € Z, for n > m, call y;
the projection. We show that when m and n become large the distance between ; and y,
becomes small. This leads to the construction of a sequence of g-dimensional white noise
vectors whose components are Cauchy sequences and converge to G(x).

The proofs would be considerably easier if we could assume that A§ (0) > a, ae. in
[—7, 7], where lim, a;,, = co. However, this condition is false in this 1-factor model:

it = (]. - L)ut -+ ‘Sit, (10)

with 3¢ = I, in which 32 is continuous and ¥%(0) = L, for any n. Unfortunately, to
include cases like (10) our proofs must be carried over piecewise on [—m, 7].

We need some further notation and definitions. For n > ¢, we denote by P,, the ¢ X n
matrix

. - !
(Pﬁll PﬁQI Pﬁql) )
i.e. the matrix having the dynamic eigenvectors p7;, j = 1,...,q, on the rows, and by Q,
the (n — ¢) X n matrix
(n—q) e ey
( pnq—l—], pnq+2 Pnn '

Moreover, let us call A, the ¢ x ¢ diagonal matrix having on the diagonal the eigenvalues
A%js 3 =1,...,q and by ®, the (n —q) x (n —¢) diagonal matrix having on the diagonal the
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eigenvalues A% ., j = ¢ +1,...,n. The matrices 37 and I, can be rewritten in their spectral
decomposition form:

$2 = PpAnP, + Q. 8,Q,
In = f)n];)n + QnQn (]])

Since A 1(8) is bounded in [—m, 7] by Assumption 2, the definition
W= (Wl ) = ATDR (L)X

makes sense and 7' is an orthonormal white noise. Note that the processes ¥7;, j =1,...,q,
are the first ¢ dynamic principal components of x,¢, rescaled to get unit spectral density at
any frequency.

In the sequel it will be convenient to write matrix products AB in which the number
of columns of A is smaller than the number of rows of B. In this case we implicitly assume
that A has been augmented with columns of zeros to match the number of rows of B. For
example, we write P, (L)Xn; for n > m, this meaning nothing other than P, (L)x,;. In the
same way, we have equations with a 1 X m matrix on one side and a 1 X n matrix on the
other, with m < n, this meaning that the 1 x m matrix has been augmented with zeros.

Now let C be a g x ¢ matrix such that the entries ¢;; belong to Ly([—m, 7],C) and are
essentially bounded in modulus, so that the linear combination C(L);™ has finite variance-
covariance matrix (see Remark 4). We want to determine the (element by element) orthogonal
projection of the vector C(L)y;™ on the space

Span({ﬁw?t) j = ]'7 cees g, te Z})

for n > m. From (11) we get

Xnt = P (DR, (D)% + Q, (1)Q, (L)xns = B (DA (L)%7 + Q (1)Q, (L)Xns.  (12)

—T1

Since Qn(0)XE ()P (0) = @,(0)Qn(6)P(8) = 0 for any 6, the two terms on the RHS of (12)
are orthogonal at any lead and lag element by element, so that the first is the projection of x,,;
on span({v},, 7 = 1,...,q, t € Z}) and the second is the residual. The required projection

equation is then obtained by applying on both sides the operator Q(L)A;]'/Q(L)Em (L) and
noting that A;Y2(L)P,, (L)%ne = A2 (L)P (L)X = i, ie.

C(L)yi" = D(L)¥y + R(L)xpe, (13)

where

D = CA;Y*P,P,AL? R =CA;YP,Q.Q.. (14)

Note that D, as well as A, H and F, which are defined below, depend on C, m and n. How-
ever, as no confusion can arise, we do not explicit this dependence for notational simplicity.
The following result holds.

Lemma 5. Suppose that (I) and (II) hold. Assume n > m and let C(0) be a unitary matrix,
ie. C(0)C(0) =1, for any 0 € [—m, w]. Consider the projection equation

CL)P" = DLW} + R(L)xu, (15)
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where D and R are defined as in (14), and call u(@) the first eigenvalue of the spectral density
matrix of the residual R(L)xpn;. Then p(8) < A%, 1(0)/25,,(0).

Proof. The matrix I;, ~Q,Qy, is non-negative definite by (11) and A7 Q.Q,—Q.®,Q, is
non-negative definite by the definition of ®,,, so that Ahg 1l -Q,®, Q. is also non-negative

definite. Premultiplying by CA;J/QPm and postmultiplying by PmA;ﬂ/?é it is seen that
z -1 T
Ag+1CALC - RITR

is also non-negative definite. The desired inequality follows from Fact Mg (third and fourth
inequality ). QED

Now let us begin the construction of our converging sequence. Note that, under assump-
tions (I) and (II), there exists a set I1 C [~m, 7] and a real W such that [—7, n] — I has
null measure and, for @ € TI: (1) A% ,1(0) < W for any n € N and any 6 € IT; (2) A7(0) = o0
for @ € TII. Obviously, if a statement holds a.e. in II, then it holds a.e. in [—m, 7], and vice
versa.

Let M be a positive measure subset of Il such that A} (0) > a, for § € M, where
{a,, n € N} is a real positive non-decreasing sequence satisfying lim, a,, = oo. Lastly,
denote by Kys the set including all of the ¢ x ¢ matrices C with elements in Ly([—m, 7],C)
such that (i) C(@) =0 for 8 ¢ M, (ii) C(0) is unitary, i.e. C(6)C(8) =1, for 6 € M.

Consider (13) and assume C € Kj;. Taking the spectral density of both sides we get,
for 8 € M,

I, = DD +RX
W/a,, for @ € M. Hence by Fact

R. (16)
) <
)D(#) in descending order, we have

Applying Lemma 5 we obtain u(8) < A% ;(0)/A%,,(0
Ms, calling A;(6), 7 =1,...,q, the eigenvalues of D(

124000)>1—-W/ay, (17)
for any 6 in M. Thus, if m* is such that

W/ < 1,

we have
Ag(0) > 1 —W/ams >0 (18)

everywhere in M for any m > m*,
Now assume m > m*. Denote by A the diagonal matrix having A; in place (j,7) and
by H(#) a matrix which is measurable in M and fulfills for any 6 € M ( ) HO)H(6) =1,

(b) H(O)A(O)H(9) = D(0)D(6). Inequality (18) ensures that 1/1/A,(0) is bounded in M
for 7 = 1,...,q, so that the definition

_JHO)AG)VPH@O)D@)if 0 M
Fo) = {o if 0¢ M 19)

makes sense. Note that F belongs to K.

Lemma 6. Suppose that (T) and (II) hold. Let M be a positive measure subset of Il and
{an, n € N} a real positive non-decreasing sequence such that lim,, a,, = co. Assume that
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(a) C € Kur;

(b) X\%,(0) > an, for 6 € M;

Then, given T, such that 2 > T > 0, there exists an integer m, such that, firstly, W/m, < 1,
and, secondly, for n > m > m.,, the first eigenvalue of the spectral density matrix of

CL)d" —E(L)py

is less than T for any 6 € 11, where F is defined as in (19), with D defined as in (14).
Proof. From (13) we get

C(L)d}" = E(L)yi" = R(L)xn: + (D(L) — E(L)) 1"

The terms on the RHS are orthogonal at any lead and lag, so that the spectral density matrix
of the sum is equal to the sum of the spectral density matrices. Hence, calling S the spectral
density matrix on the LHS and using (16), we see that, for § € M,

S = 2I, - DF — FD = 21, - 2HAY?H = 2H(I, — AY/?)H,

whose larger eigenvalue is 2 — 24/A4(6), which is less than 2W/a,, by (17). Thus, in order
for F to make sense and the statement of the lemma to hold we need 2W/a,,. < min(2, 7).

Since 7 < 2, m, must fulfill
2W/am, <T (20)

QED

We need the following result, whose proof is given in the Appendix. Given the costa-
tionary processes A = {A;, t € Z}, and B = {By, t € Z} we denote by S(A, B; ) the value
at the frequency 8 of the cross spectrum between A and B.

Lemma 7. If A = {An, t € Z} and B = {Bpt, t € Z} are costationary for n € N,
limy, A,y = A; and limy, Bpy = By (in variance), then, for a sequence of integers s;,

limS(As,, Bs;;0) = S(A, B; 0),

a.e. in [—m, 7.

Lemma 8. Suppose that (1) and (I1) hold and let M and {c,, n € N} be as in Lemma 6.
There exists a g-dimensional vector process v such that

(a) vj; is an aggregate for j =1,...,q;

(b) the spectral density matrix of v equals I for 8 a.e. in M, zero for 6 ¢ M.

Proof. Let F; be any element of Ks. Set 7 = 1/2%7 and s; = m,, where m., satisfies (20).
Then set G1(L) = F, (L)A;l’/{ES1 (L) and v} = Gq(L)xn:. It is easily seen that the spectral
density matrix of v} equals I, for 8 € M, zero for 6 ¢ M.

Now set 7 = 1/2%7 and s; = m,, where m, satisfies (20). Then determine D as in
(14), with F; in place of C, sy in place of n and Fa as in (19). Finally set Go(L) =
_}.JLZ(L)AS’;/Z_ES2 (L) and v? = Gg(L)xnt. The spectral density matrix of v? equals I, for
6 € M, zero for 8 ¢ M. Moreover, by the definition of s; and Lemma 6, calling A; the first
eigenvalue of the spectral density matrix of v} — v2, we have A;(0) < 1/23n for any 0 € II,
so that ||v}, —v3,]| < 1/2,for j=1,...,q.
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By recursion, set 7 = 1/2?*+17 and s, = m., where m, satisfies (20). Then determine
D as in (14), with Fix—; in place of C and s; in place of n, and Fy, as in (19). Finally set
Gi(L) = Fk(L)A_l/ZP (L) and v = Gg(L)xn:. The spectral density matrix of v¥ equals
I, for 6 € M, zero for 0 §£ M. Moreover, by the deﬁnltlon of sy—1 and Lemma 6, calling Aj_1
the first elgenvalue of the spectral density matrix of V —vF, we have Aj_1 (0) < 1/2%1q
for any 6 € II, so that ]|v] ! Jt|| <1/2F"Yforj=1,...,q.

Since we have

Hvﬁ k+h|| < H,U k+1H g Hvk-{—h 1 k+hH < ]/2k 1

then each component of {v¥, k € N} is a Cauchy sequence. Call v; the vector of the limits.
To prove (a), we have to show that each row of {G,(L), n € N} is a DAS. We have

IG%(Q) |2 =F, (Q)A; ! (H)ﬁn(9>7

whose diagonal entries cannot be larger than 1/A7 () by Fact My, since Fr,(6) € Kpr. The
latter ratio converges to zero a.e. in [—m, 7| and is less than 1 by Assumption 2, so that its
integral on [—m, 7] converges to zero by Fact Ly.

Finally, (b) follows from Lemma 7 and the fact that the spectral density matrix of v

equals I, for 6 € M, zero for 8 ¢ M. QED
Lemma 9. Suppose that (I) and (II) hold. There exists a g-dimensional orthonormal white-
noise vector process z such that z;; is an aggregate for j =1,...,q.

Proof. Define vy as the smallest among the integers m such that the measure of
LT, XL (0)>1}) >

and
My ={0€Tl, \] ,(0)>1}.

By recursion define v,, ¢ € N, as the smallest among the integers m such that
L{0€ Moy, A\ppy(0) >a}) 2

and
M, = {0 € Moy, X5,0(0) > ).

The measure of the set
Ny=MNnMyn---NnM,n---

is not less than w. Now define Ny starting with IT — Ny and using L(IT — N¢)/2 instead of 7,
N, starting with IT = Ny — Ny — -+- — N4y and using L(IT = N; — Ny —--- = N,—1)/2. We

have
T=NUNyU---UN,U---

and
2m = [:(N],) -+ [:(Ng) + -+ ﬁ(Na) -

Lemma 8 can be applied to the subset N,, with the sequence «,, suitably defined. We

obtain a ¢-dimensional vector v§ = (vf, v§ -+ vy )/ such that (i) v§;, is an aggregate
for 7 = 1,...,q; (il) its spectral density matrix is I; a.e. in Ny, zero for § ¢ N,. Now set
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zy = y oo vi. 1t is easily seen that the spectral density matrix of z; is I, a.e. in [~7, 7], so
that z is a g-dimensional orthonormal white noise process. QED

4.5 We now prove that the space spanned by z is G(x).
Let y; be an aggregate. Consider the projection

y: = proj(y[span(z)) + r.

We want to show that 7, is necessarily zero. Consider the (¢ + 1)-dimensional vector process
(z¢ 7). Its spectral density, call it W, is diagonal with I, in the ¢ x ¢ upper-left submatrix,
so that
det W(0) = S(r¢, e 0).
Since z;; and r; belong to G(x), let {a,;(L), n € N}, for j =1,...,¢+ 1 be DAS’s such

that

liman;(L)xs, = 25, for g=1,...,q,

hrl;ﬂ anq+1 (L)Xs"t =T¢.

Note that, possibly by augmenting the filters a,;(L) with zeros, we can assume the same
sequence {s,, n € N} for all j = 1,...,¢ + 1. Moreover: (1) ffﬂ |a%j(9)|2d0 converges to
zero for j =1,...,¢+ 1, so that a subsequence of aj,; converges to zero a.e. in [~m, 7] (Fact
La); (2) calling Z,, the spectral density matrix of the vector process

( Aanl (L)Xsnt anE(L)Xs,Lt Tt Qg+l (L)Xs”t ) ’

a subsequence of Z,, converges to W a.e. in [—m, 7] (Lemma 7). Thus, with no loss of
generality we can assume that aj ; converges to zero and Z, converges to W a.e. in [, 7].

Now, for j=1,...,q+1,set f,; = a;j]?’s” and gn; = a;; — f,;Ps,, so that
and
|25, (O)]* = [£a3(0)1 + |gns (D).

Since aj,; converges to zero a.e. in [~m, 7, then g,; converges to zero a.e. in [~m, 7].
Moreover, the definition of g,; and f,; implies that

an] (L)Xs“t = .f—‘n] (L)P (L)Xsnt + _gnJ(L)XSnt

=Sn

is the orthogonal projection of the LHS on the space spanned by p;Lk(L)Xsnt, fork=1,...,q
and ¢t € Z. As a consequence, the spectral density matrix Z,, is equal to the spectral density

matrix of

(£ (DB, (D)%s,e £ng(D)Rs, (L)Xt -+ £y (DB, (L)Xs0 )

Sy

call it Z!, plus the spectral density matrix of

(g (L)Xsnt _g_nz(L)Xs”t U _g_nq+1 (L)Xs“t) y

=2nl
call it 22: 2, = Z} + Z2.
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Now observe firstly that Z! is singular for any 6. Secondly, since g,;(6) is orthogonal
to pf (0),for k=1,...,q, by Fact M; (Appendix),

&nj (0)3%, (0)8n5(0) < X%, 411 l8ns ()]

Essential boundedness of A7, along with convergence to zero a.e. of gn; imply that 22
converges to zero a.e. in [—m, «w]. This implies that det Z,, converges to zero a.e. in [-m, 7]
and therefore that det W(0) = S(r¢,r4;6) = 0 a.e. in [—m, 7], so that ry = 0.

4.6 So far we have proved that if (I) and (1) hold then

Tit = Yit + Ost
vit = proj(zi|G(x)) = ¢;(L)z,

where z is a g-dimensional orthonormal white noise, and ¢; € LI([-=, 7],C). Suppose that
9 is idiosyncratic. By Fact M3, A} (8) > A% (0) — 2o, (6), so that AJ(0) = co ae. in [, 7]
Thus, to complete the proof of Theorem 2 we must only show that d is idiosyncratic.

We need some additional preliminary results. Suppose that v = {v:, t € Z} and
w = {wy, t € Z} are orthonormal g-dimensional white-noise vectors whose components
belong to Ly(P,C). Moreover, suppose that v and w are costationary, i.e. E(v;Ww;_) does

not depend on ¢, so that we can use the notation I} = E(v(W;_j). Setting

NOED S 0%

k=—co

it is easily seen that A(L)w, is the orthogonal projection of v; on the process w. Moreover,
A(F)vt, where ' = L' is the orthogonal projection of w; on the process v. Lastly, consider
the matrix A(e™*). Its (4, j) entry is the cross spectrum between vy and wj; and has therefore
modulus bounded by 1/2x for any 6 € [~m, 7.

Definition 10. Forn =1,2,...,00, let v, = {vpn, t € Z} be a sequence of g-dimensional
orthonormal white-noise vectors. Assume that v, and v, are costationary for all n and m.
Consider the orthogonal projection

Vmt = Amn(L)Vnt -+ pgnn’ (21)

and let D™ be the spectral density of pj*™. The sequence {v,, n € N} generates a Cauchy
sequence of spaces if, given € > 0, for § a.e. in [—m, 7] there exists an integer m(8) such
that for m > m.(0), trace(D™"(6)) < e.

Remark 10. Note that, if v,,; converges, it generates a Cauchy sequence of spaces, whereas
the converse does not necessarily hold. As we shall show, the normalized principal components
it generate a Cauchy sequence of spaces. However, they do not converge in general: for
example, take ¢ = 1 and assume that ¥} is a normalized principal component converging to
; then (—1)"4 is also a normalized principal component which does not converge.

Lemma 10. Assume that {v,, n € N} generates a Cauchy sequence of spaces and let
vy = {ys, t € Z}, with y; € Lo(P,C), be costationary with v, € Lo(P,C) for any n. Consider
the orthogonal projections of y; on the process vy, l.e. Ynt = proj(y¢|span(vy)). Then Yy,
converges in mean square to an element Yy in Lo(P,C).

18



Proof. We have
Yt = Ynt + Tt = bn(L>vnt + Tnt

Yt = Ymt + T'mt = bm(L)th + Tmt,

where by, (L) and b,,(L) are square summable g-dimensional filters, so that
bn (L)Vnt - bm (L)th = Tmt — Tnt-

The spectral density of the LHS is the cross spectrum between the LHS and the RHS. The
latter, due to the definition of r,,,; and rp;, is the sum of the cross spectrum between 7,,;
and by, (L)vme, call it Sy, and the cross spectrum between rp,; and bp(L)vy, call it S,.
Using (21), Sy is the cross spectrum between 7,y and by, (L)A™"(L)vy + by, (L) p™™, which
reduces to the cross spectrum between 7,; and b, (L)pi*", call it Cp,,. Now observe that
both the spectral density of ,; and the entries of b,,(e™*) are bounded in modulus by the
spectral density of y;. Thus, since {v,, n € N} generates a Cauchy sequence of spaces, Crp,
converges to zero a.e. in [—m, 7| as m,n — co. The same argument holds for Sp, so that
the spectral density of Y;,; — Y;,; converges to zero a.e. in [—m, 7] as m,n — oco. Since both
the spectral densities of Y,,; and of Y,,; are dominated by the spectral density of y;, by the
Lebesgue dominated convergence theorem (Fact L), the integral of the spectral density of
Y.t — Y, also converges to zero as m,n — oo, so that Y, is a Cauchy sequence. QED

Now let us go back to equation (12) and concentrate on a single line, i.e. the orthogonal
decomposition obtained by projecting z;; on the normalized principal components ¢7, 7 =

1,...,q. Calling m,,(L) the i—th (g-dimensional) row of P, (L) and q, (L) the i-th row of

Q, (L), we get

zit = (DALY} +q (L)Q, (L)Xnt.

T

Lemma 11. The sequence {", n € N} generates a Cauchy sequence of spaces.
Proof. For n > m consider (15) for C(L) = I

Yt = D(L)Y + p™" (22)

Calling D™" the spectral density of p{*™, convergence to zero of trace(D™™(6)) for 8 a.e. in
[—7, 7] and n > m is a consequence of Lemma 5. On the other hand,

i = D(F)Y]" + pi™. (23)
From (22) and (23) we get
I, = D(e”")D(e) + D" (8) = D(e¥)D(e™*) + D™ (0).

By taking the trace on both sides and noting that the trace of D(e?)D(e=*) is equal to the
trace of D(e™*)D(e?) we get

trace (D™"(6)) = trace (D"™(8)) .
Thus trace(D™™(8)) converges to zero for any diverging n and m. QED
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The following theorem, besides being useful to show that § is idiosyncratic, is important
per se, because of its implications for the estimation of common and idiosyncratic components

(see Forni, Hallin, Lippi and Reichlin, 1998).

Theorem 5. The sequence of projections v}, = 7rm(L)A1/2( Lyl =z, (L)P, (L)Xne, n €N
converges in mean square to i = proj(z|G(x)), for any 1.

Proof. By Lemmas 10 and 11 ~]; converges in mean square to an element 7, in X. Therefore
the sequence of the residuals 67, = z;; — y;; also converges to an element 4}, in X. By Lemma
7, 0}, must be orthogonal to 7}, at all leads and lags. Moreover, ~}, is an aggregate, since
7, (L)P, (L) is a DAS. To see this, consider that the spectral density of %, i.e. i ApTin,
is not larger than 7 7n; Ay, and is bounded above by the spectral density of z;, call it oy,
implying 7n:(0)Tni(0) < 0:(0)/A5,(0). The latter ratio converges to zero a.e. in [—m, 7]
and is bounded above by ¢;(6) by Assumption 2, so that Fact L; applies. Summing up, v};
belongs to G(x) and is orthogonal to &%, so that v}, = . QED

The following Lemma concludes the proof of Theorem 2.

Lemma 12. § is idiosyncratic.

Proof. Let us fix m and denote by X° the spectral density matrix of the vector process
St = (611 3¢ -+ Omt ). We want to show that the first eigenvalue of such matrix, i.e.
29,1 (8), cannot be larger than sup, A%, (6) = A2, (6) for any 0 € [—7, w]. Let £, n > m,
be the spectral density matrix of 8%, = (6%, % --- 6%,) and X% be its first eigenvalue.
By Theorem 5 4} converges to ¢;; in mean square for 1 = 1,...,m, so that, by Lemma 7, a
subsequence of 39" converges to 2 a.e. in [, 7). Assummg that hmn 0 = %0 ae.
in [—m, 7] avoids further complication in notation and does not imply any loss of generality.
Continuity of the eigenvalues as functions of the matrix entries (Ahlfors, pp. 300-6; see also
the proof of Lemma 1) implies that

lim AT (0) = 22, (6), (24)

a.e. in [, 7]. Moreover, note that X9 is the m x m upper-left submatrix of X", so that,
by Fact My, i
/\fm (0) < )\21 (0) = fnq—}—] (9)

for any n > m and any 6 in [—m, 7]. Hence by (24) AJ,,(8) < AZ,,(0). Since this is true for
any m,

AL(8) < Xj4a (0), (25)
so that A{ is essentially bounded. The statement follows from Theorem 1. QED
4.7 Now we prove Theorem 3. Assume that x fulfills Definition 9, so that

Tit = Xt + &it
Xit = bi(L)uy,
where u is ¢g-dimensional. By Theorem 2, x has also the representation
Tyt = Vit + Oit
Yit = proj(zy|G(x)) = ¢i(L)zy,
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where z is g-dimensional and
spai(z) = G(x).

Since £ is idiosyncratic
G(x) < span(x),

and obviously

span(x) C span(u).

On the other hand, since both u and z are g-dimensional, then
span(z) = G x) = Span(x) = span(u). (26)

Now, (26) implies that x;: € G(x) and & L G(x), so that xi;z = proj(z:|G(x)) and &; = d;.
Remark 11. Since we have proved that §;; = &;;, (9) and (25) imply that

§+1(9) - /\§(0)
a.e. in [—m, 7).

5. Non-stationary variables :

The case of trend stationary or difference stationary variables can be easily accommodated in
our model. Assuming that the nature of non-stationarity is correctly detected, then, in the
first case, i.e. x4y = T} + 2, where T} is a deterministic trend, our results should be applied
to the stationary components z;;. In the second case, assume, for the sake of simplicity, that
the variables z;; are [(1). Consider the differences y;¢ = (1 — L)z, and suppose that (I) and
(11) hold for /\g +1 and AY respectively. Then we have the representation

(1= L)zie = xar + &t
Xit = bi(L)uta

where u; is ¢-dimensional and £ is idiosyncratic. Now observe that the vectors xn: and
£, are identified, and so are the spectral density matrices XX and X¢. Therefore all the
information necessary to determine whether the x’s, or the &’s, are I(1) or I{0), and whether
cointegration relationships hold among the x’s or the &’s, can be recovered starting with the
spectral density matrices of the z’s.
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Appendix

Proof of Lemma 1. Since the leading coeflicient of the characteristic polynomial of %2
never vanishes, the eigenvalues, as functions of the entries of X7, are continuous. Precisely,
let M be the range of the function ¢ : [-7, 7] — C™*" that associates $2(6) with 6. There
exist n functions d; : M — R, that are continuous in M and such that §;(¢(8)) is a root
of the characteristic equation of 37(6) (see Ahlfors, 1987, pp. 300-6). Now, consider the

function vy : M — R defined as

Obviously A% (0) = v1(¢4(8)). By a standard argument v is continuous on M. Measurability
of ¢ (see Assumption 1) ensures measurability of AZ;. Now let k(1,x) be the integer such
that o1 ) (1) = v1(p). Define

va(ie) = max d(s).

J=1,n

FF#R(Lp)

Obviously AZ,(0) = v(¢(9)) and the argument used for the first eigenvalue applies. Itera-
tively we obtain that all the eigenvalues A7, are measurable. QED

Proof of Lemma 2. Let y = (y1 y2 -+ yn)' be an n-dimensional stochastic vector
with variance-covariance matrix . Let Ay be the k-th eigenvalue of ¥, in descending order,
and px an eigenvector of ¥ associated with Ax. We recall that:

Fact M. Fork=1,...,n, A\ is

s .
max [Ibyfl* = max bX¥b

st. beC”, |b|=1,b L p; for j < k.

Moreover, if b = py, then the orthogonality condition is fulfilled and ||pry|[* = Ay (see ?77).

Fact M. Forh k=1,...,n,let ¢ be any (k—1)-tuple {c;, j=1,...,k— 1}, where c; € C".
The eigenvalue Ay is

min mbax bXb
C

st. lbj=1,blcs,j=1,...k—1

(see Brillinger, 1981, p. 84, Exercise 3.10.16).

Going back to the proof, using Fact M; the statement of Lemma 2 is trivial for k& = 1.
For & > 1 consider:
méin max b>Z_ ,(6)b

. (27)
st. () bl=1,b Lcj,i=1,...,k—1; (II) the last component of b is zero.

Trivially, the value of (27) cannot exceed A%, (0), as obtained using Fact Mj. On the
other hand, the constraint on the last component of b implies that if b L c; then b is also
orthogonal to the k — 1 vectors of C" whose components are the first n components of ¢;, for
j=1,...,k—1. Thus the value of (27) is AZ,(0). QED

The following is a useful consequence of Fact M.
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Fact Ms. Let D and E be m x m Hermitian non-negative definite, and F' = D + E. Then

M <44 e
A <A e
o>
M o>

for any s =1,...,m.
Proof. For the first inequality observe that, calling Vs the set of all vectors b € C™ such
that |b| =1 and b L ¢j, where ¢;, 7 =1,...,5 -1, is a given (s — 1)-tuple of vectors in C™,

max bX/ b < max bE% + max bX¢b < max bX%b + max bX¢b < max bX%b + AL
beV, beV, beV, beV, bey; bev,

Then take the minimum over all (s — 1)-tuples. The second inequality follows in the same
way. The second and third are trivial. QED

Proof of Lemma 3. Let S'(0) = L,\%,(6) — X2(0) and consider the system of equations

b(9)S(6) = 0, (28)
with b(8) = (b1(0) b2(0) -+ b,(0)). The subset of [—m, 7] where rank(S*(6)) = 0, call
it Moy, is measurable, possibly empty. In My put pZ,(6) = (1 1 --- 1)/y/n. Let My be

the measurable subset of [, 7] where rank(S*(#)) = 1. Then let M{| be the measurable
subset of My where St (6) # 0. Put b2(0) = 1, b;(6) = 0 for j > 2, then obtain the unique
solution for by (0), i.e. by (0) = Si,(0)/S11(6). Putting p%,(8) = b(6)/|b(6)| in M} we have a
measurable function in M{ (notice that the choice —b(8)/|b(8)| would be also valid). Now
consider the subset of My — M{ where S3,(0) # 0, and repeat the construction by taking
bi(8) = 1, b;(8) = 0 for 5 > 2. It is clear how to proceed to cover My. Then consider
My, the set where rank(S'()) = 2, and so on until M,_;, the subset of [—m, 7| where
rank(S'(6)) = n — 1. Define the subset M7™* as that in Whlch the top-left submatrix of
order n — 1 of 8'(6) is non singular. Put b,(8) = 1 in M™™" and find the unique solution
o (28). Then again put pZ,(f) = b(8)/{b()|. Contmumg in this way until M™™' has
been covered we obtain a measurable function for pZ; defined on [—m, 7]. Now consider
S2(9) = 1,A%2,(0) — 7 and the system

b(8)S2(9) = 0

b(0)p5; (6) = 0. (29)

The procedure above can be applied to (29) so that we obtain a measurable pZ, fulfilling (1)
and (2). Iterating we reach the last step, when the system is

b(6)S™1(8) =
b(0)py;(0) =0 for j <n—1.

QED



Proof of Lemma 7. We have

lS(ATuBnaH) - S(A,B,Q)t
< [S(An, Bn;0) — S(An, B; )| + |S(An, B; 0) — S(A, B; 0)]
S(An, Bn — B;0)| + |S(An — A, B; )]

= |

< V/S(An, An;0)/S(B,, — B, By, — B;0) +/S(B, B;0)\/ (A, — A, A, — A;0)
< [.\/S(A,A; 0) + \/S(A, — A, A, — A 9)] VS(B, — B, B, — B, 0)
+/S(B,B;0)\/S(A, — A, A, — A;0).

Since S(A, — A, A,, — A;60) and S(B,, — B, B,, — B;8) converge to zero in the mean, by Fact
Ly there exists a sequence s; such that S(As, — A, As, — A;0) and S(Bs, — B, Bs, — B;0)

4

converge to zero a.e. in [—m, 7. QED

Fact S. Il y, € X, then y; has a spectral density.
Sketch of the proof. Let

Y = liran Z an; (L), (30)
g=1

let f, be the spectral density of Z?:] anj(L)zj¢ and gnm the spectral density of

> ani(D)zse =Y ami(L)zje.
G=1 j=1

Equation (30) implies that gn., converges to zero in mean as n and m tend to infinity. The
same argument employed in Lemma 7 leads to the conclusion that f,, converges in the mean,
call f the limit. Proving that f actually is the spectral density of y, is not difficult but rather
tiresome. The interested reader may request the proof from the authors.
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