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Key Points

• Low concentrations of
miR-146b-5p have an
adverse prognostic
impact in CLL patients.

• miR-146b-5p controls
IL-23 stimulation of
CLL cells by negatively
regulating the
expression of the
IL-12Rβ1 chain of the
IL-23R complex.
Chronic lymphocytic leukemia (CLL) cells express the interleukin-23 receptor (IL-23R)

chain, but the expression of the complementary IL-12Rβ1 chain requires cell stimulation via

surface CD40 molecules (and not via the B-cell receptor [BCR]). This stimulation induces the

expression of a heterodimeric functional IL-23R complex and the secretion of IL-23,

initiating an autocrine loop that drives leukemic cell expansion. Based on the observation in

224 untreated Binet stage A patients that the cases with the lowest miR-146b-5p

concentrations had the shortest time to first treatment (TTFT), we hypothesized that

miR-146b-5p could negatively regulate IL-12Rβ1 side chain expression and clonal

expansion. Indeed, miR-146b-5p significantly bound to the 3′-UTR region of the IL-12Rβ1
mRNA in an in vitro luciferase assay. Downregulation of miR-146b-5p with specific miRNA

inhibitors in vitro led to the upregulation of the IL-12Rβ1 side chain and expression of a

functional IL-23R complex similar to that observed after stimulation of the CLL cell through

the surface CD40 molecules. Expression of miR-146b-5p with miRNA mimics in vitro

inhibited the expression of the IL-23R complex after stimulation with CD40L.

Administration of a miR-146b-5p mimic to NSG mice, successfully engrafted with CLL cells,

caused tumor shrinkage, with a reduction of leukemic nodules and of IL-12Rβ1–positive CLL

cells in the spleen. Our findings indicate that IL-12Rβ1 expression, a crucial checkpoint for

the functioning of the IL-23 and IL-23R complex loop, is under the control of miR-146b-5p,

which may represent a potential target for therapy since it contributes to the CLL

pathogenesis. This trial is registered at www.clinicaltrials.gov as NCT00917540.
2022; prepublished online on Blood
rsion published online xxx 2022. https://
6.

thors.

er for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/geo/) and

are accessible through GEO Series accession number GSE40533. Contact the cor-
responding author for other forms of data sharing: giovanna.cutrona@hsanmartino.it.

The full-text version of this article contains a data supplement.
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Introduction

MicroRNAs (miRNAs) represent a family of noncoding RNAs that
prevent the translation and promote the degradation of specific
mRNAs by binding to their 3′-UTR.1,2 Several miRNAs have been
implicated in the pathogenesis of chronic lymphocytic leukemia
(CLL),3-5 a disease characterized by the accumulation of monoclonal
CD5+CD19+ B cells in lymphoid organs and blood.6-9 In patients
with 13q deletions (del[13q]), the most common cytogenetic lesion
of CLL,10,11 the genes encoding the miR-15a/miR-16-1 cluster are
targeted by the deletion.3,12-15 The downregulation of these regula-
tory miRNAs can lead to an increased expression of antiapoptotic
molecules, which facilitate clonal expansion, inducing further trans-
forming events.12-16 MiRNA expression profile studies have disclosed
correlations between certain miRNA signatures and cytogenetic
features and/or IGHV gene mutational status,17-19 which represent
recognized prognostic markers of CLL. Finally, certain miRNA
signatures are associated with disease progression and
outcome4,17,20-22 or with the onset of a Richter transformation,23-25 a
deadly condition characterized by the development of an aggressive
lymphoma in CLL patients.7,26

Previously, we reported an inverse correlation between miR-146b-
5p concentrations and progression-free survival in a cohort of
>200 newly diagnosed Binet stage A patients; cases with the most
aggressive clinical course had the lowest miR-146b-5p concen-
trations.17 The same inverse correlation was not observed with
miR-146a-5p, a paralog of miR-146b-5p, in the same patient
cohort. Although not validated by quantitative reverse transcription
polymerase chain reaction (qRT-PCR), these differences were
substantial and somewhat surprising, given that the 2 miRNAs
share many predicted target genes and the same seed
sequence.27 However, the 2 miRNAs are encoded by genes
located on different chromosomes (chromosome 5 and 10 for miR-
146a-5p and miR-146b-5p, respectively), which may create dif-
ferences in the posttranscriptional processing associated with the
2 other nucleotides encoded at the 3′ end.27 Another surprising
difference was that the CLL cases with the lowest miR-146b-5p
concentrations were also IGHV-unmutated (UM), while this corre-
lation was not observed in the case of miR-146a-5p.

Both miR-146a-5p and miR-146b-5p control the proliferation of a
variety of cells, particularly because they regulate NF-kB (nuclear
factor kappa B) activation, a key transcription factor involved in cell
proliferation.28,29 Both miR-146a-5p and miR-146b-5p exert a
negative regulatory control on the expression of TNFR6 (tumor
necrosis factor receptor-6) and IRAK1 (interleukin-1 receptor-
associated kinase 1), 2 adaptor molecules that transduce signals
delivered via several membrane receptors, such as those of the
TNFR and the Toll-like receptor/IL1R superfamilies27,30-32 culmi-
nating in NF-kB activation. This function accounts in part for the
spontaneous onset of cancers in mice with deletions of miR-146a-
5p33,34 and the inverse correlation reported in human cancers
between tumor aggressiveness and miR-146b-5p concentra-
tions.35-40 Inflammatory and autoimmune phenomena observed in
mice with deletions of these miRNAs may also be explained by an
absent NF-kB regulation.34,41-45 However, the observation that
miR-146b-5p is more effective than miR-146a-5p in determining
CLL clinical course17 suggests that miR-146b-5p is implicated in
additional mechanisms supporting CLL clonal expansion that are
5594 MATIS et al
different from TRAF6 (tumor necrosis factor receptor-associated
factor 6) and IRAK1 control.

Considerable evidence indicates that CLL clonal expansion is pro-
moted by interactions with cells and cytokines from the microenvi-
ronment.46,47 Moreover, both miR-146a-5p and miR-146b-5p can
regulate the release of and the response to cytokines.41,48,49 Based
on these considerations, we hypothesized that miR-146b-5p was
involved in the regulation of the interactions between CLL cells and
the microenvironment. We focused on IL-23,50 a cytokine of the IL-
12 cytokine family, released primarily by dendritic cells, which is
capable of driving T helper (Th) cell differentiation toward the Th17
cell subset.51 In a previous study, we found that IL-23 is instrumental
in promoting CLL cell proliferation and clonal expansion.50 Normally,
circulating CLL cells express variable concentrations of the IL-23R
chain, 1 of the 2 chains forming the heterodimeric IL-23R com-
plex, but are incapable of responding to IL-23 because of the
absence of its complementary chain, IL-12Rβ1. Upon appropriate
activation signals in vitro, such as the interaction with activated T
cells or other CD40L-expressing cells, but not via direct stimulation
of the B-cell receptor (BCR), CLL cells express the IL-12Rβ1 chain
and begin to secrete IL-23.50 This initiates an autocrine/paracrine
loop (which we have named the IL-23/IL-23R complex loop),
whereby CLL cells respond to the IL-23 that they produce. This
event promotes leukemic cell proliferation50 and appears to be very
relevant for CLL cell growth/expansion since most leukemic cells in
the proliferating centers of lymphoid tissues, infiltrated by CLL cells,
produce IL-23 and express a complete IL-23R complex.50Moreover,
in vivo treatment with antibodies to IL-23p19 (1 of the 2 chains
forming the IL-23 molecules) eradicates CLL clones in xenografted
mice.50 Because the expression of the IL-12Rβ1 chain by CLL may
represent a key checkpoint for the initiation of the loop, we
hypothesized that miR-146b-5p was involved in regulating the
expression of this chain. Indeed, the present findings support our
hypothesis and show that miR-146b-5p can be a key regulator in
controlling CLL cell clonal expansion.

Methods

Patients and CLL cell preparations

The patients investigated were part of the O-CLL1 study
(clinicaltrials.gov identifier NCT00917540), an observational cohort
of patients with untreated Binet A CLL collected from several Italian
institutions enrolled within 12 months from diagnosis.17,52 Supple-
mental Table 1 in the data supplement summarizes the clinical fea-
tures of the patients investigated.52-54 In total, samples from 224 CLL
cases were studied for expression profiles and single miR expres-
sion17,52; the data are deposited at the NCBI (National Center for
Biotechnology Information) GEO (Gene Expression Omnibus)
repository (http://www.ncbi.nlm.nih.gov/geo/) and are accessible
through GEO Series accession number GSE40533. For CLL cases
not included in the miRNome study, we measured miR-146b-5p
concentrations by quantitative real-time PCR (RT-qPCR). Also, for
these cases, miR-146b-5p expression was significantly correlated
with immunoglobulin heavy chain variable region (IGVH) gene muta-
tional status (see supplemental Methods, supplemental Table 2, and
supplemental Figure 1). Peripheral blood mononuclear cells from
patients with CLL were isolated by Ficoll-Hypaque (Seromed,
Biochrom) density gradient centrifugation, and CD19-positive CLL
cells were enriched by negative selection as previously reported50
25 OCTOBER 2022 • VOLUME 6, NUMBER 20
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(see supplementalMethods).Written informed consent was obtained
from all patients in accordance with the declaration of Helsinki. The
ethics committees from each participating center (listed in the
acknowledgments) approved this study.

Viable cell counts of CLL samples were conducted before each
experiment performed in vitro and in vivo by trypan blue staining
and automatic cell counter (Countess, Invitrogen). Values >80% of
live cells were considered suitable for the subsequent experimental
procedures.

Cell transfection

MirVana miRNA mimics or inhibitors (Ambion Inc, Thermo Fisher
Scientific; Grand Island, NY) were delivered to CLL cells using the
Neon Transfection System (Invitrogen, Thermo Fisher Scientific) as
described15 or by the Nucleofector-4D Transfection System
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(Amaxa), (supplemental Methods). The following miRNA mimics
and inhibitors were used: hsa-miR-146b-5p (Assay ID: MC25960;
MH25960), hsa-miR-146a-5p (Assay ID: MC10722), miRNA
mimic, Negative Control#1 (Cat. no. 4464058), miRNA inhibitor,
Negative Control #1 (Cat. no. 4464076). The transfection effi-
ciency was verified by RT-qPCR (see supplemental Methods).

Detection of the IL-23R complex

Cell surface IL-12Rβ1 and IL-23R chains were detected by flow
cytometry.50 IL-12Rβ1 expression also was analyzed by Western
blotting with mouse anti–IL-12Rβ1 monoclonal antibody (mAb) (C-
20, sc-658, Santa Cruz Biotechnology, Inc.) and an anti-GAPDH
mAb (AM4300, Ambion Inc, Thermo Fisher Scientific) as a
loading control. qRT-PCR assessed the IL-12Rβ1 side chain
mRNA (see supplemental Methods).
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Luciferase reporter assays

MiRNA target reporter vectors were purchased from Origene (IL-
12Rβ1, Accession No. NM_153701, transcript variant 2, Cod.
SC208722) and Switchgear (IL-23R, Cat. S806498, Accession
No. NM_144701). IL-12Rβ1-MUT reporter vector, obtained by
deletion of miR-146b-5p seed target site sequence (GTTCTCA
[nt328-nt334]), was custom produced by Origene (Figure 2C). 3′
UTR assays are described in the supplemental Methods. HEK293
cells were used for transfection and the luciferase reporter assays.
Preliminary tests showed that CLL-related cell lines (MEC-1 and
OSU cell lines) were not suitable for testing because of the poor
yield of the transfection step.

CLL cell cultures

After transfection with the appropriate miRNA, CLL cells were
cultured in RPMI 1640mediumwith γ-irradiated50 cells from a stable
CD40L-expressing NIH-3T3 (CD40L-TC) murine fibroblast cell line
or with the NIH-3T3 cells transfected with the pIRES empty vector
(Mock) (1 NIH-3T3 cell: 100CLL cells) at a concentration of 2 × 106

cells per mL at 37◦C in an atmosphere containing 5% CO2.

IL-23 detection

IL-23 cytokine production was measured in cell culture superna-
tants using the Human Cytokine/Chemokine Panel II and Luminex
MAGPIX System (Merck Millipore).

Xenogeneic mouse transplantation

These procedures were described previously,15,50,55 and additional
details are provided in the supplemental Methods. All animal
experiments were performed according to the current national and
international regulations and were approved by the Licensing and
Animal Welfare Body of the IRCCS-Ospedale Policlinico San
Martino, Genoa, Italy.

Statistical analysis

The statistical package SPSS for Windows (release 13.0, 2004
software, SPSS UK; Surrey, United Kingdom) was used for all
analyses. Statistical comparisons were performed using 2-way
tables for the Fisher’s exact test and multiway tables for the
Pearson’s χ2 test. Statistical comparisons between related
Figure 2. Potential regulatory function of miR-146b-5p on the expression of IL-1

expression was measured in cultured HEK293 cells. These cells were transfected with eithe

as indicated. Both firefly luciferase and Renilla luciferase activities were measured after a 48

CTR mimic and represent the mean of 5 and 7 experiments, respectively, carried out in tripli

region on miRNAs and the potential target sequence on mRNA (site type 7mer-A1, Target

the 3′UTR IL-12Rβ1 is indicated in red. The position coordinates are indicated for the IL-12

The insert sequence of 3′ UTR clone NM_153701 (Origene, cod SC208722) (IL-12Rβ1 3’

the seed sequence (nt328-nt334, Origene) (IL-12Rβ1 3′ UTR-MUT). Blue, stop codon; re

transfected with either the IL-12Rβ1 3′UTR-WT or with IL-12Rβ1 3′UTR-MUT with miR m

measured after a 48-hour culture. Data shown are relative to the reporter vector transfect

experiments carried out in triplicate. P value is statistically significant (P < .05, t test). (E) We

cells from 7 different cases transfected with miR-146b-5p inhibitor or miR-CTR inhibitor an

that of GAPDH or β-Actin of cells transfected with miR-146b-5p inhibitor/IL-12Rβ1 normaliz

relative abundance of IL-12Rβ1 protein are also indicated for each CLL sample and calculate

relative to the control. (G) Summary of the results of the experiments in (F). Protein bands fr

UVITEC. Data are presented as IL-12Rβ1/GAPDH or IL-12Rβ1/β-Actin (mean ± SD). The

inhibitors is indicated (Wilcoxon test). *P < .05.
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samples were carried out by Wilcoxon or Mann-Whitney U tests.
Time-to-first treatment (TTFT) analyses were performed using the
Kaplan-Meier method. Statistical significance of associations
between individual variables and survival was calculated using the
log-rank test. The prognostic impact for the outcome variable was
investigated by univariate and multiple Cox regression analysis.
Data are expressed as hazard ratio (HR) and 95% confidence
intervals (CIs). A value of P < .05 was considered significant for all
statistical calculations. Values are given as mean ± SD.

Results

Predictive power of miR-146b-5p expression by

CLL cells

First, we confirmed that miR-146b-5p concentrations maintained
their prognostic power using a large CLL cohort described previ-
ously (O-CLL1 protocol).52 This comprised 224 Binet stage A
patients, 48 of whom met the current diagnostic criteria of clinical
monoclonal B-lymphocytosis.52,56 As shown in Figure 1A, miR-
146b-5p was less expressed in CLL cases with IGHV-UM genes
than in those with mutated IGHV (IGHV-M). The majority (41 of 56
[73%]) of cases with the lowest miR-146b-5p concentrations (first
quartile) were IGHV-UM (Figure 1A). The median follow-up time in
the cohort investigated was 83 months (range, 1-129), and 94
patients had progressed and required therapy at the time of the
study censoring. Cases within the quartile with the lowest miR-
146b-5p concentrations (first quartile) also had the shortest TTFT
(Figure 1B). MiR-146a-5p failed to identify patients with a shorter
TTFT (Figure 1C), a finding consistent with the observation that the
concentrations of miR-146a-5p were similar in IGHV-M (n = 144,
mean ± SD = 49 ± 95) and IGHV-UM cases (n = 80, mean ± SD =
45 ± 47) (supplemental Figure 2A-B). Furthermore, no correlation
was observed between the expression of miR-146b-5p and miR-
146a-5p, although the differences in expression between quartiles
were similar for both miRNAs (supplemental Figure 2C-D).

In a Cox multivariate model, together with other prognostic markers
(IGHV-UM, CD38-positive, ZAP-70–positive, mutated NOTCH1
gene, RAI stage, FISH del(17p) or del(11q), β2-microglobulin
(β2-M) values ≥5 mg/dL, and patients with a peripheral
B-lymphocytosis of ≥5000/mm3), low miR-146b-5p expression
2Rβ1. (A) The inhibitory effect of a given miRNA on a target sequence (3′UTR)
r the IL-23R 3′UTR or the 3’ UTRI L-12Rβ1 together with miR mimics and miR control

-hour culture. Data shown are relative to the reporter vector transfected with the miR

cate. *P < .05. (B) Sequence alignment of miR-146b-5p and miR-146a-5p. The seed

scan release 7.2) are indicated in green. A further base pairing of miR-146b-5p with

Rβ1 transcript isoform 3′ UTR: ENSG0000096996.11: ENST00000322153.7. (C)

UTR-WT) and the same insert deleted of the sequence GTTCTCA complementary to

d, cloning site; highlighted in green, the seed sequence. (D) HEK 293 cells were

imics and miR control. Both firefly luciferase and Renilla luciferase activities were

ed with the miR CTR mimic (reference line at 100%) and represent the mean of 4

stern blotting analysis of IL-12Rβ1 and GAPDH or β-Actin expression in purified CLL

d cultured for 48 hours. (F) Fold change values of the IL-12Rβ1 signal normalized to

ed signal of cells transfected with miR-CTR inhibitor. Percentage (%) changes in the

d as (fold change − 1) × 100. A positive percentage indicates increased abundance

om immunoblotting were analyzed using ImageJ Analysis Software or by Alliance LD,

P value of the difference between CLL cells treated with miR-146b-5p vs miR-CTR
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Figure 3 (continued) Expression of the IL-12Rβ1 chain and a functional IL-23R complex following downregulation of miR-146b-5p. Purified CLL cells were transfected

with miR-146b-5p inhibitor or miR CTR inhibitor, cultured for different times and analyzed for the IL-23R complex expression and for IL-23 production. (A) Time course analysis of the IL-23R

complex expression after transfection with miR CTR inhibitor or miR-146b-5p inhibitor in a representative CLL case (GE1-AG114). Cells expressing the IL-23R complex were measured by

flow cytometry, determining the simultaneous expression of both the IL-23R and IL-12Rβ1 chains. Double-positive cells were considered as IL-23R complex-positive. Only viable cells were

gated, andof theseweremainlyCD19+CD5+since cellswith this phenotype thatwere purifiedbefore transfection (see also supplemental Figure 7). (B-D)Summary of timecourse expression

of IL23R complex, (C) IL-12Rβ1, and (D) IL-23R side chain determined in cells from 8 CLL cases by flow cytometry before (T0) and after treatment as in (A). Data are expressed as a

percentage of positive cells (mean±SD). (E) IL-23 production in cell supernatants from 6CLL cases treated as in (A). (F) Representative experiment on cells fromGE1-AG114CLL case to

show the presence of a functional IL-23R complex. Purified CLL cells were transfected with the indicated miR inhibitors and cultured for 24 to 72 hours in the presence or absence of IL-23

(100 ng/mL), with/without IL-23-neutralizing mAbs (αIL-23p19). Viable cells (annexin-V/PI-negative cells) were determined after a 72-hour culture. (G) Summary of time course experiments

on cells from 8 CLL cases treated and analyzed as in (F). Data are plotted as percent of viable cells mean ± SD, and the P value indicates the differences between the different culture

conditions. (H) Determination of cell cycle phases by flow cytometry in CLL cells (GE1-AG114) transfected with the indicated miR inhibitors and cultured for 48 hours in the presence or

absence of IL-23 (100 ng/mL), with/without IL-23 neutralizing mAbs (αIL-23p19) in the indicated combinations. Flow logic software was employed for the analyses. Proliferating (G2M) cells

are indicated in green. (I) Summary of experiments on cells from 8 different CLL cases performed and analyzed as in (I). The values were determined after 48 hours in culture. P values are

indicated (Wilcoxon test). *P = .04 and **P = .0078.
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Figure 4 (continued) Downregulation of miR-146b-5p expression by CLL cells cocultured with CD40L-TC. (A) Comparison of IL-23R complex expression by cells

from a representative CLL case (GE1-AG114) transfected with the indicated miR inhibitors or cocultured with CD40L-TC or mock control cells for 48 hours and analyzed by flow

cytometry. (B) Summary of data on IL-23R complex expression (determined by flow cytometry) after a 48-hour exposure of purifiedCLL cells to miR-146b-5p inhibitor or CD40L-TC as

in (A). CLL cells were from cases GE1-AG114, GE1-DM210, GC0015, SV1-SA, SR1-ME1077, MG0482, VF0384, and CM18. P values of the difference between CLL cells treated

with miR-146b-5p vsmiRCTR inhibitors or exposed toCD40L-TC vsmock cells are indicated (Wilcoxon test). **P= .0078. (C) Time course experiments to determine cell viability, cell

activation, andmiR-146b-5p expression following coculture with CD40L-TC. The top panels showCLL cells morphology based on their side scatter-A and forward scatter-A features

before (T0) and after CD40L engagement in the representative CLL caseGE1-CC190. The gate (live gate) indicates viable cells. Lower panels summarize data of the experiments in 3

different CLL cases (GE1-GA191, GE1-CC190, and SR1-ME1077). Cell viability was measured by flow cytometry by excluding annexin-V/PI-positive cells (left panel). Expression of

the CD80 activation marker by purified CLL cells was evaluated by flow cytometry and is indicated as the percentage of positive cells in the viable cell gate (middle panel). The lower

right panel shows miRNA expression by RT-qPCR. Data are expressed as ΔCT of miR-146b-5p vs miR-93. Data are plotted as mean ± SD. (D) RT-qPCR analysis of miR-146b 5p

(CLL cases PF0024, HG0135, SR0112, CA0058, RD0468, and LG0337) and IL-12Rβ1 mRNA (CLL cases PF0024, HG0135, CA0058, RD0468, MA0151, and AR0090)

expression by CLL cells transfected with miR-146b-5p inhibitors and subsequently cultured with CD40L-TC for 48 hours. miR-146b-5p expression was calculated as fold change

compared with values observed in CLL cells transfected with miR-CTR inhibitors normalized to RNU44 and U6 small nuclear RNA(left panel). IL-12Rβ1 mRNA expression was

calculated as fold change using CLL cells transfected with miR CTR inhibitor cells as calibrator normalized vs POL2RA gene mRNA (right panel). Data are plotted as mean ± SD. (E)

IL-12Rβ1 chain expression by CLL cells from cases PF0024, HG0135, SR0112, CA0058, DF0319, RD0468, MA0151, AR0090, PD0164, and SR1-ME1077 transfected with the

indicated miR inhibitors and cultured for 72 hours in the presence of CD40L-TC.Cells were analyzed by flow cytometry, and data are expressed as a percentage of positive cells. (F) IL-

23R complex expression by CLL cells of the same cases analyzed in (E). Data are expressed as a percentage of positive cells (mean ± SD). P values of the difference between

stimulated CLL cells and control samples are indicated (Wilcoxon test). *P < .05. (G) Flow cytometric analysis of IL-21 receptor expression by CLL cells treated as in (E) in a

representative case DF0319. (H) Comparison of IL-23R complex or IL-21R expression by CLL cells from 5 cases (HG0135, SR0112, DF0319, RD0468, and PD0164) treated with

the indicated miR inhibitors and cultured with CD40L-TC cells. Data are expressed as a percentage of positive cells (mean ± SD).
failed to predict TTFT (supplemental Tables 3 and 4, Model 1).
However, following the stratification of cases according to the
IGHV mutational status, IGHV-UM cases with the lowest miR-
146b-5p concentrations (first quartile) had TTFT curves that
were significantly different from those of cases in the remaining
quartiles. These differences were not observed in IGHV-M cases
(Figure 1D-E). The analysis of the quartiles calculated within each
IGHV-M and IGHV-UM group demonstrates the consistent survival
association only within the IGHV-UM group (supplemental
Figure 3). Cox multivariate analysis, with the variables used above,
demonstrated a significant independent association between low
concentrations of miR-146b-5p and clinical outcome (HR, 2.0;
95% CI, 1.1-3.9; P = .035) (Figure 1F) in IGHV-UM cases.
Observations in 21 pairs of CLL cell samples taken from the same
patients at disease onset and progression showed no changes in
miR-146b-5p concentrations at disease progression (supplemental
Figure 4).

Analysis of mutations, CNA, and methylation status

of the miR-146b-5p locus

To investigate possible mutations and copy number alterations
(CNAs) on miR-146b and its putative promoter/enhancer regions
25 OCTOBER 2022 • VOLUME 6, NUMBER 20
possibly responsible for the occurrence of lower concentrations of
miR-146b-5p in a subset of patients with CLL, we analyzed a
dataset of 551 patients with CLL (CLLE-ES)57 by ICGC (Interna-
tional Cancer Genome Consortium) Data Portal (release_28),58

that collects sequencing data from different repositories,
including the European genome–phenome archive. No patients
with CLL presented somatic mutations in miR-146b genomic
region (chr10:104196269-104196341) or putative promoter/
enhancer regions predicted by GeneHancer59 (supplemental
Table 5).

CNA analysis performed on the same patients with CLL dataset
showed the existence of a loss of the genomic region, including
miR-146b, in 7 of 551 (1.3%) patients. CNA coordinates and
patient characteristics are reported in supplemental Table 6.
Similar results were obtained by Leeksma and colleagues,60

who retrospectively analyzed 2293 arrays for CNA assessment
from 13 diagnostic laboratories according to established stan-
dards and found 10q losses in 25 of 2293 patients (approxi-
mately 1%). About half of these (13 of 2293 [0.6%]) showed
10q deletion encompassing miR-146b at the 10q24.32 locus.
Therefore CNA at the miR-146b locus could not account for
our observations.
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We then investigated the possibility that miR-146b-5p expression
in CLL could be epigenetically regulated. Methylation status of miR-
146b locus was explored in CLL cases, and normal B-cell samples
by whole-genome bisulfite sequencing reported in the BluePrint
Data Analysis portal (http://dcc.blueprint-epigenome.eu),61

considering a region spanning 500 bp upstream and down-
stream the miR-146b locus, respectively (GRCh37.p13
chr10:102436500-102436609, EnsEMBL version: 79).

In CLL samples, mean concentrations of hypomethylation or emi-
methylation were detected in the region upstream or in the 150 bp
immediately downstream miR-146b locus, whereas hyper-
methylation was found in the region encompassing miR-146b and
in more downstream regions. In naïve and memory B cells from
peripheral blood, respectively, a global pattern of hypomethylation
was evidenced in the upstream regions, whereas hypermethylation
was observed downstream to miR-146b locus (supplemental
Figure 5). Therefore, a wider range and higher methylation con-
centrations than normal were observed in the upstream region of
the miR-146b locus in CLL samples.

In addition, the DNA methylation of the miR-146b-5p gene sug-
gests that DNA methylation is directly involved in the regulation of
its biogenesis.62 This regulation could be dependent on activating
stimuli received by neoplastic cells in the lymphoid organs.

Regulation of IL-23R complex expression by

miR146b-5p in CLL cells

We next investigated whether miR-146b-5p could regulate the
expression of IL-23R and/or IL-12Rβ1 chains. CLL clones can be
subdivided into those with a low (IL-23R–low) or a high level of IL-
23R (IL-23R–high) expression, respectively, when stratified
according to a cutoff of IL-23R chain-positive cells lower or greater
than 23%.50 We performed a correlation analysis to ascertain
whether miR-146b-5p was lower in cases with higher IL-23R
expression in a group of 93 CLL patients (40 cases IL-23R–low
and 53 cases IL-23R–high). Although a significant anticorrelation in
expression was detected (RHO−0.291; P = .005) (supplemental
Figure 6), in vitro luciferase reporter assay failed to demonstrate a
significant binding of miR-146b-5p to the IL-23R 3′UTR mRNA
(Figure 2A).

We used a recently developed web tool named miRabel (http://
bioinfo.univ-rouen.fr/mirabel/)63 to investigate the potential bind-
ing of miR-146b-5p to the 3′UTR of the IL-12Rβ1 chain mRNA (for
Figure 5. Influence of miR-146b-5p concentrations on the expression of the IL-12

transfected with the indicated miRNA mimics and cultured for 48 hours with CD40L-TC an

PF0024, DF0319, SR0112, CA0058, RD0468, MA0151, AR0090, LG0337, PD0164, an

chain expression by flow cytometry in 1 representative CLL case (SR1-ME1077) cultured w

were considered IL-23R complex-positive. (C) IL-23R complex expression by CLL cells (c

PD0164, and SR1-ME1077) transfected with the indicated miRNAs and cultured with CD

23R+) positive cells (mean ± SD). (D) IL-12Rβ1 side chain, (E) IL-23R side chain, and (F) IL

Data are expressed as a percentage of positive cells (mean ± SD). (G) Ki67 expression w

following transfection of the indicated miRNA mimics. Data from a representative case (C

expressing both IL-23R complex and Ki67 in the same representative experiment as in (E)

receptor complex. Ki67+ cells gated in (E) are highlighted by the green dots, whereas the

determinations obtained on 11 different CLL cases (PF0024, HG0135, SR0112, CA0058,

72-hour culture with CD40L-TC following transfection of the indicated miRNA mimics. Data

cells are indicated (Wilcoxon test). *P < .05.
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details, see supplemental Methods). This approach predicted a
substantial binding capacity (score 0.3572489917218290), which
was confirmed experimentally in luciferase reporter assays
(Figure 2A), showing an average reduction of the luciferase activity
of 35 ± 10.3% (mean ± SD). In contrast, miR-146b-5p did not
efficiently bind the IL-12Rβ1 3′UTR–MUT with an average reduc-
tion of the luciferase activity of 10 ± 6% vs 33 ± 11% of the 3′UTR
WT (mean ± SD; P = .01) (Figure 2C-D) confirming the specificity
of the interaction between the miR-146b-5p seed sequence and
the complementary sequence on the IL-12Rβ1 chain mRNA. The
possible binding of miR-146a-5p to the 3′UTR of the IL-12Rβ1
chain mRNA, predicted by the same algorithms, was not confirmed
experimentally (Figure 2). To further confirm the miRNA-mediated
regulation IL-12Rβ1 side chain, primary CLL cells were tran-
siently transfected with a specific miRNA inhibitor targeting miR-
146b-5p or with a miR-control inhibitor (a random sequence
molecule with no identifiable effects on known miRNA functions)
and cultured for 48 hours. A consistent upregulation of the IL-
12Rβ1 side-chain protein by knocking down miR-146b-5p
expression was found by Western blot (Figure 2E-G).

Upregulation of the IL-12Rβ1 chain and expression of

a functional IL-23R complex in CLL cells following

downregulation of miR-146b-5p

The above target validation experiments prompted tests aimed at
verifying whether miR-146b-5p inhibition could induce the expres-
sion of the Il-12Rβ1 side chain and a functional IL-23R complex on
the surface of CLL clones already expressing an IL-23R side chain.
Purified CLL cells from 8 IL-23R–high cases (35 ± 11% [mean ±
SD] positive cells) (GE1-AG114, GE1-DM210, GC0015, SV1-SA,
SR1-ME1077, MG0482, VF0384, and CM18) were transiently
transfectedwith amiR-146b-5p inhibitor or with amiR-CTR inhibitor,
cultured for different times, and tested for IL-12Rβ1 and IL-23R side
chains expression. Cells transfected with miR-146b-5p inhibitor had
a significantly increased expression (P = .0078) of IL-23R complex
(average increase value of 57 ± 12% positive cells at 72 hours
in culture [mean ± SD]) compared with the control cells
(Figure 3A-B). The increased IL-23R complex expression was
associated with an upregulation of the IL-12Rβ1 side chain (average
increase of 51 ± 9% positive cells at 72 hours [mean ± SD]) that
was significantly different (P = .0078) from the control samples; in
contrast, the expression of the IL-23R side chain remained virtually
unchanged (Figure 3C-D). The cells positive for the chains of the
Rβ1 chain by CLL cells cocultured with CD40L-TC. (A) Purified CLL cells were

d IL-12Rβ1 mRNA concentrations determined by RT-qPCR. The cases studied were

d HG0135. Data are plotted as mean ± SD. (B) Evaluation of IL-23R and IL-12Rβ1
ith CD40L-TC for 72 hours. Only viable cells were gated, and double-positive cells

ases PF0024, HG0135, SR0112, CA0058, DF0319, RD0468, MA0151, AR0090,

40L-TC for 72 hours. Data are expressed as a percentage of double (IL-12Rβ1+IL-
-23 side chain-only expression by the CLL cells from the same cases analyzed in (C).

as analyzed by flow cytometry in CLL cells cultured with CD40L-TC for 72 hours

LL RD0468) are shown. (H) Multiparametric flow cytometry test to detect cells

. The cells were stained for Ki67 and the IL-12Rβ1 and IL-23R chains of the IL-23

whole cell population is indicated by gray dots. (I) Summary of Ki67+ cells

DF0319, RD0468, MA0151, AR0090, PD0164, LG0337, and SR1-ME1077) after a

are expressed as mean ± SD. P values of the difference between treated and control
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IL-23R complex were identified within the gated populations of
viable cells (Figure 3A and supplemental Figure 7). IL-23 released by
CLL cells in the culture supernatants was also measured. There
were no differences in the IL-23 produced by the miR-146b-5p
inhibitor transfected and control cells (Figure 3E).

Next, we investigated the functional features of the IL-23R complex
expressed by CLL cells. CLL cells purified from the same 8 patients
were transiently transfected with the miR-146b-5p inhibitor or with
the miR-CTR inhibitor and cultured in the presence or absence of
recombinant IL-23 for different time points. Upon exposure to
exogenous IL-23 in culture, significant increases (P = .0078) in cell
viability (mean ± SD increase at 72 hours, 22.6 ± 10%) (Figure 3F-
G) and of cycling cells (mean ± SD increase, 48.7 ± 27%)
(Figure 3H-I) were observed in suspensions treated with the miR-
146b-5p inhibitor; these effects were abrogated by the addition
of a specific IL-23 mAb (αIL-23p19) to the culture supernatant
(average inhibition at 72 hours, 37 ± 16%, for cell viability, and
84 ± 15% for cycling cells) (Figure 3F-I).

Downregulation of miR-146b-5p and expression of

the IL-23R complex by CLL cells stimulated with

CD40L

Since stimulation of CLL cells with CD40L in vitro induces the
expression of a functional IL-23R complex,50 we investigated whether
the same stimulation caused the downregulation of miR-146b-5p.
Purified CLL cells from the 8 patients studied above were either
transfected with the miR-146b-5p inhibitor or cultured with CD40L-
TC. In both instances, the expression of the IL-12Rβ1 chain (and
consequently of the IL-23R complex) was observed in amounts
superior to those observed in the respective control cultures (average
increase of 46 ± 19% for miR-146b-5p inhibitor treatment and of
77.3 ± 15.6% for CD40L-TC stimulation [mean ± SD], respectively)
(Figure 4A-B). To investigate the concentrations of miR-146b-5p
following CD40L-TC stimulation, purified CLL cells from 3 different
cases with a variable baseline amount of miR-146b-5p were cultured
with CD40L-TC and harvested at intervals. Viable cells were
measured by flow cytometry by excluding annexin-V/PI-positive cells,
whereas activated cells were identified as CD80+ cells (Figure 4C).
Cell viability remained high throughout the culture, while there was a
progressive acquisition of CD80 expression over time. Exposure to
CD40L in vitro caused a substantial downregulation of miR-146b-5p
as assessed by RT-qPCR (average inhibition at 48 hours, 70.1 ±
1.7% [mean±SD]) (Figure 4C). In contrast, stimulation of purified
CLL cells by coculture with anti-μ and anti-δ Ig-chain–coated beads
and IL-4 failed to significantly modify miR-146b-5p expression
Figure 6. Effects of in vivo treatment with miRNA mimics on CLL cells engrafted

autologous activated T cells. After 4 to 6 weeks, blood samples were evaluated for the pre

was achieved, the mice were treated with 3 doses of miR-146b-5p or miR CTR mimic. Mic

spleen, bone marrow (BM), and peripheral blood (PBL) were analyzed by flow cytometry fo

human CD45+ cells. (A) Flow cytometry analysis of 2 representative mice injected with CLL

(B) Summary of the flow cytometry analyses of 14 mice injected with CLL cells from 2 dif

CD19+CD5+ CLL cells or (C) CD19−CD5+ T cells are shown. (D) Apoptotic neoplastic cel

mimic-treated mouse. Apoptotic cells were detected by flow cytometry as annexin-V–posi

CD45+CD19−CD5+ T cells (solid blue histogram profiles). (E) Summary of the flow cytomet

cells are expressed as mean ± SD. (F) High-power magnification (200×) images of longitud

Ab showing the infiltrating foci present in mice treated with miR CTR (NSG 13) or miR-14
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(supplemental Figure 8 and supplemental Methods). These data also
are consistent with our previous findings on the incapacity of cell
stimulation via BCR to induce the IL-23R complex expression.50

Next, purified CLL cells were transfected with the miR-146b-5p
inhibitor or to the miR-CTR inhibitor for 6 hours, stimulated with
CD40L-TC for 48 hours, and the concentrations of IL-12Rβ1
mRNA determined by RT-qPCR. Preexposure to the miR-146b-5p
inhibitor caused a substantial increase of intracellular IL-12Rβ1
mRNA (average increase of 46.5 ± 40% [mean ± SD]) compared
with the control samples (Figure 4D) irrespective of the baseline
values of miR-146b-5p expression and with a wide variability
depending on the propensity to CD40L activation of the different
CLL clones.50 Flow cytometry tests confirmed these observations.
Following pretreatment with the miR-146b-5p inhibitor, there was a
consistent increase of IL-12Rβ1 (average increase of 25.6 ±
14.6% positive cells [mean ± SD]) and IL-23R complex expression
(average increase of 36.4 ± 11.5% [mean ± SD]) compared with
control samples (Figure 4E-F). Notably, pretreatment of the purified
CLL cells with miR-146b-5p inhibitor before coculturing with
CD40L-TC did not cause upregulation of the IL-21R,64 indicating a
selective regulation of the miR-146b-5p on IL-23R complex
expression (Figure 4G-H).

Downregulation of IL-12Rβ1 chain by enforced

expression of miR-146b-5p

If miR-146b-5p concentrations regulate the IL-12Rβ1 expression,
then a forced increase of intracellular miR-146b-5p should prevent
the expression of IL-12Rβ1 following coculture with CD40L-TC. To
test this, purified CLL cells from 10 different cases with different
baseline miR-146b-5p expression (Figure 5 and supplemental
Table 2) were cultured with miR-146b-5p mimic or miR-CTR mimic
for 6 hours, CD40L-TC was added, and the cultures continued for
48 hours. Following transfection with miR-146b-5pmimics, lower IL-
12Rβ1 mRNA concentrations were detected by RT-qPCR
(Figure 5A). Flow cytometry confirmed that transfection with miR-
146b-5p mimic prevented the expression of the surface IL-23R
complex expression mediated by CD40L activation (average
decrease of 55.4 ± 18% [mean ±SD]) (Figure 5B-C) mainly caused
by surface downregulation of IL-12Rβ1 side chain (average
decrease of 45.2 ± 22 [mean ± SD]) (Figure 5D). Concomitantly,
there was a slight decrease in the overall expression of the IL-23R
chain (average decrease of 19 ± 16 [mean ± SD] (Figure 5E),
while the CLL cells expressing the IL-23R side chain only were
increased (average increase of 39 ± 28 [mean ± SD]) (Figure 5F).
Finally, a 50 ± 11.5% (mean ± SD) decrease of Ki67+ cells
in NSG mice. Mice were injected with 50 × 106 CLL cells prestimulated with

sence of circulating leukemic cells by flow cytometry, and after CLL cell engraftment

e were sacrificed after 3 days from the last inoculum, and cell suspensions from the

r the percentage of CD19+CD5+ CLL cells or CD19−CD5+ T cells over the total of

GE1-PM129 and treated with miR CTR mimic (NSG 13) or miR-146b-5p (NSG 5).

ferent cases (GE1-PM129 and GE1-RO148) and treated as in (A). Percentages of

ls and T cells in the spleen from a miR-146b-5p (NSG 16) and a miR CTR (NSG 13)

tive cells by gating CD45+CD19+CD5+ CLL cells (solid red histogram profiles) or

ry tests carried out in 14 mice treated as in (D). Percentages of apoptotic CLL and T

inal sections of paraffin-embedded mouse spleen stained with αCD20-Ab or αCD3-
6b-5p mimics (NSG 16).
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(Figure 5G,I) and of Ki67+ cells expressing the IL-23R complex
(Figure 5H) compared with control samples was observed. Pre-
treatment of the purified CLL cells with miR-146b-5p mimic before
coculture with CD40L-TC failed to cause upregulation of the IL-21R,
as shown in supplemental Figure 9, confirming a selective effect of
the miR-146b-5p mimic.

Since miR146b-5p is known to repress TRAF6 and IRAK-1, which
play critical roles in NF-kB activation,27,28,31 we investigated
whether enforced expression of this miRNA caused downregulation
of these targets in CLL cells. Since miR146a-5p has similar
effects,31 the 2 miRNAs were tested in parallel. CLL cells were
exposed to miR-146a-5p or miR-146b-5p or miR-CTR mimics for 6
hours in vitro and subsequently cocultured with CD40L-TC or mock
cells for 48 hours. As shown in supplemental Figure 10A-B, TRAF6
protein was downregulated in CLL cells transfected with either
miR-146a-5p or miR-146b-5p mimics compared with the control
samples. Some TRAF6 inhibition, although at lower concentrations,
was observed in control cocultures with mock cells. Similar results
were obtainedwhen IRAK1 expression was tested by flow cytometry
in the same culture settings (supplemental Figure 10C-D).

Inhibition of CLL cell growth by miR-146b-5p

mimic in vivo

Cells from GE1-PM129 and GE1-RO148 CLL cases were
cocultured with activated autologous T cells and used to generate
xenografts in 10 and 4 NSG mice, respectively. After 4 to 6 weeks,
all mice presented circulating human (CD45+CD19+CD5+) cells
indicative of successful engraftment. The mice were subdivided
into equal groups, and each group of animals was treated with
either miR-146b-5p mimic or miR-CTR mimic (1 injection on
alternate days for a total of 3 injections). Flow cytometry analyses of
samples from peripheral blood, bone marrow, and spleen cells, 3
days after the last miRNA injection, revealed that mice treated with
miR-CTR mimic had higher percentages of CD45+CD19+CD5+

CLL cells and lower percentages of CD45+CD19−CD5+ T cells
than mice treated with miR-146b-5p mimic (Figure 6A-C and
supplemental Table 7). Mice treated with miR-146b-5p mimic
presented a higher percentage of apoptotic (annexin-V–positive)
CLL cells in the spleen (Figure 6D-E). This finding was consistent
with the in situ immunohistochemical (IHC) analysis showing a
decrease of spleen infiltration by leukemic (human CD20+) cells
after treatment with miR-146b-5p mimics (Figure 6F). Autologous T
cells (human CD3+ cells), surrounding remnants of CLL infiltration
foci, were still present (Figure 6E-F and supplemental Table 7). In
addition, the boundaries of the follicles appeared less evident and
were often disrupted by the accumulation of T cells (Figure 7A-B).
Engraftment was measured by determining an IHC index derived
from the combination of size and numbers of CD20+ follicles in the
spleen15 (supplemental Methods). A significantly lower IHC index
Figure 7 (continued) in (A) showing a decrease of neoplastic B cells (and not of T cells

samples. (C) IHC analysis of Ki67+ cycling cells at 100× and 200× magnification in splee
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was observed in mice treated with the miR-146b-5p mimic
compared with control mice (127.6 ± 51 vs 34 ± 31.4 [mean ±
SD]; P = .007) (supplemental Table 7). Moreover, in mice treated
with the miR-146b-5p mimic, there were fewer Ki67+ cells in the
spleen infiltrates (Figure 7C). Double-marker IHC confirmed the
presence of fewer cycling CLL cells (human Ki67/CD20+) in the
spleen infiltrates of mice treated with the miR-146b-5p mimic
compared with the control samples (Figure 7D).

Furthermore, staining with specific antibodies showed fewer
IL-12Rβ1–expressing cells in mice treated with miR-146b-5p
mimic than in the control samples (Figure 7E-F). Notably, a
consistent number of cells present in the CLL cell aggregates were
stained by anti–IL-23 mAb, indicating that the miR146b-5p mimic
treatment did not affect IL-23 cytokine production (Figure 7F).
Likewise, there were numerous T cells in the tissues analyzed,
indicating that the T-cell compartment was not prominently
affected by miR-146b-5p mimic treatment (Figure 7E).
Discussion

The idea for this study stemmed from the consideration that miR-
146b-5p had a relevant prognostic impact in CLL and that the
IL-23/IL-23R complex loop is important for promotingCLL cell clonal
expansion. Since IL-12Rβ1 is expressed following cell activation, this
step may represent a relevant checkpoint for the functioning of the
loop,50 and miR-146b-5p could conceivably determine the cell’s
susceptibility to IL-23 by regulating IL-12Rβ1 receptor expression.

The collected evidence supports the working hypothesis: miR-
146b-5p proved capable of binding to the IL-12Rβ1 chain mRNA
in an in vitro luciferase assay, whereas miR-146a-5p failed despite
sharing the same seed sequence. A partial explanation for this failure
could be that the binding of miRNAs associated with the argonaute
protein to the relevant mRNA is influenced by sequences flanking
the binding sites and by additional noncanonical binding sites. Thus,
small sequence variations outside the seed sequence, and the
different posttranslational processing of the 2 miRNAs, may cause
variations in their binding to target mRNA.65 The capacity of miR-
146b-5p to regulate IL-12Rβ1 expression was confirmed by exper-
iments with specificmiR-146b-5pmimics and inhibitors because the
former prevented and the latter promoted IL-12Rβ1 expression. This
effect was selective given that the expression of IL-21R, which also
plays an important role in regulating CLL cell expansion,64,66 was
unaffected by miR-146b-5p. Notably, miR-146b-5p did not bind to
IL-23 mRNA and did not appear to influence IL-23 production by
CLL cells, indicating that IL-12Rβ1 chain expression is a major
regulatory step in the IL-23/IL-23R complex loop.

NSG mice engrafted with CLL cells and treated with miR-146b-5p
mimic presented a reduction of both circulating and tissue-infiltrating
) in the follicular infiltrates after treatment with miR-146b-5p compared with control

ns of the same mice treated as indicated in (A). Decreased proliferating cells in the

ntrol samples (upper panels) is evident. (D) High magnification image (400×) of

d Ki67. (E) Double-marker immunofluorescence (IF) and confocal microscopy (high-
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agnification 200×) analysis of IL-12Rβ1 chain and IL-23 or DAPI of a representative

SG 5, lower panel). IF microphotographs are representative of analyses of ≥5 low-

ic fields performed on each mouse tissue sample.

REGULATION OF IL-23R COMPLEX BY miR-146B-5P 5607



leukemic cells compared with mice treated with CTR mimics and a
disruption of the leukemic nodules, which had less defined boundaries,
inferior numbers of proliferating cells, and appeared infiltratedby T cells.
The expression of the IL-12Rβ1 chain by leukemic cells was markedly
diminished. The concentrations of human T cells remained apparently
unaltered in the engrafted NSG mice upon miR-146b-5p mimic
administration, indicating that the treatment did not influence T-cell
viability in this setting, although previous reports described a regulatory
function of miR-146b-5p in follicular Th cells and regulatory T cells.45,67

Whether the T-cell subset distribution is altered remains to be
ascertained.

The activation of the IL-23/IL-23R complex loop in CLL cells is
achieved mainly by stimulation through the surface CD40-
dependent, not the BCR-dependent pathway.50 CD40 is a mem-
ber of the TNFR family and requires interaction with TRAF6 and
IRAK1 to activate NF-kB.28,29 Elevated concentrations of miR-
146a-5p and of miR-146b-5p cause downregulation of IRAK1
and TRAF6 (supplemental Figure 10) in CLL, in principle, rendering
NF-kB activation and stimulation via surface CD40 less effec-
tive.27,31,32 However, the observation that miR-146a-5p, which
downregulates TRAF6 and IRAK1 expression as efficiently as miR-
146b-5p, was not associated with prognosis in CLL suggested
that the IL-23/IL-23R complex loop had a more critical role in
regulating CLL cell growth. Interestingly, mice in which miR-146a-
5p or miR-146b-5p is knocked out (KO) both develop lymphomas,
although only the lymphomas originated in miR-146b-5p KO mice
present a resemblance to human CLL.44 The reasons for this
hierarchy in the mechanisms regulating CLL clonal expansion are
far from clear. One possibility is that additional signals delivered by
surface molecules different from CD40 and not requiring TRAF6
and IRAK1 adaptors are involved in activating the IL-23/IL-23R
loop in vivo. An alternative and not mutually exclusive option
could be offered by the redundancy of the TRAF/IRAK family
members, whereby other molecules of the same families could
substitute for the downregulation of TRAF6 and IRAK1 induced by
the miR-146a/b.68,69 Notably, other miRNAs can regulate IL-23
stimulatory signals. This is the case of miR-221 and miR-222 that
negatively regulate the susceptibility of Th17 cells to IL-23 stimu-
lation by modulation of the IL-23R complex.70

The issue as to why CLL clones are heterogeneous in the miR-
146b-5p concentrations is presently unclear, although it could be
related to the different states of activation of the cells from the
different CLL clones. This hypothesis is supported by the obser-
vations that CLL cell activation with CD40L-TC causes down-
regulation of miR-146b-5p concentrations in vitro and that the
lowest miR-146b-5p concentrations are detected in IGHV-UM
cases whose leukemic cells are at the highest activation status
determined by surface marker analysis.71,72 An alternative and not
mutually exclusive hypothesis poses that lesions of the miR-146b
gene or regulatory DNA sequences facilitate the maintenance of
low miR-146b-5p concentrations in the most aggressive CLL
clones. However, this hypothesis is made unlikely by the finding
that CNAs were very low in the database analysis we have carried
out, and virtually no mutations of the miR-146b-5p locus are
detectable in the same database.57,58 Alterations in the methylation
of the miR-146b-5p locus of CLL cells compared with normal cells
have been noticed and are reported in the Blueprint data analysis
portal61 (supplemental Figure 5), a finding that could at least in part
explain the heterogeneity of miR-146b expression in CLL,
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possibly dependent on the activation status of the neoplastic
clones. This issue is currently being investigated.

The present study has translational relevance as it indicates
miR-146b-5p is a potential target through which the suscepti-
bility of CLL cells to IL-23 could be modified. Future studies
should investigate a strategy based on increasing intracellular
miR-146b-5p concentrations as an application for CLL therapy,
either alone or combined with anti–IL-23 mAbs,73-75 in the
attempt to eradicate CLL, which so far has proven virtually
incurable.
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Oncologia, Ospedale Garibaldi-Nesima, Catania comitato etico
Ospedale Garibaldi - Nesima, Catania, Italy; Dipartimento di
Oncologia ed Ematologia, Pugliese-Ciaccio Hospital, Catanzaro
comitato etico Pugliese-Ciaccio Hospital, Catanzaro, Italy; Unità
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Unità di Ematologia, Ospedale San Nicola Pellegrino, Trani com-
itato etico Ospedale San Nicola Pellegrino, Trani, Italy; Centro di
Riferimento Ematologico-Seconda Medicina, Azienda Ospedaliero-
Universitaria, Ospedali Riuniti, Trieste comitato etico Ospedali
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