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Stationary, Oscillatory, Spatio-Temporal
Patterns and Existence of Global Solutions

in Reaction-Diffusion Models of Three Species

by Faezeh FARIVAR

The goal of my Ph.D. research is to analyze three species models in order to de-
scribe the behavior of an ecological community. In particular, two reaction-diffusion
systems describing different local interactions between three species have been con-
sidered to obtain species coexistence, diversity, and distribution patterns. The first
analyzed model describes intraguild predation: there are an IG-predator species, an
IG-prey species, and a common resource species, which is shared by both of them.
The IGP interaction is of Lotka-Volterra type, coupled with nonlinear diffusion, since
we assume that the IG-prey moves towards lower density areas of the IG-predator.
In this model, the extinction of species has been surveyed. Performing the linear
stability analysis in the neighborhood of the coexistence point, the conditions for
the occurrence of Hopf instability have been established. Cross-diffusion is able to
induce Turing instability for this system, which would not admit this bifurcation in
presence of only classical diffusion terms. Moreover, the effect of each parameter on
Turing and Turing-Hopf instability has been detected. Numerical solutions of the
system have been computed using spectral method, showing the rich dynamics of
the model, including the Turing pattern, time oscillation pattern, Turing-Hopf pat-
tern, and chaotic behavior. The weakly nonlinear analysis also has been employed
to predict the amplitude of patterned solutions have been compared with numeri-
cal spectral solutions of the reaction-diffusion system. Furthermore, we have used
multiscale methods to determine normal form of the model around Turing-Hopf
codimension-2 points. Finally, by utilizing the fixed point argument and energy
estimate, the existence of the global solution to the system has been established, as-
suming some conditions on initial data. The second three species model describes
the dynamics of two predators competing with each other to feed on the same prey.
The functional response of predators is the Holling type. This local dynamics has
been coupled with linear cross-diffusion terms taking into account the movement
of each species towards lower-density areas of the other species. We have applied
linear analysis of the system with and without diffusion to obtain the necessary con-
ditions of stability and the occurrence of Hopf and Turing instability. In particular,
weakly nonlinear analysis, Turing regions, and maximum growth rate have been
investigated. Using a numerical finite elements method, Turing patterns have also
been displayed and compared with WNL solutions. Finally, to prove the existence
of global in time of the solutions, a rectangular invariant method has been presented
for a particular case.
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Introduction

Three species models play an important role in ecology and biology. Indeed, a
food web in ecology includes of at least three species. Each specie can be associated
with a specific trophic level (number of steps that specie eats or is eaten by others).
Therefore, in a food web of three species, plenty of models can be established to sim-
ulate one part of nature.
It is just to notice in a classification of classical three species Lotka-Volterra model
existence of 34 cases of different classes (food chain, one prey-two predators, two
preys- one predator and loops) have been determined (Krikorian, 1979). There-
fore, there exist abundant three species models consisting of Lotka-Volterra type,
and even more with different functional responses that can be taken into account in
studies.

Two species models can be almost considered a competition model or preda-
tion model, whereas a three species model involves either predation, competition or
predation-competition (Holt and Lawton, 1994), (Polis and Holt, 1992), which prac-
tically have been proved.

Moreover, the presence of a third specie (can be omnivore - top predator) can
destabilize a food web model due to the assumption of the theoretical model (Tanabe
and Namba, 2005, Namba, Tanabe, and Maeda, 2008). Thus, the presence of third
specie almost creates a chaotic model.

In addition, according to the pioneering Turing’s work Turing, 1952 which states
"diffusion-driven instability", a reaction-diffusion of three species can include of the
emergence of different patterns due to the presence of numerous instabilities such
as Turing instability, wave instability, Turing-Hopf instability, etc.

Further, mathematical models in ecology have been used largely to provide a
qualitative explanation for patterns in nature (Council et al., 2000), and help ex-
amine the environmental and ecological impact of alternative pollution-control and
resources-conservation actions, and aid planners or decision-makers in formulating
cost-effective management policies (Li et al., 2013).

This is why comprehension, three species models has became one of the biggest
challenges in ecology and biology.

It is observed that background studies around three species have been chiefly de-
voted to three species of food chain model, then competition and predation models.
Hence, mathematical point of view, the recent outcomes of the chain food model of
three species are refereed in (Sabir, 2022; Zou et al., 2022; Raw and Sarangi, 2022),
and some of the latest findings of competition models of three species have been
alluded in (Guin, Roy, and Djilali, 2021). And then, the most recent research of pre-
dation return to (Rihan and Alsakaji, 2022; Chen and Guo, 2021). Moreover, (Mishra
and Wrzosek, 2022) is also considered a recent survey in part of a combination of
predation and competition.

However, the latest ecological, and biological improvements around three species
problems give rise to the formation of different mathematical models and outcomes
that can be listed simultaneously as food chain area (Dang et al., 2021), competition
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(Ohba, Terazono, and Takada, 2022), predation (Goodman et al., 2022) and combi-
nation of predation and competition (Liang et al., 2022; Anjos, Costa, and Almeida,
2021).

The issue of the present thesis is an investigation of mathematical models of three
species.

Generally, this dissertation is allocated to:
1. Presentation of a chemotaxis model of intraguild predation of three species (IGP
Model).
2. Modification and investigation of a reaction-diffusion model presented in (Farkas,
1984) and (Ferreira, Silva, and Rao, 2019) of two predators competing for one prey
with Holling type II functional responses.

Our goal is to survey the necessary conditions for the formation of patterns and
exhibit them numerically.

The first chapter of the thesis is assigned to a review of articles around three
species models, that have been qualitatively and quantitatively investigated.

This Chapter commences with a background of the appearance of three species
from mathematical and ecological points of view. Then it follows the improvements
of ODE models until arrives at the investigation of diffusive models in different
classes of three species.

The following Chapters express the outcome of our research.
In Chapter 2, we present a diffusive Lotka-Volterra with an intraguild predation

system of three species. Indeed, this model is a comprehensive system of (Holt and
Polis, 1997) by adding a nonlinear diffusion term. Roughly speaking, the intraguild
predation model of three species describes the competition of two predators for a
basal resource, whereas one predator (IG predator) eats the intermediate predator
(IG prey). The nonlinear term presented in the diffusion part of the IGP model is
known as the Chemotaxis term. In fact, the chemotaxis term ∇.(v∇w) is a sub-
class of cross-diffusion term ∇.(∇(vw)) and associated with a positive sign (nega-
tive sign) indicates that intermediate predator (v) migrates away from (toward) IG
predator (w) respectively.

This chapter contains proof of the extinction of all species gradually over time. To
conquer numerous parameters in dimensional form, a non-dimensional form is pre-
sented. The new model includes seven parameters instead of sixteen. Consequently,
unique coexistence steady state of the model is found, whose positivity conditions
provide two different scenarios:
i. The first considers that the mortality rate of IG prey is less than the conversion
rate; consequently, IG prey dies out.
ii. Second opposite case i, i.e., it implies the coexistence of all species. Therefore, the
rest of the thesis progresses with this assumption. Accordingly, positive regions in
the plane of two kinetic parameters are determined following the noticed assump-
tion.

Implementing linear analysis around the coexistence steady state, local stability
is obtained. The achieved characteristic polynomial is cubic; this is why we utilize
the relation between eigenvalues and coefficients of a cubic polynomial to prove
stability conditions and the Hopf threshold.

Subsequently, we investigate Turing analysis using linear analysis in the pres-
ence of diffusion. We establish dispersion relation, and then due to the Routh-
Hurwitz criterion, we also prove necessary and sufficient conditions for the emer-
gence of the Turing pattern. In addition, by providing dispersion relation, we demon-
strate the emergence of Turing instability in four possible cases, which are associ-
ated with self-diffusion parameters of prey and IG predator. We prove that in three
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cases, Turing can emerge, while one case does not ensure the emergence of the Tur-
ing pattern. We demonstrate the reliability of calculations with a numerical spectral
method. Further, we illustrate the necessary conditions for the appearance of Turing-
Hopf instabilities and exhibit instability regions of the diffusive model concerning
kinetic parameters. Moreover, we survey in plane how Turing regions are changed
when other kinetic and diffusion parameters increase. Finally, we prove that wave
instability cannot occur using linear analysis.

This Chapter is followed by some numerical results of stationary Turing pat-
terns, time oscillation, and Turing-Hopf patterns. We have obtained some numerical
results of the dimensional system, which exhibits chaotic behavior and transition of
the model.

The final section of this Chapter is allocated to a Weakly nonlinear analysis of the
IGP model. Indeed, we utilize WNL, which has equipped with a multiscale method
to capture the amplitude of patterns close to the threshold. And correspondingly,
we depict supercritical Turing calculations and patterns. And, then we compare
numerical simulations with WNL analysis results.

Moreover, we have achieved some numerical results, which are reported here:
i. Numerical behavior of IG prey in the niche for the dimensional model (2.3) when
Γ is considerable (see Figure 1) and is regulating the domain. By increasing Γ, we
observe the chaotic behavior of the IG prey. Both Figure 1A and Figure 1B have
been simulated in the same time interval. In Figure 1B, the chaotic behavior of the
IG prey decreases.
ii. Performance of transition from Turing pattern to Turing-Hopf pattern of model
(2.3) is reported in Figure 2.
The results presented in Chapter 2 are contained in (Gambino et al. (Preprinting)).

Chapter 3 is devoted to the calculation of the normal form of non-dimension
form of the IGP model mentioned in Chapter 2. To calculate normal form we apply a
perturbation technique based on multiple scales. Consequently, we drive Amplitude
equations that provide necessary conditions for the appearance of Turing, Hopf, and
Turing-Hopf patterns and regions concerning coefficients of the amplitude system.
Some numerical results are presented which prove the accuracy of obtained reduced
system.

Chapter 4 considers a system consisting of two predators competing for one prey.
This model is a modified version of the models presented in (Farkas, 1984, Ferreira,
Silva, and Rao, 2019) that we call it Zip model. To achieve the modified model, first,
we need to present some existing results around the kinetic part of the system. The
zip model contains a line segment of the equilibrium point, providing a degenerate
system. One needs to add an intraspecific term to one of the predator equations to
overcome degeneracy. Moreover, the modified model is coupled with linear diffu-
sion such that cross-diffusion terms regarding the predators are all positive; preda-
tors avoid each other. Following the Chapter, we find a unique coexistence of steady
state equilibrium whose positive conditions are determined in the next step.

Then we examine the local stability of the system and prove the stability condi-
tion. We demonstrate that the system undergoes the Hopf bifurcation due to varying
the carrying capacity parameter of prey. Our presented numerical results confirm
the reliability of the results. Furthermore, Turing’s analysis of the diffusive system
is explored. We figure out that in the absence of cross-diffusion parameters, Turing
patterns do not perform; however, for two other cases, we establish the necessary
conditions for the emergence of Turing instabilities. After that, for one case (case III,
the case in which predators diffuse in different directions and ignore diffusing in the
order of prey instead), we survey the Turing region. We examine how the Turing
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region is changed when diffusion parameters are altered. And finally, for case III,
our numerical results are depicted. At last, the numerical results are compared with
weakly nonlinear analysis for the case III.

In Chapter 4, we also investigate maximum growth rate for case III. In the emer-
gence of patterns, we answer "when the number of modes is less or greater than
the critical mode?” as the critical bifurcation parameter rises. In the last section of
this chapter, the invariant method investigates the global existence in the time of
solutions of the modified model with a diffusion matrix including only one cross-
diffusion. Indeed, the idea behind this method is that under some dissipativity and
balance law conditions, a bounded invariant region of ODE can ensure global exis-
tence in the time of strong solutions.

Chapter 5 has been established accompanied by Fazel Hadadifard, Visiting As-
sistant Professor at University of California, Riverside.
This Chapter is devoted to the global solution of the IGP model in 2D. To prove that,
first, we explore the positivity of the solutions. Then local existence of the problem
is presented due to the fixed point argument, which is complete with some estima-
tions in Lp, L2, and Hr spaces. In the final section, we prove the existence of a global
solution of the model by finding some a priory estimate in Lp and Sobolev spaces,
which complete the proof. Out come of this Chapter has been submitted in (Farivar
and Hadadifard (submitted)).

(A) IG prey (u1) in
niche (Γ = 50).

(B) IG prey (u1) in
niche (Γ = 100).

FIGURE 1: Spatio-temporal patterns in niche (dimensional model) of
u1 in niche, x ∈ [0 500π] for given parameters: m1 = 0.35, m2 =
2.3165, K = 2, γ1 = 0.18, γ2 = 0.3, D1 = 0.1, D2 = 0.4, d1 =
1, d2 = 0.1 and d3 = 0.003. For this choic of parameters E∗ ≃
(0.25, 0.75, 0.08), Hopf threshold mc

2 = 2.3077 corresponding to Tur-
ing threshold cc

2 = 51.1529 and the critical wavenumber kc ≃ 2.6.
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(A) s (B)
u1

(C)
u2

(D) s (E)
u1

(F)
u2

FIGURE 2: Transient patterns (dimensional model) from Turing-Hopf
to Turing instabilities, x ∈ [0 2π] and parameters are the same as
Figure 1 and Γ = 100. Figures in A), B) and C) are a close shot of

figures D), E) and F).
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Chapter 1

A Review of Three Species Systems

The introduction of mathematical modeling of biological and ecological systems
goes back to the early twentieth century, the attempt of giving a quantitative descrip-
tion of living systems is still a fundamental topic of modern science; the advances
in computational sciences, as well the emergence of the new paradigm of ”complex
systems” have made more urgent (and fruitful) than ever the use of the mathematical
methods in the realm of life sciences. Moreover, it is generally acknowledged that
a deeper mathematical understanding of biology and ecology can have a ground-
breaking impact on subjects like resource management, pollution forecast and con-
trol, pattern recognition and control in nature, etc.

In 1910, Lotka was the first to suggest prey-predator model in interpretation of
theory of autocatalytic chemical reactions. Later, Volterra proposed the use of dif-
ferential equations to explain differential equation which described the behavior of
species in marine ecology. Indeed, he believed that two or three species, sharing the
same limited resource, cannot coexist. This idea can be found, in a more general con-
text (Rescigno and Richardson, 1965; Levin, 1970), in more modern literature (see,
e.g. (Levins, 2020), and is nowadays expressed as the "competitive exclusion principle"
proposed by Hardin in the sixties, see (Hardin, 1960). The Lotka-Volterra model was
also generalized along another direction: allowing the interaction between species
to be described by more complicated functions, other than quadratic ones as in the
original LV system.

In 1959, to describe the saturation effects of prey consumption (observed at high
prey density), Holling introduced modified versions of the LV systems. Since then,
Holling-type functional response has undergone an extensive investigation by ecol-
ogists and mathematical modellers. Indeed, different functional responses were
presented by Holling, which was applied by Resenwerg and Mac Arthur (Rosen-
zweig and MacArthur, 1963) to explain the dynamics exhibited by populations of
the predator-prey type, such as Lynx and snowshoe hare. The LV system is one of
the most extensively studied model of the mathematical literature; it is impossible
here to give even a partial account of the relevant papers, and we refer the reader to
(Wangersky, 1978).

1.1 General Lotka-Volterra model (GLV), and later modified
models

The generalized Lotka–Volterra equations (GLV) are a set of equations which are
a n-dimensional generalization of the competitive or predator–prey Lotka–Volterra
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equations (Hofbauer, Sigmund, et al., 1998). Fundamentally, GLV is defined as be-
low to describe the dynamics of biological species u1, u2, · · · un as:

dui

dt
= ui fi(u) (1.1)

where f(u) = r + Au, where r, f (u) are vectors and and A is community matrix. The
vector r describes the intrinsic growth rates of species, A describes the interaction
between species in which each entry sign gives different meaning to the system. If:
i. aij, aji entries of matrix A are negative, the species i and j are in competition.
ii. aij and aji have different signs, then one is predator and the other is the prey.
Moreover, the diagonal terms aii are usually considered negative since each specie
hurts itself. Indeed, self-limitation prevents a population from growing indefinitely.

Therefore, the GLV systems do not describe typical phenomena like predator
preferences, nonlinear responses, and mutualism. On the other hand, GLV includes
food chain systems, see e.g. (Yang and Fu, 2008), (Chauvet et al., 2002), that are inter-
esting models, both for their practical relevance, and for the variety of the displayed
dynamics, ranging from oscillatory behavior up to chaotic behavior.

In 1957, some mathematicians such as Kerner, Hung, and Morowitz (Kerner,
1957), (Huang and Morowitz, 1972), studied the global stability of biological ODEs,
however, for the first time in 1977 Goh (Goh, 1976) proved that GLV system, de-
scribing interactions of n-species which has nontrivial equilibrium has a Lyapunov
function and consequently is globally asymptotically stable. After Goh’s proof and
for the first time in 1979, Gary W. Harrison (Harrison, 1979) applied Goh’s theorem
to illustrate the global stability of the coexistence equilibrium of a food chain.

In 1975, M. E. Gilpin (Gilpin, 1975) showed that a three-species competitive
Lotka-Volterra model may demonstrate population oscillations of a neutral or un-
damped nature. In truth, if immigration, incomplete overlap, or any other mech-
anism inhibit extinction, then such a three-species system goes into true limit cy-
cles. Gilpin proposed "limit cycles are more likely in communities with one odd number of
species".

An important work to mention is the paper of May and Leonard (May and
Leonard, 1975), where the authors studied the classical Gause-Lotka-Volterra sys-
tem. They showed how the system has bounded non-periodic oscillatory solutions,
with ever increasing cycle time, which was an example of "the complexities that non-
linearities can introduce even into the simplest equations of population biology".

Then, in 1977, Freedman and Waltman (Freedman and Waltman, 1977) examined
a model of three species including general functional responses for each species.
They analyzed equilibria and established stability and boundedness of the equilib-
ria. Moreover, they specifically proved necessary and sufficient conditions for the
persistence of species when functional responses are Lotka-Volterra type and mixed
Lotka-Volterra with Holling types.

Around 1979 Krikorian (Krikorian, 1979) presented a systematic analysis, show-
ing that, under some restrictions, there are 34 different cases of classical three-species
Lotka-Volterra systems 1. He locally investigated the asymptotic stability of equilib-
ria and global boundedness of all types. Namely, he proved positive critical points
of the food chain, two predators-1 prey, and one predator-2 prey systems are glob-
ally stable and bounded, whereas, for the loop case, these results are not generally
valid.

1which are classified as 1) food chains, (nine cases) 2) one predator acting on two preys, (six cases) 3) two
predators competing for one prey, (three cases) 4) loops, (sixteen cases)



1.1. General Lotka-Volterra model (GLV), and later modified models 9

In 1986, G. Kirlinger (Kirlinger, 1986) showed that a system of multi-species con-
taining two competing species of logistic LV type is stabilized when a predator is
introduced to the model. As a result, Kirlinger observed that none of the species be-
come extinct; therefore, the idea of " No species dies out " is considered as Permanence.

In 1991, Hasting and Powell (Hastings and Powell, 1991) studied a food chain
of three species consisting of nonlinear functional responses. They exhibited the
existence of chaotic dynamics in long time behavior.

In 1992, Freedman and Ruan (Freedman and Ruan, 1992) investigated a three-
species food chain model in which prey perform group defense. They proved that
the system underlies a sequence of Hopf bifurcation without delay, and with delay
as a Hopf bifurcation parameter, again Hopf bifurcation occurs.

In 1995, MacCann and Yodzis (Mccann and Yodzis, 1995) studied a three-species
food chain model containing Holling Type II functional responses. They locally
analyzed the model and performed a different set of behavior, including quasi-
periodicity, chaos, homoclinic events, and transient chaos. Studying the dynami-
cal behaviors of three species of food chain models continued. For instance, some
of them are reported here: Investigation three species with Beddington-DeAngelis
functional responses (Naji and Balasim, 2007, Zhao and Lv, 2009), research about the
complexity of the three-species model (Lv and Zhao, 2008), Surveying the dynamical
behavior of three specie models with Crowley-Martin functional responses (Upad-
hyay and Naji, 2009). Later, other studies around the local analysis of three species
with Holling Type IV (Upadhyay and Raw, 2011, and Parshad et al., 2017) study-
ing around equilibria, stability, and oscillation via Hopf bifurcation in the model of
three species consisting of Holling type III were also studied in (Sunaryo, Salleh, and
Mamat, 2013).

Some recently specialized models have also alluded to three species models that
are followed:
• Discrete-time model: this type of model describes a phenomenon in which time
is not continuous, and the size of populations is small. This type of model can be
applied to non-overlapping generations (see Santra, 2021; Mortuja, Chaube, and Ku-
mar, 2021) and references therein).
• Fractional model: For the first time, Ahmed and coauthors investigated frac-
tional Lotka-Volterra models (Ahmed, El-Sayed, and El-Saka, 2007), then general-
ized Lotka-Volterra model of fractional type was taken into account in (Samardz-
ija and Greller, 1988), two-preys and one predator was also surveyed in (Elettreby,
Al-Raezah, and Nabil, 2017). However, one of the recent studies around the frac-
tional three species Lotka-Volterra model utilized the Caputo-Fabrizio operator, a
non-singular definition, unlike the Caputo operator found in (Khalighi et al., 2021).

Most of the models reviewed above mentioned either predation or competition
in a model. In contrast, according to empirical and theoretical ecologists, coopera-
tion of competition and predation play an essential role in a model. Roughly speak-
ing, killing and eating species by predators while other predators eat some predators
is known as "intraguild predation (IGP),” trophic level omnivory", "higher order pre-
dation,” or "hyperpredation" (superpredator).
One of the role returns to the impact of predation and competition on the presence
and exclusion of species in a model. The second role is about the influence of the
dynamic behavior of the model. For instance, in a classical Lotak-Volterra model
with IGP (which is the simplest model), limit cycles, and chaotic behavior have been
exhibited.

For three species with IGP, the shared resource, intermediate predator, and top
predator are called prey, IG prey, and IG predator. (Polis and Strong, 1996), (Holt
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and Polis, 1997) and references therein. Based on the above, a prey-predator and
superpredator model is considered an IGP model.

One excellent local analysis of such these systems can be observed in (Hsu, Ruan,
and Yang, 2015), in which authors considered a classical three species Lotka-Volterra
model with IGP. They investigated the non-dimensional model and categorized the
parameter space into three categories consisting of eight cases. They showed that
species of five cases are extinct while the three others can persist. Then for the cases
including coexistence, they proved the existence of periodic solutions due to Hopf
bifurcation.

In another work, B. Roy and S. K. Roy (Roy and Roy, 2015) considered the prey-
predator-superpredator model in which a Holling type II functional response de-
scribes the prey interaction with the predator. In contrast, the relationship between
prey and predator is given by Holling type III functional response. An example
of such a model in ecology is obtained by Diatom (prey), Daphnia (predator), and
Channa (superpredator). In addition, in another work, they analyzed (Roy and Roy,
2016) three species of prey predator and superpredator in the mode of fishery model
with predator harvesting and prey refuge and migration. They found out that when
the model followed by Holling II functional response for prey, it admitted Hopf bi-
furcation, and they derived the global asymptotic stability of interior equilibrium in
the system.

In another model worked recently (Savitri and Panigoro, 2020), authors dis-
cussed three species of prey-predator-superpredator, considered consumption of
prey-predator by Holling II and predator-superpredator with Holling III. The au-
thors also showed that in the system, equilibria consisting of extinction of prey and
predator are unstable, whereas superpredator extinction point and coexistence point
are conditionally stable. They proved that two bifurcations, including forward and
Hopf bifurcations, occur. In other words, the first occurs around superpredator ex-
tinction, while the latter occurs around the model’s interior.

Recently, local analysis of three species models containing IGP and emphasizing
species features has been widely considered. For example, in a recent attempt, Ku-
mar and Kumari (Kumar and Kumari, 2020) considered a three-species model with
fear effect and equipped with Holling type II functional responses. They proved that
increasing the fear effect leads to stability of the system, while for the low cost of fear
effect the model remains chaotic.

More recently, Cong and coauthors (Cong, Fan, and Zou, 2021) investigated a
three-species of IGP. Indeed, they first considered a classical model of three species
with IGP, then extracted the predator’s functional response due to the classical Holling’s
time budget argument. They proved how the fear effect could stabilize the system.

We conclude our review of the GLV systems, mentioning the role of delay in the
emergence of feasible and stable steady states on GLV, which contains all possible
interaction types (prey-predator, mutualism, competition, and others) considered in
(Saeedian et al., 2021). And finally, a large ecosystem (food web) with n species
(Lotka-Volterra model) by applying a large random matrix which accounts for the
interaction between species was considered by (Akjouj and Najim, 2021).

1.2 Reaction diffusion of Three Species

In reaction-diffusion systems, different types of coherent structures can be ob-
served, like Turing patterns, standing waves, oscillating patterns, spiral waves, and
many others.
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Turing patterns are considered an important class of structures called self-organization.
This class of systems only takes place far from equilibrium. Diffusion plays a vital
role in the appearance of self-organization. The worthwhile achievement " diffusion
driven instability" known as Turing pattern proposed in 1952 (Turing (1952)).

As Levin stated: Landscapes and seascapes are not homogeneous, but is in general a
shifting mosaic of diverse units (Levin and Segel, 1985). Indeed, in ecology interaction
between species can lead to patterns or enhance them, this idea was suggested by
some authors (Levin, 1976; Levin, 1981), Whittaker and Levin (Whittaker and Levin,
1977), Paine and Levin (Paine and Levin, 1981).

For the first time in 1972, Segel and Jackson (Segel and Jackson, 1972) proposed
that Turing’s idea (1952) (Turing (1952)) might work for reaction-diffusion systems
in ecology. Indeed they considered the model:

dV
dt

= V(K + αV − βE) + Dv∇2V,

dE
dt

= E(−L + γV − δE) + DE∇2E,
(1.2)

where V, E denoted prey and predator species, and all parameters were considered
positive. They proved that the coexistence steady state could be unstable. Then in
1974, Levin (Levin, 1974) figured out the same results for the model above when the
sign of parameters δ and α were reversed. In 1976, by employing an approxima-
tion method and multiple-time scale theory, Segel and Levin (Segel and Levin, 1976)
improved the nonlinear small amplitude theory.

Nevertheless, the presence of diffusion cannot always ensure the emergence of
Turing patterns. For example, in a competitive Lotka-Volterra model of two species
with self-diffusion, the Turing pattern does not occur. Indeed, self-diffusion explains
the tendency of movement of species from high density to low density, while cross-
diffusion implies the direction of movement of one species due to the presence of
other species.

A milestone in the application of the nonlinear cross-diffusion concept for the
explanation of biological and ecological phenomena was represented by the work
of Shigesada, Kawasaki and Teramoto (Shigesada, Kawasaki, and Teramoto, 1979).
In the formulation of their model, they were motivated by the attempt of explaining
the segregation of competing species. Competing species cannot be classified as an
activator-inhibitor system and, therefore, classical Turing theory is not able to ex-
plain the emergence of coherent structures. In SKT theory, therefore, cross-diffusion
arised as an attempt at going beyond Turing theory. The 1979 SKT theory was in-
deed a success. For example, 1996, Chattopathya and coauthors (Chattopadhyay,
Sarkar, and Tapaswi, 1996) showed that, in competitive LV system, cross-diffusion
is able to cause the emergence of patches. In (Raychaudhuri, Sinha, and Chattopad-
hyay, 1996), they also investigated the effect of time-varying cross-diffusion. Emer-
gence of Turing patterns and traveling front of the SKT model in 1D and 2D, re-
spectively, were investigated by Gambino and coauthors (Gambino, Lombardo, and
Sammartino, 2012), (Gambino, Lombardo, and Sammartino, 2013). Indeed, they first
locally investigated the model’s coexistence steady state, and they next found nec-
essary conditions for appearance of stationary Turing patterns; they then approxi-
mated the amplitude of the patterns by weakly nonlinear analysis.

We now pass to give some account on the work on multispecies (we shall mainly
focus on three-species) LV systems with diffusion.

In 1982, Kishimoto (Kishimoto, 1982) particularly investigated the presence of
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stable spatially non-constant equilibrium in three examples of three species LVsystems
with self-diffusion of all species. He examined three examples including, competi-
tive LV, one predator-two competing prey, and two predators-one prey systems. For
these specific examples, only one of them admitted necessary conditions of Turing
patterns.

And in the following work, Kishimoto and coauthors (Kishimoto, Mimura, and
Yoshida, 1983) explored the local stability condition of classical LV systems to obtain
the Hopf threshold. And using the condition, they proved the existence of stable
Spatio-temporal oscillations in classical LV systems coupled with self-diffusion of
all species.

Simultaneously, Ermentrout and Lewis (Ermentrout and Lewis, 1997) studied
the mechanism of formation of spatial patterns in the three species model of LV
type, consisting of diffusion of only one specie.

In 2000, the role of cross-diffusion in 3× 3 Lotka-Volterra competitive model was
examined which showed the existence of non-constant steady state (Lou, Martínez,
and Ni, 2000).

Later the interest in cross-diffusion systems was motivated by the fact that cross-
diffusion has been observed in multi-species systems derived from ecology or bio-
chemistry (Okubo and Levin, 2001; Gurtin, 1974). Furthermore, an investigation of
the role of diffusion in the competitive system of Lotka-Volterra for three species was
presented in (Martínez, 2003).

B. Spangolo and coauthors (Spagnolo, Fiasconaro, and Valenti, 2003) investi-
gated the time evolution of the Lotka-Volterra model of two preys and one predator
with noise phenomena. They found out that for the system of two prey and one
predator, the time evolution of the spatial patterns is strongly dependent on the ini-
tial conditions of the three species.

A reaction-diffusion system of three species in which the system implied a food
chain with prey-dependent and ratio-dependent functional responses and cross-
diffusion was considered in (Wang, 2004). Some conditions of local asymptotically
stable equilibrium of the system and global existence, bifurcation of non-constant
positive steady state, and occurrence of Turing pattern were also obtained. They
proved that the stationary patterns’ appearance arose solely from the effect of cross-
diffusion.

Surveying on strategy and stationary patterns continued for the system of two
predators and one prey with cross-diffusion where functional responses were Holling
type II (Pang and Wang, 2004). Also, a non-Lotka-Volterra type food chain model
with cross-diffusion was presented in (Wang, 2006). In addition, stability and Hopf
bifurcation for a delayed prey-predator of two species with the effect of diffusion
were studied in (Yan, 2007).

Further, the existence of global solutions for a three-species predator-prey model
of Lotka-Volterra type with cross-diffusion was proved in (Pang and Wang, 2008).
While bifurcation, chaos, and a traveling wave of a three-species Lotka-Volterra food
chain with spatial diffusion and time delay demonstrated in (Cai et al., 2010, Gan et
al., 2010), and global and asymptotic stability of positive equilibria of three species
Lotka-Volterra mutualism and food chain models with diffusion and time delay an-
alyzed in (Wang et al., 2010, Ma, Li, and Yan, 2012).

Recently, the interaction of three species of the predator-prey system included
an impulsive diffusion and Beddington-DeAngelis response was considered, and
asymptotic behavior of nonnegative solution for three species and some conditions
of permanence and extinction of species were presented (Li, Guo, and He, 2013).
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Then, in 2011, a work (Tian, Ling, and Lin, 2011) on a prey-predator mutualist
system of three species was investigated. The necessary conditions for performing
Turing patterns in cross-diffusion presence were reported.

Moreover, the other work in 2012 authors (Xie, 2012) surveyed the impact of
cross-diffusion in a system of three species of food chain model. In addition, the food
chain model of three species with diffusion and time delay was considered to inves-
tigate the existence of a traveling wave solution (Du and Xu, 2012). Nevertheless,
in 2013 (Lv, Yuan, and Pei, 2013), a reaction-diffusion model of the Lotka-Volterra
type of generalist predator system of three species with cross-diffusion was taken to
prove the appearance of Turing patterns.

In the paper (Tian, Ling, and Lin, 2014), authors considered a food chain model
of three species with cross-diffusion to prove the appearance of Turing patterns.
While in 2014 (Kuwamura, 2015), the necessary conditions of stationary and oscilla-
tory Turing patterns were investigated in the prey-predator system of two and three
species affected by predator dormancy and self-diffusion. In addition, they obtained
transient, Spatio-temporal complex patterns. In another three-species food chain
system containing Holling II, functional response coupled with cross-diffusion, Tur-
ing instability, and limit cycles, and chaos were illustrated (Haile and Xie, 2015).

Recently, the appearance of Hopf bifurcation and Spatio-temporal patterns of
three species of food chain model of Lotka-Volterra type in the presence of self and
cross-diffusion were studied by (Ma, Li, and Wang, 2017).

Additionally, a model of three species Lotka-Volterra type was considered in
which two species are cooperative, and one is competitive with two others. The
authors studied the nonlinear stability of traveling wavefronts for the model (Ma,
Wu, and Yuan, 2017).

As long as, Rosenweig-MacArthur predator-prey model is well-known as a sim-
ple model which exhibits very rich dynamics, diffusive models of these models have
been recently investigated, e.g., in 2020, Rosenweig-MacArthur predator-prey mod-
els of the food chain of two and three species with self-diffusion were studied; the
authors examined stationary and cyclic coexistence steady states of the system and
they then obtained how each species’ diffusion could affect the ODE system’s oscil-
lation and stability (Wang et al., 2021).

More recently, front-Back-Pulse solutions of a three-species competitive Lotka-
Volterra model coupled with diffusion systems have been investigated in (Chang
and Chen, 2021).

Nevertheless, studies around three specie reaction-diffusion models containing
intraguild predation (IGP) with different types of ODEs have not been attended to
as well as other types. For instance, Mukherjee and coauthors Mukherjee, Gho-
rai, and Banerjee, 2019 studied a three-species food chain model including IGP,
equipped with Holling type II functional responses and coupled with self-diffusion
of all species. They employed linear analysis to obtain the Turing threshold. They
exhibited grazing patterns of both IG prey and IG predator. Then, using weakly
nonlinear analysis, they determined the amplitude of the patterns.

However, one of the latest studies around pattern formation of IGP models can
be found in (Han, Dai, and Chen, 2019). In this paper, the authors studied a modified
version of the model (Holt and Polis, 1997) with self-diffusion. Indeed, the authors
added a nonlocal interaction term to the resource equation. An equation of one
specie with nonlocal interactions is defined as:

ut = Duxx + ru(1 − Φδ ∗ u
K

), t > 0 and x ∈ R, (1.3)
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where D is the diffusion coefficient, r and K are the intrinsic growth rate and carrying
capacity of the resource, and ∗ indicates spatial convolution, and

∫ +
− Φδ(y)dy = 1,

(more information can be found in Han, Dai, and Chen, 2019 and references therein).
They locally investigated the model and found the Hopf threshold. Employing lin-
ear analysis, the necessary conditions of the Turing pattern were obtained. They
then studied the influence of nonlocal interaction terms in the emergence of tran-
sient patterns from stationary Turing to non-stationary oscillatory patterns and even
the appearance of chaotic patterns.
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Chapter 2

A Lotka-Volterra three species
model: pattern formation and
oscillation

The Lotka-Volterra system is the simplest mathematical model of predator-prey
interaction as it assumes there is only quadratic interaction between species. For n
species it can be written in the following form (Krikorian, 1979):

u̇i = ur(ei +
n

∑
i=1

pijuj), i, j = 1, 2, ..., n. (2.1)

where ui(t) indicates population densities and (ei + ∑n
i=1 pijuj) denotes populations

growth coefficients, and the following assumptions hold:
i) the dominant term for each species is the birth/death rate, which can be showed
by intraspecific interaction;
ii) there is a food chain from an unlimited resource;
iii) if the presence of the population ui enhances the growth of the population uj,
then the presence of the population uj inhibits the growth of the population ui
(predator-prey interaction).

The case n = 2 has been extensively studied using the theory of monotone dy-
namical system. For example, (Coste, Peyraud, and Coullet, 1979; Gopalsamy, 1982)
studies two species competing Lotka-Volterra models. And also (Křivan, 2007; Deng
et al., 2019) can be taken into account as predatory models of LV when n = 2.

Since 1970’s the case n = 3 has been addressed (for instance see (Chauvet et al.,
2002, Pekalski and Stauffer, 1998, Baek, 2008), classifying the system according to
the different possible interactions between the three species.

In specific, in 1979, Krikorian (Krikorian, 1979) classified three species Lotka-
Volterra model into four classes consisting of 34 cases:
i) Food chain, (Figure 2.1A)
ii) Two predators- one prey, (Figure 2.1B),
iii) One predator- two preys, (Figure 2.1C),
and Loops,
In which the loop classes were divided into two subclasses (Hsu, Ruan, and Yang,
2015):
iv) Food chain with omnivory, (Figure 2.1D),
v) Food chain with cycle, (Figure 2.1E).
In (Figure 2.1) u1, u2, u3 denotes to species of different trophic levels. Therefore, in
the food chain i) there is only one direction between two species of different trophic
levels which means that u1 is resource for primary consumer u2 and u3 is a secondary
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consumer of u2. Class (ii) implies two predators (u2, u3) of different trophic levels
are competing for one resource (u1). And simultaneously, (iii) indicates that two
preys (u1, u2) of different trophic levels are resources of one predator (u3). Class iv
describes not only u2 and u3 are competing for u1 but also u2 is eaten by u3, hence
u3 is called omnivore, since it eats all existence species. Finally, v implies u2 eats u1,
and is eaten by u3 while u3 is eaten by u1.

(A) (B) (C)

(D) (E)

FIGURE 2.1: (Hsu, Ruan, and Yang, 2015, Fig. 1.1) All possible schematic
diagrams of the direct and indirect interactions among three species preda-
tor–prey systems. The arrows present the directions of biomass. (A) Food
chain; (B) two predators–one prey; (C) one predator–two preys; (D) food

chain with omnivory; and (E) food chain with cycle.

In general, feeding relationships in communities are clarified in three ways: The
first is the classical food web which is a schematic description of trophic connections
(Krikorian, 1979). The second quantifies energy or mass flow. And finally, intraguild
or functional webs experimentally identify strong links. Roughly speaking, to make
a simple food web, we only need to recognize "what eats what?". In contrast, we
need experimental manipulations or qualitative measurements to construct a food
web of interactions or energy flow (Holt and Polis, 1997).

2.1 Intraguild predation(IGP)

In this chapter we will analyze a three species model characterized by intraguild
predation. Intraguild predation is a way to consider both competition and predation
effect in a community. In this case a predator kills and eats a prey, and also uses the
same resource of the prey, so that prey and predator are also competitors for the
same prey. Intraguild predation is a particular case of omnivory (Polis and Holt,
1992; Polis, Myers, and Holt, 1989).

According to the (Flynn and Moon, 2011), intraguild predationar models are
more possible to take place in lakes. As an example of aquatic intraguild predation,
we can consider the food web of Lake Kinneret where predatory invertebrates are IG
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prey and planktivorous fish is IG predators that both feed on herbivorous zooplank-
ton (basal resource), namely planktivorous fish also eat the predatory invertebrates
(Makler-Pick et al., 2017).

The second example denotes a terrestrial IGP model. In particular, in North
America, coyotes, gray foxes, and bobcats take into account in the IGP model. Coy-
otes are considered intraguild predators that feed on gray foxes and bobcats. Indeed,
the gray foxes imply an intermediate predator competing with Coyotes for bobcats
(Fuller and York, 2000).

Polis and coauthors (Polis, Myers, and Holt, 1989) mentioned that intraguild
predation could influence on distribution and evolution of species. This point can
be observed in ecology; when wolves insert into the ecosystem (previous example),
coyotes become intermediate predators whose mortality increase (Switalski, 2003).

2.1.1 Intraguild predation models

In the last few years, considerable attention has been paid to intraguild predation
models.

First, we would like to cite some aquatic and terrestrial studies of three species in-
cluding IGP. For instance, in 2000 Fedriani and coauthors (Fedriani et al., 2000) stud-
ied a terrestrial model of competition and intraguild predation among three sym-
patric carnivores. Some other terrestrial investigations can be found in (Moser and
Obrycki, 2009; Recalde, Breviglieri, and Romero, 2020). And to notice to an aquatic
example of three species IGP model, (Irigoien and Roos, 2011) investigated the role
of intraguild predation in explanation of fish population, particularly, pelagic fish.

An experimental-ecological model of intraguild predation (Leung et al., 2015)
has been presented that includes lionfish as venomous predators (invasive) grouper
native species (that share niche with top IG predator(Lionfish) of the Indo-pacific
ocean. They proposed a symmetric intraguild predation model to determine whether
competition or/and predation have an essential role in the role of lionfish. Recently,
another attractive aquatic model containing IGP has also been presented in (Tuckett
et al., 2021).

Now, we survey the latest results around the IGP issue mathematical point of
view. Although numerous types of three-species models have been investigated,
few contain intraguild predation models (IGP). Here we mention some interesting
studies around intraguild predation models.
In 2000, Diehl and Feibel (Diehl and Feißel, 2000) studied three species consisting
of IGP and analyzed how the population growth of the shared resource influences
the food web model. Indeed, they considered the model (2.2) proposed by (Holt
and Polis, 1997). The authors analyzed the effect of enrichment (growing carrying
capacity of the basal resource) on the food chain model with an omnivore. They ap-
proached two steps: in one step, they investigated how increasing carrying capacity
could affect the possibilities of coexistence of the species. And in the second step,
they comforted some predicted cases with experimental results. They figured out
that IG prey may either promote or prevent the omnivore. They also found that, at
most, four cases of invasibility and coexistence may occur by enrichment. Addition-
ally, they reported that for stable equilibria of the system, enrichment provides that
the basal resource’s population density increases while the intermediate predator’s
population density is decreased.

The existence of chaos in the three-species food web model has been studied
in many kinds of literature; Tanabe and Namba (Tanabe and Namba, 2005) inves-
tigated the impact of IG predators in destabilizing a system containing IGP. They
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contradicted the attitude that a food web model including nonlinear functional re-
sponses contains chaotic dynamics since they proved the chaotic behavior of the
Lotka-Volterra food web model with intraguild predation (Holt and Polis, 1997).
Moreover, in another attempt (Namba, Tanabe, and Maeda, 2008), they found out
how increasing diversity of predators consuming IG prey influences stabilizing the
food web model.

Recently, in (Kang and Wedekin, 2013), authors considered two IGP models, one
containing generalist IG predator and another having specialist IG predator. More-
over, the IGP models consisted Holling Type I functional response between basal
resource and intermediate predator and the Holling type III functional response be-
tween IG prey and IG predator. They established sufficient conditions of extinction
and persistence of all possible cases arising in the food web models.

More recently, Hsu and coauthors (Hsu, Ruan, and Yang, 2015) considered a
three spices model of Lotka-Volterra in a food web by omnivory (2.2). Nondimen-
sional form of the model is categorized into 8 cases dependent on the parameters
and positivity conditions of equilibria, of which 5 cases are extinct. However, three
others contain uniform persistence. They proved the existence of periodic solutions
due to Hopf bifurcation and chaotic behavior. They demonstrated the boundary
equilibria’s global behaviors using Lyapunov and McGehee Lemma. In addition,
they studied the boundedness of solutions.

Other studies around the local analysis of IGP models are reported as follows. An
investigation of two consumers of one resource coupled with Beddington-DeAngelis
functional response in (Hsu, Ruan, and Yang, 2013). Additionally, the other results
paid attention to an IG predation model containing intraguild predator with time
delay in (Leung et al., 2015) and delay in IG prey in (Shu et al., 2015), a mathematical
model of IG predation with prey switching in (Wei, 2019), IGP food web model with
strong Allee effect of basal resource (Bai et al., 2021), enhancement of biodiversity
and rising complexity in food web due to intraguild predation in (Wang, Brose, and
Gravel, 2019). Further, an fast-slow dynamic of intraguild predation with evolution-
ary effect has been considered (Shen, Hsu, and Yang, 2020). Moreover, uniqueness,
boundedness, and non-negativity of solution of fractional order of intraguild pre-
dation model containing intraspecific interaction between IG prey and IG Predator
have been investigated in (Panja, 2019). And one last investigation returns to studies
about the effect of competitive exclusion in an IGP model coupled with Beddington-
Deangelis functional response (Ji and Wang, 2022).

Motivated by (Holt and Polis, 1997) we considered the model of three species of
Lotka-Volterra in food web containing IGP:

st = Γ[r(1 − s
K
)s − m1u1s − m2u2s],

u1t = Γ[M1u1s − D1u1 − γ1u1u2],
u2t = Γ[M2u2s − D2u2 + γ2u1u2],

(2.2)

where, s(x, t), u1(x, t), u2(x, t) denote population densities of basal resource, IG prey
(intermediate predator), and IG predator (top predator or superpredator). The re-
source reproduces logistically. All parameters are positive and Γ regulates the do-
main.
First, we analyzed the species extinction, then to conquer numerous parameters, a
nondimensional form of the model has presented. In the nondimensional form, we
have employed a linear analysis to explore local stability and instability regions. Fur-
ther, we have investigated the existence of periodic solutions via Hopf bifurcation.
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Within one last decade, more attention concerning diffusive IGP models can be
found.

Some results (Durant, 2000, Lucas, Coderre, and Brodeur, 2000) have demon-
strated that IG predator tendency is toward a higher density of habitat. In contrast,
IG prey runs away created pressure by increasing predation in the higher quality
region, and therefore tends to the area of marginal habitat. That is why D. Ryan
and R. S. Cantrell (Ryan and Cantrell, 2015) introduced a model which contains IG
prey employing a fitness-based dispersion scheme that is adequate for present lo-
cal resources and reduces predation risk. Therefore their proposed model included
Holling-type function responses and a cross-diffusion for IG prey equation to define
a fitness-based scheme. Moreover, the existence of a global solution to the model
was proved.
Later, Cantrell and coauthors (Cantrell et al., 2017) modified the former model uti-
lizing Beddington-DeAngelis functional responses instead of the Holling type for
more than 2D. They proved that this model is more realistic than the former model.

In 2016, a delayed reaction-diffusion consisting of IGP and equipped with func-
tional response II was considered (Han and Dai, 2016). Spatio-temporal behavior
and oscillation of the model due to Hopf bifurcation were exhibited.

Recently, a self-diffusion model of IGP containing Beddington-DeAngelis func-
tional response with time delay has reported Spatio-temporal behavior (Han, Dai,
and Wang, 2018). Regarding free boundaries, recent work (Zhang and Dai, 2019)
investigated a free boundary diffusive IGP model. Moreover, some studies about
two and more species of IGP in which local stability and emergence of patterns have
investigated cab be found in (see Han, Dai, and Chen, 2019, Lin and Yang, 2018).

Finally, the latest attempt at diffusive IGP models surveyed Spatio-temporal dy-
namics induced by IG predator (Ji et al., 2022). Indeed they considered a diffusive
IGP system. They found that when only IG predator diffuses, the system trans-
formed into a semi-degenerated reaction-diffusion model. They have illustrated the
system undergoes to spatially homogeneous oscillations, spatially nonhomogeneous
oscillations, chaos, and transition between them.

This chapter is organized as follows: In section 2.2, we describe three species
model of intraguild predation in dimensional form. In section 2.3, we prove that
species cannot exist for infinite time. In section 2.4, first, the model (2.3) is rescaled.
Based on new parameters of the nondimensional model, we determine the coexis-
tence of fixed point and necessary conditions for positive equilibrium. Moreover,
the region of existence of stable positive equilibrium is depicted. Further, we estab-
lished Hopf instability conditions and region. Turing analysis of the IGP model is
investigated in section 2.5. Some numerical results confirm the linear analysis of the
model in section 2.6. Weakly nonlinear analysis is employed in section 2.7 to obtain
amplitude arising in Turing pattern.

2.2 A diffusive model of three species of Lotka-Volterra with
IGP

We propose the reaction-diffusion model (2.3). This model is classified in IGP
models. Namely, this equation not only explains the competition between predator
and superpredator for one prey but also the predator (IG prey) is hunted by the
superpredator (IG predator). Additionally, the reaction and the diffusion parts both
are nonlinear and also the diffusion part includes chemotaxis term. Consider the
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PDE model:
st = d1∆s + Γ[r(1 − s

K
)s − m1u1s − m2u2s],

u1t = d2∆u1 + c2∇.(u1∇u2)) + Γ[M1u1s − D1u1 − γ1u1u2],
u2t = d3∆u2 + Γ[M2u2s − D2u2 + γ2u1u2],

(2.3)

With homogeneous Neumann boundary conditions, X ∈ [0, l] ⊂ R+ and s, u1, and
u2 are prey, IG prey and IG predator (superpredator, top predator, or omnivorous)
respectively. Moreover, the parameters explaining the food web as:
r: intrinsic birth rate of the prey that is positive and it means the population is able
to reproduce.
D1: is intrinsic death rate of predator and non negative.
D2: is intrinsic death rate of superpredator and non negative.
D1 and D2 > 0 denote that the population will reduce unless the appropriate other
species are present.
Moreover, other entries of reaction parameters illustrate the interaction between
species in such ways:
K: is carrying capacity correspond to resource.
M1: denotes the effect of the prey on the predator, and it is proportional to the pop-
ulation of the species and the values of M1.
M2: denotes prey effect on the superpredator and is proportional to the population
of the species as well as the value of the M2.
Finally, γ1: implies nonnegative and effect of the superpredator on predator pop-
ulations and γ2 nonnegative, and implies is predator effect on superpredator pop-
ulations. This term explains that superpredators eat both prey and intermediate
predator.

In addition, d1, d2, d3 imply correspondingly diffusion parameters of resource,
IG prey, and IG predator which are positive. c2 denotes to a positive cross-diffusion
parameter. Further, species segregate in the two dimensions (although here our nu-
merical results are obtained for 1D and only the global solution of the model is in-
vestigated in 2D) and reaction coupled with self-diffusion and nonlinear diffusion
terms. The nonlinear term is known as the Chemotaxis term. In other words, the
diffusion of the populations is explained asymmetrically when a chemotactic term
is added to the system. Chemotaxis is described as the oriented migration of organ-
isms under the influence of chemical substances (Hazelbauer, 1979), (Murray, 2001).
In fact, in the IG prey equation, the term ∇.(u1∇u2) with positive sign explains that
intermediate predator (u1) migrates away from IG predator (u2). In addition, the
chemotaxis term is a sub-term of the cross-diffusion term ∇.(∇(u1u2)), which states
that species u1 and u2 move toward their gradient (with a negative sign) or away
from their gradient (with a positive sign). The chemotaxis has an attractive effect
which leads to agglomeration of particles Gajewski, Zacharias, and Gröger, 1998
that here are members of predators.

2.3 Extinction of the species

The system states (2.2) is type of prey-predator since sign(
∂s
∂ui

), sign(
∂ui

∂s
) and

sign(
∂u1

∂u2
), sign(

∂u2

∂u1
) are opposite. And since the system includes of sign(

∂u1

∂s
),
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sign(
∂u2

∂s
) have the same sign, the system (2.3) considered as competition one. We

first show that each coordinate plane is invariant with respect to the system accord-
ing to the theorem below.

Theorem 2.3.1 (Chauvet et al., 2002, page 246) Let S be a smooth closed surface without
boundary in R3 and

ds
dt

= f1(s, u1, u2),

du1

dt
= f2(s, u1, u2),

du2

dt
= f3(s, u1, u2).

(2.4)

where f1, f2, f3, are continuously differentiable. Suppose that n is a normal vector to the
surface S at (s, u1, u2), and for all (s, u1, u2) ∈ S we have that

n.⟨ds
dt

,
du1

dt
,

du2

dt
⟩ = 0,

Then S is invariant with respect to the system (2.4).

Here, we apply the method mentioned in Chauvet et al., 2002. Let S be the plane
s = 0 since the vector (1, 0, 0) is always normal on the plane s = 0, we have

(1, 0, 0).⟨0,
du1

dt
,

du2

dt
⟩ = 0,

Thus, similarly it is shown that each coordinates plane is invariant.

Next, we solve each of the three corresponding planar (two variables) systems in
the respective coordinate planes. We notice that in absence of prey s = 0 the system
(2.4) is reduced to

ds
dt

=0,

du1

dt
=− D1u1 − γ1u1u2,

du2

dt
=− D2u2 + γ2u1u2.

(2.5)

In which the only possible fixed point for the system of predator and superpreda-

tor is (0, 0) that is stable. Therefore,
du2

dt
⩽ −D2u2 gives u2 → 0 exponentially as

t → ∞ and consequently
du1

dt
= −D1u1, so u1 → 0 exponentially as t → ∞. That

makes sense when in the absence of the prey, the predator and consequently the su-
perpredator extinct.
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Moreover, in the plane u1 = 0, the system is

ds
dt

=γs(1 − s
K
)− m2u2s,

du1

dt
=0,

du2

dt
=M2u2s − D2u2.

(2.6)

In fact, in this case the system is the same as classical Lotka-Volterra, and it has two

equilibrium points (0, 0),
(

D2

M2
,

γ

m2
(1 − D2γ

KM2
)

)
. Then

ds
dt

⩽ γs(1 − s
K
),

while in the case of equality there is Bernoli DE whose answer is

s(t) =
K

Kce−γt + 1
,

for all constant c, so

s(t) ⩽
K

Kce−γt + 1
,

then s → K as t → ∞, that shows s is bounded. In following, we have
du2

dt
⩽

u2(M2s− D2), hence u2(t) ⩽ u2(0) exp(M2K − D2)t which states that if M2K− D2 <
0, then u2(t) → 0 exponentially as t → ∞. It means that when there is not preda-
tor, the superpredator gradually extincts under this condition. Similar arguments
obtained for the plane u2 = 0. In summary, in this system all species eventually
extinct.

2.4 Analysis of the nondimensional system

Consider the model (2.3), where we again emphasize that all parameters are pos-
itive and X ∈ [0, l], s, u1, u2 are population densities of species, how s is basal re-
source, u1 is an intermediate consumer and u2 is omnivorous predator. We rescale
the system (2.3) with:

X =

√
d2

Γr
x, t =

1
Γr

τ, s = Ku, u1 =
r

m1
v, u2 =

r
γ1

w,

to obtain the following non dimensional form:

du
dτ

= du
∂2u
∂x2 + u(1 − u − v − ηw),

dv
dτ

=
∂2v
∂x2 + d(

∂v∂w
∂x∂x

+ v
∂2w
∂x2 ) + v(−n1 + αu − w),

dw
dτ

= dw
∂2w
∂x2 + w(−n2 + γu + δv),

(2.7)

where:

η =
m2

γ1
, n1 =

D1

r
, n2 =

D2

r
, α =

KM1

r
, γ =

KM2

r
, δ =

γ2

m1
,
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and:
du =

d1

d2
, dw =

d3

d2
, d =

c2r
d2γ1

,

System (2.7) admits the trivial equilibrium, E0 = (0, 0, 0), and three non-negative

semi-trivial equilibria: Eu = (1, 0, 0), Euv = (
n1

α
,

α − n1

α
, 0) when α > n1, Euw =

(
n2

γ
, 0,

γ − n2

γη
) when γ > n2. System (2.7) also admits the coexistence point E∗ =

(u∗, v∗, w∗), with:

u∗ =
n1δη + (δ − n2)

δ(αη + 1)− γ
, v∗ =

(n2 − γ)− η(γn1 − αn2)

δ(αη + 1)− γ
, w∗ =

δ(α − n1) + (γn1 − αn2)

δ(αη + 1)− γ
,

(2.8)

Before discussing the positivity of the equilibrium E∗, it can be proven that, if the
mortality rate n1 is greater than the conversion rate α, then the species v becomes
extinct for any positive initial condition (u0, v0, w0) (see Hsu, Ruan, and Yang, 2015,
Prop. 2.4). Since we are interested in scenarios supporting the coexistence of all three
species, from now on we will assume:

α > n1, (2.9)

which implies that α > 0. Under the assumption in (2.9), we now discuss the posi-
tivity of the equilibrium E∗. By imposing that numerator and denominator of u∗, v∗

and w∗, given in (2.8), are both positive or both negative, one gets:
i) If n1 < α, one of the following systems must be satisfied:

i.b)



δ >
γ

1 + αη
,

δ >
n2

1 + n1η
,

γ <
n2(1 + αη)

1 + n1η
,

δ >
−n1γ

α − n1
+

αn2

α − n1
,

(2.10)

i.a)



δ <
γ

1 + αη
,

δ <
n2

1 + n1η
,

γ >
n2(1 + αη)

1 + n1η
,

δ <
−n1γ

α − n1
+

αn2

α − n1
,

(2.11)
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In order to display the conditions given in (2.10), and (2.11) in the plane (γ, δ), we
define the following lines:

sd : δ =
γ

1 + αη
,

su : δ =
n2

1 + n1η
,

sv : γ =
n2(1 + αη)

1 + n1η
,

sw : δ =
−n1γ

α − n1
+

αn2

α − n1
,

(2.12)

FIGURE 2.2: In the plane (γ, δ), the colored regions show where the
positive equilibrium E∗ exists. The region I corresponds to the case
(2.10), the region II corresponds to the case (2.11). Parameters are

fixed as n1 = 0.5, n2 = 0.7, α = 2.5, η = 0.8, du = d = dw = 0.

which intersect at the point

Q ≡ (γQ, δQ) = (
n2(1 + αη)

1 + n1η
,

n2

1 + n1η
). (2.13)

In case i), both the systems in i.a) and i.b) are compatible: in particular, the solution
of the system in i.a) corresponds to region I in (Figure 2.2) and the solution of the
system in i.b) corresponds to region I I in (Figure 2.2). Notice that the boundaries of
regions I and I I are just the lines sv and sw for any parameters choice. We therefore
state:

Proposition 2.4.1 Let the conditions (2.10) or (2.11) hold. Then, the system (2.7) admits
the positive steady state E∗ defined in (2.8).

We now analyze the stability of E∗ under the conditions of Proposition 2.4.1. The
system (2.7), linearized in the neighborhood of E∗, is:

ẇ = Kw + D
∂2w
∂x2 , w =

 u − u∗

v − v∗

w − w∗

 , (2.14)
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where:

K =

−u∗ −u∗ −ηu∗

αv∗ 0 −v∗

γw∗ δw∗ 0

 , D =

du 0 0
0 1 dv∗

0 0 dw

 , (2.15)

We first investigate the local stability of the positive equilibrium E∗ when du = d =
dw = 0. The characteristic polynomial of the matrix K, given in (2.15), reads:

P(λ) = λ3 + P2λ2 + P1λ1 + P0,
P2 = u∗, P1 = αu∗v∗ + δv∗w∗ + γηu∗w∗, P0 = ((1 + αη)δ − γ)u∗v∗w∗,

(2.16)

We can express the coefficients of the characteristic polynomial P(λ) in terms of the
eigenvalues λi, i = 1, 2, 3, as follows (Brooks, 2006):

P2 = −(λ1 + λ2 + λ3), (2.17)
P1 = λ1λ2 + λ2λ3 + λ1λ3, (2.18)
P0 = −λ1λ2λ3, (2.19)

We shall show that:
1. E∗ is unstable in region I I, therefore E∗ can be stable only in region I;
2. in region I there may exist a curve along which E∗ loses its stability via Hopf
bifurcation.

According to the Routh-Hurwitz criterion, E∗ is locally stable if

P2, P0 > 0, and P2P1 − P0 > 0, (2.20)

where:

P2P1 − P0 = −(λ1 + λ2)(λ2 + λ3)(λ1 + λ3), (2.21)

P2 is always greater than zero from its expressions in (2.16), therefore E∗ can lose
stability if P0 < 0 or P2P1 − P0 < 0. Since P1 > 0 by (2.16), the two conditions P0 < 0
and P2P1 − P0 < 0 cannot hold together. The coefficient P0 is negative below the line
s1 (and in particular in region I I) and positive above the line s1 (and in particular in
region I), therefore E∗ is unstable in region I I and it can be stable in region I. The
point 1. is thus proved.

In region I the equilibrium E∗ is stable when P2P1 − P0 > 0 and it is unstable
when P2P1 − P0 < 0. We now show that P2P1 − P0 = 0 is the curve along which
Hopf bifurcation occurs.

Using (2.19), the condition P0 > 0 implies that the characteristic polynomial has
at least one real negative root, which we denote λ1, and the other two roots, λ2 and
λ3, can be either real with the same sign or complex conjugate. Moreover, since
P2 > 0, using (2.17), −λ1 > λ2 + λ3, therefore it follows that neither λ1 + λ2 nor
λ1 + λ3 can be zero. Thus, by (2.21) we have that P2P1 − P0 = 0 if and only if
(λ2 + λ3) = 0, from which it follows that λ2 and λ3 are purely imaginary roots of
the characteristic polynomial. This implies that P2P1 − P0 = 0 is the condition for the
occurrence of Hopf instability, the real part of λ2 and λ3 change from positive (when
P2P1 − P0 < 0) to negative (when P2P1 − P0 > 0). The condition P2P1 − P0 > 0 for
the linear stability of E∗ can be written as follows in terms of the system parameters:

F = u∗(αv∗ + ηγw∗) + (γ − αηδ)v∗w∗, (2.22)
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(A) η = 0 (B) η ̸= 0

FIGURE 2.3: In grey the regions of the parameters in the plane (γ, δ)
where the equilibrium E∗ exists positive and locally stable. The pa-
rameter values are n1 = 0.5, n2 = 0.7, α = 2.5, du = d = dw = 0. In

A) η = 0. In B) η = 0.8.

Recalling that α > 0, the condition F > 0 given by (2.22) is always satisfied when
η = 0, then Hopf bifurcation cannot occur and E∗ is locally stable in the entire region
I of Figure 2.2. We also observe that, when η is different from zero, the condition
(2.22) is always verified below the line:

st : δ =
γ

αη
, (2.23)

Since the line st is above the line sd, in the triangle region I2, bounded by the lines
sd and st and shown in Figure 2.3B, Hopf bifurcation cannot occur and E∗ is always
locally stable. In Appendix A, we perform a detailed analysis of the Hopf instability
curve F = 0 in the plane (γ, δ). Through this analysis, we show that only a branch
of the curve F(γ, δ) = 0 lies in the region I1, as reported in Figure 2.3B. Moreover, in
region I1 the stability condition (2.22) is satisfied below this branch. We summarize
the results of the above discussion in the following Propositions.

Proposition 2.4.2 (Stability conditions). The coexistence equilibrium point E∗, whose co-
ordinates are given in (2.8), is linearly stable when:
1. η = 0 and conditions (2.10) hold (corresponding to region I in Figure 2.3A,
2. η ̸= 0, conditions (2.10) hold and F > 0 hold, with F defined in (2.22) (corresponding to
the regions I1 and I2 in Figure 2.3B.

Proposition 2.4.3 (Hopf bifurcation). Let η ̸= 0. The positive coexistence steady state E∗,
whose coordinates are given in (2.8), loses its stability via a Hopf bifurcation along F = 0,
with F defined in (2.22). In the plane (γ, δ) the Hopf bifurcation locus corresponds to the
solid branch F(γ, δ) = 0 in region I1 shown in Figure 2.3B.

2.5 Turing Instability

In this Section, we analyze the condition for the Turing instability in the neigh-
borhood of E∗, which occurs when the locally stable equilibrium point becomes un-
stable due to the effect of the diffusion terms.

Looking for solutions of system (2.14) of the form eikx+λt leads to the following
dispersion relation, which gives the eigenvalue λ as a function of the wavenumber
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k:

λ3 + P2(k2)λ2 + P1(k2)λ + P0(k2) = 0, (2.24)

where

P2(k2) = k2tr(D)− tr(K),

P1(k2) = (du + dudw + dw)k4 + (u∗(1 + dw) + dv∗w∗)k2 + αu∗v∗ + δv∗w∗ + γηu∗w∗,

P0(k2) = det(K + k2D) = p3k6 + p2k4 + p1k2 + p0,
(2.25)

with

p3(k2) = dudw,

p2(k2) = dwu∗ + δdudv∗w∗,

p1(k2) = (duδv∗w∗ + γηu∗w∗ + dwαu∗v∗ + d(δ − γ)u∗v∗w∗,

p0(k2) = ((αη + 1)δ − γ)u∗v∗w∗,

(2.26)

Spatial patterns arise in correspondence of those modes k for which R(λ) > 0. Being
P2(k2); P1(k2) > 0, according to the Routh-Hurwitz criterion the only way to have
R(λ) > 0 for some k ̸= 0 in Figure (2.24) is when P0(k2) < 0. The coefficients p3 and
p2 are positive. Being E∗ stable for the kinetics, the conditions in proposition hold
and then the coefficient p0 is positive. In the following we compute the bifurcation
threshold d = dc and the corresponding most unstable wavenumber kc.

Case du = dw = 0. P0 is the following linear polynomial in k2:

P0(k2) = p1k2 + p0, (2.27)

where p1 = γηu∗w∗ + d(δ − γ)u∗v∗w∗ and p0 is as in (2.26). Since p0 > 0, in order
to have P0(k2), for some k > 0, p1 must be negative, which leads to the following
conditions:

γ > δ,

d > dc :=
γη

w∗(γ − δ)
,

(2.28)

Therefore, if (2.27) and (2.28) are satisfied, then Turing instability occurs for all k such
that:

k > kc :=

√
((αη + 1)δ − γ)v∗

γη + d(γ − δ)v∗
, (2.29)

However, conditions (2.28) and (2.29) do not ensure the formation of a Turing pat-
tern because an infinite range of unstable wavenumbers is admitted. Namely, only
diffusion and even cross-diffusion of the IG prey cannot guarantee to perform of the
Turing pattern.
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Case dw ̸= 0 and du = 0: P0(k2) is the following second order polynomial in k2:

P0(k2) = p2k4 + p1k2 + p0,
where p2 = dwu∗,

p1 = γηw∗u∗ + dwαu∗v∗ + d(δ − γ)u∗v∗w∗,

(2.30)

and p0 is as in (2.26). The minimum of P0 is attained when:

k2 = k2
c :=

−p1

2p2
, (2.31)

which requires p1 < 0 and therefore from (2.30) we obtain the following conditions

γ > δ,

d > d̄ :=
γηw∗ + dwαv∗

(γ − δ)v∗w∗ ,
(2.32)

which are necessary for Turing instability to occur.
Defining the quantities a and b as:

a = (γ − δ)u∗v∗w∗, b = γηu∗w∗ + dwαu∗v∗, (2.33)

then p1 = −ad + b. Introducing d =
b
a
+ ξ in P0 one gets:

− ξ2

2p2
+ p0 = 0, (2.34)

whose positive roots ξ+ gives the only critical value of the parameter d:

dc =
b
a
+ ξ+, (2.35)

Therefore Turing instability occurs for all d > dc given in (2.35). It means that when
IG predator diffuses as well as IG prey, the model undergoes Turing instability.

Case dw = 0 and du ̸= 0. P0(k2) is the following second order polynomial in k2:

P0(k2) = p2k4 + p1k2 + p0,
where p2 = δdduv∗w∗,

p1 = δduv∗w∗ + γηw∗u∗ + d(δ − γ)u∗v∗w∗, ,

(2.36)

and p0 is as in (2.26). The minimum of P0 is attained when:

k2 = k2
c :=

−p1

2p2
, (2.37)

which requires p1 < 0 and therefore from (2.36) we obtain the following conditions

γ > δ,

d > d̄ :=
duδv∗ + γηu∗

(γ − δ)v∗u∗ ,
(2.38)

which are necessary for Turing instability to occur.
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Defining the quantities a and b as:

a = (γ − δ)u∗v∗w∗, b = duδv∗w∗ + γηu∗w∗, (2.39)

then p1 = −ad + b. Introducing d =
b
a
+ ξ in P0 one gets:

− ξ2

2p2
+ p0 = 0, (2.40)

whose positive roots ξ gives the only critical value of the parameter d:

dc =
b
a
+ ξ+, (2.41)

Therefore Turing instability occurs for all d > dc given in (2.41). In other words when
the resource diffuses as well as IG prey, the model undergoes Turing instability.

Case dudw ̸= 0. P0(k2) is the third order polynomial in k2 defined in (2.26). If
p2

2 − 3p3 p1 > 0, then P0 admits the following critical points:

k2
M =

−p2 −
√

p2
2 − 3p3 p1

3p3
, k2

m =
−p2 +

√
p2

2 − 3p3 p1

3p3
(2.42)

which are a local maximum and a local minimum, respectively. Notice that k2
M is

always negative. For P0(k2) < 0, for some k, we must require k2
m > 0, which is

satisfied if p1 < 0. From the explicit expression of p1 given in (2.26) we therefore
derive the following two necessary conditions:

γ > δ,

d > d̄ :=
duδv∗w∗ + γηu∗w∗ + dwαu∗v∗

(γ − δ)v∗u∗w∗ ,
(2.43)

Under condition (2.43), the quantity p2
2 − 3p3 p1 is greater than zero and the typical

graph of the curve P0(k2) is given in Figure 2.4. Thus, the condition for the marginal
stability is:

min(P0(k2
c)) = 0, (2.44)

and the minimum of P0 is attained when:

k2
c = k2

m, (2.45)

From conditions (2.44) and (2.45), both the bifurcation value d = dc and the corre-
sponding most unstable wavenumber kc can be computed.

Since (2.44), under (2.45), is a cumbersome expression in terms of d, we numer-
ically solve the equation P0(k2

m) = 0 with respect to d. We have found that just two
positive roots d1 < d2 satisfy the equation. However, via numerical inspection we
have observed that only d2 satisfies condition (2.43). Therefore, there exists only one
Turing critical threshold d = d2 = dc, see Figure 2.4. In Figure 2.5 it is observed that
how eigenvalues become positive and P0(k2) < 0 as wave number and bifurcation
parameter d increase respectively.
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(A) (B) P0(k2)

FIGURE 2.4: In Panel A): the graph of P0(k2) in the general case
dudw ̸= 0. In Panel B): typical graph of P0(k2

m), where P is the charac-
teristic polynomial and k2

m is defined in (2.42). The parameter values
are n1 = 0.5, n2 = 0.7, α = 2.5, η = 0.8, γ = 1.2, δ = 0.6, du =

0.02, dw = 0.04.

Remark 2.5.1 p1 < 0 is a necessary condition for Turing instability. In absence of the
cross-diffusion term (d = 0) the coefficient p1 is always positive and Turing instability
cannot occur. The only destabilizing effect is therefore the cross-diffusion d > 0. Hence, we
will adopt d as the bifurcation parameter.

Remark 2.5.2 . If η = 0, condition (2.43) does not hold in region I2, due to the first
inequality in (2.10). Therefore, Turing instability cannot occur.

(A) λ(k2) (B) P0(k2)

FIGURE 2.5: A) Plot of eigenvalues when wavenumbers are in the in-
terval [k2

M, k2
m] as critical bifurcation d varies B) Plot of P(k2) as critical

bifurcation parameter d varies. The parameter are given in Figure 2.4.

Remark 2.5.3 . If η ̸= 0, condition (2.43) can be satisfied in region I2. In particular, when
αη > 1, the line δ = γ is above the line st and the condition (2.43) is satisfied in all the
region I2 implying that Turing instability can occur when the bifurcation parameter d is
suitably chosen as we will discuss below.

Remark 2.5.4 If αη ⩽ 1, Turing-Hopf instability cannot occur, in fact the line δ = γ is
below the line st : δ =

γ

αη
and the curve F = 0, lying in region I1, cannot intersect δ = γ
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and the necessary condition (2.43) is not satisfied (see Figure 2.6C). Therefore, necessary
condition for Turing-Hopf instability is αη > 1 (see Figure 2.6B).

(A) (B) (C)

FIGURE 2.6: Hopf and Turing instability regions for increasing values
of α. A) α = 2.5, B) α = 5, C) α = 0.9. The other fixed parameter

values are n1 = 0.5, n2 = 0.7, η = 0.8.

In the following, we analyze the dependence of Turing instability region with respect
to all the system parameters.

In the Figure 2.7, the parameters are fixed as Figure 2.2 while only n1 is varying
in Figure 2.7A. It is observed that the Turing region is moving to the right side when
the parameter n1 is decreasing, i.e increase of death rate of the predator v deals to a
large unstable area. However the Turing regions decline by rising up the parameter
n2 and it is also moved to the right side Figure 2.7B which means that enhancement
of death rate of Predator w make a system more stable.

Another side, the growth rate of the predator concerning the prey varies such
that by increasing the parameter value, the Turing region is decreased and shrieked
(see Figure 2.7C). Similarly, the system’s Turing region declines when the parameter
η is enhanced (see Figure 2.7D). Simultaneously, as self-diffusion parameters du, dw
rise up Turing regions decreased in Figure 2.7E, Figure 2.7F.

In addition, Figure 2.6 demonstrates the stability and instability regions in pa-
rameter plane (γ, δ) such that the Turing region is displayed while the parameter α

is varying and the Turing region is confined between two lines δ = γ and δ =
γ

αη
.

It is obvious that Turing region is obtained when αη ⩾ 1 Figure 2.6A, Figure 2.6B.
There is Turing region when the slop of the line δ = γ is greater than the slop of the

δ =
γ

αη
and the Turing region is greater when the parameter α is increased. But there

is no Turing region for αη < 1 since the necessary condition γ > δ is not satisfied.

Remark 2.5.5 For the sake of completeness, it remains to prove that P2P1 − P0 > 0 in
(2.24). Indeed if this condition were violated the system would admit a Wave instability.
By simple calculations it is possible to show that the condition P2P1 − P0 > 0 (2.24) and
(2.26) is also true thanks to the stability conditions P2P1 − P0 > 0 in (2.21), and then there
is No Wave Instability without cross-diffusion terms.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 2.7: Turing instability regions as the system parameters
change. The parameter set is chosen as in Figure 2.2, except for
the parameter specified in the legend of each sub figure and du =

0.2, dw = 0.2.

Remark 2.5.6 Also in this case, the stability condition (2.21) implies that P2P1 − P0 > 0,
and then the inclusion of the cross-diffusion term is not able to generate Wave Instability.

2.6 Numerical Results

In this part, we depict numerical results operated on the nondimensional sys-
tem (2.7) associated with Turing stationary patterns, Hopf pattern, and Turing-Hopf
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pattern. In space discretization, we have used Fourier Spectral method with 256 or
512 modes, and in the time integration, we have utilized the second-order explicit
Runge-Kutta method.

2.6.1 Turing Stationary Patterns and chaotic spatial temporal pattern

Here, by considering a set of parameters admitted in the instability region of

(A) Prey (B) Prey

(C) IG Prey (D) IG Prey

(E) IG Preda-
tor

(F) IG Preda-
tor

FIGURE 2.8: Numerical simulation in the Turing instability region
with n1 = 0.5, n2 = 0.7, η = 0.8, α = 5, γ = 2, δ = 0.8, du =
0.01, dw = 0.2 and d = 12.2298. For this parameter choice the equi-
librium point is E∗ = (0.21, 0.35, 0.55), the critical Turing threshold is

dc = 8.1532 and the critical wavenumber is kc = 1.0809.

Figure 2.6, and located in the Turing region, the Turing stationary patterns per-
formed in Figure 2.8.

The results of Figure 2.8 has been plotted in the domain [0 , 4π] since for given
parameters, the critical wave mode is kc ≃ 1 in [0 , 2π]. For chosen parameters,
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the critical Turing bifurcation parameter is achieved dc = 8.1532. Therefore, by a
little enhancement of d, the coexistence steady state E∗ becomes unstable, and string
Turing patterns in 1D are formed (see Figure 2.8 left sides). Moreover, from an
ecological point of view, these numerical results also recall that direction of diffusion
of the resource (prey) and IG predator (top predator or superpredator) are always
in phase while IG prey (intermediate predator), whom IG predator eats, is out of
phase (see Figure 2.8 right sides). Roughly speaking, the IG predator and IG prey
are chasing resources. In contrast, the IG prey runs away from the IG predator since
IG prey diffusion is influenced by chemotaxis term with a positive sign.

We have also observed the chaotic behavior of the system (2.7). For this case,
we considered the same set of parameters of Figure 2.8 while the critical Turing pa-
rameter admits d = 12.2298. It is illustrated by a few increasing the cross-diffusion
parameter d, the system goes to the Turing instability, however by going more be-
yond the cross-diffusion parameter, not only the number of modes is increased, but
also the chaotic time behavior are taken place (see Figure 2.9).

(A)
Prey

(B) IG
Prey

(C) IG
Preda-

tor

FIGURE 2.9: Numerical simulation in the Turing instability region
with n1 = 0.5, n2 = 0.7, η = 0.8, α = 5, γ = 2, δ = 0.8, du =
0.01, dw = 0.2 and d = 12.2298. For this parameter choice the equi-
librium point is E∗ = (0.21, 0.35, 0.55), the critical Turing threshold is

dc = 8.1532 and the critical wavenumber is kc = 1.0809.

2.6.2 Numerical results of Hopf instability

This section presents some numerical results when the system goes to Hopf insta-
bility. As we calculated under the conditions (2.22), we can find the Hopf threshold
due to

F(δ)|δ=δc = 0,
∂F
∂δ

|δ=δc ̸= 0. (2.46)

By numerical results, we found that if δ > δc, the stable equilibrium point E∗ under-
goes the periodic solutions. While if δ < δc, the system keeps its local stability.

Indeed, Figure 2.10 explains the system’s behavior when δ is varying. For these
figures, we investigated numerical solution on (2.2) to obtain the time oscillations.
As a result, Figure 2.10A and Figure 2.10B show that when δ < δc, E∗ is a stable spi-
ral, i.e., for any initial values, the population densities tend to be stable at coexistence
steady state.

Another side, as the Hopf bifurcation parameter δ crosses the threshold and in-
creases, the equilibrium becomes unstable and periodic solutions emerge. As the
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δ increases, the limit cycles become larger and periodic solution become stable; see
Figure 2.10C and Figure 2.10D.

Figure 2.11 describes the local instability of the system when reaction param-
eter δ crosses the threshold. For these figures, we applied the spectral method on
the system (2.7) for other chosen and fixed parameters, while only δ increases. Si-
multaneously, as the feeding rate of IG predators associated with IG prey rises, the
system starts oscillating in time. These oscillations illustrate that population densi-
ties of resource and IG prey rise as the population density of IG predator is declined
(Figure 2.11B).

(A) δ < δc = 1.0753 (B) δ < δc = 1.0753

(C) δ > δc = 1.0753 (D) δ > δc = 1.0753

FIGURE 2.10: Numerical simulation in the Turing instability region
with n1 = 0.5, n2 = 0.7, η = 0.9067, α = 5, γ = 2.1. For this
parameter choice the equilibrium point is E∗ = (0.21, 0.35, 0.55), Hopf

threshold δc = 1.0753.
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(A)

(B)

FIGURE 2.11: Numerical simulation in the Turing instability region
with n1 = 0.5, n2 = 0.7, η = 0.8, α = 5, γ = 1.5, δ = 1.51, du =
0.04, dw = 0.02 and d = 10.3. For this parameter choice the equi-
librium point is E∗ = (0.23, 0.23, 0.67), the critical Hopf parameter is

δc = 1.0258.

2.6.3 Turing- Hopf Patterns

In this numerical results section, we obtain figures in which Turing bifurcation
undergoes to Hopf instability. In fact, for given parameters, one needs to find critical
Hopf parameter δc, then for the founded Hopf threshold, we find crucial Turing
bifurcation dc. As mentioned in previous sections, the system goes to Turing for
d > dc and faces the Hopf if δ > δc. Moreover, in Remark 2.5.4, we mentioned the
necessary condition of performing Turing-Hopf instability.

To determine Turing-Hopf patterns for obtained parameters; first we choose, d >
dc while δ < δc, i.e just we expect Turing pattern. As the numerical simulation in
Figure 2.8, we expect only emergence of Turing pattern. Then for fixed d > dc, as
δ crosses the threshold, Turing-Hopf patterns begin to appear see (Figure 2.12 and
Figure 2.13).

Figure 2.12 depicts how the system accepts the Turing- Hopf pattern. In fact, in
the figure δ = δc while d > dc. Figure 2.12A explain phase portrait of the system
of Turing faced to threshold Hopf. Figure 2.12B , Figure 2.12C, and Figure 2.12D,
illustrate the patterns correspond to the resource u and predators v, w.

Figure 2.13 demonstrates more instability of the system when δ increases from
δc = 1.0753. It shows that for little increase, i.e δ = 1.11, Spatio-temporal patterns
appear. Indeed, phase portrait in the Figure 2.13A of the system state the point
clearly. Moreover, in the figures of Figure 2.13 it is obvious that IG predator w
oscillate with amplitude bigger than IG prey v and resource u. It means that spatial
instability of the IG- predator goes to bigger instability if the larger number of the
predator v are eaten by predator w, i.e δ ≥ δc.
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(A)
phase
Portrait

(B) u

(C) v (D) w

FIGURE 2.12: Numerical simulation in the Turing-Hopf instability re-
gion with n1 = 0.5, n2 = 0.7, η = 0.8, α = 5, γ = 1.6, δ = δc, du =
0.04, dw = 0.02 and d = 35. For this parameter choice the equilib-
rium point is E∗ = (0.22, 0.32, 0.58), the critical Turing threshold is
dc = 28.9415, critical Hopf parameter is δc = 1.0753 and the criti-
cal wavenumber is kc ≃ 0.9. A) phase portrait for a specific x and

t ∈ [0 , T].

2.7 Weakly Nonlinear Analysis

In this section we perform a weakly nonlinear analysis to predict the amplitude
of the pattern near the Turing threshold. The weakly nonlinear analysis is based
on the multiple scale methods. Since near to the bifurcation the amplitude of the
pattern (diffusion-driven instability) has slow temporal scale, then a new temporal
scale is defined.

The solution of the original system is written as a weakly nonlinear expansion in

the small control parameter ε. We choose ε2 =
d − dc

dc
.

The slow scale is obtained from the linear analysis: it is easy to prove that λ ∼ ε2

and, since the growth rate of the perturbation is proportional to the exp(λt), the slow
time scale T is order ε2. Therefore, close to the threshold we separate the fast time t
and slow time T = ε2t, so that time derivative is obtained as ∂t → ∂t + ε2∂T.

We separate the linear part from the nonlinear part:

∂tw = Ldc w +
1
2
QK(w, w) +∇.Qdc

D (w,∇w), w = exp
(
iδ2x + λt

)
, (2.47)

and linear operator is defined as Ldc = ΓK + Ddc∇2,
where D and K are defined in (2.15) and nonlinear operators QK(x, y), Qdc

D (x, y) are
introduced as: x = (xu, xv, xw), y = (yu, yv, yw).
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(A) Phase
portrait

(B) u

(C) v (D) w

FIGURE 2.13: Numerical simulation in the Turing-Hopf instability re-
gion with n1 = 0.5, n2 = 0.7, η = 0.8, α = 5, γ = 1.6, δ =
1.11, du = 0.04, dw = 0.02 and d = 35. For this parameter choice the
equilibrium point is E∗ = (0.22, 0.32, 0.58), the critical Turing thresh-
old is dc = 28.9415, critical Hopf parameter is δc = 1.0753 and the
critical wavenumber is kc ≃ 0.9. A) phase portrait for a specific x and

t ∈ [500 , 700].

QK(x, y) =

−2xsys − m1(xuyv + xvyu)− m2(xuyw + xwyu)
α(xuyv + xvyu)− (xvyw + xwyv)

γ(xuyw + xwyu) + δ(xvyw + xwyv)

 , (2.48)

QD(x, y) =

 0
dxvyw

0

 , (2.49)

and moreover the bifurcation parameter and solution are expanded asymptotically

d = dc + ε2d(2) + O(ε4),

w = εw1 + ε2w2 + ε3w3 + O(ε4),

The linear and nonlinear terms are expanded as follows:

Ld = Ldc +∇2ε2d(2)

0 0 0
0 0 v∗

0 0 0

 ,
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QK(w, w) = ε2QK(w1, w1) + 2ε3QK(w1, w2) + ε4{QK(w2, w2) + 2QK(w1, w3)}
+ O(ε5),

∇.Qd
D(w,∇w) = ε2∇.Qdc

D (w1,∇w1) + ε3{∇.Qdc
D (w1,∇w2) +∇.Qdc

D (w2,∇w1)}
+ ε4{∇.Qdc

D (w2,∇w2) +∇.Qdc
D (w1,∇w3) +∇.Qdc

D (w3,∇w1)}
+ O(ε5),

Now we replace all expansion in (2.47) and sort according to the order of ε. At
O(ε),we obtain the following linear problem:

Ldc w1 = 0, w1 = A(T)ρ cos(kcx),

such that satisfying the homogeneous boundary conditions where ρ belongs to the
ker(ΓK − k2

c Ddc). In this stage the A(T), the amplitude of the pattern is arbitrary and
the vector ρ is considered constant such whose normalization is

ρ =

 1
ρ2
ρ3,

 , (2.50)

with

ρ2 = −dudwk4
c + dwk2

cu∗ + u∗w∗γη

dwk2
cu∗ + u∗w∗δη

,

ρ3 = −u∗w∗(γ − δ)− w∗
uk2

c
dwk2

cu∗ + u∗w∗δη
,

(2.51)

where k2
c are replaced by is obtained by using Equation (2.45). We observe that ρ2

is always negative. Also, we point out that the condition dc > d̄ (2.43) ensures that
ρ3 is always positive. Therefore, u and v always oscillate out of phase and u and w
always oscillate in phase.

Moreover, at O(ε2) there is this linear equation which must be solved:

Ldc w2 = F,

According to the Fredholm alternative theorem, this equation has a solution if and
only if ⟨F, ψ⟩ = 0, where ψ∗ is defined at

ψ =

 1
R∗

1
R∗

2

 cos(kcx) = ψ∗ cos(kcx),

and ⟨., .⟩ implied the scalar product in L2(0,
2π

kc ) and ψ∗ ∈ Ker(ΓK − k2
c Ddc)† where

† shows transpose of complex conjugate of the matrix.

In particular, F = −1
4

A2 ∑i=0,2 Mi(ρ, (ρ) cos(ikcx), in which Mi(ρ, ρ) = QK(ρ, ρ)−
i2k2

cQdc
D (ρ, ρ). Hence, the vector w2 is defined as

w2 = A2(w20 + w22 cos(2kcx)) so that Ldc
i w2i = −1

4
Mi(ρ, ρ), i = 0, 2 and Li =

ΓK − i2k2
c Ddc .
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In following, at O(ε3) we obtain the linear problem

Ldc w3 = G, (2.52)

where G =

(
dA
dT

ρ + AG(1)
1 + A3G(3)

1

)
cos(kcx) + A3G3 cos(3kcx), in which

G(1)
1 = k2

cd(2)

0 0 0
0 0 v∗

0 0 0

 ρ,

G(3)
1 = −M1(w20, ρ)− 1

4M2(ρ, w22)−
1
4
{Qk(ρ, w22) + 2k2

cQdc
D (w22, ρ)},

G3 = − 1
2Qk(ρ, w22) + 3k2

cQdc
D (ρ, w22) +

3
2

k2
cQdc

D (w22, ρ),
Finally, by applying the solvability condition, we obtain the Stuart-Landau equation
for the amplitude

∂A
∂T

= σA − LA3,

In addition, solvability of the equation (C.2) depends on ⟨G, ψ⟩ = 0, whose coeffi-
cients are given by

σ = −
⟨G(1)

1 , ψ⟩
⟨ρ, ψ⟩ , L =

⟨G(3)
1 , ψ⟩

⟨ρ, ψ⟩ ,

.
In the Stuart-Landau equation the coefficient σ is always positive while L could

be either negative or positive, corresponding to a subcritical or supercritical bifurca-
tion.

The nontrivial solution of the amplitude equation is

A∞ =

√
σ

L
, (2.53)

which requires L > 0, and therefore the result of this analysis is valid only for super-
critical bifurcations.

Therefore, the asymptotic behavior of the solution is given by weakly nonlinear
analysis of O(ε3) is:

W = εAρcos(kcx) + ε2A2[w20 + w22cos(2kcx)] + O(ε3). (2.54)

Generally, a fully scaled amplitude equation from which all parameters have been
removed is the form of

∂T A = ±A + ∂2
X A − |A|2A,

that is known as Ginzburg-Landau Equation and the positive sign for the first term
on the right-hand side corresponds to the above threshold and the negative sign to
the below threshold. The Landau-Stuart equation is one type of Ginzburg-Landau
equation in which only time scale bifurcation is considered; therefore, there is no
middle term. Moreover, in our model, instability occurs when d > dc, i.e., the critical
bifurcation parameter is above the threshold, hence the σ > 0 in the Landau-Stuart
equation.
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Derivation of quintic Stuart-Landau equation

As far as, we found in previous section in Landau- Stuart equation the coefficient
σ is always positive while L could be either negative or positive with respect to
subcritical or supercritical bifurcation.

In fact, in subcritical case, the system is not able to capture the time revolution
of the pattern, and the system need another time scale which makes more precise
approximation (Gambino, Lombardo, and Sammartino, 2012; Gambino, Lombardo,
and Sammartino, 2013). This part of calculation is found in B.1.

2.7.1 Numerical simulation VS. WNL

In this section, first we employ WNL to figure out how much big amplitudes vary
in Turing regions. Therefore, we determine numerically superciritical and subcritical
regions in planes (γ, δ) and (δ, d). Then we compare numerical results of stationary
Turing pattern with weakly nonlinear analysis.

Figure 2.14A implies to subcritical and supercritical Turing region in the instabil-
ity regions located in the plane (γ, δ). Figure 2.14B indicates as diffusion parameter
dw increases Turing regions decline. We observe that in absence of self-diffusion of
IG predator, the system undergoes only supercritical bifurcation. While as IG preda-
tor diffuses IG prey has to move away from IG predator faster (i.e d increases) and
the system underlies supercritical or subcritical bifurcation.

Furthermore, Figure 2.15 demonstrates when a basal resource does not diffuse
(du = 0), the system faces Turing instability such that instability occurs with small
amplitude due to supercritical bifurcation (i.e population densities vary smaller).
Indeed, in absence of diffusion of prey, if IG predator eats much more IG prey (for
greater values of a constant δ), population densities go to instability very close to
equilibrium, however for less than the constant value δ population densities vary
with big amplitude via subcritical bifurcation. It is observed in this case, that the
subcritical region is smaller than the supercritical region.

Nevertheless, Figure 2.15 right side, indicates as prey moves (du increases) the
system faces to instabilities. A large part of the Turing region allocates to the subcrit-
ical region. In the other words, there is again a constant value of δ such that for less
than this value the population densities change with big amplitude, while when δ is
bigger than the constant value(IG predator eats more IG prey), the system undergoes
supercritical regions and populations vary smaller.

Figure 2.16 demonstrates a comparison of numerical solution of the system (2.7)
with weakly nonlinear analysis, for supercritical case when ε = 0.1 and ε = 0.05. In-
deed, Weakly nonlinear analysis releases that in the Landau-Stuart equation σ and L
are positive. According to the L2-norm of distances, numerical and weakly nonlinear
results depict nice agreements which are consistent with O(ε3).

However, in the case L < 0 -subcritical case- the amplitude equation (2.53) can-
not approximate the solution, therefore we apply higher order of the approximate
via quintic Stuart- Landau. equation mentioned in Appendix B.1. Although we em-
ploy the fifth order in the approximation of the amplitude equations, the results do
not have good agreement with numerical results. Indeed, this failure occurs since
approximated A is in O(ε−1), which is not able to capture the amplitude as well as
the supercritical case.
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(A) Sub- and super-
Turing in plane

(γ, δ).

(B) Sub- and super-
Turing in plane

(δ, d).

FIGURE 2.14: A) Supercritical and subcritical Turing instability re-
gions. The parameter values are n1 = 0.5, n2 = 0.7, α = 2.5, γ = 0.8,
du = 0.02, dw = 0.04. B) Supercritical and subcritical Turing regions
when IG predator self-diffusion varies: dw = 0 and dw = 0.2. Other
fixed parameters are n1 = 0.5, n2 = 0.7, α = 2.5, η = 0.8, γ = 1.2,

du = 0.02.

FIGURE 2.15: Supercritical and subcritical Turing instability regions
when basal resource self-diffusion varies: du = 0 in the left side, du =
0.2 in the right side. Other fixed parameters are n1 = 0.5, n2 = 0.7,

α = 2.5, η = 0.8, γ = 1.2, dw = 0.04.
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(A) ε = 0.1

(B) ε = 0.05

FIGURE 2.16: Comparison between the weakly nonlinear solution
(solid line) and the numerical solution of system (dotted line) in the
supercritical case, with different values of ε: we have fixed ε = 0.1 in
the simulation shown in the first line and ε = 0.05 in the simulation
shown in the second line. The parameter values used in the simu-
lations are: n1 = 0.5, n2 = 0.7, α = 5, η = 0.8, γ = 1.5, δ = 0.8,
du = 0.02, dw = 0.04. For this parameter set, the bifurcation threshold

is dc = 10.2872 and the critical wavenumber is kc = 1.04222.
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Chapter 3

Normal form of Turing-Hopf
codimension two of IGP model

We recall that onset of Hopf instability in absence of the diffusion is characterized
by a pair of complex conjugate eigenvalues crossing the imaginary axis so that a limit
cycle appears out of an unstable equilibrium. The Hopf bifurcation occurs when:

Im(λ(k)) ̸= 0, Re(λ(k)) = 0, at k = 0. (3.1)

in marginal state of Hopf, the cubic polynomial has two purely imaginary eigenval-
ues while the other eigenvalue remains in the left half plane such that the two purely
imaginary crosses the origin to the right half plane due to varying critical Hopf bi-
furcation parameter. Thank to algebraic relation between eigenvalues of cubic poly-
nomial mentioned in Brooks, 2006 and applying on the characteristic function above
we can determine eigenvalues of the threshold explicitly as follow:
1. Since P2 > 0 due to (2.17) it is confirmed that λ1 < 0. and 2. The two other
eigenvalues of the threshold are complex conjugate so λ2,3 = ±iΩc, thus (2.18) gives
Ω2

c = P1 where P1 > 0, consequently

Ωc =
√

P1. (3.2)

In the previous chapter we obtained Turing and Hopf instability regions and we
found the region and some conditions ( see (2.22), (2.43)) such a ways Turing insta-
bility faces to Hopf bifurcations. Further, numerical simulation associated with each
region and instability were depicted.

3.1 Normal form

In this section, we will use a perturbation technique, based on the method of
multiple scales Kidachi, 1980 to compute the normal form of the reaction- diffusion
system ((2.7)) in the proximity of the Turing- Hopf codimension-2 bifurcation point.
Near the threshold different time scales Tj = εjt and spatial scales Xj = εjx with
j = 0, 1, 2, ... can be distinguished. Then, the derivative decouples as follows:
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∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ ε3 ∂

∂T3
+ . . .

∂

∂x
=

∂

∂X0
+ ε

∂

∂X1
+ ε2 ∂

∂X2
+ ε3 ∂

∂X3
+ . . .

∂2

∂x2 =
∂2

∂X2
0
+ ε

2∂2

∂X0X1
+ ε2(

∂2

∂X2
1
+

2∂2

∂X0X2
) + ε3(

2∂2

∂X0X3
+

2∂2

∂X1X2
) + . . .

(3.3)

Here we have d and δ as control parameters correspond to the Turing critical param-
eter and Hopf threshold correspondingly. Both the solutions of the original system
((2.7)) and the control parameters are written as nonlinear expansions in ε as follows
:

u = εu1 + ε2u2 + ε3u3 + O(ε4),

v = εv1 + ε2v2 + ε3v3 + O(ε4),

w = εw1 + ε2w2 + ε3w3 + O(ε4),

W = εW1 + ε2W2 + ε3W3 + O(ε4),

δ = δc + εδ(1) + ε2δ(2) + ε3δ(3) + O(ε4),

d = dc + εd(1) + ε2d(2) + ε3d(3) + O(ε4).

(3.4)

where W = [u − u∗, v − v∗, w − w∗].
All the expansion coefficients Wi, i = 1, 2, 3, ... depends on the time and spatial scales
Tj, Xj, j = 0, 1, 2, .... By replacing all expansion mentioned above in (3.3),(3.4) into the
system (2.7)

Ẇ = K(u∗)W − k2
c D(u∗)∆W

and collecting all the terms at each order in ε, one then gets a sequence of differential
system for the wi, i = 1, 2, 3, ....
Here we introduce the following linear operator:

Lc =
∂

∂T0
− Ddc

∂2

∂X2
0
− Kδc

where Kδc
andDdc are given in (2.15) computed at the codimension 2 bifurcation

point (δc, dc). At the lowest order in ε we recover the following linear problem for
the asymptotic coefficient W1:

LcW1 = 0, (3.5)

whose solution is given by:

W1 = φ1(Tk, Xk)eiΩcT0e1 + φ2(Tk, Xk)eiδcX0e2 + c.c, (3.6)

where the fields φ1, φ2 depending on the time and spatial scales Tk, Xk, k = 1, 2, ... lie
on the center manifolds and c.c implies the complex conjugate counterpart. The real
numbers Ωc, δc are given by (3.2) and (2.43) respectively, evaluated at the Turing-
Hopf singularity. The vectors e1 ∈ Ker(Kδc − iIΩc) and e2 ∈ Ker(Kδc − k2

c Ddc) are
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chosen as follows:

e1 =


1

Kδc

21(K
δc

33 − iΩc)− Kδc

31Kδc

23

Kδc

32Kδc

23 − (Kδc

33 − iΩc)(Kδc

22)
Kδc

32Kδc

21 − Kδc

31(K
δc

22 − iΩc)

−Kδc

32Kδc

23 + (Kδc

33 − iΩc)(Kδc

22)
,

 ,

e2 =


1

(Kδc

21 − k2
c Ddc

21)(K
δc

33 − k2
c Ddc

33)− (Kδc

31 − k2
c Ddc

31)(K
δc

23 − k2
c Ddc

23)

(Kδc

32 − k2
c Ddc

32)(K
δc

23 − k2
c Ddc

23)− (Kδc

33 − k2
c Ddc

33)(K
δc

22 − k2
c Ddc

22)

(Kδc

32 − k2
c Ddc

32)(K
δc

21 − k2
c Ddc

21)− (Kδc

31 − k2
c Ddc

31)(K
δc

22 − k2
c Ddc

22)

−(Kδc

32 − k2
c Ddc

32)(K
δc

23 − k2
c Ddc

23) + (Kδc

33 − k2
c Ddc

33)(K
δc

22 − k2
c Ddc

22)
,

 ,

(3.7)

where Ddc
ij , Kδc

ij are the i,j-entries of the matrices of Ddc , Kδc
. At O(ε2) one gets the

linear equation for W2:

LcW2 = −L1W1 + F, (3.8)

where:

L1 =
∂

∂T1
− Dd(1) ∂2

∂X2
0
− 2Ddc ∂2

∂X0∂X1
− Kδ(1) , (3.9)

such that

F =

−(u1)
2 − u1v1 − ηw1u1

αv1u1 − v1w1
γw1u1 + δcv1w1

+ dc


0

∂v1

∂X0

∂w1

∂X0
+ v1

∂2w1

∂X2
0

0

 (3.10)

and

Dd(1) = d(1)

0 0 0
0 0 v∗

0 0 0

 , Kδ(1) = δ(1)

0 0 0
0 0 0
0 w∗ 0

 (3.11)

the equation (3.8) admits a solution if and only if the Fredholm alternative is satis-
fied. To suppress seculart terms appearing in the source term of (3.8), we impose
T1 = 0 and δ(1) = d(1) = 0 in such way that the compatibility condition is automati-
cally satisfied (see details in Appendix C.1).

At order ε3, one recovers the following linear problem for W3:

LcW3 = −L1W2 −L2W1 + G, (3.12)

where

L2 =
∂

∂T2
− Dd(2) ∂2

∂X2
0
− Ddc(

∂2

∂X2
1
+ 2

∂2

∂X0X2
)− δ(2)

0 0 0
0 0 0
0 w∗ 0

 , (3.13)
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G =

−2u1u2 − (u1v2 + u2v1)− η(u1w2 + u2w1)
α(v1u2 + u1v2)− (v1w2 + v2w1)

γ(u1w2 + u2w1) + δc(v1w2 + v2w1)

+ G0, (3.14)

with

Dd(2) = d(2)

0 0 0
0 0 v∗

0 0 0

 (3.15)

and

G0 = dc


0

∂v1

∂X0

∂w2

∂X0
+

∂v2

∂X0

∂w1

∂X0
+ (v1

∂2w2

∂X2
0
+ v2

∂2w1

∂X2
0
)

0

 , (3.16)

Secular terms appear into equation (3.12) and the solvability condition leads to the
following system of equations for the fields ϕ1 and ϕ2:

∂φ1

∂T2
= σ̃1φ1 − L̃1|φ1|2φ1 + Ω̃1|φ2|2φ1 + δ̃1

∂2φ1

∂X2
1

, (3.17)

∂φ2

∂T2
= σ̃2φ2 − L̃2|φ2|2φ2 + Ω̃2|φ1|2φ2 + δ̃2

∂2φ2

∂X2
1

, (3.18)

where the explicit expressions of the coefficients σ̃i, L̃i, Ω̃i, δ̃i with i = 1, 2. are given
in (C.16). Notice that the coefficients of equation (3.17) are complex while the coef-
ficients of equation (3.18) are real. Moreover, the coefficient σ̃1 is linearly dependent
on b(2) (see (C.16) and (C.7)) and σ̃2 is linearly dependent on b(2) and d(2) (see (C.16)
and (C.8)), which are the second order deviation from the bifurcation values. All the
other coefficients do not depend on b(2) and d(2) (see (C.17) and (C.9)-(C.13)). Once
substituted W2 in the linear equation (3.12 at O(ε3) the source term has the following
expression:

H(1)eiΩcT0 + H(2)eiδcX0 + c.c + H∗, (3.19)

where H∗ does not contain secular terms. The quantity H(i) are determined in Ap-
pendix C.2.

3.2 Stationary solution of the reduced system

To survey stationary solution of the reduced system, we apply defined functions
below as solution of the system:

φ1 = ρ1ei(ϑ1+QX1), φ2 = ρ2ei(ϑ2+QX2), (3.20)

where ρj(X1, T2) and ϑj(T2), j = 1, 2. In particular, we investigate only the stability of
branches of the solutions to (3.20) against disturbances with Q = 0. For this purpose
we analyze the stability of the equilibrium of the following normal form:
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∂ρ1

∂T2
= ρ1(σ1 − L1ρ2

1 + Ω1ρ2
2), (3.21)

∂ρ2

∂T2
= ρ2(σ2 − L2ρ2

2 + Ω1ρ2
1), (3.22)

∂ϑ1

∂T2
= (σ′

1 − L′
1ρ2

1 + Ω′
1ρ2

2), (3.23)

∂ϑ2

∂T2
= 0, (3.24)

where σj = Re(σ̃j), Lj = Re(L̃j), Ωj = Re(Ω̃j), j = 1, 2, σ′
1 = Im(σ̃j), L′

1 =

Im(L̃1), Ω′
1 = Re(Ω̃1. Hence, the system admits four stationary solutions:

O : ρ1 = ρ2 = 0, (3.25)

H : ρ2
1 =

σ1

L1
, ρ2 = 0, ϑ1 = σ′

1 − L′
1ρ′

2
1; (3.26)

T : ρ1 = 0, ρ2
2 =

σ2

L2
, ϑ2 = 0; (3.27)

TH : ρ2
1 =

σ1L2 + σ2L1

L1L2 − Ω1Ω2
, ρ2

2 =
σ2L1 + σ1L2

L1L2 − Ω1Ω2
, (3.28)

ϑ1 = σ′
1 − L′

1ρ′1
2
+ Ω′

1ρ′
2
2, (3.29)

Indeed, these stationary equilibrium points are classified in following. O is origin as
stationary solution which corresponds to the uniform solution to the original system
(2.7). The Hopf bifurcation solution has been demonstrated by (3.26) in which the
system oscillates in time by frequency ϑ1.
The solution (3.27) states Turing bifurcation solution that it does not have oscillation
in time (ϑ2 = 0). And finally, Turing- Hopf bifurcation solution has been obtained
by (3.28) that states there are spatial and time oscillation by frequency ϑ1. To find
out necessary conditions of existence and stability of the reduced system, we apply
linear analysis, applied in Kidachi, 1980. Indeed we apply linear analysis in order
to determine the conditions for the existence and the stability of the equilibrium in
(3.25)- (3.28) and construct the associated bifurcation diagram in the plane (d(2), δ(2)).
The eigenvalues of the jacobian matrix associated to the system (3.21) in the trivial
point are straightforwardly obtained; the equilibrium state O is stable if the follow-
ing conditions hold:

σj < 0, for j = 1, 2. (3.30)

The eigenvalues of the jacobian matrix computed at the point H are λH
1 = −2σ and

λH
2 = σ2 + σ1Ω2/L1. Therefore, the conditions for the existence and stability of the

stationary point H and, consequently, of a uniform oscillating solution for the system
(2.7), are:

L1 > 0, (3.31)
σ1 > 0, (3.32)

σ2 +
σ1Ω2

L1
< 0. (3.33)
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Then, along the line S1, defined as follows:

σ1 = 0, σ2 < 0. (3.34)

The equilibrium O loses its stability and bifurcates into a solution H. This corre-
sponds to a Hopf bifurcation and therefore to an oscillating in time solution for the
reaction- diffusion system (2.7). Notice that S1 in (3.34) is a horizontal line in the
plane (d(2), δ(2)) as σ1 is linearly dependent only on δ(2).
Analogously, the existence and stability of the solution T in (3.27) are obtained when:

L2 > 0, (3.35)
σ2 > 0, (3.36)

σ1 +
σ2Ω1

L2
< 0, (3.37)

and along the critical line S2

σ2 = 0, σ1 < 0. (3.38)

the equilibrium O loses its stability and bifurcates into a solution T. This corresponds
to a Turing bifurcation for the original system (2.7) so that a stationary pattern devel-
ops. Notice that S2 is a line in the plane (d(2), δ(2)) as σ1 is linearly dependent only
on d(2) and δ(2).
Finally, the characteristic polynomial computed at the point TH given in (3.28) reads
λ2 − tλ + d, where:

t = 2(L1ρ2
1 + L2ρ2

2), d = 4ρ2
1ρ2

2(L1L2 − Ω1Ω2), (3.39)

The stability for TH occurs when t < 0 and d > 0. Taking into account the expression
of the coordinate of TH given in (3.28), the point TH exists stable when the following
conditions hold:

σ1L2 + σ2Ω1 > 0, (3.40)
σ2L1 + σ1Ω2 > 0, (3.41)
L1L2 − Ω2Ω1 > 0, (3.42)
σ1L2(Ω2 + L1) + σ2L1(Ω1 + L2) > 0, (3.43)

From the conditions (3.31)-(3.33) and (3.41) one recovers that, along the line S3, de-
fined as follows:

σ2L1 + σ1Ω2 = 0, L1 > 0, σ1 > 0, (3.44)

the solution H bifurcates into a TH solution. Correspondingly the system (2.7) un-
dergoes a Turing-Hopf bifurcation and a mixed limit cycle-mode and spatial pattern
mode solution is admitted. S3 in (3.44) is a line in the plane (d(2), δ(2)), as L1 and Ω2
are independent on d(2) and δ(2) and σj, j = 1, 2 are linearly dependent on d(2) and
δ(2).
Analogously, from the conditions (3.35)-(3.37) and (3.40), we define the following
line S4:

σ1L2 + σ2Ω1 = 0, L2 > 0, σ2 > 0, (3.45)
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Upon crossing S4 the equilibrium T loses its stability bifurcating into a TH solution,
which corresponds to a mixed limit cycle-mode and spatial pattern mode solution
for the reaction-diffusion system (2.7): Again notice that S4 in (3.45) is a line in the
plane (d(2), b(2)), as L2 and Ω1 are independent on d(2) and δ(2) and σj, j = 1, 2 are
linearly dependent on d(2) and δ(2).

3.3 Numerical results

This section presents the normal form results around Turing- Hopf codimension-
2 bifurcation point, whose analysis was obtained in the previous section. To numer-
ically investigate normal form analysis for a set of parameters, we have received
region and figures below:

m1 = 0.5, m2 = 0.7, η = 0.8, α = 5, γ = 1.6, du = 0.1, dw = 0.02, (3.46)

which obtain E∗ = (0.21, 0.33, 0.55) and δc = 1.0753, dc = 43.3325, Moreover, critical
wave number and critical frequency in which Turing and Hopf bifurcation emerge
correspondingly are k2

c = 0.4144, Ωc = 0.8447.

(A) (B)

FIGURE 3.1: The region found by amplitude equations (3.21). Given
parameters are: m1 = 0.5, m2 = 0.7, η = 0.8, α = 5, γ =
1.6, du = 0.1, dw = 0.02, which obtain E∗ = (0.21, 0.33, 0.55) and
δc = 1.0753, dc = 43.3325, Moreover, critical wave number and crit-
ical frequency in which Turing and Hopf bifurcation emerge corre-

spondingly are given k2
c = 0.4144, Ωc = 0.8447.

The lines Si mentioned in (3.34)- (3.38), (3.44), (3.45) are plotted in Figure 3.1.
Indeed, the Figure 3.1A demonstrates the lines which divided the plane (d(2), δ(2))
into the eight regions Ri, i = 1, 2, ..., 8. However, the lines S3 , S4 are defined as
d(2) < 0, d(2) > 0 respectively. In the other words, the region R3 = R4 and R6 = R7
which are also proved numerically. Hence in general there are six regions. In addi-
tion Figure 3.1B obtains which type of instability each region contains. Therefore, in
next we investigate how each region includes of instability.

From the Figure 3.1A, we choose the point (d(2), δ(2)) = (0.02, 0.001) ∈ R1. Lin-
ear analysis of the system (3.21) determines that the region R1 has five equilibria
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which are (0, 0), and (±0.0053,±0.0031). That means that the original system (2.7)
has a saddle point origin and four stable coexistence steady states, which imply to
Turing-Hopf instability. Numerical solution of the original system (2.7) also reports
Turing-Hopf pattern when d = dc + εd(2) and δ = δc + εδ(2) where εd(2) = 0.02, and
ε2δ(2) = 0.001 in Figure 3.2.

In addition, the Figure 3.2A illustrates that there is a bistability since the Turing
patterns switches to Turing- Hopf pattern. The Figure 3.2B is its close shot.

(A) (d(2), δ(2)) ∈ R1 (B) (d(2), δ(2)) ∈ R1

FIGURE 3.2: It denotes to Turing- Hopf pattern located in the region
R1, the chosen perturbation parameters are (d(2), δ(2)) = (0.02, 0.001).
Other parameters are fixed as Figure 3.1. B) is a close shot of figure
A). In T-H region Coefficients of amplitude equations (3.21), (3.22)
are achieved as: σ1 = −4.0088, σ2 = 2.1642e − 04, L1 = 4.7313e +

03, L2 = 5.6030, Ω1 = −5.9146e + 05, Ω2 = −10.1148,.

In region R2, for chosen parameters (d(2), δ(2)) = (0.06, 0.00028) there are seven
equilibria (0, 0), that notices to the stable origin, (0,±a) associated to unstable Turing
pattern and coexistence steady states (±a,±b) that have eigenvalues with negative
real parts. Numerical results are mentioned in Figure 3.3.
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(A) (d(2), δ(2)) ∈ R2 (B) (d(2), δ(2)) ∈ R2

FIGURE 3.3: It denotes to Turing- Hopf pattern located in the re-
gion R2, the chosen perturbation parameters for the Figure 3.3A
are (d(2), δ(2)) = (0.00075, 0.00009) such that coefficients of the am-
plitude equations are σ1 = −0.3608, σ2 = 2.0716e − 05 and other
coefficients are the same as Figure 3.2, and for the Figure 3.3B
(d(2), δ(2)) = (0.001, 0.4) such that coefficients of the amplitude equa-
tions are σ1 = −1.6035e + 03, σ2 = 0.0960 and other parameters and
other coefficients are fixed for both figures as Figure 3.1 and Fig-

ure 3.2 respectively.

In region R3 = R4, the system (3.21) has three equilibria in which the origin (0, 0)
is stable and (0,±c) are nodal sources and unstable. That means the system (2.7)
contains a constant steady state solution and two unstable solutions, which imply
the unstable Turing pattern. See the Figure 3.4.

(A) (d(2), δ(2)) ∈ R3 (B) (d(2), δ(2)) ∈ R3

FIGURE 3.4: For fixed parameters given in Figure 3.1 Turing-Hopf
pattern located in the region R2, the chosen perturbation parameters
for the Figure 3.4A are (d(2), δ(2)) = (0.028, 0.0001) such that coeffi-
cients of the amplitude equations are achieved σ1 = −0.4009, σ2 =

−3.0607e − 04, and for the Figure 3.4B are (d(2), δ(2)) = (0.1, 0.0004)
and coefficients are σ1 = −1.6035, σ2 = −2.1883e − 05,, and other pa-
rameters and other coefficients are fixed for both figures as Figure 3.1

and Figure 3.2 respectively.

In region R5 the numerical results are interpreted as: The system (3.21) admits
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seven equilibria unstable origin (0, 0), two stable point (±e, 0) and two nodal sources
(0,± f ) where given parameters are (d(2), δ(2)) = (0.005,−0.0002) (see Figure 3.5A)
and (d(2), δ(2)) = (0.3,−0.0001) (see Figure 3.5B).

(A) (d(2), δ(2)) ∈ R5 (B) (d(2), δ(2)) ∈ R5

FIGURE 3.5: It denotes to stability and Turing pattern located in the
region R5, the chosen perturbation parameters for the Figure 3.5A are
(d(2), δ(2)) = (0.005,−0.0002) such that coefficients of the amplitude
equations are achieved σ1 = 0.8018, σ2 = −5.3894e − 05, and for the
Figure 3.5B are (d(2), δ(2)) = (0.3,−0.0001) such that coefficients of
the amplitude equations are achieved σ1 = 0.4009, σ2 = −3.7765e −
04. and other parameters and other coefficients are fixed as Figure 3.1

and Figure 3.2 respectively.

Furthermore, the region R6 contains the equilibria unstable origin (0, 0) and
nodal sink (±g, 0) which denotes unstable Hopf patterns (see Figure 3.6A). More-
over, the region R7 = R8 includes of unstable origin, and two nodal sinks (±h, 0)
when (δ(2), d(2)) = (−0.05,−0.0001). Around and very close to the negative side of
the line S1 we found Hopf pattern for given parameters (δ(2), d(2)) = (0.0003,−0.94)
( See Figure 3.6).

Here we notice that a, b, c, d, e, f denote symbolic numbers.
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(A) (d(2), δ(2)) ∈ R8 (B) (d(2), δ(2)) ∈ R8

FIGURE 3.6: A) It denotes to stability and Turing pattern located in
the region R8, the chosen perturbation parameters are (d(2), δ(2)) =
(−0.06,−0.00028) such that coefficients of the amplitude equations
are achieved σ1 = 1.1225, σ2 = 3.5295e − 06. B) Hopf pattern
emerged by chosen parameter close to the negative part of the line
S1 are (d(2), δ(2)) = (−0.094,−0.00003) such that coefficients of the
amplitude equations are achieved σ1 = 0.1203, σ2 = 1.0361e − 04.
and other parameters and other coefficients are fixed for both figures

as Figure 3.1 and Figure 3.2 respectively.
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Chapter 4

A diffusive model of one prey and
two competitive predators

According to the competitive exclusion principle, two or more competitors can-
not coexist obscurely (Freedman, 1980). This principle empirically has been exam-
ined by Gause (Gause, 1934), while later Ayala’s experiments (Ayala, 1969) on two
species of Drosophila illustrated coexistence of competitors on a single prey is pos-
sible. Several models were theoretically presented to explain Ayala’s results. One of
the first ones was introduced by Armstrong and McGehee (Armstrong and McGe-
hee, 1980). They considered the model as:

du
dt

= ru(1 − u
K
)− auv − Auv

1 + Bu
,

dv
dt

= v(−d + eu),

dw
dt

= w(−D +
Eu

1 + Bu
)

(4.1)

where u, v, and w denote prey, and predator population densities respectively. Prey
grows logistically in absence of competitors and one predator feeding rate is defined
with Holling type II functional responses. Authors explored that for adequate given
parameters and initial values the system predicts the coexistence of the two preda-
tors via a locally attracting periodic orbit.

Indeed, Hutchinson’s studies (Hutchinson, 1964) were endorsed by Armstrong
and McGehee’s results, since Hutchinson’s studies obtained that two competing
species “might oscillate in varying numbers, but persist almost indefinitely”. Whereas
other studies (Loladze et al., 2004) and (Levin, 1970) showed that these types of sys-
tems do not contain component-wise positive equilibrium and consequently can-
not contain stable equilibrium. Another issue regarding Armstrong and McGehee’s
model was the coexistence steady state only can weakly persistent, but not persis-
tent, therefore it is not permanent. This model was generalized by Hsu, Hubble and
Waltman (Hsu, Hubbell, and Waltman, 1978b; Hsu, Hubbell, and Waltman, 1978a)
(see also Butler and Waltman (Butler and Waltman, 1981), Cushing (Cushing, 1984,
Farkas Farkas, 1984)) such that both competing predators contain Holling type II
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functional responses as follows:

ṡ = Γ[γ(1 − s
K
)s − m1u1s

a1 + s
− m2u2s

a2 + s
],

u̇1 = Γ[
m1u1s
a1 + s

− d1u1],

u̇2 = Γ[
m2u2s
a2 + s

− d2u2].

(4.2)

In this model, s, and u1, and u2 imply prey and two competing predators corre-
spondingly. Prey has logistic growth rate while competitors grow via Holling Type
II functional responses.

Significant progress of the model presented by Hsu and coauthors (4.2) over
Lotka-Volterra model was that bounded resource for each competitive species was
expressed with an equation, while in the competitive LV model of two predators
for a single common prey, only the number of competing species were considered
(Hsu, Hubbell, and Waltman, 1978b). Roughly speaking, in the model (4.2), the out-
come of competition of one species in absence of another predator is predictable due
to measuring growth parameters of functional responses, however in the LV model
predicting the outcome of the competition is only possible in presence of both preda-
tor species.

For the first time this model was originally rised in micro-organism test tube
known as chemostat. A chemostat (from the chemical environment that is static) is a biore-
actor to which fresh medium is continuously added, while culture liquid containing leftover
nutrients, metabolic end products, and microorganisms is continuously removed at the same
rate to keep the culture volume constant (Novick and Szilard, 1950) (see also Butler and
Waltman, 1981). In addition, every three species that satisfy some theoretical condi-
tions (see Farkas, 1987) can contain the known Phenomenon “ ZiP Bifurcation” (see
alsoFarkas, 1984).
One necessary condition is those boundary parameters of predator species are equal
for both predators. This assumption leads structurally to an unstable system that
is not able to explain a real ecosystem. That is why in these types of systems one
predator would be considered ”r-strategist” and the other one would be considered
“K- strategist” (Echeverri, Giraldo, and Zarrazola, 2017). Later Farkas studied Zip
bifurcation for the model (4.2) employing generalized Holling type III functional
responses (Sáez, Stange, and Szántó, 2006), four-dimensional model raised in econ-
omy and politology (Bocsó and Farkas, 2003), and more can be found in references
in (Echeverri, Giraldo, and Zarrazola, 2017).

In the modeling of competitive predators for a single prey, researchers have in-
vestigated the existence of strong coexistence equilibrium through different factors
such as interspecific interference (Vance, 1984, Vance, 1985), spatial heterogeneity
(Cantrell and Cosner, 2004), and so on. Moreover, the intraspecific interference fac-
tor has also been considered an important factor. Indeed, intraspecific interference
causes aggressive dispels, fighting, and other behaviors. Intraspecific interference
majorly influences feeding rate. This effect can be modeled by other functional
responses Beddington–DeAngelis form. Cantrell and coauthors (Cantrell, Cosner,
and Ruan, 2004) investigated the modified model of (4.2) by using Beddington-
DeAngelis functional responses for one predator species and Holling type II func-
tional responses for the other one. They proved that the coexistence of two or more
consumer species feeding on a single specie is possible.

In 2007 Shigui Ruan (Ruan et al., 2007) and others considered a two-competitor/one-
prey model in which both competitors exhibit a general functional response, and
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one of the competitors reveals a density-dependent mortality rate. They show that
the two competitors can coexist upon a single prey. For example, they considered a
two-competitor/one-prey model with a Holling II functional response. And demon-
strated that density-dependent mortality in one of the competitors could prevent
competitive exclusion.

In 2017, Echeverri and coauthors (Echeverri, Giraldo, and Zarrazola, 2017) pre-
sented a model of two competing species over a single common prey. Prey has a
logistic growth rate, and a predator’s feeding rate is defined with concrete trigono-
metric functions. They proved that this model exhibited the competitive exclusion
principle and confirmed the existence of Zip bifurcation.

To investigate the segregation or aggregation of species in a model, reaction-
diffusion models are considered. The system employs self-diffusion to demonstrate
the movement of species from higher density to lower density. In studying the
movement of the species toward /or away from other species, cross-diffusion is uti-
lized.

Ferreira and coauthors (Ferreira and Oliveira, 2009) considered a diffusive model
of (4.2) such that the species have self-diffusion. They considered that zip bifurcation
is sustained in this type of reaction-diffusion model.

Recently, Ferreira and coauthors (Ferreira, Silva, and Rao, 2019) considered (4.2)
with two diffusive types models consisting cross-diffusion. The authors proved that
one model sustained Zip Bifurcation while in the other one Zip Bifurcation vanished
due to the appearance of Turing instability. Indeed, in the second diffusive model,
authors supposed cross-diffusion that predators chase the prey in the same direc-
tion, i.e the cross-diffusion parameters were considered negative.
Here we would investigate the diffusive modified model of (4.2) such that the com-
petitive predators avoid each other as chase the prey specie.

This Chapter is organized as well: In 4.1, we review the ZIP model (4.2), coex-
istence equilibria, and its stability conditions. We introduce the modified model in
4.2, and we then analyze the coexistence of the species in the modified model, its
stability conditions, and necessary conditions of Hopf bifurcation in 4.3, In 4.5, 4.4
Turing regions and Turing instability of reaction-diffusion are investigated, and we
perform numerical simulation in 4.6. The growth rate is studied in 4.7, and finally
global solution of the model by invariant region is established in 4.8.

4.1 Primary Competitive model

Here we consider the model (4.2) whose parameters are obtained in Table 4.1.
Since competitors do not have the interface, we remind u1 and u2 are correspond-

ing population densities of competitive predators feeding on a single prey specie s.
Both species have access to the prey and compete only by lowing the population
shared prey. As it is evident, the prey has a logistic growth rate by K > 0 carrying
capacity and γ > 0, which is the intrinsic rate of the increase of the prey. In addition,
s > K means that the number of prey is more significant than its carrying capacity,
which makes the prey population density unstable. Moreover, the predators have
Holly type-II functional response that is also called saturation model and also feed-
ing rate. This means that the amount of prey consumed per predator is a function of
the number of present prey. According to the (Farkas, 1984), saturation occurs when
the number of prey is large.

In functional response, mi > 0; the growth rate of predators, and ai denotes
the half-saturation constants, which means that the amount of prey that must be
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TABLE 4.1: parameters appearing in Eqs.(4.2)

.

Parameter Description
Value
Γ regularizes the domain
γ intrinsic prey growth rate
K carrying Capacity with respect to the prey
mi birth rate of ui
di death rate of ui
ai half saturation constant

present for the feeding rate reaches half of its maximum. The increasing function of
the feeding rate is given:

Feeding Rate =
mis

ai + s
,

It converges to
mi

2
as s goes to infinity. In other words, since the feeding rate is an

increasing function, as the number of prey rises, the number of prey populations
eaten by predator ui will be greater than the feeding rate correspondingly.

Hence ai is the half-saturation constant for the ith predator which is the prey
density at which the functional response of the predator is half maximal (Figure 4.1).

The model (4.2), has been studied by many mathematicians. Hsu, Hubble and
Waltman (Hsu, Hubbell, and Waltman, 1978a) proved that the system has a positive
octant set with respect to the positive initial conditions. And the necessary condition
of survive of the i − th predator is that 0 < λi < K where

λi =
miai

mi − di
, (4.3)

FIGURE 4.1: Schematic plot of feeding rate.

Hsu and coauthors studied the general case in which λ1 ̸= λ2. Some paper
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published (Koch, 1974; Hsu, Hubbell, and Waltman, 1978a) about computer experi-
mental results that show periodic solutions are expected in positive invariant region.
Later Smith (Smith, 1982) applied bifurcation theory to prove the existence of peri-
odic solutions in positive octant when the case of λ1 < λ2 and the value of |λ1 − λ2|
and K − (a1 + 2λ1) are small enough.

Wilken (Wilken, 1982) considered the particular case λ1 = λ2 = λ. Moreover, for
the case a1 = a2 = a the results are summarized as:
I) When K ⩽ a + 2λ: There is a line segment of stable equilibrium points. II) K >
a + 2λ then all three species survive and cycle permanently. However, for a1 > a2,
then if
I) K ⩾ a1 + 2λ one of predator species vanishes,
II) K ⩽ a1 + 2λ all species survive and and the solutions tend to some equilibrium
point on the line segment.

Indeed, if λ1 = λ2 where a1 > a2, then for bi = mi/di is b1 < b2 we have

a1d1

m1 − d1
=

a2d2

m2 − d2

a1d1d2(m1/d1 − 1) = a2d2d1(m2/d2 − 1)

thus b1 > b2 which means that the birth to death ratio of the predator u1 is greater
than predator u2. Therefore, two different strategies take place. One of them is called
r − strategist in which species need more food to survive since the ratio of the birth
to death rate and half saturation is higher. The other one is called k − strategist,
which the predators species of this type need less food to survive when the birth to
death rate and half saturation constant are less.

In the next section we consider the model of two predators compete for the same
resource, such that this model include of Zip Bifurcation.

4.1.1 Line of Equilibria and Zip Bifurcation

In this section we present analysis of the model (4.2) in which λ1 = λ2 = λ and
a1 can be different from a2. Here we suppose a1 > a2. Indeed, the system accepts
equilibria which (0, 0, 0), (K, 0, 0) are the trivial equilibria and unstable while there is
a line that denotes also the coexistence of the steady state fixed points (Farkas, 1984)
U∗ = (s∗ = λ, u∗

1 , u∗
2), i.e

m1u∗
1

a1 + λ
+

m2u∗
2

a2 + λ
= γ(

K − λ

K
), (4.4)

4.1.2 Positivity and stability condition of Equilibiria

Coexistence fixed points (4.4) are positive if

s∗ = λ =
aidi

mi − di
> 0, i = 1, 2 iff mi > di, (4.5)

Since, the two other components u∗
1 and u∗

2 are located in a line (4.4), to prove that
u∗

i , i = 1, 2 are positive, we need to to show that the two bounds of the segment
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line (4.4) are positive, i.e, once we set u∗
1 = 0 so

u∗
2 =

γ(
K − λ

K
)

a2 + λ

m2

, (4.6)

and then u∗
2 = 0 , which gives

u∗
1 =

γ(
K − λ

K
)

a1 + λ

m1

, (4.7)

since all parameters are positive (4.7) and (4.6) depict that u∗
1 and u∗

2 are also positive
if

K > λ, (4.8)

Therefore, according to (4.8) and (4.5), and also because of continuity of the line (4.4),
we conclude that all equilibria in the line (4.4) are positive.

Linear analysis at U∗ implies

K(U∗) =


−γλ

K
+ λ(

m1u∗
1

(a1 + λ)2 +
m2u∗

2
(a2 + λ)2 )

−m1λ

a1 + λ

−m2λ2

a2 + λ
β1u∗

1
a1 + λ

0 0

β2u∗
2

a2 + λ
0 0

 =

 f1 f2 f3
f4 0 0
f6 0 0


(4.9)

where βi = mi − di and to apply relation we use fi such that f1, f2, f3 < 0 and
f4, f6 > 0 .

Theorem 4.1.1 (Farkas, 1984) The system is locally stable at U∗ if f1 < 0, i.e

m1u∗
1

(a1 + λ)2 +
m2u∗

2
(a2 + λ)2 <

γ

K
. (4.10)

Remark 4.1.1 In the case λ1 = λ2 = λ and a1 > a2, carrying capacity K is considered as
bifurcation parameter, thus for a fixed K and fixed all parameter set there are two lines:
i. Stability line: for a fixed λ includes all equilibria U∗ = (λ, u∗

1 , u∗
2) such that u∗

1 , u∗
2 > 0,

and satisfy

m1u∗
1

(a1 + λ)2 +
m2u∗

2
(a2 + λ)2 =

γ

K
, (4.11)

ii. Equilibrium line(4.4).

Theorem 4.1.2 (Farkas, 1984) According to the stability condition (4.10), and for bifurca-
tion parameter K, all the points (λ, u∗

1 , u∗
2) located in line (4.4):

a) are stable if λ < K < a2 + 2λ (see Figure 4.3B).
b)does not satisfy the inequality (4.10) and are unstable if K > a1 + 2λ Figure 4.3A.
c) in the case a2 + 2λ ⩽ K ⩽ a1 + 2λ, for a fixed K the two line mentioned in Remark
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4.1.1 intersect at (u1(K), u2(K)) such that the line (4.4) divided into two parts. One part
includes of stable points which satisfy (4.11), an the other part contains unstable points (see
Figure 4.2).

FIGURE 4.2: Zip Bifurcation, black line implies the stability condition,
the green point illustrates intersection point (u1(K), u2(K)), the red
line located in equilibria line shows unstable points while blue line

demonstrates stable points.

Definition 4.1.1 (Farkas, 1984) In the case c) mentioned in the Theorem 4.1.2 as K in-
creases from a2 + 2λ up to a1 + 2λ the point (λ, u1(K), u2(K)) moves along the equilibriua

line continuously from (λ, 0,
γ(a2 + λ)2

m2(a2 + 2λ)
) to (λ,

γ(a1 + λ)2

m1(a1 + 2λ)
, 0) so that the point left

behind become unstable (see Figure 4.2), this phenomena is called Zip bifurcation.

Remark 4.1.2 In addition, M. Farkas proved that the problem (4.9) goes to supercritical
Hopf bifurcation if for a fixed K, K = ai + 2λ, i = 1, 2 (Farkas, 1984).

(A) K = a1 + 2λ (B) K = a2 + 2λ

FIGURE 4.3: Zip bifurcation arises for fixed K, A) when K = a1 + 2λ
all points on the equilibria line are unstable (red line). B) when K =
a2 + 2λ all points on the equilibria line are stable since they satisfy

condition (4.10) (blue line).

4.1.3 Turing and Zip bifurcation in a reaction- diffusion system

The model of segregation phenomena of the system (4.9) included of self and
cross- diffusion investigated by J. D. Ferreira and coauthors. (Ferreira, Silva, and
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Rao, 2019) presented as
st = ∆(k11s + k12u1 + k13u2) + Γ[γ(1 − s

K
)s − m1u1s

a1 + s
− m2u2s

a2 + s
],

u1t = ∆(k21s + k22u1 + k23u2) + Γ[
m1u1s
a1 + s

− d1u1],

u2t = ∆(k31s + k32u1 + k33u2) + Γ[
m2u2s
a2 + s

− d2u2],

(4.12)

where the Jacobian matrix of the system (4.2) at one point of the equilibria line is
(4.9).

Ferreira and coauthors (Ferreira, Silva, and Rao, 2019) claimed when diffusion
matrix above added to the system, segregation phenomena yields Turing patterns
while Zip bifurcation vanishes. Indeed, they surveyed diffusion matrix when k12,
k13 > 0, kii > 0 for i = 1, 2, 3 while k31, k21, k23, k32 < 0.

Since the system is degenerated, weakly nonlinear analysis cannot be applied. In
the next section, we introduce the modified model of the system (4.2) such that the
system accepts only one coexistence steady state.

4.2 Modified Model

A modified model of the system (4.2) is introduced here. Indeed, this model is
also explaining the competition of two predators for one resource while there is in-
traspecific interaction between the predator u1 too, i.e the predator populations u1
not only decrease due to death but also the interaction between congeners. More-
over, it is obvious that when ε tends to zero, this model returns to the model (4.2).
We are aiming to investigate this model locally and also we analyze emergence of
patterns. So we consider the diffusion part of the second diffusive model coming
form (Ferreira, Silva, and Rao, 2019). The system is introduced as:

st = ∆(k11s + k12u1 + k13u2) + Γ[γ(1 − s
K
)s − m1u1s

a1 + s
− m2u2s

a2 + s
],

u1t = ∆(k21s + k22u1 + k23u2) + Γ[(
m1u1s
a1 + s

− εu2
1)− d1u1],

u2t = ∆(k31s + k32u1 + k33u2) + Γ[
m2u2s
a2 + s

− d2u2],

(4.13)

with homogeneous Neumann boundary conditions in 1D, and where all parameters
are defined as the system (4.12), except ε > 0 is added to the system as a intraspecific
coefficients of the predator u1.

Remark 4.2.1 The reaction of predator u1 states when the population density of prey s is
very large, predator u1 grows logistically with intrinsic growth rate m1 and carrying capac-
ity

m1

ε
, which means that it cannot grow unbounded.

Proposition 4.2.1 To conquer degeneracy of the system (4.12), and have a unique coexis-
tence steady state, one needs λ1 ̸= λ2, where λi have been defined in (4.3)

In zip model (4.2), both predators interact with prey with Holling type II functional
response. According to the competitive exclusion principle (Gause’s law) only one
species will survive in a niche. That is why previous authors Ferreira, Silva, and
Rao, 2019 proposed r- and K-strategies to avoid extinction.

Moreover, self-diffusion parameters kij > 0 for i = j, i = 1, 2, 3 are self diffusion
parameters and kij for i ̸= j are cross- diffusion parameters, so that k12, k13 > 0.
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Remark 4.2.2 According to the cross-diffusion parameters k32 and k23 two types of strate-
gies can be evolved as below: i) first strategy is k32, k23 < 0 that implies predators are
chasing prey in the same direction. ii) and second strategy denotes k32, k23 > 0 which states
that predators avoid each other.

Therefore for the first strategy, and for parameter k1j > 0 states that the part −k12∇u1
−k13∇u2 of the flux s is directed towards decreasing population density of uj that
the prey runs away from predators. On the other hand, the conditions k2j < 0 for
j = 1, 3, implies that the part −k21∇s − k23∇u2 of the flux of u1 is directed towards
increasing population density of s and u2 which means that the predator u1 moves
in anticipation of the predator u2 and the defense switching behavior of the preys.
That is u1 changes the prey, s. The fluxes for k3j when j = 1, 2 are similarly explained.

Nevertheless, second strategy is about predators who are chasing prey in differ-
ent directions, or in the other word they avoid each other, so diffusion parameters
k32, k23 > 0. Thus the part −k21∇s − k23∇u2 denotes of flux of u1 is directed toward
decreasing population density of u2 and increasing population density of s which
demonstrates that predator u1 moves against direction of predator u2, while it is
chasing prey. Rigorously, the flux of k3j in the second strategy is interpreted.

However, we investigate some necessary conditions of emergence of Turing pat-
terns when diffusion is considered as second strategy, and we try to consider a
system which can be contained Turing with less diffusion parameters, thus we set
k31 = k21 = 0. In fact, to have Turing instability, the necessity of cross-diffusion is
surveyed. First, we analyze local stability of the modified system.

4.3 Local analysis of modified model

In this section, first due to the Theorem 2.3.1 we know each coordinate plane
is invariant. Now we investigate extinction of species. So we apply the method
mentioned in (Chauvet et al., 2002). In absence of prey the system is given:

du1

dt
= −d1u1 − εu2

1,

du2

dt
= −d2u2,

(4.14)

This is system has one nonnegative equilibrium (0, 0) which is stable. Therefore,
du2

dt
⩽ −d2u2 gives u2 → 0 exponentially as t → ∞. While

du1

dt
⩽ −d1u1 + εu2

1,

In case of equality, it is a Bernoulli DE. whose solution explicitly is

u1 =
1

ce−d1t + ε/d1
,
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therefore u1 → d1/ε as t → ∞. Indeed, it is observed that in the absence of the prey
the predator u2 is only extinct. Similarly, when u1 = 0 then

ds
dt

= γs(1 − s
K
)− m2u2s

a2 + s
,

du2

dt
=

m2u2s
a2 + s

− d2u2,
(4.15)

This system has an unstable coexistence steady state
(

λ2,
(K − λ2)(a2 + λ2)

Km2

)
. In-

deed,
ds
dt

⩽ γs(1 − s
K
) such that

ds
dt

⩽
K

Kce−γt + 1
, thus s → K as t → ∞, conse-

quently
du2

dt
⩽

m2u2K
a2 + K

that Granwall’s inequality implies u2 is bounded for each

positive initial value u2(0), i.e u2 ⩽ u2(0)
(

e
∫
0

t m2K
a2 + K

ds
)

.

Moreover, if we set u2 = 0 then the system (4.9) reduces to

ds
dt

= γs(1 − s
K
)− m2u2s

a2 + s
,

du1

dt
=

m1u1s
a1 + s

− d1u1 − εu2
1,

(4.16)

hence s → K as t → ∞, so

du1

dt
⩽ u1

(
m1K

a1 + K
− d1 − εu1

)
= u1

(
M̄/ε − u1

)
,

which denotes that u1 → M̄1

ε
as t → ∞ , and where M̄ =

m1K
a1 + K

− d1.

Therefore, in the absence of predator u1, both prey and predator u2 survive. And
similarly in the absence of predator u2, both prey and predator u1 survive.

Consider the modified competitive model (4.13) and suppose a1 ̸= a2. So it ad-
mits four equilibrium points in form of (0, 0, 0), (K, 0, 0), (λ2, 0, u0

2), (s0, u0
1, 0) in

which at least one species dies out, and one coexistence steady state u∗ = (s∗, u∗
1 , u∗

2)
as obtained:

s∗ =
a2d2

m2 − d2
= λ2,

u∗
1 = 1/ϵ(

m1s∗

a1 + s∗
− d1),

u∗
2 =

a2 + s∗

m2
(γ(1 − s∗

K
)− m1u∗

1
a1 + s∗

),

(4.17)

As λi, i = 1, 2 were defined in previous parts λi =
aidi

mi − di
, for i = 1, 2 and λ1 ̸= λ2

via Proposition 4.2.1.

Remark 4.3.1 There exists a unique coexistence steady state if λ1 ̸= λ2, otherwise the
predator specie u1 (u∗

1 = 0) will dies out and the coexistence steady state does not survive
any more.
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4.3.1 Positivity of the coexistence steady state

Since the system demonstrates an ecological problem, the coexistence steady
state must be positive. Hence, the prey species are positive if the birth rate of preda-
tor u2 is greater than its death rate, i.e. m2 > d2. Moreover, predator u∗

1 is always
positive if λ2 > λ1. On the other side, u2 is an increasing function if s > λ2.

These results and equilibrium point found in (4.17) obtain the necessary positiv-
ity conditions of s∗, u∗

1 , u∗
2 as below:

(i) s∗ = λ2 > 0 ↔ m2 > d2 > 0, (4.18)

(ii) u∗
1 = 1/ε(

(m1 − d1)(λ2 − λ1)

a1 + λ2
) > 0 ⇒

(ii1) m1 < d1 and λ2 < λ1 or (ii2) m1 > d1 and λ2 > λ1 (4.19)

(iii) u∗
2 > 0 ↔ K > λ2,

γ(K − λ2)ε(a1 + λ2)2 − Km1(m1 − d1)(λ2 − λ1)

Kϵ(a1 + λ2)2 > 0.

Positivity analysis of the predator u∗
1 u∗

2 determines some different scenarios:

Proposition 4.3.1 Positivity condition (ii) concludes two results (ii1), (ii2) while the first
one is failed. Indeed, m1 < d1 leads to λ1 < 0 which consequently leads λ2 < 0, however it
contradicts positivity condition s∗. Therefore, u∗

1 is positive only under condition (ii2).

Proposition 4.3.2 Since K is carrying capacity of prey, thus s∗ = λ2 illustrates that
K > λ2, also λ2 > λ1 due to positivity condition (ii) so we conclude that K > λ1. Further,
positivity of u∗

2 takes place under two below scenarios:
a) if m1 < d1, which means that death rate of predator u1 is more than its birth rate so in
shortage of predator u1 there are more food for predator u2, and due to positivity condition
(ii2) u∗

2 is definitely positive, while it cannot takes place because of condition (ii) and Propo-
sition 4.3.1.
b) if m1 > d1, the inequality mentioned in (iii) must be satisfied.

4.3.2 Local stability of the coexistence steady state

To survey stability of the reaction of the modified system, we calculate the Jaco-
bian matrix at u∗ = (s∗, u∗

1 , s∗2), that is

K(U∗) =


−λ2γ

K
+ λ2(

m1u∗
1

(a1 + λ)2 +
m2u∗

2
(a2 + λ)2 )

−m1λ

a1 + λ

−m2λ2

a2 + λ
β1u∗

1
a1 + λ

−εu∗
1 0

β2u∗
2

a2 + λ
0 0

 =

 f1 f2 f3
f4 f5 0
f6 0 0

 ,

(4.20)

where βi = mi − di > 0, f2, f3, f5 < 0 and f4, f6 > 0,

|λ − K(u∗)| = λ3 + λ2(− f1 − f5) + λ(− f2 f4 + f1 f5 − f3 f6) + f3 f5 f6

= λ3 + Aλ2 + Bλ + C.
(4.21)

Simple calculation illustrates that C > 0, while due to Routh-Hurwitz criteria, we
needs to have A, B > 0, AB − C > 0. Obviously, necessary condition of all A, B >
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0, AB − C > 0 is f1 < 0. Thus k(u∗) is stable if f1 < 0, i.e

(
m1u∗

1
(a1 + λ)2 +

m2u∗
2

(a2 + λ)2 ) <
γ

K
. (4.22)

We next investigate appearance of Hopf bifurcation.

4.3.3 Hopf Bifurcation

Since the reaction has a stability condition mentioned in (4.22), we survey the
necessary condition of the appearance of Hopf bifurcation. Hopf occurs when a sta-
ble point goes to periodic solutions. Here, we consider carrying capacity K as the
Hopf bifurcation parameter. Indeed, as K varies, the system goes to Hopf bifurca-
tion. That means that at threshold K, one eigenvalue remains on the left side of
the X-axis while the two other negative eigenvalues transfer to two pure conjugate
imaginary eigenvalues.

Therefore, consider the function below

F(K) =
m1u∗

1
(a1 + s∗)2 +

m2u∗
2(K)

(a2 + s∗)2 − γ

K
, (4.23)

The exciting point of finding the threshold of the modified system is that the critical
Hopf bifurcation point of the system (4.23) occurs at KHop f = KH = a1 + 2λ2, i.e

F(KH) = 0,⇒ KH = a1 + 2λ2, (4.24)

such that F(K) is an increasing function, since all parameters are positive and s∗ =
λ2 > 0, i.e

F′(KH) =
γs∗

(a2 + s∗)K2 > 0.

All results above are confirmed by numerical simulation in the next section.

4.3.4 Numerical Simulation

Consider the parameters below:

a1 = 3.5, a2 = 4.4, d1 = 1.2, d2 = 1.8, m1 = 4.2, m2 = 7, Γ = 1, γ = 2, (4.25)

which lead to λ1 = 1.4, λ2 = 1.5231, and

u∗ = (1.5231, 0.73, 0.65), KH = a1 + 2λ2 = 6.5462, (4.26)

Figure 4.4A), Figure 4.4B) proves that system is stable if K < KH. Figure 4.4B)
shows that the equilibrium point is a sink. In addition, Figure 4.4B) demonstrates
that if K > KH the system goes to the periodic solution Figure 4.5A). In fact, by
increasing bifurcation parameter K, limit cycles arises such that as K increases, the
limit cycles grow in Figure 4.5B).
Moreover, Figure 4.5A) states that for the parameter set amplitude of the periodic
solution of the predator species u1 is less than the other species, since this predator
species are affected not only by intraspecific interactions between their population
but also natural death.
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(A) K < KH (B) K < KH

FIGURE 4.4: Local stability of the spices when the Hopf parameter
is less then critical one. A) Stability of the system for K = 6 < KH .
B) Phase portrait of the system of stable spiral. Given parameters
are a1 = 3.5, a2 = 4.4, d1 = 1.2, d2 = 1.8, m1 = 4.2, m2 =
7, Γ = 1, γ = 2, which lead to λ1 = 1.4, λ2 = 1.5231, and

u∗ = (1.5231, 0.73, 0.65), KH = a1 + 2λ2 = 6.5462

However, the resource s take advantages of reduction of population densities of
the predator species u1 and the resource specie oscillates with highest amplitude. In
the other words, in Figure 4.5A) periodic solutions produced by Hopf bifurcation
state that for a specific time period all species grow and fall down approximately
with the same slop (i.e the population densities increase and decrease almost with
one speed), though their amplitudes are different, and the least one is associated
with predator u1.

(A) K > KH (B) K > KH

FIGURE 4.5: Hopf bifurcation occurs when K > KH . A) Periodic
solutions of the populations as Hopf parameter crosses the critical
value KH . B) Appearance of the limit cycles as K > KH grows. For
K ≃ 7.5, K ≃ 8 and K ≃ 8.5 stabilized limit cycles are depicted. Given

parameters are the same as Figure 4.4.

4.4 Turing Analysis

Here, the existence of Turing bifurcation of (4.13) is analyzed. That is linear anal-
ysis leads to the following dispersion relation for kinetic matrix (4.20) and general
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diffusion matrix

D(u∗) =

k11 k12 k13
k21 k22 k23
k31 k32 k33

 , (4.27)

where we emphasize that here all diffusion parameters are considered positive.
Consider W = [s − λ2, u1 − u∗

1 u2 − u∗
2 ]

t ,
then linearized system is achieved as Ẇ = ΓKW + D∆W whose solution has the
form of W = expiδx+λt, where δ indicates wave number hence dispersion relation of
the equation is obtained by

|λI + δ2D − K| = 0,

which gives a cubic polynomial of the form of

λ3 + A(δ2)λ2 + B(δ2)λ + C(δ2) = 0, where (4.28)

A(δ2) = δ2(k11 + k22 + k33)− f1 − f5,
B(δ2) = δ4(k11k22 + k11k33 − k32k23 + k22k33 − k12k21 − k31k13)
+ δ2(− f5k11 − f1k22 − f1k33 + f4k21 + f3k31 + f6k13 − f5k33)
+ f1 f5 − f2 f4 − f3 f6 = b1δ4 + b2δ2 + b3,
C(δ2) = δ6(k11k22k33 − k11k23k32 − k12k21k33 + k12k31k23 + k13k21k32 − k13k31k22)
+ δ4(− f1k22k33 + f1k32k23 + f2k21k33 + f4k12k33 − f2k31k23 − f6k12k23 − f3k21k32
− f4k13k32 + f3k31k22 + f6k13k22 − f5k11k33 + f5k31k13)
+ δ2(− f4 f2k33 + f2 f6k23 + f3 f4k32 − f3 f6k22 + f1 f5k33 − f6 f5k13 − f3 f5k31)
+ f3 f5 f6 = c1δ6 + c2δ4 + c3δ2 + c4,

In following, we look for necessary conditions in which Turing instability can be
taken place for some different cases of the presence of self- and cross-diffusion coeffi-
cients. In fact, the investigation is presented due to applying Routh-Hurwitz criteria.
According to the Turing analysis, in presence of diffusion a stable coexistence steady
state with real negative eigenvalues transfer to the real positive eigenvalues which
yield to emergence of stationary patterns. Indeed, there is a range of wave numbers
[δ2

1 , δ2
2 ] where the system goes to spatial patterns. The critical wave number can be

found by the necessary condition C(δ2) < 0 due to Routh-Hurwitz criteria. Indeed,
in the threshold, cubic polynomial C(δ2

min) = 0 where

δ2
Max =

−c2 −
√

c2
2 − 3c1c3

3c1
, δ2

min =
−c2 +

√
c2

2 − 3c1c3

3c1
. (4.29)

Here, it is reminded that signs of each component of the reaction matrix (4.20) is
followed as:

f1 < 0, f2 < 0, f3 < 0, f5 < 0,
f4 > 0, f6 > 0.

(4.30)

In the strategy of avoidance of predator (i.e positive cross-diffusion k32, k23), k32 is
critical obtained as bifurcation parameter.
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4.4.1 Turing analysis without cross-diffusion (case I: kij = 0, i ̸= j)

First, we consider the diffusion matrix without all cross-diffusion parameters. In
absence of all cross-diffusion parameters, the diffusion matrix of the system (4.13) is

D(u∗) =

k11 0 0
0 k22 0
0 0 k33

 , (4.31)

The kinetic matrix as obtained in (4.20). Dispersion relation (4.28) is reduced to

A(δ2) = δ2(k11 + k22 + k33)− f1 − f5,

B(δ2) = δ4(k11k22 + k11k33 + k22k33) + δ2(− f5k11 − f1k22 − f1k33 − f5k33)

+ f1 f5 − f2 f4 − f3 f6,

(4.32)

C(δ2) = δ6(k11k22k33)

+ δ4(− f1k22k33 − f5k11k33)

+ δ2(− f4 f2k33 − f3 f6k22 + f1 f5k33) + f3 f5 f6,

(4.33)

Simple computations show that in absence of the cross-diffusion, A(δ2) > 0, more-
over stability condition f1 < 0 leads to B(δ2) > 0, C(δ2) > 0 and finally AB−C > 0,
therefore, so the system is stable and consequently there is no Turing instability.

4.4.2 Turing analysis (case II: k1j = 0, k j1 = 0, j = 2, 3)

The diffusion matrix of the system (4.13) is

D(u∗) =

k11 0 0
0 k22 k23
0 k32 k33

 , (4.34)

The coefficients of dispersion relation is changed to

B(δ2) = δ4(k11k22 + k11k33 + k22k33 − k23k32) + δ2(− f5k11 − f1k22 − f1k33 − f5k33)

+ f1 f5 − f2 f4 − f3 f6 = b1δ4 + b2δ2 + b3,
(4.35)

C(δ2) = δ6(k11k22k33 − k11k23k32) + δ4(− f1k22k33 − f5k11k33 + f1k32k23)

+ δ2(− f4 f2k33 + f2 f6k23 + f3 f4k32 − f3 f6k22 + f1 f5k33) + f3 f5 f6

= c1δ6 + c2δ4 + c3δ2 + c4,

(4.36)

it needs parameter k32 or k23 to be chosen as bifurcation parameter to Turing pattern
can emerge. We choose k32 as bifurcation parameter. Since in (4.41) b1 and b3 are
positive, to have B > 0 we need b1 > 0 too and in addition, due to Routh-Hurwitz
C(δ2) must be negative. Therefore, to find a positive critical wave number (4.29) and
critical bifurcation parameter the steps below must be satisfied:
Step 1: b1 > 0

k32 <
k11k22 + k11k33 + k22k33

k23
:= k(b1)

32 ,



72 Chapter 4. A Three species Competitive Model

Step 2: c1 > 0

k32 <
k22k33

k23
:= k(1)32 , (4.37)

Step 3: c2 < 0

k32 >
( f1k22k33 + f5k11k33)

f1k23
:= k(2)32 , (4.38)

It is obvious that denominator and nominator are both negative since f1, f5 < 0.
Step 4: c3 < 0

k32 >
f4 f2k33 − f2 f6k23 − f3 f4k32 + f3 f6k22 − f1 f5k33

f3 f4
:= k(3)32 , (4.39)

Where denominator is always negative, though nominator whose sign can be
changed, so we choose parameter set such that to have a positive nominator and
consequently positive k32.
Finally, to find the positive critical bifurcation parameter kc

32, we put

P = max{k(2)32 , k(3)32 },

which gives k32 > P that indicates kc
32 = P + η such that η is a positive unknown

and all are replaced in (4.29) and (4.4).

4.4.3 Turing analysis (case III: k j1 = 0, j = 2, 3)

In this case, the Kinetic matrix is the same as (4.20), while diffusion matrix is
changed to

D(u∗) =

k11 k12 k13
0 k22 k23
0 k32 k33

 , (4.40)

Indeed, in this case the flux of predator u2(u3) is directed against direction of the
u3(u2) and they are not affected by the flux of prey, therefore k21 = k31 = 0. Hence,
the dispersion relation is

(λ)3 + A(δ2)(λ)2 + B(δ2)λ + C(δ2) = 0,

.
The coefficients of dispersion relation is changed to

B(δ2) = δ4(k11k22 + k11k33 + k22k33 − k23k32)

+ δ2(− f5k11 − f1k22 − f1k33 − f5k33 + f4k12 + f6k13)

+ f1 f5 − f2 f4 − f3 f6 = b1δ4 + b2δ2 + b3,

(4.41)
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C(δ2) = δ6(k11k22k33 − k11k23k32)

+ δ4(− f1k22k33 − f5k11k33 + f1k32k23 + f4k12k33 − f6k12k23 − f4k13k32 + f6k13k22)

+ δ2(− f4 f2k33 + f2 f6k23 + f3 f4k32 − f3 f6k22 + f1 f5k33) + f3 f5 f6

= c1δ6 + c2δ4 + c3δ2 + c4,
(4.42)

that A > 0 always, however B and C signs are varied by changing parameter k32
which is called bifurcation parameter. so we choose the parameter k32 as bifurcation
parameter. Therefore, similar to the case II, the steps below must be satisfied:
Step 1: b1 > 0

k(b1)
32 <

k11k22 + k11k33 + k22k33

k23
:= k(b1)

32 ,

Step 2: c1 > 0

k(1)32 <
k22k33

k23
:= k(1)32 ,

Step 3: c2 < 0

k(2)32 >
( f1k22k33 − f4k12k33 + f6k12k23 − f6k13k22 + f5k11k33)

f1k23 − f4k13
:= k(2)32 , (4.43)

It is obvious that denominator is always negative so nominator must be negative
too.
Step 4: c3 < 0

k(3)32 >
f4 f2k33 − f2 f6k23 + f3 f6k22 − f1 f5k33 + f5 f6k13

f3 f4
:= k(3)32 , (4.44)

Where denominator is always negative, though nominator whose sign can be changed,
so we choose parameters such that to have a positive nominator and consequently
positive k32.

(A) C(δ2) (B) λ(δ2)

FIGURE 4.6: Necessary condition of Turing instability. A) it illustrates
C(δ2) < 0 (black solid line) if k32 > kc

32. B) this figure shows if k32 >

kc
32 then λ(δ2) > 0 (black solid line) for the range of wave numbers.

Given parameters are the same as (4.46)

Remark 1: A comparison of step 1 and step 2 implies that step 1 can be ignored.
It is emphasized that we are looking for a positive kc

32.
Remark 2: In all cases A(δ2) is always positive due to the stability condition.
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Remark 3: Routh-Hurwitz criteria state that B(δ2) = b1δ4 + b2δ2 + b3 must be posi-
tive. Since b2 and b3 are positive, it needs b1 > 0.
Remark 4: The sign of c4 in all cases is positive.
At last, to find the positive critical bifurcation parameter kc

32, we put

P = max{k(2)32 , k(3)32 }, (4.45)

which k32 > P leads to kc
32 = P + η such that η is a positive unknown and all

are replaced in (4.29) and (4.4). Finally, the critical wave number δ2
c and critical

bifurcation parameter kc
32 are found.

Figure 4.6 illustrates necessary conditions C(δ2) < 0, λ(δ2) > 0 for Turing insta-
bility of the system (4.13) and and for the case III.
The parameters have been chosen:

Γ = 5, γ = 2. K = 1.48, a1 = 0.64, a2 = 0.6, m1 = 0.8, m2 = 1.15, d1 = 0.4, (4.46)
d2 = 0.6, ε = 0.12, k11 = k12 = k22 = 0.1, k23 = 0.1; k13 = 0.25, k33 = 1.

Hence λ1 = 0.4 and λ2 = 0.6545. Moreover, the critical bifurcation parameter
is kc

32 = 0.8790 and correspondingly critical wave number is δc ≃ 5 and E∗ =
(s, u1, u2) = (0.6545, 0.8046, 0.5510).

Figure 4.6 depicts if the cross-diffusion term kc
32 = 0.8790, δ2

c = 24.9691 then
C(δ2

c ) = 0 and consequently λ(δ2
c ) has two negative eigenvalues and one zero eigen-

value. Therefore as the critical parameter k32 crosses the kc
32, C(δ2) becomes negative.

Consequently, λ(δ2
c ) > 0, i.e., the dispersion relation has two positive eigenvalues

and one negative eigenvalue for a range of modes [δ2
1 δ2

2 ] (see Figure 4.6A, Fig-
ure 4.6B). In other words, the reaction-diffusion system becomes unstable, and the
Turing pattern emerges.

As we found out that Turing instability occurs for as k32 > kc
32, i.e., the species

produce spatial pattern if the flux of predator u2 associated with predator u1 in-
creases from critical point (kc

32). It means Turing instabilities take place as much
faster as u2 goes away from predator u1.

4.5 Turing Region

Turing region of the system (4.13) with diffusion matrix (4.40) is studied. The
region is obtained based on the two parameters involved in positivity conditions,
stability conditions, and Turing Conditions. Hence, the Turing and positive con-
ditions of fixed points illustrate that we can choose a plane of (m1, K) as a param-
eter space. Although, it was mentioned that the system goes to Hopf instability
if K > KH = a1 + 2λ2. Thus in the plane (m1, K) under conditions (4.22) i.e.,
K < KH = a1 + 2λ2 the equilibria are stable, therefore below the horizontal line
K = KH = a1 + 2λ2 the system serves stability of equilibrium points.

First, positivity condition (4.18) is considered in which (ii) and (iii) lead to

m1 > (m2 − d2)
a1d1

d2a2
,

and gives minimum value of m1 and

m1 > d1(1 +
a1

K
),
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presents the relation between parameters K, m1.
Moreover, conditions (4.38 - Turing condition I) and (4.39- Turing condition II)

are Turing conditions, such that both conditions are implicit functions of K, m1.

Proposition 4.5.1 (Turing conditions I, II:) Right hand sides of the inequalities (4.43) and
(4.44) are positive if nominators be negative, since denominators are always negative. So the
implicit functions

F1 = f1k22k33 − f4k12k33 + f6k12k23 − f6k13k22 + f5k11k33,
F2 = f4 f2k33 − f2 f6k23 + f3 f6k22 − f1 f5k33 + f5 f6k13,

(4.47)

are considered as Turing conditions I, II correspondingly.

Using fixed parameters given in (4.46) Turing region is obtained, where Hopf thresh-
old is determined KH ≃ 1.7 see Figure 4.7.

In following, we study how Turing is influenced by varying self- and cross-
diffusion parameters. We remark that Chosen parameters are the same as Figure 4.7.

It is observed that when cross-diffusion k12 increases, the Turing region decreases
(moving red curves to the left side in Figure 4.8), which means that flux of the re-
source species that run away from predator species u1 (i.e. move to lower density)
with a greater value of k12 makes less chance of instability for a short range of carry-
ing capacity and short range of low birth rate of u1.

For example in Figure 4.8, as k12 grows from 0.1 to 0.2 the system goes to instabil-
ity (Turing), for the u1 birth rate range m1 ∈ (0.5, 5) and the prey carrying capacity
K ∈ (0.09, 0.68). Whereas, as k12 = 0.2, these ranges vary from m1 ∈ (0.5, 1.55) for
prey and K ∈ (0.15, 0.68).

FIGURE 4.7: Turing region (dashed region)in plane (m1, K), param-
eters are obtained in . The orange horizontal line demonstrates
K = KH , such that the region above the horizontal line and for each
m1 associates with Hopf region. Dashed line, purple and pink lines
are associated to positivity, Turing condition II and Turing condition
I respectively. Γ = 5, γ = 2. K = 1.48, a1 = 0.64, a2 = 0.6, m1 =
0.8, m2 = 1.15, d1 = 0.4, d2 = 0.6, ε = 0.12, k11 = k12 = k22 =

0.1, k23 = 0.1; k13 = 0.25, k33 = 1.

In addition, in this case enhancement and reduction of the cross-diffusion k12
does not impact on the Turing condition II, i.e. it is independent of K12.

In Figure 4.9, Turing region varies for different values of cross-diffusion param-
eter k13, despite k12, by enhancement of cross-diffusion k13 Turing region increases.
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That confirms that as prey moves to the lower density of predator u2, the spatial pat-
terns can occur for a wider range of the parameters in the plane (m1, K). For instance,
when k13 = 0.15, these ranges are m1 ∈ (0.5, 1.4) and K ∈ (1.8, 6.5). However, these
ranges reduce as prey runs away faster from predator u2, i.e., m1 ∈ (0.5, 1.6) and
K ∈ (1.1, 6.5) Figure 4.9.

(A) k12 = 0.1 (B) k12 = 0.2

FIGURE 4.8: Turing region (dashed region) in plane (m1, K), A) k12 =
0.1 and other parameters are fixed as (4.46). B) k12 = 0.2 and other

parameters are fixed as Figure 4.7.

Simultaneously, these results occur in plane of (m1, K) when k23, k33 vary. Fig-
ure 4.10 illustrates that as cross- diffusion k23 increases Turing region decreases grad-
ually. In the other words, diffusion of predator u2 against of direction of predator u2
makes less opportunity of spatial segregation. Figure 4.13, Figure 4.11 indicate that
diffusion of s and u2 (rising up self- diffusion parameters k11 and k33 ) decrease the
Turing regions correspondingly , whereas the scenario is reverse when u2 diffuses
faster (i.e k22 increases) Figure 4.12.

In summary, simulations of Turing region with respect to varying diffusion pa-
rameters demonstrate that diffusion of predator u1 and moving prey against direc-
tion of u2 make more chance of Turing instability.

(A) k13 = 0.15 (B) k13 = 0.5

FIGURE 4.9: Turing region (dashed region) in plane (m1, K), A) k13 =
0.15 and other parameters are fixed as (4.46). B) k13 = 0.5 and other

parameters are fixed as Figure 4.7.
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(A) k23 = 0.1 (B) k23 = 0.12

FIGURE 4.10: Turing region (dashed region) in plane (m1, K), A)
k23 = 0.1 and other parameters are fixed as (4.46). B) k23 = 0.12

and other parameters are fixed as Figure 4.7.

(A) k11 = 0.1 (B) k11 = 0.2

FIGURE 4.11: Turing region (dashed region) in plane (m1, K), A)
k11 = 0.1 and other parameters are fixed as (4.46). B) k11 = 0.2 and

other parameters are fixed as Figure 4.7.

(A) k22 = 0.08 (B) k22 = 0.11

FIGURE 4.12: Turing region (dashed region) in plane (m1, K), A)
k22 = 0.08 and other parameters are fixed as (4.46). B) k22 = 0.11

and other parameters are fixed as Figure 4.7.
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(A) k33 = 0.15 (B) k33 = 1

FIGURE 4.13: Turing region in plane (m1, K), A) k33 = 0.15 and other
parameters are fixed as (4.46). B) k33 = 1 and other parameters are

fixed as Figure 4.7.

4.6 Numerical simulation

Employing the parameters given in (4.46) which leads to kc
32 = 0.8790 as critical

bifurcation parameter, and δ ≃ 5 as critical mode and where the equilibrium point
is E∗ = (0.6545, 0.8046, 0.5510). Turing patterns have been performed by numerical
simulation see Figure 4.14. We applied finite element method which utilizes θ −
scheme method for nonlinear systems , in which a weighted average of the time
derivative of a dependent variable is approximated at two consecutive time steps
by linear interpolation of the values of the variable at the two steps Reddy, 2014. In
addition, we applied Lagrange P2 as shape functions .

(A)
Prey

(B)
Preda-
tor u1

(C)
Preda-
tor u2

FIGURE 4.14: Numerical simulation in the Turing instability for given
parameters Γ = 5, γ = 2. K = 1.48, a1 = 0.64, a2 = 0.6, m1 =
0.8, m2 = 1.15, d1 = 0.4, d2 = 0.6, ε = 0.12, k11 = k12 = k22 =
0.1, k23 = 0.1; k13 = 0.25, k33 = 1 Hence λ1 = 0.4 and λ2 = 0.6545.
Moreover, the critical bifurcation parameter is kc

32 = 0.8790 and cor-
respondingly critical wave number is δc ≃ 5 and E∗ = (s, u1, u2) =

(0.6545, 0.8046, 0.5510).
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4.6.1 Numerical Simulations v.s WNL

As it has mentioned in (Gambino, Lombardo, and Sammartino, 2012), to capture
Turing bifurcation near equilibrium, weakly nonlinear analysis as a multiple scales
method is applied. Calculation of these analysis for the system (4.13) has been per-
formed in Appendix B.2. The parameters are the same as parameters applied in
(4.46) (correspond to the Figure (4.7)) and E∗ = (0.6545, 0.8046, 0.5510). Recall that
for those parameters k32 = 0.8878 > kc

32 = 0.0.8790 where δ2
c = 24.9691. Moreover,

weakly nonlinear computation mentioned in (B.2) shows the case is supercritical due
to σ = 3.1255, L = 2.0037. Numerical results of last configuration of u1 and weakly
nonlinear analysis are compared in Figure (4.15).

(A) (B)

FIGURE 4.15: A) Comparison of FEM (dashed blue line) with WNL
method(solid red line) B) Turing Patterns of the predator u1.

4.7 Maximum growth rate

According to the reference (Murray, 2001, Gambino, Lombardo, and Sammartino,
2012) linear theory can give some clues on the wavelength of the emerging pattern
(at least for values of ε that are not exceedingly large). The first factor to be consid-
ered is the value δm maximizing the growth rate λ(δ2). Following the reasoning in
(Segel, 1984) the value of δm can be found by setting:

dλ+

dδ2 = 0, (4.48)

where λ+ is the positive root of the dispersion relation (4.28) (associated with diffu-
sion parameters in case III). Substituting k32 = kc

32(1 + ϵ), δ2
m = δ2

c + η in (4.48) one
can obtain the analytic expression of the curve which gives η as a function of ϵ. The
calculations are presented here:

A(δ2) = a1δ2 + a2, (4.49)

B(δ2) = b1δ4 + b2δ2 + b3, (4.50)

C(δ2) = c1δ6 + c2δ4 + c3δ3 + c4, (4.51)
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Thus (4.48) determines:

δ2
m =

−P2 +
√

P2
2 − 4P1P3

2P1
, (4.52)

where P1 = 3c1, P2 = 2λb1 + 2c2, and P3 = a1λ2 + b2λ + c3, such that ci, i = 1, 2, 3, 4
and ai, i = 1, 2, and bi, i = 1, 2, 3 are introduced in (4.41), (4.42). such that δ2

m =
δ2

c + η, hence the results for are follows.
Consider parameters given for the system with diffusion parameter case III in (

Figure (4.16)). Indeed, the Figure depicts that δ2
m has a root (critical point) which is

called ϵc. Before, this critical value as ϵ increases the parameter η increases which
states that δ2

m is bigger than δ2
c , while after critical value as ϵ rises up η admits nega-

tive values which determines that δ2
m < δ2

c .

FIGURE 4.16: Maximum growth rate obtained by chosen parameter
values: K = 1.48, γ = 2, Γ = 5, a2 = 0.5, a1 = 0.4, a2 = 0.6m2 =
1.15, d1 = 0.4, m1 = 0.8, d2 = 0.6, k11 = 0.1, k12 = 0.1, k13 =
0.25, k22 = 0.1, k23 = 0.1, k33 = 1, ϵ = 0.12 which leads to kc

32 =

0.8790, δ2
c = 24.96911.
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4.8 Global existence in time of solutions by invariant method

In this section we aim to investigate a positive invariant region of the system
(4.13) with diffusion mentioned in (4.61) and conclude global existence in time of
solutions. To find a positive invariant solution and prove the existence of the global
solution, first, we prove that the system (4.13) containing positive initial values and
without diffusion, admits a unique global positive solution. Therefore we prove the
below lemma.

Lemma 4.8.1 The system (4.13) coupled with non-negative initial values u ∈ (s0, u0
1, u0

2)
admits a unique global positive solution.

Proof: We adapt the method employed in (Hoai Nguyen, Ta, and Viet Ta, 2015). We
aim to prove the solution of the system with positive initial values (s(t), u1(t), u2(t)) =
u ∈ R3

+ remains in R3
+ for τ = ∞. Indeed, the right hand side of the system (4.13)

without diffusion contains local Lipschitz continuous functions on R3
+, so a unique

local continuous solution u = (s, u1, u2) defined on [0, τ) exists.
In the first step, we prove u(t) ∈ R3

+ for 0 ⩽ t < τ. For this reason, we suppose
τ be the first time in the interval [0, τ) such that u = (s(t), u1(t), u2(t)) touch the
boundary R3

+, i.e

τ0 = in f
{

0 ⩽ t < τ|s(t)u1(t)u2(t) = 0
}

, (4.53)

Indeed (s(0), u1(0), u2(0)) ∈ R3
+ results in s(t) > 0, u1(0), u2(0) > 0, and 0 < t < τ0.

The system (4.13) in absence of diffusion gives

s(t) = s(0) exp
{ ∫ t

0

[
γ(1 − s(ν)

K
)− m1u1(ν)

a1 + s(ν)
− m2u2(ν)

a2 + s(ν)

]
dν

}
, 0 ⩽ t < τ,

u1(t) = u1(0) exp
{ ∫ t

0

[
m1s(ν)

a1 + s(ν)
− d1 − εu1(ν)

]
dν

}
, 0 ⩽ t < τ,

u2(t) = u2(0) exp
{ ∫ t

0

[
m2s(ν)

a2 + s(ν)
− d2

]
dν

}
, 0 ⩽ t < τ,

(4.54)

u is continuous on [0, τ) so (4.53), and (4.54) provide τ0 = τ. Therefore, u(t) ∈ R3
+,

for all 0 ⩽ t < τ. We need to prove the solution u(t) remains in R3
+ as τ = ∞. Thus

x(t) ∈ R3
+ for 0 ⩽ t < τ, Eqs in (4.54) leads to

0 < s(t) ⩽ (0) exp{
∫ t

0
γ dν}, 0 ⩽ t < τ,

0 < ui(t) ⩽ ui(0) exp{
∫ t

0
mi dν}, 0 ⩽ t < τ, i = 1, 2,

(4.55)

since the coefficients γ and mi, i = 1, 2 are constant and bounded. We obtain that
limt→τ ∥u(t)∥ < ∞, definition of τ concludes τ = ∞. which emphasizes u is a unique
global positive solution. □

Definition 4.8.1 (Kouachi, 2016) A subset Σ ⊂ (L∞(Ω))m is called a positively invariant
region (or more simply an invariant region) for system (4.62), if all solutions with initial
data in Σ remain in Σ for all time in their interval of existence.

Invariant region can make answer two main questions:
1. when do the solutions of PDE decay to spatially homogeneous function in time?



82 Chapter 4. A Three species Competitive Model

2. what relationship have spatially homogeneous functions to solutions of ODE? (Conway,
Hoff, and Smoller, 1978)

It can be shown that for a set to be invariant for (PDE) it must be a rectangle that
is invariant for (ODE) (Conway, Hoff, and Smoller, 1978).

Here we follow the method mentioned in (Kouachi, 2016) whose method is gen-
eralized method of the results of (Kuiper, 2000, Kanel and Kirane, 1998). In fact,
they have been worked on the system of two species while kouachi (Kouachi, 2016)
introduced the method for three and more than three spices.
The diffusion matrix A = (aij)1⩽i,j⩽3 with real entries is supposed to be diagonal-
izable with positive eigenvalues 0 < λ1 < λ2 < λ3, each eigenvalue is of simple
multiplicity (general case has been investigated in Kouachi, 2016).
It is supposed that for |u1| sufficiently large, the reactions in (4.13) satisfy:

1) The dissipativity condition (Kouachi, 2016): each of function s fk(t, x, w) does not
change sign on R+ × R that is

σks fk(t, x, w) ⩽ 0, σk = ±1, k = 1, 2, 3, (4.56)

2) The balance law condition (Kouachi, 2016): characteristic Φij(σ| f |) of the system
are alternate functions with respect to i

(−1)i+1Φi(σ| f |) ⩾ 0, (4.57)

where σ| f | = (σ1| f1|, σ2| f2|, σ3| f3|).

Definition 4.8.2 The set

Λ = ∩3
p=1Λp, (4.58)

where Λp represents the rectangle Λp = {z ∈ Rm : αp ⩽ zp ⩽ βp}, for p = 1, 2, 3 with
edges

Λi(αi) = {z ∈ Λp : zi = αi (if αi < 0), , and zi = −αi (if αi > 0)}, p ̸= i, i = 1, 2, 3.
(4.59)

and

Λi(βi) = {z ∈ Λp : zi = βi}, p ̸= i, i = 1, 2, 3. (4.60)

In addition we investigate an invariant region of the system (4.13) such that diffusion
matrix includes only one cross-diffusion parameter k32, namely,

A =

k11 0 0
0 k22 0
0 k32 k33

 , (4.61)

Theorem 4.8.1 (Kouachi, 2016) Consider the system

∂wi(t, x)
∂t

− Σaij∆j(t, x) = fi(t, x, w), inR+ × Ω, (4.62)
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with boundary conditions

∂wi(t, x)
∂η

= gi(x, w), onΓN , and wi(t, x) = θi(x), on ΓD, (4.63)

(4.64)

and initial data wi(0, x) = w0
i (x) in Ω, where Ω is open bounded domain of class of C1 in

Rn with boundary ∂Ω = ΓD ∪ ΓN is a disjoint union. In addition, suppose that the diffusion
matrix is symmetrizable, then under conditions (4.56) and (4.57), the region S = X−1(Λ)
with Λ defined by (4.58) and X contains eigenvectors, the system (4.69) is invariant for
system (4.63). Moreover the solution is global and uniformly bounded on Ω for any initial
data in L∞(Ω). Furthermore, when the conditions are satisfied for all w1 ∈ R, then

∥w∥∞ ⩽ C∥w0∥∞ (4.65)

where C is a positive constant depending only on the diffusion matrix A and equal to the
unity when A is symmetric.

Before to apply this theorem for the model (4.13) with diffusion matrix (4.61), we
remark that the rectangle region defined in Kouachi, 2016 changed to the Definition
4.8, since we are looking for a positively invariant region.

We also remark Kouachi (Kouachi, 2016) supposed that the diffusion matrix of
the system (4.63) be symmetrizable to find eigenvalues conveniently. The system
(4.13) with the diffusion matrix (4.61) can be diagonalizable and consequently we can
find eigenvalues easily. Indeed the diffusion matrix (4.61) consists of the eigenvalues
λ1 = k11, λ2 = k22, λ3 = k33. In order to have a diagonalizable diffusion matrix, one
needs the real positive eigenvalues.

0 < k11 < k22 < k33, (4.66)

The eigenvectors correspondingly are

x1 = (1, 0, 0), x2 = (0,
−(k22 − k33)

k32
,−1), x3 = (0, 0, 1), (4.67)

We set Q =
k22 − k33

k32
, due to assumption (4.66) and positivity of all diffusion param-

eters Q is positive and non-singular. Therefore

A = X−1DX,

where

X =

1 0 0
0 −Q 0
0 −1 1

 , X−1 =


1 0 0

0 − 1
Q

0

0 − 1
Q

1

 , D =

k11 0 0
0 k22 0
0 0 k22

 . (4.68)

Changing variables Z = Xw, where X is matrix of eigenvectors rows xi = (xi1, xi2, xi3)
t,

the system (4.13) with diffusion (4.61) is equivalent to the following diagonal system:

∂Z
∂t

− D∆Z = X f (t; x, X−1Z), in R+ × Ω, (4.69)
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and
∂Z
∂η

= 0;, and initial condition Z(0, x) = Z0(x).

Each eigenvector xi associated to the eigenvalue λi corresponds an equation

∂zi

∂t
− λi∆zi = Fi(t; x, Z), in R+ × Ω (4.70)

∂zi

∂η
= 0; , zi(0, x) = z0

i (x),

where
w1 = x−1

i,1 zi + Σj, j ̸=ix−1
j,1 zj,

zi = Σ3
k=1xi,kwk, (4.71)

Fi(t, x, Z) = Σ3
k=1xi,k fk(t, x, X−1Z), (4.72)

For each simple eigenvalue, the linear form Φi(w) is defined as

Φi(w) = det(At − λi I),

by replacing the first row with corresponding component of w = (w1, w2, w3) ≡
(s, u1, u2).

Φi(w) =

∣∣∣∣∣∣
s u1 u2

k12 k22 − λi k32
k13 k23 k33 − λi

∣∣∣∣∣∣ , (4.73)

Moreover, the new reaction becomes

Fi(t, x, Z) =
xi,1

∆i,1
Φi( f (t, x, w)),

where w = X−1Z.
In order to apply Theorem 4.8.1, conditions (4.56) and (4.57) must be satisfied

and a rectangle region must be presented.

The dissipativity and balance law conditions

The dissipativity conditions: we need to prove (4.56) for each reaction.

We set σ1 = −1 then s2(γ(1 − s
K
)− m1u1

a1 + s
− m2u2

a2 + s
) ⩾ 0 which is satisfied if s < K.

Moreover we suppose σ2 = −1 therefore su1(
m1s

a1 + s
− d1 − εu1) ⩾ 0 that leads

to: 
I. su1 ⩾ 0, and

m1s
a1 + s

− d1 − εu1 ⩾ 0,

or

I I. su1 ⩽ 0, and
m1s

a1 + s
− d1 − εu1 ⩽ 0,

(4.74)

Remark 4.8.1 These two cases are interpreted as:
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a) The first inequality of I I denotes that u1 or s is negative while we are looking for a positive
invariant region, therefore it is failed and we ignore to survey the second term in I I.

b) Hence we survey the first scenario I. Indeed su1 ⩾ 0 implied that s and u1 have the
same sign. However only we admit positive signs because of the positive invariant region,
and also the second term in I is satisfied if

u1 ⩽
(m1 − d1)(s − λ1)

ε(a1 + s)
,

Since |s| has been considered large enough so

u1 → (m1 − d1)

ε
,

In final, if σ3 = 1, then
I′. su2 ⩾ 0, and

m2s
a2 + s

− d2 ⩾ 0,

or

I I′. su2 ⩽ 0, and
m2s

a2 + s
− d2 ⩽ 0,

(4.75)

Remark 4.8.2 The dissipativity condition of the second reaction is interpreted as follows:

a) The first term in I′ denotes s and u2 have the same sign. Since we need a positive in-
variant region so only the positive signs are admitted.

b) The second inequality in I′ is satisfied if
(m2 − d2)(s − λ2)

a2 + s
⩾ 0 and consequently s ⩾ λ2

and m2 ⩾ d2 or s ⩽ λ2 and m2 ⩽ d2. Positivity conditions of the coexistence steady state
mentioned in 4.3.1 leads to s ⩾ λ2 and m2 ⩾ d2. However the dissipativity condition
mentioned in (Kouachi, 2016) when |s| is large enough so the second term in I ′ tends to
(m2 − d2)

a2
which is always satisfied.

c) The first inequality in I I′ is satisfied if one of the unknowns is negative thus it failed
and therefore one does not need to survey the second term in I I ′.

In following The balance law condition (4.57) are satisfied as follows:

Φ1(σ| f |) = | f |(k22 − k11)(k33 − k11) ⩾ 0, (4.76)

and Φ2(σ| f |) = Φ3(σ| f |) = 0.
Now we present a positive invariant region. According to w = X−1Z, the new

variables are s = z1, u1 =
z1

−Q
, u2 = z3 −

z2

Q
. Hence each ODE system is given as
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below: 

dz1

dt
= z1

(
γ(1 − z1

K
)− m1z2

−Q1(a1 + z1)
−

m2(z3 −
z2

Q
)

a2 + z1

)
,

dz2

dt
=

z2

((−Q))

(
m1z1

a1 + z1
− d1 −

εz2

(−Q)

)
,

dz3

dt
= (z3 −

z2

Q
)

(
m2z1

a2 + z1
− d2

)
,

(4.77)

In following we find an invariant region of the new system (4.77), the method adapted
from (Hoai Nguyen, Ta, and Viet Ta, 2015).

Existence of invariant region

First we find the upper bounds:

z′2(t) =
z2

(−Q)

(
m1z1

a1 + z1
− d1 −

εz2

(−Q)

)
⩽

z2

(−Q)

(
(m1 − d1)−

εz2

(−Q)

)
⩽

εz2

Q2

(
(−Q)

ε
(m1 − d1)− z2

)
,

(4.78)

thus z2 ⩽ Mz2 where

Mz2 =
−Q

ε
(m1 − d1),

Moreover, the upper bound of z3 is obtained as below:

z′3(t) = (z3 −
z2

Q
)

(
m2z1

a2 + z1
− d2

)
⩽ z3

(
(m2 − d2)z1

a2 + z1
− Mz2

Q
(m2 − d2)

)
⩽ z3(m2 − d2)−

Mz2

Q
(m2 − d2),

(4.79)

which gives z3 ⩽ Mz3 where

Mz3 = (m1 − d1) + Ce(m2−d2)t, ∀C ⩾ 0,

and finally

z′1 = z1

(
γ(1 − z1

K
)− m1z2

−Q(a1 + z1)
−

m2(z3 −
z2

Q
)

a2 + z1

)
⩽ z1

(
γ(1 − z1

K
) +

m2z2

Q(a2 + z1)

)
⩽ z1

(
γ(1 − z1

K
) +

m2Mz2

Q(a2 + z1)

)
⩽ z1

(
γ(1 − z1

K
)− m2(m1 − d1)

ε(a2 + z1)

)
⩽ z1

(
γ(1 − z1

K
)

)
,

(4.80)

so based on the comparison theorem z1 ⩽ Mz1 = K.
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Now we find the lower bound of the invariant region. That is

z′1 = z1

(
γ(1 − z1

K
)− m1z2

−Q(a1 + z1)
−

m2(z3 −
z2

Q
)

a2 + z1

)
⩾ z1

(
γ(1 − z1

K
)− m1Mz2

a1
− m2Mz3

a2

)
⩾ z1

(
γaK − K(m1Mz2 + m2Mz3)

aK
− γz1

K

)
⩾ z1

γ

K

(
γaK − K(m1Mz2 + m2Mz3)

aγ
− z1

)
⩾ z1

γ

K

(
K(γa − (m1Mz2 + m2Mz3))

aγ
− z1

)
,

(4.81)

where a = max{a1, a2}, hence the lower bound of z1 is obtained

mz1 =
K(γa − (m1Mz2 + m2Mz3))

aγ
= K

(
1 − (m1Mz2 + m2Mz3)

γa

)
< K,

Simultaneously, the lower bounds of z2 and z3 are given as:

z′2 =
z2

−Q

(
m1z1

a1 + z1
− d1 −

εz2

−Q

)
⩾

z2

−Q

(
(m1 − d1)mz1 − a1d1

a1 + Mz1

− εz2

−Q

)
⩾

z2ε

Q2

(
−Q(m1 − d1)mz1 − a1d1

ε(a1 + Mz1)
− z2

)
,

(4.82)

therefore comparison theory results in

mz2 =

(
−Q(m1 − d1)mz1 − a1d1

ε(a1 + Mz1)

)
,

and the lower bound of z3 is found as

z′3 = z3

(
m2z1

a2 + z1
− d2

)
− z2

Q

(
m2z1

a2 + z1
− d2

)
⩾ z3

(
(m2 − d2)mz1 − a2d2

a2 + Mz1

)
− Mz2

Q
(m2 − d2)

= z3

(
(m2 − d2)mz1 − a2d2

a2 + Mz1

)
− (m2 − d2)(m1 − d1)

ε
,

(4.83)

comparison theorem obtains

z3(t) ⩾
B
A

+ CeAt, ∀C ⩾ 0, t ∈ I,

where

A =
(m2 − d2)mz1 − a2d2

a2 + Mz1

, B =
(m2 − d2)(m1 − d1)

ε
,

thus for C = 0, mz3 =
m1 − d1

ε
.

Using the invariant region method mentioned by Smoller (Smoller, 2012), Kuiper
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(Kuiper, 1980, Kuiper, 2000), we can complete the proof. Indeed, the region defined
by Definition 4.8.2 is invariant if the below conditions are satisfied:

Fi(x, t, z) ⩾ 0, ∀z ∈ Λi(αi), (4.84)
Fi(x, t, z) ⩽ 0, ∀z ∈ Λi(βi), (4.85)

That is the dissipativity conditions and invariant bounds lead to Φ1( f ) > 0 that

F1(x, t, z) =
x1,1Φ1( f )

∆1,1
=

f1(k33 − k11)(k22 − k11)

(k33 − k11)(k22 − k11)
⩾ 0, ∀z ∈ Λi(αi). (4.86)

where x1,1 = 1, and

F2(x, t, z) = F3(x, t, z) = 0, ∀z ∈ Λi(αi).

and simultaneously due to the dissipativity conditions and invariant bounds men-
tioned above Φ1( f ) < 0 and

F1(x, t, z) =
x1,1Φ1( f )

∆1,1
=

f1(k33 − k11)(k22 − k11)

(k33 − k11)(k22 − k11)
⩽ 0, ∀z ∈ Λi(βi). (4.87)

and
F2(x, t, z) = F3(x, t, z) = 0, ∀z ∈ Λi(βi).

To conclude, we record that the diffusion matrix (4.61) is diagonalizable with pos-
itive eigenvalues, the two systems (4.13) with diffusion matrix (4.61), and (4.69)
are parabolic and equivalent. Then if the original system has an invariant region
Σ = X−1(Λ).
Invariant region denotes that ∥Z∥ ⩽ ∥Z0∥ therefore because of Z = Xu we can
conclude that

∥u∥ ⩽ ∥X−1Z∥ =: ∥Z∥ ⩽ ∥Z0∥ ⩽ Xu0∥ = ∥u0∥,

which ends the proof.
The following lemma is stated for the above results.

Lemma 4.8.2 The region S = X−1(Λ) with Λ found in 4.8 of the system (4.69) is in-
variant for system (4.13) with diffusion matrix 4.61 and homogeneous Neumann boundary
condition. Moreover the solution is global and uniformly bounded on Ω for any initial data
in L∞(Ω). Furthermore, when the conditions are satisfied for all s ∈ R, then

∥u∥∞ ⩽ C∥u0∥∞. (4.88)

where C is a positive constant depending only on the diffusion matrix A.
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Chapter 5

The existence of time global
solution of the IGP

Here we investigate the global solution of the system (2.3). The sections are or-
ganized as follows:
In the first section, we demonstrate that the solution with positive initial values of
the system remains positive. In section two the existence of the local solution is
proved. And finally, energy estimate method employed to present a priory bounds
in Sobolev spaces.

5.1 Main Result

Our aim is to show that under certain conditions on the initial values, the 2D
Prey and Predator model of three species (2.3) admits unique regular global solution
for all time t > 0. The presence of the constants does not have any major effects on
the existence of the solutions, therefore, without loss of generality, one may assume
that all constants take the unity value. Hence,

∂ts = ∆s + (1 − s)s − u1s − u2s,
∂tu1 = ∆u1 +∇ · (u1∇u2) + u1s − u1 − u1u2,
∂tu2 = ∆u2 + u2s − u2 + u1u2.

(5.1)

The main result reads:

Theorem 5.1.1 Let p : 2 ≤ p ≤ ∞, r ≥ 1 and T > 0 is given. Assume (s0, u0
1, u0

2) ∈
Lp ∩ Hr(R2) all be positive. Moreover, assume that ∇u0

1 · ∇(u0
2)j > 0, for j = 1, 2.

Then the system of equations (5.1) admits unique global solution (s, u1, u2) in the space of
Lp ∩ Hr(R2). Moreover, there exists a universal constant C = C(∥s0, u0

1, u0
2∥Lp∩Hr) so that

∥(s, u1, u2)∥p
Lp +

∫ t

0
∥∇[|(s, u1, u2)|

p
2 ]∥2

L2 dτ ≤ C, (5.2)

∥(s, u1, u2)∥2
Hr +

∫ t

0
∥[(s, u1, u2)]∥2

Hr+1 dτ ≤ C. (5.3)

5.1.1 Strategy towards the existence

The existence argument follows a standard approach. The method consists of
two main steps. The local well-posedness is established in the first step: we show
that there exists a time interval [0, T] and a space Y so that the solutions (s, u1, u2)
exist in the space Y up to time T (this is done via a fixed point argument). We then
continue to see how large this T can be. This is the aim of the second step: we prove
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that the blow up is not happening on any finite time interval [0, T]. In other words,
given any time T > 0, the solutions (s, u1, u2) remain bounded, in a certain normed
space X,

sup
0≤t≤T

∥(s, u1, u2)∥X < ∞.

The two steps together guarantee the existence of global solutions to the system (5.1).
The Chapter is organized as follows. In section 5.1.2 we recall some of the re-

lations which will be used in the sequel. In section 5.2, we demonstrate that the
solution with positive initial values remains positive for all time. Sections 5.3 and
5.4 are devoted to the local and global existence of the solutions, respectively. The
fixed point argument is used to prove the local existence, and the proof toward the
global solutions is taking advantage of the energy estimates on the solutions s, u1
and u2 and a bootstrapping process.

5.1.2 Preliminaries

We use standard notation for Lp spaces and Sobolev spaces, namely for s > 0,
p ∈ [1, ∞),

∥ f ∥Lp =

[ ∫
R2

| f (x)|2dx
] 1

p

,

∥ f ∥Hs = ∥Λs f ∥L2 + ∥ f ∥L2 .

where Λs = (−∆)
s
2 . In the sequel we make a frequent use of the following well-

known relations (Majda, Bertozzi, and Ogawa, 2002).

Lemma 5.1.1 Assume 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
and s > 0 and s1 ≤ s ≤ s2. Then

(1). Product estimates:

∥Λs( f g)∥Lp ≤ ∥Λs f ∥Lp1∥g∥Lq1 + ∥ f ∥Lp2∥Λsg∥Lq2 . (5.4)

(1). Gagliardo-Nirenberg estimate:

∥Λs f ∥Lp ≤ ∥Λs1 f ∥α
Lp∥Λs2 f ∥1−α

Lq , (5.5)

where 1
r = α

p +
1−α

q and s = αs1 + (1 − α)s2.

Moreover, we make use of the following semi-group estimates. One may consult
(Ji, Yan, and Wu, 2022) for a proof.

Lemma 5.1.2 Let β ≥ 0, α > 0 and 1 ≤ p ≤ q ≤ ∞. Then

∥Λβe−ν(−∆)α
f ∥Lq(Rd) ≤ Ct−

β
2 −

d
2α (

1
q−

1
p )∥ f ∥Lp(Rd). (5.6)

5.2 Positivity of the solutions

In this section we show that the solutions of the system (5.1) remain positive,
requiring that the initial values be positive, i.e. s(0, x), u1(0, x) and u2(0, x) > 0. In
addition, we assume that ∇u0

1(x) · ∇u0
2(x) ≥ 0. These later initial conditions on

the derivatives are needed in the existence argument, as the presence of the chemo-
taxis term ∇ · [u1∇u2] in the second equation of (5.1) is challenging, and requires
additional assumption.
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The positivity argument is based on the following well-known theorem as fol-
lows.

Theorem 5.2.1 Let L = L − ∂t be a parabolic operator with continuous coefficients in
domain Ω0:

Lθ =
n

∑
i,j=1

aij(t, x)
∂2θ

∂i∂j
+

m

∑
i,j=1

bij(t, x)
∂θ

∂i
+

n

∑
i,j=1

c(t, x)θ,

and

∂tθ = Lθ + f (x, t, θ,
∂θ

∂i
,

∂2θ

∂i∂j
). (5.7)

Assume that

|aij(t, x)| ≤ M, |bij(t, x)| ≤ M(|x|+ 1), |cij(t, x)| ≤ M(|x|2 + 1). (5.8)

Moreover, assume that Aθ ≥ 0 in Ω0 and that

θ(t, x) ≥ −B exp
(

β|x|2
)
, (5.9)

for some positive constants β, B. If θ(0, x) ≥ 0 in Rn, then θ(t, x) ≥ 0 in Ω.

To apply this theorem to our model, we rewrite the system (5.1) in its vector form

∂tU = LU + F(x, t, U,∇U, ∆U), (5.10)

where

U =


s

u1
u2
∇u1
∇u2


5×1

, L :=


d1 0 0 0 0
0 d2 0 0 0
0 0 d3 0 0
0 0 0 d2 0
0 0 0 0 d3


5×5

.

Above, We took derivative (gradient) of the second and third equations and add
them to the system:{

∂t(∇u1) = d2∆(∇u1) + F4(x, t, U,∇U, ∆U),
∂t(∇u2) = d3∆(∇u2) + F5(x, t, U,∇U, ∆U).

(5.11)

The matrix L = diag(d1, d2, d3, d2, d3) is positive definite as each di > 0. Therefore,
the conditions of theorem 5.2.1 are satisfied and hence the solutions remain positive
for all time, requiring that the initial value Ui(0, x) > 0. the above argument is
the proof of the following lemma. Generally speaking, starting with positive initial
values, the solutions of the system

∂tU = LU + F(x, t, U,∇U),

remain positive if the matrix L is positive definite.

Lemma 5.2.1 Assume s(0, x) = s0(x), u1(0, x) = u0
1(x), u2(0, x) = u0

2(x), ∇u1(0, x) =
∇u0

1(x) and ∇u2(0, x) = ∇u0
2(x), where the functions s0(x), u1s0(x), u0

2(x), ∇u0
1(x) and

∇u0
2(x) all be positive. Then the solution to the system of equations (5.10) remains positive

for all time t > 0.
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Note that, this lemma states that, beside the functions s, u1 and u2, the derivatives
∇u1 and ∇u2 stay positive as well (with some abuse of the notation, since the latest
are vectors).

5.3 Local Existence

Proof
[
Proof of the main theorem 5.1.1

]
The local existence of the strong solutions

in the space of C([0, T]; X), 0 < T < 0 to be determined, is done via a fixed point
argument of the integral equations

s(t, x) = e(∆+1)ts0(x)−
∫ t

0 e(∆+1)(t−τ)

[
s2(τ) + u1(τ)s(τ) + u2(τ)s(τ)

]
dτ,

u1(t, x) = e(∆−1)tu0
1(x) +

∫ t
0 e(∆−1)(t−τ)[

∇(u1(τ) · ∇u2(τ)) + u1(τ)s(τ)− u1(τ)u2(τ)

]
dτ,

u2(t, x) = e(∆−1)tu0
2(x) +

∫ t
0 e(∆−1)(t−τ)

[
u2(τ)s(τ) + u1(τ)u2(τ)

]
dτ.

(5.12)

We define Q1(s, u1, u2), Q2(s, u1, u2) and Q3(s, u1, u2) to be the integrals in the (5.12),
respectively. Moreover, we introduce the space X = Lp ∩ Hr. We then have, by
applying lemma 5.1.2 with q = p, β = 0, α = 1 and d = 2,

∥e(∆+1)ts0∥Lp + ∥e(∆−1)tu0
1∥Lp + ∥e(∆−1)tu0

2∥Lp

≤ C
[

et∥s0∥Lp + e−t∥u0
1∥Lp + e−t∥u0

2(x)∥Lp

]
≤ Ce

[
∥s0∥Lp + ∥u0

1∥Lp + ∥u0
2(x)∥Lp

]
.

Also, by applying lemma 5.1.2 with q = p = 2, β = 0, α = 1 and d = 2,

∥e(∆+1)ts0∥Hr + ∥e(∆−1)tu0
1∥Hr + ∥e(∆−1)tu0

2∥Hr

≤ C
[

et∥s0∥Hr + e−t∥u0
1∥Hr + e−t∥u0

2∥Hr

]
≤ Ce

[
∥s0∥Hr + ∥u0

1∥Hr + ∥u0
2∥Hr

]
.

Therefore, we define the working space Y to be

Y =
{
(s, u1, u2) : sup

0≤t≤T

[
∥s∥X + ∥u1∥X + ∥u2∥X

]
≤ 2Ce

[
∥s0∥X + ∥u0

1∥X + ∥u0
2∥X

]}
(5.13)

We show that Q1(s, u1, u2), Q2(s, u1, u2) and Q3(s, u1, u2) define contraction mapping
on the space Y, hence the existence of fixed points (s, u1, u2). Through the rest of the
proof, we frequently make use of lemma 5.1.2 and the semigroup estimate therein.
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5.3.1 Estimates in Lp norms

∥Q1(s, u1, u2)∥Lp ≤
∫ t

0
∥e(∆+1)(t−τ)[s2]dτ

∥∥
Lp

+
∫ t

0
∥e(∆+1)(t−τ)[u1s]∥Lp dτ +

∫ t

0
∥e(∆+1)(t−τ)[u2s]∥Lp dτ

≤
∫ t

0
(t − τ)−( 2

p−
1
p )et−τ

[
∥s∥2

Lp + ∥s∥Lp∥u1∥Lp + ∥s∥Lp∥u2∥Lp

]
dτ

≤ eT1− 1
p

[
sup

0≤t≤T
∥u1∥X + sup

0≤t≤T
∥u2∥X

]
sup

0≤t≤T
∥s∥X.

As for the estimate ∥Q2(s, u1, u2)∥Lp , we first note that taking ϵ = 1
p we have

∥e(∆−1)(t−τ)

[
∇(u1 · ∇u2)

]
∥Lp dτ ≤

∫ t

0
(t − τ)−

1
2−( 1+ϵ

2 − 1
p )∥u1 · ∇u2∥

L
2

1+ϵ
dτ

≤
∫ t

0
(t − τ)−

1
2−( 1+ϵ

2 − 1
p )∥u1∥L2p∥∇u2∥L2 dτ.

Then, by Sobolev as well as the Gagliardo-Nirenberg inequalities

∥u1∥L2p ≤ ∥(−∆)
p−1
2p u1∥L2 ≤ ∥u1∥

1
p

L2∥∇u1∥
p−1

p

L2 ≤ C∥u1∥L2 + C∥∇u1∥L2 . (5.14)

Hence

∥Q2(s, u1, u2)∥Lp ≤
∫ t

0
∥e(∆−1)(t−τ)

[
∇(u1 · ∇u2)

]
∥Lp dτ +

∫ t

0
∥e(∆−1)(t−τ)[u1s]∥Lp dτ

+
∫ t

0
∥e∆(t−τ)[u1u2]∥Lp dτ ≤

∫ t

0
(t − τ)−

1
2−( 1+ϵ

2 − 1
p )
[(
∥u1∥L2 + ∥∇u1∥L2

)
∥∇u2∥L2

]
dτ

+
∫ t

0
(t − τ)−( 2

p−
1
p )
[
∥s∥Lp∥u1∥Lp + ∥u1∥Lp∥u2∥Lp

]
dτ

≤ T
1

2p

[
sup

0≤t≤T
∥u1∥X sup

0≤t≤T
∥u2∥X

]
+ T1− 1

p

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u2∥X

]
sup

0≤t≤T
∥u1∥X.

Moreover,

∥Q3(s, u1, u2)∥Lp ≤
∫ t

0
∥e(∆−1)(t−τ)[u2s]∥Lp dτ +

∫ t

0
∥e(∆−1)(t−τ)[u1u2]∥Lp dτ

≤
∫ t

0
(t − τ)−( 2

p−
1
p )e−(t−τ)

[
∥s∥Lp∥u2∥Lp + ∥u1∥Lp∥u2∥Lp

]
dτ

≤ T1− 1
p

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u1∥X

]
sup

0≤t≤T
∥u2∥X.

5.3.2 Estimates in L2 norms

A part of the argument is happening in the space of Hr, and therefore there
should be some estimates in L2. The L2 estimates are already available through the
estimates in Lp spaces (presented above) by taking p = 2 in the previous section. So
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we have

∥Q1(s, u1, u2)∥L2 ≤ T
1
2

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u1∥X

]
sup

0≤t≤T
∥u2∥X,

∥Q2(s, u1, u2)∥L2 ≤ T
1
4

[
sup

0≤t≤T
∥u1∥X sup

0≤t≤T
∥u2∥X

]
+ T

1
2

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u2∥X

]
sup

0≤t≤T
∥u1∥X,

∥Q3(s, u1, u2)∥L2 ≤ T
1
2

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u1∥X

]
sup

0≤t≤T
∥u2∥X.

5.3.3 Estimates in Ḣr norms

∥Q1(s, u1, u2)∥Ḣr ≤
∥∥ ∫ t

0
(−∆)

r
2 e(∆+1)(t−τ)[s2]dτ

∥∥
L2

+
∥∥ ∫ t

0
(−∆)

r
2 e(∆+1)(t−τ)[u1s]dτ

∥∥
L2 +

∥∥ ∫ t

0
(−∆)

r
2 e(∆+1)(t−τ)[u2s]dτ

∥∥
L2

≤
∫ t

0
(t − τ)−(1− 1

2 )∥(−∆)
r
2 s∥L2∥s∥L2 dτ

+
∫ t

0
(t − τ)−(1− 1

2 )et−τ

[
∥(−∆)

r
2 s∥L2∥u1∥L2 + ∥s∥L2∥(−∆)

r
2 u1∥L2

]
dτ

+
∫ t

0
(t − τ)−(1− 1

2 )et−τ

[
∥(−∆)

r
2 s∥L2∥u2∥L2 + ∥s∥L2∥(−∆)

r
2 u2∥L2

]
dτ

≤ CeT
1
2

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u1∥X + sup

0≤t≤T
∥u2∥X

]
sup

0≤t≤T
∥s∥X.

(5.15)

Above we used the para product estimate, for any z ≥ 0 and
1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
,

∥(−∆)
z
2 ( f g)∥Lp ≤ ∥(−∆)

z
2 f ∥Lp1∥g∥Lq1 + ∥ f ∥Lp2∥(−∆)

z
2 g∥Lq2 .

Also,

∥Q2(s, u1, u2)∥Ḣr ≤
∫ t

0
∥(−∆)

r
2 e(∆−1)(t−τ)[∇ · (u1∇u2)]∥L2 dτ

+
∫ t

0
∥(−∆)

r
2 e(∆−1)(t−τ)[u1s]∥L2 dτ +

∫ t

0
∥e∆(t−τ)[u1u2]∥L2 dτ

≤
∫ t

0
(t − τ)−

1
2−( 3

4−
1
2 )
[
∥(−∆)

r−1
2 u1∥L4∥∇u2∥L2 + ∥u1∥L4∥(−∆)

r
2 u2∥L2

]
dτ

+
∫ t

0
(t − τ)−(1− 1

2 )

[
∥(−∆)

r
2 s∥L2∥u1∥L2 + ∥(−∆)

r
2 u1∥L2∥s∥L2

]
dτ

+
∫ t

0
(t − τ)−(1− 1

2 )

[
∥(−∆)

r
2 u2∥L2∥u1∥L2 + ∥(−∆)

r
2 u1∥L2∥u2∥L2

]
dτ

≤ T
1
4

[
sup

0≤t≤T
∥u1∥X sup

0≤t≤T
∥u2∥X

]
+ T

1
2

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u2∥X

]
sup

0≤t≤T
∥u1∥X.

(5.16)
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Above, similar to (5.14), we made use of the Sobolev and Gagliardo-Nirenberg in-
equalities.

Moreover, similar to calculation for ∥Q1(s, u1, u2)∥Hr

∥Q3(s, u1, u2)∥Ḣr ≤ T
1
2

[
sup

0≤t≤T
∥s∥X + sup

0≤t≤T
∥u1∥X

]
sup

0≤t≤T
∥u2∥X.

5.3.4 Continuity of Q1, Q2 and Q3

It is not difficult to follow the estimates in the previous sections and show the
following estimates

∥Q1(s, u1, u2)− Q1(s̃, ũ1, ũ2)∥X ≤ T∥u2 − ũ2∥X

+
[
T

1
2 + T1− 1

p
][

sup
0≤t≤T

∥(s, u1, u2)∥X + sup
0≤t≤T

∥(s̃, ũ1, ũ2)∥X

]
[

sup
0≤t≤T

∥(s, u1, u2)− (s̃, ũ1, ũ2)∥X

]
∥Q2(s, u1, u2)− Q2(s̃, ũ1, ũ2)∥X ≤ T sup

0≤t≤T
∥u1 − ũ1∥X

+
[
T

1
4 + T

1
2p
][

sup
0≤t≤T

∥(s, u1, u2)∥X + sup
0≤t≤T

∥(s̃, ũ1, ũ2)∥X

]
[

sup
0≤t≤T

∥(s, u1, u2)− (s̃, ũ1, ũ2)∥X

]
+

[
T

3
4 + T1− 1

2p
][

sup
0≤t≤T

∥(s, u1, u2)∥X+

sup
0≤t≤T

∥(s̃, ũ1, ũ2)∥X

][
sup

0≤t≤T
∥(s, u1, u2)− (s̃, ũ1, ũ2)∥X

]
∥Q3(s, u1, u2)− Q3(s̃, ũ1, ũ2)∥X

≤ T∥u2 − ũ2∥X +
[
T

1
2 + T1− 1

p
][

sup
0≤t≤T

∥(s, u1, u2)∥X + sup
0≤t≤T

∥(s̃, ũ1, ũ2)∥X

]
[

sup
0≤t≤T

∥(s, u1, u2)− (s̃, ũ1, ũ2)∥X

]
.

(5.17)

Noting that T < 1, the appropriate estimates hold for the differences, whence the
integral equations provide a contraction mapping in the space Y, provided

T <

[
2Ce sup

0≤t≤T
∥(s0, u0

1, u0
2)∥X + 2Ce sup

0≤t≤T
∥(s̃0, ũ1

0, ũ2
0)∥X

]−4

, (5.18)

Therefore, the non-linear map given by (5.1.2) has a fixed point (s, u1, u2) in the space
X, hence the existence of local solutions. □

5.4 Global Existence of the solutions (s, u1, u2) in the space of
Lp ∩ Hr

In this section we show that system of equations (5.1) admit strong global solu-
tions in the space of Lp ∩ Hr, p ≥ 2, r ≥ 1. The proof follows bootstraping process.
We start by showing that given any p ≥ 2, the solutions (s, u1, u2) have aprior esti-
mates in these stimates, and the blow up is not happening at any given finite time.
We then proceed and present similar conclusion for Hilbert spaces Hr, r ≥ 1.
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5.4.1 Apriori bounds in Lp spaces

We start by showing that the function s(t, x) remains in any Lp spaces 2 ≤ p ≤ ∞.

Lemma 5.4.1 Let 2 ≤ p ≤ ∞ and T > 0. Then for any t ∈ [0, T] there exists C =
C(∥s0(t)∥) so that

sup
0≤t≤T

∥s(t, ·)∥p
Lp +

∫ t

0
∥∂[s

p
2 ]∥2

L2 dτ ≤ ∥s0∥p
Lp et. (5.19)

Proof We assume that p = 2n, and multiply both sides of the first equation of (5.1)
in s|s|p−2 = sp−1

1
p

∂t∥s∥p
Lp −

∫
(∆s)sp−1dx + ∥s∥p+1

Lp+1 +
∫

u1spdx +
∫

u2spdx = ∥s∥p
Lp ,

where we moved the positive terms to the left hand side. Then (with some abuse of
notations)

−
∫
(∆s)sp−1dx =

∫
(∇s)2s

p−2
2 = ∥∇[s

p
2 ]∥2

L2 .

We drop some of the positive terms in the left hand side and rewrite the energy
estimate in the form of

1
p

∂t∥s∥p
Lp + ∥∇[s

p
2 ]∥2

L2 ≤ ∥s∥p
Lp ,

The Granwall’s inequality results in

∥s∥p
Lp +

∫ t

0
∥∂[s

p
2 ]∥2

L2 dτ ≤ ∥s0∥p
Lp et.

The bounds for the Lp estimates, p ̸= 2n is available by interpolation and the L∞

norm is achieved in the limiting case, as we let p → ∞. □
Our next attempt is to prove similar bounds for the u1 and u2. The presence of the
term ∇ · [u1∇u2] in the second equation of (5.1) as well as u1u2 with positive coeffi-
cient in third equation make it difficult to conclude the desired estimates. However,
by adding the positivity condition on the initial value of ∇u0

1 and ∇u0
2 we get the

desired result.

Lemma 5.4.2 assume T > 0, and 2 ≤ p ≤ ∞. Then for any t ∈ [0, T] there exists
C = C(∥s0(t)∥L∞ , ∥u0

1∥L2) so that

sup
0≤t≤T

∥u1(t, ·)∥
p
Lp +

∫ t

0
∥∇[u

p
2
1 ]∥

2
L2 dτ ≤ ∥u0

1∥
p
Lp e(∥s0∥L∞−1)t. (5.20)

Proof We assume p = 2n and we find the inner product of the second equation in
(5.1) with up−1

1

1
p

∂t∥u1∥2
L2 −

∫
∆u1up−1

1 dx + ∥u1∥
p
Lp +

∫
up

1 u2dx

=
∫

∇ · (u1∇u2)u
p−1
1 dx +

∫
up

1 sdx,

∫
∇ · (u1∇u2)u1dx = −

∫
up−1

1 ∇u2 · ∇u1dx ≤ 0.
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We also have ∣∣ ∫ sup
1 dx

∣∣ ≤ ∥s∥L∞∥u1∥
p
Lp ≤ ∥s0∥L∞∥u1∥

p
Lp .

Then, since −
∫

∆u1up−1
1 dx =

∫
(∇u1)

2up−2
1 dx = ∥∇[u

p
2
1 ]∥2

L2 , we have

1
2

∂t∥u1∥
p
Lp + (1 − ∥s0∥L∞)∥u1∥

p
Lp + ∥∇[u

p
2
1 ]∥

2
L2 ≤ 0, x

where we dropped positive term in the left hand side of the inequality. We then make
use of the Granwall’s inequality, which finishes the proof. The case L∞ is available in
the limiting case of p → ∞, and Lp estimates, p ̸= 2n, are available via interpolation
between Lp norms, p = 2n. □

Similar argument leads to Lp bounds on the u2(t, x).

Lemma 5.4.3 assume T > 0, and 2 ≤ p ≤ ∞. Then for any t ∈ [0, T] there exists C, C1
and C2 all depend on ∥s0(t)∥L∞ and ∥u0

2∥L2 , so that

sup
0≤t≤T

∥u2(t, ·)∥p
Lp +

∫ t

0
∥∇[u

p
2
2 ]∥

2
L2 dτ ≤ C∥u0

2∥
p
Lp eC

(
∥s0∥L∞ ,∥u0

1∥L∞
)

t. (5.21)

Proof We first find the inner product of the second equation in (5.1) with up−1
2

1
p

∂t∥u2∥p
Lp −

∫
∆u2up−1

2 dx + ∥u2∥p
Lp =

∫
up

2 sdx +
∫

up
2 u1dx.

The right hand side of the equality is controlled as follows∣∣ ∫ (s + u1)u
p
2 dx

∣∣ ≤ (
∥s∥L∞ + ∥u1∥L∞

)
∥u2∥p

Lp ≤ C
(
∥s0∥L∞ , ∥u0

1∥L∞
)
∥u2∥p

Lp .

where we used the estimates in lemmas 5.4.2 and 5.4.3 with p = ∞. Then, consider-

ing the relation −
∫

∆u2up−1dx = ∥∇[u
p
2
1 ]∥2

L2 , we have

1
2

∂t∥u2∥p
Lp + C1

(
∥s0∥L∞ , ∥u0

1∥L∞
)
∥u2∥p

Lp + ∥∇[u
p
2
2 ]∥

2
L2 ≤ 0.

We then make use of the Granwall’s inequality, which finishes the proof. The case
L∞ is available in the limiting case of p → ∞, and Lp estimates, p ̸= 2n, are available
via interpolation. □

5.4.2 Apriori bounds in Sobolev spaces

Our next attempt is to derive some upper bounds of the solutions in Sobolev
spaces. We show that, given initial values in Hr, the solution s, u1 and u2 remain in
in such spaces and the upper bounds are only depend on the initial values in the
corresponding Sobolev spaces. With the Lp bounds (presented in the section 5.4) the
proofs are quite straightforward, but here we bring them in details anyways.

Lemma 5.4.4 Assume T > 0 is fixed and let s0 ∈ H1. Then for any t ∈ [0, T] there exists
C = C(∥(s0(t), u0

1, u0
2)∥L∞ , ∥s0(t)∥H1) so that

sup
0≤t≤T

∥∂s(t, ·)∥2
L2 +

∫ t

0
∥Λ2s∥2

L2 dτ ≤ ∥s0∥2
H1 et. (5.22)
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Proof We take ∂ derivative of the the first equation in (5.1) and find its inner product
with ∂s. This leads to the energy estimates

1
2

∂t∥∂s∥2
L2 −

∫
(∂∆s)∂sdx = ∥∂s∥2

L2 +
∫
(∂u1 + ∂u2)s∂sdx +

∫
(u1 + u2)(∂s)2dx.

Then (with some abuse of notations)

−
∫
(∂s)∂sdx = ∥Λ2s∥2

L2 .

where we use the notation Λ2 = ∇∂. The terms on the right hand side of the energy
estimates are controlled as follows.∫

(∂u1 + ∂u2)s∂sdx ≤ C∥s∥L∞
(
∥∂u1∥L2 + ∥∂u2∥L2

)
∥∂s∥L2

≤ ∥∂s∥2
L2 + C∥s∥2

L∞

(
∥∂u1∥2

L2 + ∥∂u2∥2
L2

)
≤ ∥∂s∥2

L2 + C∥s0∥2
L∞

(
∥∂u1∥2

L2 + ∥∂u2∥2
L2

)
≤ ∥∂s∥2

L2 + C∥s0∥2
L∞

(
∥∂u1∥2

L2 + ∥∂u2∥2
L2

)
.

In addition,∫
(u1 + u2)(∂s)dx ≤ C

(
∥u1∥L∞ + ∥u2∥L∞

)
∥∂s∥2

L4

≤
(
∥u0

1∥L∞ + ∥u0
2∥L∞

)
∥Λ

3
2 s∥2

L2

≤
(
∥u0

1∥L∞ + ∥u0
2∥L∞

)
∥s∥L2∥Λ2s∥L2

≤ 1
100

∥Λ2s∥L2 + C∥s0∥2
L2

(
∥u0

1∥L∞ + ∥u0
2∥L∞

)2.

1
2

∂t∥∂s∥2
L2 + C∥Λ2s∥2

L2 − ∥∂s∥2
L2 ≤ C∥s0∥2

L2

(
∥u0

1∥L∞ + ∥u0
2∥L∞

)2

+C∥s0∥2
L∞

(
∥∂u1∥2

L2 + ∥∂u2∥2
L2

)
.

The Granwall’s inequality completes the proof. Note that we used the fact that, from
lemmas 5.4.2 and 5.4.3,∫ t

0

(
∥∂u1∥2

L2 + ∥∂u2∥2
L2

)
dt ≤ C

(
∥u0

1∥2
L2 + ∥u0

2∥2
L2

)
eCt.

□
We next prove the control on H1 norm of the u2. Note that, the presence of the

term ∇ · [u1∇u2] does not allow similar result for u1(t, x). However, after establish-
ing the ∥u2∥H1 , we can treat this term.

Lemma 5.4.5 Assume T > 0 is fixed. Then for any t ∈ [0, T] there exists
C = C(∥s0∥H1 , ∥u0

1∥L2 , ∥u0
2∥L2) so that

sup
0≤t≤T

∥∂u2(t, ·)∥2
L2 +

∫ t

0
∥Λ2u2∥2

L2 dτ ≤ Cet. (5.23)
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Proof We first find the inner product of the second equation in (5.1) with up−1
2

1
p

∂t∥∂u2∥2
L2 −

∫
∆∂u2∂u2dx + ∥∂u2∥2

L2 =
∫
(∂u2)

2(s + u1)dx +
∫

u2∂u2 (∂s + ∂u1)dx,

The right hand side of the equality is controlled as follows∣∣ ∫ (∂u2)
2(s + u1)dx

∣∣ ≤ (
∥s∥L∞ + ∥u1∥L∞

)
∥∂u2∥2

L2 ≤ C
(
∥s0∥L∞ , ∥u0

1∥L∞
)
∥∂u2∥2

L2 ,

and ∣∣ ∫ u2(∂u2)(∂s + ∂u1)dx
∣∣ ≤ ∥u2∥L∞

(
∥∂s∥L2 + ∥∂u1∥L2

)
∥∂u2∥L2

≤ C∥∂u2∥2
L2 + C

(
∥∂s∥2

L2 + ∥∂u1∥2
L2

)
∥u0

2∥2
L∞ .

Then, considering the relation −
∫

∆∂u2∂u2dx = ∥∇∂u2∥2
L2 = ∥Λ2u2∥2

L2 , we have

1
p

∂t∥∂u2∥2
L2 + ∥Λ2u2∥2

L2 − C∥∂u2∥2
L2 ≤ C

(
∥∂s∥2

L2 + ∥∂u1∥2
L2

)
∥u0

2∥2
L∞ .

In order to finish the proof, we then take the integral and use the fact that, from
lemma 5.4.2, ∫ t

0
∥∂u1∥2

L2 dτ ≤ Cet.

□
We are now ready to prove similar H1 bounds for the function u1(t, x).

Lemma 5.4.6 Assume T > 0 is fixed. Then for any t ∈ [0, T] there exists a constant
C = C(∥s0(t)∥H1∩L∞ , ∥u0

1∥H1 , ∥u0
2∥H1∩L∞) so that

sup
0≤t≤T

∥∂u1(t, ·)∥2
L2 +

∫ t

0
∥Λ2u1∥2

L2 dτ ≤ Ce2t. (5.24)

Proof We take the ∂ derivative of the second equation in (5.1) and find its inner
product with ∂u1

1
2

∂t∥∂u1∥2
L2 −

∫
(∆∂u1)∂u1dx + ∥∂u1∥2

L2 =
∫
∇ · ∂(u1∇u2)∂u1dx

+
∫
(∂u1)

2(s − u2)dx +
∫
(∂s − ∂u2)u1∂u1dx,

We control the terms on the right hand side as it follows.∣∣∣∣ ∫ ∇ · ∂(u1∇u2)∂u1dx
∣∣∣∣ = ∣∣∣∣ ∫ ∂(u1∇u2) · ∇∂u1dx

∣∣∣∣ ≤ ∥Λ2u1∥L2∥∂(u1∇u2)∥L2

≤ ∥Λ2u1∥L2∥∂∇u2∥L2∥u1∥L∞ + ∥Λ2u1∥L2∥∂u1∥L4∥∇u2∥L4

≤ ∥Λ2u1∥L2∥∂∇u2∥L2∥u1∥L∞ + ∥Λ2u1∥L2∥u1∥
1
2
L∞∥∇∂u1∥

1
2
L2∥u2∥

1
2
L∞∥∇∂u2∥

1
2
L2

≤ 1
100

∥Λ2u1∥2
L2 + C

(
∥u1∥L∞ + ∥u1∥L∞∥u2∥L∞

)
∥∇∂u2∥2

L2

≤ 1
100

∥Λ2u1∥2
L2 + C

(
∥u0

1∥L∞ + ∥u0
1∥L∞∥u0

2∥L∞

)
∥∇∂u2∥2

L2 ,

(5.25)
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Where we made use of the Gagliardo-Nirenberg inequality to make use of the bounds
in lemma 5.4.5.

∥∂u1∥L4 ≤ ∥Λ2u1∥
1
2
L2∥u1∥

1
2
L∞ ,

and similar bound for ∥∂u2∥L4 . We also have

∣∣ ∫ (∂u1)
2(s − u2)dx

∣∣ ≤ (
∥s∥∥L∞∥u2∥L∞

)
∥∂u1∥2

L2 ≤
(
∥u0

2∥L∞ + ∥s0∥L∞

)
∥∂u1∥2

L2 .

Moreover,∣∣∣∣ ∫ (∂s − ∂u2)u1∂u1dx
∣∣∣∣ ≤ ∥u1∥L∞

(
∥∂s∥L2 + ∥∂u2∥L2

)
∥∂u1∥L2

≤ ∥∂u1∥2
L2 + ∥u0

1∥2
L∞

(
∥∂s∥2

L2 + ∥∂u2∥2
L2

)
,

Then, since −
∫
(∆∂u1)∂u1dx = ∥Λ2u1∥2

L2 , we have

1
2

∂t∥∂u1∥2
L2 + C∥Λ2u1∥2

L2 ≤ C∥∂u1∥2
L2 + C∥Λ2u2∥2

L2 . (5.26)

We then take the integral and finish the argument. Note that, by lemma 5.4.5,∫ t

0
∥Λ2u2∥2

L2 ds ≤ Cet,

and hence we can control the right hand side of (5.26). □

Remark 5.4.1 The process of getting the H1 norm in lemmas (5.4.4), 5.4.6 and 5.4.6 is
easily applies recursively. In the next step, one can follow same process and use the result in
these three lemmas to achieve the H2 bounds, and the process goes on. Therefore, the bounds
are available for any Hr space, r ≥ 0, non integer r, are achieved via interpolation). Hence
the following lemma is proved.

Lemma 5.4.7 Assume T > 0 is fixed and r ≥ 0. Then there is a constant
C = C(t, ∥(s0, u0

1, u0
2)∥Hr∩L∞) so that for any t ∈ [0, T]

sup
0≤t≤T

(
∥s∥Hr + ∥u1∥Hr + ∥u2∥Hr

)
+

∫ t

0

(
∥s∥Hr+1 + ∥u1∥Hr+1 + ∥u2∥Hr+1

)
dt ≤ C.(5.27)

Remark 5.4.2 Lemmas 5.4.3, 5.4.7 together states that the solutions (s, u1, u2) are not
blowing up at any finite time T > 0. This observation guarantees that the solutions which
were found locally (in section 5.3 ) are global in time.



101

Conclusion

In this thesis generally two models of three species involved in ecology have
been studied.

In the first model, we have presented a chemotaxis model of three species with
intraguild predation (IGP model). We have investigated pattern formation and the
existence of a global solution in 2D. Moreover, we have established a normal form of
Turing-Hopf of the system. We perform chaotic behavior of IGP Model in the niche.

Further, stationary and oscillatory reaction-diffusion patterns, global in time so-
lution of the model by rectangle invariant region method in the second model consist
of two predators competing for one prey with Holling type II functional responses
studied. We modified the model mentioned in (Ferreira, Silva, and Rao, 2019, Farkas,
1984).

In Chapter 2, we have proved IGP Model undergoes the Turing pattern due to
the chemotaxis term. Some papers have mentioned a diffusive model of IG preda-
tion with Lotka- Volterra or Holling types. To the best of our knowledge, non of
them investigated the formation of patterns due to chemotaxis. Therefore, this work
is novel. We obtained instability regions and then proved necessary and sufficient
conditions in which the system underlies Hopf, Turing, and Turing- Hopf instabili-
ties. Roughly speaking, we have established chemotaxis parameter produces Turing
instability. Also, the system oscillates in time due to Hopf bifurcation as the growth
rate of IG predator concerning IG prey crosses its critical point. We have depicted
that in the absence of self-diffusion of prey and IG predator, conditions do not en-
sure the formation of the Turing pattern. However, in the presence of one of the
self-diffusion parameters, Turing patterns take place. We also demonstrated that if
the death rate of prey concerning IG predator is zero, the system cannot perform
Turing patterns. In addition, we have proved the necessary conditions in which the
system undergoes or does not undergo Turing-Hopf instabilities.

We employed the spectral method to exhibit stationary Turing, time oscillations,
chaotic, and spatiotemporal patterns. Moreover, a weakly nonlinear has been uti-
lized to determine subcritical and supercritical Turing patterns. Our weakly non-
linear results are consistent with numerical simulations. We also have observed nu-
merically that as the chemotaxis term increases, the system can transient from Turing
patterns toward Turing-Hopf patterns. Indeed, a transition between different wave
numbers can be predicted with linear analysis.

In addition, we have proved that wave instability cannot occur in this system in
both the absence and presence of cross-diffusion parameter cases.

In Chapter 3, we have studied the normal form of IGP Model. Indeed, we em-
ployed a perturbation technique based on the multiple scales method to drive the
normal form of IGP Model. Consequently, we have investigated the stationary so-
lution of the reduced system. In particular, we have determined the regions in which
Hopf, Turing, and Turing-Hopf occur, and then we have proved it numerically.

In Chapter 4, we have studied the model consisting of two predators competing
for one prey with Holling type II functional response coupled with linear diffusion.
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We have modified the model presented in (Ferreira, Silva, and Rao, 2019) and well-
known reference (Farkas, 1984) to achieve a unique coexistence steady state instead
of a line segment of stable equilibria. For this reason, we attached an intraspecific
term to one of the predator’s equations. In addition, we have supposed the strategy
in which predators avoid each other. Thus, we have considered all self- and cross-
diffusion parameters positive. Moreover, we performed linear analysis to determine
the necessary condition of local stability and oscillation of the system due to the
Hopf bifurcation parameter. We have then investigated Turing analysis for three
different cases.

The first case states that the model does not undergo Turing instability in the
absence of cross-diffusion parameters. While in two other cases (the presence of
cross-diffusion parameters corresponding to predators and the presence of cross-
diffusion parameters concerning predators and prey-predators), Turing patterns are
formed. In particular, we have obtained the Turing region due to the positivity,
stability, and Turing conditions of one case mentioned above.

Moreover, we have exhibited enhancement in which self- or cross-diffusion pa-
rameters increase or decrease the Turing region. We have numerically simulated
Turing patterns. Then we applied the WNL method to determine the amplitude
of patterns, and next, we compared them with numerical simulations. Indeed, we
have used the finite element method equipped with θ − scheme and Lagrangian P2
polynomials. We next have surveyed the maximum growth rate of eigenvalues.

Finally, in this Chapter, we have established the global in time solution of the
model by the invariant method in one case that the system contains only one cross-
diffusion, which mentions the flux of the second predator in the opposite direc-
tion of the first predator, i.e., the second predator moves to the lower density of
the first predator. To prove the global solution, first, we demonstrate that system
admits a positive solution under positive initial values. Then according to the in-
variant method, we transformed the system into a diagonal one; next, by utilizing
balance law and dissipativity conditions and providing a rectangle invariant region
(described in the Chapter), we proved that system admits the global in time solu-
tions.

In Chapter 5, we have studies the existence global solution of IGP Model in 2D.
In order to prove that we followed two main steps. In the first step, we proved a
time interval and space in which the solutions exist locally. Then we proved that in
infinite time the solutions remain bounded. We proved that, under certain natural
initial conditions, namely the positivity of the initial values s, u0

1 and u0
2, as well as

the same sign condition on the gradients of u0
1 and u0

2 (i.e. ∇u0
1 · ∇u0

2 ≥ 0), the
solutions exist globally in time in the spaces Lp ∩ Hr, r ≥ 1 and 2 ≤ p ≤ ∞.

Finally, we suggest some open problems and directions for future work.

• Since in the IGP Model, the chemotaxis term ∇.(v∇w) is a subclass of cross-
diffusion term ∇.(∇(vw)). It would be intriguing to examine and compare
the Turing region, stationary Turing, and oscillation of the model in time when
both predators diffuse away from (or toward) the other specie’s gradient.

• It would be interesting to study and exhibit the rich dynamics of both mod-
els mentioned in Chapters (4 and 2) theoretically and numerically in higher
dimensions.

• Moreover, numerical and analytical investigation of Turing and Spatio-temporal
patterns around diffusive degenerated Zip model with nonlinear cross-diffusion
terms could also be of interest and challenging.
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• In modified model (4.13), we applied the strategy which predators compete
in different directions and avoid each other, therefore employing and compar-
ing second strategy in which predators move toward prey in the same direc-
tion (cross- diffusion parameters corresponding to two predators are negative)
could be considered.

• It would be the interest of applying finite element method for the model (4.13)
in 2D and 3D in irregular domains.

• Finally, it would be of interest to work on the global solution of the IGP Model
in a general case, and without considering any conditions on parameters or
initial values.
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Appendix A

Analysis of marginal stability of
curve F = 0

In this Appendix we analyze the marginal stability curve F = 0, with F defined
in (2.22), assuming αη ̸= 0. We have already proved that E∗ is stable in all region
I(a), nevertheless, for the sake of completeness, we shall perform the analysis in all
the plane (γ, δ). By substituting the coordinates of E∗ given in (2.8), the function
F(γ, δ) can be written as follows:

F(γ, δ) =
Fsu(γ, δ)(Fsv(γ, δ) + Fsw(γ,δ))− Fs(γ, δ)

F2
sd

, (A.1)

with:

Fsd(γ, δ) = (1 + αη)δ − γ,
Fsu(γ, δ) = δ(1 + n1η)− n2,
Fsv(γ, δ) = α(n2(1 + αη)− γ(1 + n1η)),
Fsw(γ, δ) = γη((α − n1)δ + n1γ − αn2),
Fs(γ, δ) = [(α − n1)δ + n1γ − αn2](αδη − γ)[n2(1 + αη)− γ(1 + n1η)],

(A.2)

We first investigate the behavior of the function F(γ, δ) along the lines si, given in
(2.12) and (2.23), and in regions I2 and I1, as depicted in Figure A.1.

By direct inspection, it is easy to check:
1. Fsd(γ, δ)|sd = 0,
2. Fsi(γ, δ)|si = 0, for i = v, w;
3. Fs(γ, δ)|si = 0 for i = v, w, t.
Moreover, using conditions (2.11)) it follows:
4. Fsi(γ, δ)|s5 > 0, with i = u, v, w in region I.
5. Fsi(γ, δ)|s3 > 0, with i = u, w in region I.
6. Fsi(γ, δ)|s4 > 0, with i = u, v in region I.
7. Fsi(γ, δ) > 0, with i = u, v, w and Fs(γ, δ) < 0, within region I2.
By 2., 3., 5. and 6. it follows that:
8. F(γ, δ)|si > 0, with i = v, w.
By 3., 4. it follows that:
9.F(γ, δ)|st > 0.
Therefore, the curve F(γ, δ) = 0 has the following properties:
P1. it is not defined on the line sd, see 1.;
P2. it does not intersect the lines sv and sw see 8.;
P3. it does not intersect the line st, see 9.;
P4. no branches of the curve F(γ, δ) = 0 stay within the region I2, see 7.;
Moreover, in region I1 the function F(γ, δ) attains either signs: it is positive along the
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boundaries of the region, see 8. and 9. and also F(γ, δ) begin quadratic in δ, becomes
negative when γ ≈ 0 and δ ≫ 1.

Being F(γ, δ) a continuous function, it follows that:
P5. a branch of curve F(γ, δ) = 0 lines in the region I1.

In order to carry out an analytical study if F(γ, δ) = 0, we rewrite F as follows:

F(γ, δ) =
A(γ)δ2 + B(γ)δ + C(γ)

Fsd

, (A.3)

where:

A(γ) = η(α − n1)((α + 1)(1 + ηn1)γ − αn2(1 + αη)),

B(γ) = γ2(n1(η + 1)(1 + ηn1) + α(η2n2
1 − 1))

+ γ(−n1n2 − α + n2α + n1n2η − 2(n1 + n2 + n1n2)αη − n1α(n1 + n2 + 2n2α)η2)

+ αn2(αη + 1)(αn2η + ηn1 + 1),

C(γ) = −γ3n1(ηn1 + 1) + γ2n2(n1(2αη − η + 1) + α)

(A.4)

The roots of (A.3), given by the functions:

δ+(γ) =
−B(γ) +

√
B2(γ)− 4A(γ)C(γ)
2A(γ)

, and δ−(γ) =
−B(γ)−

√
B2(γ)− 4A(γ)C(γ)
2A(γ)

,

(A.5)

are the branches of the curve F(γ, δ) = 0.
The denominator A(γ) of δ± in (A) is zero at :

γ = γ̄ :=
α

α + 1
n2(1 + αη)

1 + n1η
, (A.6)

In order to analyze the behavior of δ± in a neighborhood of γ̄ , we must compute
the following limits:

limγ→γ̄±δ−, limγ→γ̄±δ+, (A.7)

whose values depend on B(γ̄), where

B(γ̄) =
αn2(1 + αη)((1 + α)(1 + ηn1)

2 − n2(α − n1)(η − 1))
(1 + α)2(1 + ηn2)

, (A.8)

Notice that B(γ̄) is non zero unless

n2 = n̄1 :=
(1 + α)(1 + ηn1)

2

(α − n1)(1 − η)
, (A.9)

thus, when n2 ̸= n̄1, B2(γ̄)− 4A(γ̄)C(γ̄) = B2(γ̄) > 0 and√
B2(γ)− 4A(γ)C(γ),

is well defined in a neighborhood of γ̄.
The polynomial B(γ̄) is positive in the following two cases:

case 1: η < 1,
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case 2: η > 1, n2 < n̄1.
Both in Case 1 and Case 2, the limits in (A.7) can be computed as follows:

lim
γ→γ̄±

δ− = lim
γ→γ̄±

−B(γ̄)
A(γ)

= ±∞, lim
γ→γ̄±

δ+ = lim
γ→γ̄±

− 2C(γ)
B(γ) +

√
B2(γ)− 4A(γ)C(γ)

= −C(γ̄)
B(γ̄)

,

(A.10)

where

−C(γ̄)
B(γ̄)

=
n2((1 + α)2(1 + ηn1)

2)− α(η − 1)(1 + α + (η − 1)n1)n2

(1 + α)(1 + ηn1)((1 + α)(1 + ηn1)2 − (η − 1)(α − n1)n2)
, (A.11)

From the first limit in (A.7), we observe that

sa := γ = γ̄, (A.12)

is a vertical asymptotic for δ̄, which has at least two branches. Moreover, by Prop-
erties P2 and P4. of F(γ, δ) = 0, one branch of δ̄ lies within region I1, while the
other one is outside region I From the second limit in (A.7), we see that the point

S ≡ (
¯

γ,
C(γ̄)
B(γ̄)

) is a removable discontinuity for δ+. Since direct computations show

that the point S lies below the line sw in both Case 1. and Case 2., then there is a branch
of δ+ outside region I (see Figure A.1A, Figure A.1B). Let us now analyze the be-
havior of δ± in a neighborhood of γ̄ when B(γ̄) < 0, namely under the following
constraints for the parameter.

Case 3. η > 1 and n2 > n̄2:

lim
γ→γ̄±

δ− = − 2C(γ)
B(γ) +

√
B(γ)2 − 4A(γ)C(γ)

= −C(γ̄)
B(γ̄)

, lim
γ→γ̄±

δ+ = − B(γ)
A(γ)

= ±∞,

(A.13)

where −C(γ̄)
B(γ̄)

is given in (A.11).

From the first limit in (A.13), we see that the point S is a removable discontinuity
for δ−. In Case 3. it is easy to check that the point S lies within I1. Using Properties
P2 and P4. of F(γ, δ) = 0, we can conclude that one branch of δ− lies within region
I1 (see Figure A.1C ).
From the second limit in (A.13), we observe that sa is a vertical asymptotic for δ+,
which has at least two branches. Moreover, using again Properties P2 and P4. of
F(γ, δ) = 0, we observe that one branch of δ+ lies within region I1, while the other
one is outside region I (see Figure A.1C).

Now, let us analyze B2(γ)− 4A(γ)C(γ) = P1 (γ)P2(γ) , where

P1 = (−γ(1 + ηn1) + n2(1 + αη))2,

P2 = γ2(α + n1(αη + η − 1))2

+ γ(−2α(−α + αηn2(α + n1(αη + η − 1)) + n1(η + ηn1(αη + η + 1) + 1)))

+ α2(2ηn1(n2(αη + 2) + 1) + (αηn2 − 1)2 + η2n2
1).

(A.14)

Notice that P1(γ) is always nonnegative. Moreover, it is easy to check that
P1(γQ) = 0, therefore the curves δ+ and δ− intersect at the point Q, given in (2.13).
However, Q belongs to the line sd, where the curve F(γ, δ) = 0 is not defined. We
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thus compute

lim
γ→γ±

Q

δ+ = lim
γ→γ±

Q

δ− = − B(γQ)

2A(γQ)
= δQ, (A.15)

which means that the point Q is a removable discontinuity of δ±.
The discriminant of the polynomial P2(γ) reads:

∆P2 = α2ηn1(α − n1)(n2(η − 1)(α − n1 + η(1 + α)n1)− (α + 1)(ηn1 + 1)2). (A.16)

In case 1. ∆P2 < 0, then P2(γ) is always positive. Therefore, B2(γ)− 4A(γ)C(γ) > 0
and δ±(γ) are defined for all γ ̸= γ̄.

∆P2 is zero at

n2 = ¯̄n2 :=
(1 + α)(1 + ηn1)

2

(α − n1 + η(1 + α)n1)(η − 1)
< n̄2. (A.17)

If the parameters are chosen as follows
case 2.1. η > 1 and n2 < ¯̄n2
then, as in Case 1., P2(γ) is always positive. Therefore, B2(γ)− 4A(γ)C(γ) > 0 and
δ±(γ) are defined for all γ ̸= γ̄. Choosing the parameters as in Case 3. or as follows:
case 2.2. η > 1 and ¯̄n2 < n2 < n̄2 then P2(γ) admits two roots;

γ± =
α(−α + αηn2(α + n1(αη + η − 1)) + n1(η + ηn1(αη + η + 1) + 1))±

√
∆P2

(α + n1(αη + η − 1))2 ,

(A.18)

One can easily check that when n2 < n̄2 by the Cartesian rule of signs the two roots
γ1,2 are both positive. Therefore, B2(γ)− 4A(γ)C(γ) < 0 for all γ− < γ < γ+ and
in this range the curves δ± are not defined. In particular:

δ+(γ±) = δ−(γ±) = − B(γ±)

2A(γ±)
. (A.19)

Lengthy but straightforward calculations show that γ̄ < γ− < γ+ < γQ.
From the properties P1-P5 of F(γ, δ) = 0 and the above discussion on the branches

δ±, we can conclude that there exists only one branch of the curve F(γ, δ) = 0 lying
on the region I1. In particular, in Case 1. and Case 2.1 it is the continuous branch
of δ− lying within I1 (see Figure A.1A, where the parameters are chosen as in Case
1., because Case 2.1 is qualitatively equivalent). In Case 2.2., the unique branch of
F(γ, δ) = 0 lying on the region I1 is still given by the branch of the curve δ− (see Fig-
ure A.1B). Finally, in Case 3. the unique branch of F(γ, δ) = 0 lying on the region I1
is given by the branch of the curve δ− with a removable discontinuity in S, which is
connected in γ− with the continuous branch of δ+ lying within I1 (see Figure A.1C).
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(A) (B) (C)

FIGURE A.1: Graph of the curve F(γ, δ) = 0. (a) B(γ̄) > 0 and
B2(γ) − 4A(γ)C(γ) > 0, which corresponds to Case 1. and Case
2.1. Here, the parameters are fixed as n1 = 0.5, n2 = 0.7, α = 2.5,
η = 0.8, du = d = dw = 0, corresponding to Case 1.. (b) B(γ̄) > 0
and B2(γ) − 4A(γ)C(γ) < 0 when γ− < γ < γ+, where γ1,2 are
drawn in black dots. The parameters are fixed as n1 = 0.5; n2 = 22.5,
α = 2.5, η = 1.1, du = d = dw = 0, which corresponds to Case 2.2..
(c) B(γ̄) > 0 and B2(γ)− 4A(γ)C(γ) < 0 when γ− < γ < γ+ where
γ1,2 are drawn in black dots. The parameters are fixed as n1 = 0.5,
n2 = 100; α = 2.5, η = 1.1, du = d = dw = 0, which corresponds to

Case 3.
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Appendix B

Weakly nonlinear analysis

Here we continue calculation of WNL in higher orders.

B.1 Drivation of quintic- Stuart- Landau equation IGP sys-
tem

Hence, the amplitude is considered with new time scale A(T, T1) as

t =
T
ε2 +

T1

ε4 + · · · ,

and bifurcation parameter is expanded as

d = dc + ε2d(2) + ε4d(4) + · · · ,

therefore T = ε2t, T1 = ε4t and consequently ∂t → ∂t + ε2∂T + ε4∂T1 .
Since, at order three, the solution is given by

w3 = Aw31 cos(kcx) + A3w32 cos(kcx) + A3w33 cos(3kcx)

, the terms w3i, i = 1, 2, 3 can be determined by

Ldc
1 w31 = σρ + G(1)

1

Ldc
2 w32 = −Lρ + G(3)

1 , such that L1 = L2 = K − k2
c Ddc , and

Ldc
3 w33 = G3, where L3 = K − 9k2

c Ddc ,

At O(ε4), calculation states that the system works with time scale A(T) so we
continue sorting order and coefficients which illustrates that

Ldc w4 = H, (B.1)

where

H = 2A
∂A
∂T

w20 + A2H(2)
0 + A4H(4)

0 +

(
2A

∂A
∂T

w22 + A2H(2)
2 + A4H(4)

2

)
cos(2kcx)

+ A4H4 cos(4kcx). (B.2)

and
H(2)

0 = −1
2
QK(ρ, w31),
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H(4)
0 = −QK(w20, w20)−

1
4
QK(w22, w22)−

1
2

QK(ρ, w32),

H(2)
2 = −1

2
M2(ρ, w31) + 4k2

cd(2)

0 0 0
0 0 v∗

0 0 0

w22,

H(4)
2 = −1

2
M2(ρ, w32)−

1
2
M2(ρ, w33)−M2(w20, w22)

H4 = −1
2
M4(ρ, w33)−

1
2
M4(w22, w22)

Again solvability condition of the system (B.1) - ⟨H, ψ⟩ = 0- is satisfied and con-
firms the existence of the solution, hence

Kw40 = 2σw20 + H2
0,

Kw41 = −2Lw20 + H4
0,

(K − 4k2
c Ddc)w42 = 2σw22 + H2

2,
(K − 4k2

c Ddc)w43 = −2Lw22 + H4
2,

(K − 16k2
c Ddc)w44 = H4,

At O(ε5) , the equation is

Ldc w5 = P, (B.3)

in which

P =

(
∂A
∂T1

ρ +
∂A
∂T

w31 + 3A2 ∂A
∂T

w32 + AP(1)
1 + A3P(3)

1 + A5P(5)
1

)
cos(kcx) (B.4)

+

(
3A2 ∂A

∂T
w33 + A3P(3)

3 + A3P(5)
3

)
cos(3kcx) + A5P5 cos(5kcx).

such that

P(1)
1 = d(2)k2

c

0 0 0
0 0 v∗

0 0 0

w31 + d(4)k2
c

0 0 0
0 0 v∗

0 0 0

 ρ,

P(3)
1 = d(2)k2

c

0 0 0
0 0 v∗

0 0 0

w32 −M1(w20, w31)−
1
2
M1(w22, w31)

− M1(ρ, w40)−
1
2
M1(ρ, w42),

P(5)
1 = −M1(w20, w32)−

1
2
M1(w22, w32)−M1(ρ, w41)−

1
2
M1(ρ, w43)

− 1
2
M1(w22, w33),

P(3)
3 = 9d(2)k2

c

0 0 0
0 0 v∗

0 0 0

w33 −
1
2
M3(w22, w31)−

1
2
M3(ρ, w42),
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P(5)
3 =

1
2
M3(w22, w32)−M3(w20, w33)−

1
2
M3(ρ, w43)−

1
2
M3(ρ, w44),

P5 = −1
2
M5(w22, w33)−

1
2
M5(ρ, w44),

Thus by applying the solvability criterion, we obtain the quintic Stuart- Landau
equation

∂A
∂T1

= σ̃A − L̃A3 + Q̃A5,

whose coefficient are determined by

σ̃ = −
⟨σw31 + P(1)

1 , ψ⟩
⟨ρ, ψ⟩ ,

L̃ =
⟨3σw32 + Lw31 + P(3)

1 , ψ⟩
⟨ρ, ψ⟩ ,

Q̃ =
⟨3Lw32 − P(5)

1 , ψ⟩
⟨ρ, ψ⟩ ,

Finally, the coefficients of the quintic Landau- Stuart equation in time scale T is
obtained by

∂A
∂T

= σ̄A − L̄A3 + Q̄A5,

where

σ̄ = σ + ε2σ̃, L̄ = L + ε2L̃, Q̄ = Q̃ε2,

Therefore, asymptotic solution of the ODE system provides that

A∞ =
L̄ −

√
L̄2 − 4σ̄Q̄
2Q̄

which requires that Q̄ < 0.

B.2 Weakly nonlinear analysis of the system (4.13)

Consider perturbed bifurcation parameter ϵ2 =
k32 − kc

32
kc

32
,

W. = LW +
1
2
Qk(W, W) +

1
6
Ck(W, W, W), (B.5)

L = Lkc
32 + ϵ2k1

32

0 0 0
0 0 0
0 1 0

 ∆, Wkc
32 = K +∇2Dkc

32 , (B.6)

W = ϵW1 + ϵ2W2 + ϵ3W3 + O(ϵ4), (B.7)

where quadratic and cubic terms in (B.5) are defined as :

Qk(x, y) =

Q11(xsys) +Q12(xsyu1 + xu1 ys) +Q13(xsyu2 + xu2 ys)
Q21(xsys) +Q22(xsyu1 + xu1 ys) +Q23(xu1 yu1)

Q31(xsys) +Q33(xsyu2 + xu2 ys)

 , (B.8)
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and
Q11 =

−2γ

K
+

2m1u∗
1a1

(a1 + s∗)3 +
2m2u∗

2a2

(a2 + s∗)3 , Q12 =
−m1a1

(a1 + s∗)2 , Q13 =
−m2a2

(a2 + s∗)2 ,

Q21 =
−2m1u∗

1a1

(a1 + s∗)3 , Q22 = −Q12, Q23 = −2ϵ, Q31 =
−2m2u∗

2a2

(a2 + s∗)3 , Q32 = −Q13,

Ck(x, y, z) =

C11(xsyszs) + C12(xu1 yszs + xsyu1 zs + xsyszu1) + C13(xu2 yszs + xsyu2 zs + xsyszu2)
C21(xsyszs) + C22(xu1 yszs + xsyu1 zs + xsyszu1)
C31(xsyszs) + C32(xu2 yszs + xsyu2 zs + xsyszu2)

 ,

(B.9)

C11 = (
−6m1a1u∗

1
(a1 + s∗)4 − 6m2a2u∗

2
(a2 + s∗)4 ), C12 =

2m1a1

(a1 + s∗)3 , C13 =
2m2a2

(a2 + s∗)3 ;

C21 =
6m1a1u∗

1
(a1 + s∗)4 , C22 = −C12, C13 =

6m2a2u∗
2

(a2 + s∗)4 , C32 = −C13,

By considering solution for orders ϵ , ϵ2 and ϵ3, wi will be found.

ϵ2∂T(ϵW1 + ϵ2W2 + ϵ3W3 + · · · ) = L(ϵW1 + ϵ2W2 + ϵ3W3 + · · · ) + 1
2
{ϵ2Qk(W1, W1)

+ 2ϵ3Qk(W1, W2) + · · · }+ 1
6

ϵ3Ck(W1, W1, W1),

(B.10)

Hence, for O(ϵ) :
Lkc

32W1 = 0,

where W1 = A(T)ρcos(δcx) and ρ belongs to the ker(K − δ2
c Dkc

32), it is important
to mention that in this case when the system (K − δ2

c Dkc
32) is computed for marginal

value of critical bifurcation parameter kc
32 and critical mode δ2

c that is why the system
is not full rank and we can find ρ. for O(ϵ2) : we have

Lkc
32W2 = −1

2
Qk(W1, W1),

where Qk(W1, W1) is computed as below

Qk(W1, W1) =
A2

2
(1 + cos(2δcx))Qk(ρ, ρ),

According Fredholm Alternative there there is ψ ∈ ker(K − δ2
c Dkc

32)† such that <

−1
2
Qk(W1, W1), ψ >= 0 that (K − δ2

c Dkc
32)† is conjugate transport of that(K − δ2

c Dkc
32).

Finally, W2 = A2(W20 + W22cos(2δc)) that W2i, i = 0, 2, are obtained by
KW20 = −1

4
Qk,

(K − 4δ2
c Dkc

32)W22 = −1
4
Qk,
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Moreover in higher order O(ϵ3) Lkc
32W3 = G that

G = (
∂A
∂T

)ρcos(δcx)− k(1)32

0 0 0
0 0 0
0 1 0

 Aρ(δ2
c )cos(δcx)−Qk(W1, W2)−

1
6
Ck(W1, W1, W1),

such that
∂A
∂T

is replaced by Stuart-Landau Equation i.e
∂A
∂T

= σA − LA3.

Qk(W1, W2) = A3cos(δx)Qk(ρ, W20) + A3 1
2
(cos(δcx) + cos(3δcx))Qk(ρ, W22),

and Ck(W1, W1, W1) is calculated as

Ck(W1, W1, W1) = A3cos3(δcx) = A3(
3
4

cos(δcx) +
1
4

cos(3δcx))Ck(ρ, ρ, ρ),

similarly , since the operator for order three still is Lkc
32 so due to Fredholm alter-

native < G, ψ >= 0. therefore we can find σ and L in Stuart- Landau Equation
∂A
∂T

= σA − LA3 and consequently we have

σ = −

< k(1)32

0 0 0
0 0 0
0 1 0

 ρ(δ2
c ), ψ >

< ρ, ψ >
,

and

L = −
< Qk(ρ, W20) + 0.5Qk(ρ, W22) +

1
8
Ck(ρ, ρ, ρ), ψ >

< ρ, ψ >
.
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Appendix C

Normal form calculations

In this Appendix we continue calculation of the normal form of IGP model.

C.1 Calculation of coefficients of O(ε2)

Here we continue the calculation of the system (3.8).

eiΩcT0

(
−∂φ1

∂T1
e1 + δ(1)Kδ(1)e1φ1

)
+ eikcX0

(
−∂φ2

∂T1
e2 + δ(1)Kδ(1)e2φ2 − k2

c φ2Dd(1)e2 + ikcDdc
∂φ2

∂X1
φ2

)
+ c.c + F∗,

(C.1)

where the vector F∗ whose expression is obtained by below terms contained of or-
thogonal terms:

F∗ = φ1 φ̄1F(1)
0 + φ2 φ̄2F(2)

0 + φ2
1F20e2iΩcT0 + φ̄1

2 ¯F20e−2iΩcT0

+ φ2
2F02e2iδcX0 + φ̄2

2
¯F02e−2iδcX0 + φ1φ2F11ei(ΩcT0+δcX0) + φ̄1φ2F−11ei(−ΩcT0+δcX0)

+ φ1 φ̄2F1−1ei(ΩcT0−δcX0) + φ̄1 φ̄2F−1−1e−i(ΩcT0+δcX0),

(C.2)

F(1)
0 =

−2e1(1)ē1(1)− (e1(1)ē1(2) + e1(2)ē1(1))− η(e1(1)ē1(3) + e1(3)ē1(1))
α(e1(1)ē1(2) + e1(2)ē1(1))− (e1(2)ē1(3) + e1(3)ē1(2))

γ(e1(1)ē1(3) + e1(3)ē1(1)) + δc(e1(2)ē1(3) + e1(3)ē1(2))

 ,

F(2)
0 =

−2e2(1)ē2(1)− (e2(1)ē2(2) + e2(2)ē2(1))− η(e2(1)ē2(3) + e2(3)ē2(1))
α(e2(1)ē2(2) + e2(2)ē2(1))− (e2(2)ē2(3) + e2(3)ē2(2))

γ(e2(1)ē2(3) + e2(3)ē2(1)) + δc(e2(2)ē2(3) + e2(3)ē2(2))



F20 =

−e2
1(1)− (e1(1)e1(2))− η(e1(1)e1(3))

α(e1(1)e1(2))− (e1(2)e1(3))
γ(e1(1)e1(3)) + δc(e1(2)e1(3))

 ,

F̄20 =

−ē1(1)ē1(1)− (ē1(1)ē1(2))− η(ē1(1)ē1(3))
α(ē1(1)ē1(2))− (ē1(2)ē1(3))

γ(ē1(1)ē1(3)) + δc(ē1(2)ē1(3))

 ,

F02 =

−e2
2(1)− (e2(1)e2(2))− η(e2(1)ē2(3))

α(e2(1)e2(2))− (e2(2)e2(3))
γ(e2(1)e2(3)) + δc(e2(2)e2(3))

+ 4dck2
c

 0
(e2(2)e2(3))

0

 ,
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F̄02 =

−ē2(1)ē2(1)− (ē2(1)ē2(2))− η(ē2(1)ē2(3))
α(ē2(1)ē2(2))− (ē2(2)ē2(3))

γ(ē2(1)ē2(3)) + δc(ē2(2)ē2(3))

+ 4dck2
c

 0
(ē2(2)ē2(3))

0

 ,

F11 =

−2e1(1)e2(1)− (e1(1)e2(2) + e1(2)e2(1))− η(e1(1)e2(3) + e1(3)e2(1))
α(e1(1)e2(2) + e1(2)e2(1))− (e1(2)e2(3) + e1(3)e2(2))

γ(e1(1)e2(3) + e1(3)e2(1)) + δc(e1(2)e2(3) + e1(3)e2(2))


− k2

cdc

 0
(e1(2)e2(3))

0

 ,

F−11 =

−2ē1(1)e2(1)− (ē1(1)e2(2) + ē1(2)e2(1))− η(ē1(1)e2(3) + ē1(3)e2(1))
α(ē1(1)e2(2) + ē1(2)e2(1))− (ē1(2)e2(3) + ē1(3)e2(2))

α(ē1(1)e2(3) + ē1(3)e2(1)) + δc(ē1(2)e2(3) + ē1(3)e2(2))


− k2

cdc

 0
(ē1(2)e2(3))

0

 ,

F1−1 =

−2e1(1)ē2(1)− (e1(1)ē2(2) + e1(2)ē2(1))− η(e1(1)ē2(3) + e1(3)ē2(1))
α(e1(1)ē2(2) + e1(2)ē2(1))− (e1(2)ē2(3) + e1(3)ē2(2))

γ(e1(1)ē2(3) + e1(3)ē2(1)) + δc(e1(2)ē2(3) + e1(3)ē2(2))


− k2

cdc

 0
(e1(2)ē2(3))

0

 ,

F−1−1 =

−2ē1(1)ē2(1)− (ē1(1)ē2(2) + ē1(2)ē2(1))− η(ē1(1)ē2(3) + ē1(3)ē2(1))
α(ē1(1)ē2(2) + ē1(2)ē2(1))− (ē1(2)ē2(3) + ē1(3)ē2(2))

γ(ē1(1)ē2(3) + ē1(3)ē2(1)) + η(ē1(2)ē2(3) + ē1(3)ē2(2))


− k2

cdc

 0
(ē1(2)ē2(3))

0

 ,

We notice that calculation of F1
0 , F20, F̄20 do not contain the second order expansion

of chemotaxis term. So the solution of (3.8) can be then computed as:

W2 = φ1 φ̄1W(1)
200 + φ2 φ̄2W(2)

200 + φ2
1W220e2iΩcT0 + φ̄1

2 ¯W220e−2iΩcT0

+ φ2
2W202e2ikcX0 + φ̄2

2
¯W202e−2ikcX0 + φ1φ2W211ei(ΩcT0+kcX0)

+ φ̄1φ2W2−11ei(−ΩcT0+kcX0) + φ1 φ̄2W21−1ei(ΩcT0−kcX0) + φ̄1 φ̄2W2−1−1e−i(ΩcT0+kcX0)

+
∂φ2

∂X1
W201eikcX0 +

∂φ̄2

∂X1
W̄201e−ikcX0

(C.3)

where the coefficients W2ij, i, j = −1, 0, 1, 2 are found by

L(0, 0)W(j)
200 = F0

(j), L(2, 0)W220 = F20, L(−2, 0)W̄200 = F̄20,
L(0, 2)W202 = F02, L(0,−2)W̄202 = F̄02,
L(1, 1)W211 = F11, L(1,−1)W21−1 = F1−1,
L(−1, 1)W2−11 = F−11, L(−1,−1)W2−1−1 = F−1−1,

W201 = 2ikcDcc
2e2, W̄201 = −2ikcDcc

2e2,

(C.4)

such that

Lei(rΩcT0+sδcX0) = L(r, s)ei(rΩcT0+sδcX0) = (irΩc + Ddc s2k2
c − Kδc

)ei(rΩcT0+sδcX0),
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C.2 Calculation of coefficients of O(ε3)

The calculations of H(i) in (3.19) are investigated here:

H(1) = −∂φ1

∂T2
R0 + H(1)

0 φ1 + H(1)
1 |φ1|2φ1 + H(1)

2 |φ2|2φ1 + H(1)
3

∂2φ1

∂X2
1

, (C.5)

H(2) = −∂φ1

∂T2
S0 + H(2)

0 φ2 + H(2)
1 |φ2|2φ2 + H(2)

2 |φ1|2φ2 + H(2)
3

∂2φ2

∂X2
1

, (C.6)

so that

R0 = e1, S0 = e2,

H(1)
0 = δ(2)

0 0 0
0 0 0
0 1 0

 e1,
(C.7)

H(2)
0 = δ(2)

0 0 0
0 0 0
0 1 0

 e2 − k2
cd(2)

0 0 0
0 0 1
0 0 0

 e2 (C.8)

H(1)
1 =

−2(h(1)1 11)− (h(1)1 12)− η(h(1)1 13)

α(h(1)1 21)− (h(1)1 22)

γ(h(1)1 31) + δc(h(1)1 32)

 , (C.9)

where
h(1)

1 11 = e1(1)W200(1) + ē1(1)W220(1),
h(1)1 12 = e1(1)W200(2) + e1(2)W200(1) + ē1(2)W220(1) + ē1(1)W220(2),
h(1)1 13 = e1(1)W200(3) + e1(3)W200(1) + ē1(1)W220(3) + ē1(3)W220(1),
h(1)1 21 = e1(1)W200(2) + e1(2)W200(1) + ē1(2)W220(1) + ē1(1)W220(2),
h(1)1 22 = e1(2)W200(3) + e1(3)W200(2) + ē1(2)W220(3) + ē1(3)W220(2),
h(1)1 31 = e1(1)W200(3) + e1(3)W200(1) + ē1(1)W220(3) + ē1(3)W220(1),
h(1)1 13 = e1(2)W200(3) + e1(3)W200(2) + ē1(2)W220(3) + ē1(3)W220(2),

H(1)
2 =

−2(h(1)1 11)− (h(1)1 12)− η(h(1)1 13)

α(h(1)1 21)− (h(1)1 22)

γ(h(1)1 31) + δc(h
(1)
1 32)

 , (C.10)

such that
h(1)

2 11 = e1(1)W
(2)
200(1) + ē2(1)W211(1) + e2(1)W21−1(1),

h(1)2 12 = e1(1)W
(2)
200(2) + e1(2)W

(2)
200(1) + ē2(1)W211(1) + ē2(1)W211(2)

+ e2(1)W21−1(2) + e2(2)W21−1(1),
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h(1)2 13 = e1(1)W
(2)
200(3) + e1(3)W

(2)
200(1) + ē2(1)W211(3) + ē2(3)W211(1)

+ e2(1)W21−1(3) + e2(3)W21−1(1),
h(1)2 21 = e1(1)W

(2)
200(2) + e1(2)W

(2)
200(1) + ē2(1)W211(1) + ē2(1)W211(2)

+ e2(1)W21−1(2) + e2(2)W21−1(1),
h(1)2 22 = e1(2)W

(2)
200(3) + e1(3)W

(2)
200(2) + ē2(3)W211(2) + ē2(2)W211(3)

+ e2(2)W21−1(3) + e2(3)W21−1(2),
h(1)2 31 = e1(1)W

(2)
200(3) + e1(3)W

(2)
200(1) + ē2(1)W211(3) + ē2(3)W211(1)

+ e2(1)W21−1(3) + e2(3)W21−1(1),
h(1)2 32 = e1(2)W

(2)
200(3) + e1(3)W

(2)
200(2) + ē2(3)W211(2) + ē2(2)W211(3)

+ e2(2)W21−1(3) + e2(3)W21−1(2),

H(2)
1 =

−2(h(2)1 11)− (h(2)1 12)− η(h(2)1 13)

α(h(2)1 21)− (h(2)1 22)

γ(h(2)1 31) + δc(h(2)1 32)

− dck2
c

 0
e2(3)W̄200(2) + ē2(3)W202(2)

0

 ,

(C.11)

where
h(2)

1 11 = e2(1)W
(2)
200(1) + ē2(1)W202(1),

h(2)1 12 = e2(1)W
(2)
200(2) + e2(2)W

(2)
200(1) + ē2(2)W202(1) + ē2(1)W202(2),

h(2)1 13 = e2(1)W
(2)
200(3) + e2(3)W

(2)
200(1) + ē2(3)W202(1) + ē2(1)W202(3),

h(2)1 21 = e2(1)W
(2)
200(2) + e2(2)W

(2)
200(1) + ē2(2)W202(1) + ē2(1)W202(2),

h(2)1 22 = e1(2)W
(2)
200(3) + e2(3)W

(2)
200(2) + ē2(2)W202(3) + ē2(3)W202(2),

h(2)1 31 = e2(1)W
(2)
200(3) + e2(3)W

(2)
200(1) + ē2(3)W202(1) + ē2(1)W202(3),

h(2)1 32 = e1(2)W
(2)
200(3) + e2(3)W

(2)
200(2) + ē2(2)W202(3) + ē2(3)W202(2),

H(2)
2 =

−2(h(2)2 11)− (h(2)2 12)− η(h(2)2 13)

α(h(2)2 21)− (h(2)2 22)

γ(h(2)2 31) + δc(h(2)2 32)

− dck2
c

 0
ē1(3)W211(2) + e1(3)W2−11(2) + e2(3)W

(1)
200(2)

0

 ,

(C.11)

h(2)
2 11 = e2(1)W

(1)
200(1) + ē1(1)W211(1) + e1(1)W2−11(1),

h(2)2 12 = e2(1)W
(1)
200(2) + e2(2)W

(1)
200(1) + ē1(1)W211(2) + ē1(2)W211(1)

+ e1(1)W2−11(2) + e1(2)W2−11(1),
h(2)2 13 = e2(1)W

(1)
200(3) + e2(3)W

(1)
200(1) + ē1(1)W211(3) + ē1(3)W211(1)

+ e1(1)W2−11(3) + e1(3)W2−11(1),
h(2)2 21 = e2(1)W

(1)
200(2) + e2(2)W

(1)
200(1) + ē1(1)W211(2) + ē1(2)W211(1)

+ e1(1)W2−11(2) + e1(2)W2−11(1),
h(2)2 22 = e2(2)W

(1)
200(3) + e2(3)W

(1)
200(2) + ē1(3)W211(2) + ē1(2)W211(3)

+ e1(2)W2−11(3) + e2(3)W2−11(2),
h(2)2 31 = e2(1)W

(1)
200(3) + e2(3)W

(1)
200(1) + ē1(1)W211(3) + ē1(3)W211(1)

+ e1(1)W2−11(3) + e1(3)W21−1(1),
h(2)2 32 = e2(2)W

(1)
200(3) + e2(3)W

(1)
200(2) + ē1(3)W211(2) + ē1(2)W211(3)



C.2. Calculation of coefficients of O(ε3) 121

+ e1(2)W2−11(3) + e2(3)W2−11(2),

H(1)
3 = dc

0 0 0
0 0 v∗

0 0 0

 e1 (C.12)

H(2)
3 = dc

0 0 0
0 0 v∗

0 0 0

 e2 + 2ikcdc

0 0 0
0 0 v∗

0 0 0

W201 (C.13)

By imposing the compatibility condition for the equation (3.12) one obtains the sys-
tem

∂φ1

∂T2
= σ̃1φ1 − L̃1|φ1|2φ1 + Ω̃1|φ2|2φ1 + δ̃1

∂2φ1

∂X2
1

, (C.14)

∂φ2

∂T2
= σ̃2φ2 − L̃2|φ2|2φ2 + Ω̃2|φ1|2φ2 + δ̃2

∂2φ2

∂X2
1

, (C.15)

for the fields φ1 and φ2, where the coefficients are easily calculated as follows:

σ̃i = −⟨H(i)
0 , e∗i ⟩

⟨ei, e∗i ⟩
, L̃i = −⟨H(i)

1 , e∗i ⟩
⟨ei, e∗i ⟩

, (C.16)

Ω̃i = −⟨H(i)
0 , e∗i ⟩

⟨ei, e∗i ⟩
δ̃i = −⟨H(i)

3 , e∗i ⟩
⟨ei, e∗i ⟩

(C.17)

where e∗1 ∈ Ker(iΩ − Kδc
)† and e∗2 ∈ Ker(Kδc − k2

c Ddc)† .Notice that coefficients of
the (C.14) are complex while the coefficients of the (C.15) are real. Moreover, the
coefficients of the σ̄1 is linearly dependent on δ(2) due to (C.7), and σ̃2 is linearly
dependent on δ(2) and d(2) due to (C.8). Other coefficients are not dependent on
δ(2)and d(2).
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