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Abstract: Data play an essential role in the optimal control of smart buildings’ operation, especially in
building energy-management for the target of nearly zero buildings. The building monitoring system
is in charge of collecting and managing building data. However, device imperfections and failures
of the monitoring system are likely to produce low-quality data, such as data loss and inconsistent
data, which then seriously affect the control quality of the buildings. This paper proposes a new
approach based on Gaussian process regression for data-quality monitoring and sensor network
data compensation in smart buildings. The proposed method is proven to effectively detect and
compensate for low-quality data thanks to the application of data analysis to the energy management
monitoring system of a building model in Viet Nam. The research results provide a good opportunity
to improve the efficiency of building energy-management systems and support the development of
low-cost smart buildings.

Keywords: smart building; sensor maintenance; data compensation; Gaussian process regression

1. Introduction

Buildings are the biggest consumer of 40% of energy consumption and are responsible
for 36% of CO2 pollution worldwide [1]. Therefore, efficient monitoring and control
of buildings’ energy demands and renewable energy integration provide an excellent
opportunity to reduce energy consumption and CO2 emissions, leading to smart building
technology development. Smart buildings technology applies advanced techniques in
machine learning and automatic control to optimize building energy consumption and
production while guaranteeing user comfort and building security [2].

Smart buildings use monitoring systems that include a massive number of sensors to
collect data from the environment, such as temperature, humidity, lighting, power produc-
tion, and power consumption of multiple zones in the building. These data are essential
for energy modeling, analysis, forecasting, energy audit, and user comfort evaluation.

Traditionally, building monitoring systems were costly and required expert knowl-
edge (hardware and software), which made them only affordable to large commercial
buildings [3]. However, the fast development of low-cost IoT technologies and open-source
hardware programming provided an opportunity to build low-cost monitoring systems ap-
plicable to small and medium-scale buildings [3]. In an emerging country such as Vietnam,
the research on smart buildings is in its early stages and should be based on such low-cost
sensor networks.

Unfortunately, a low-cost monitoring system occasionally produces inconsistent data
and losses of data due to device malfunction and communication failure [4]. Fault sensors
in the network are one of the main obstacles to addressing sensor networks in the practical.
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Those might cause a delay in real-time energy management or mistaken control actions
that results in low performance of the building’s energy behavior.

Traditionally, calibrating sensors is not feasible in large-scale sensor networks at
large scale; however, in many cases, smart buildings’ applications need more precise
measurements than the low cost that uncalibrated sensors provide. Therefore, the field’s
methods of automatically calibrating sensor networks are of great interest.

Features such as data quality and completeness (i.e., data compensation and virtual
sensors) and sensor maintenance procedures (i.e., sensor fault detection and sensor calibra-
tion) in low-cost monitoring systems are inevitable requirements to improve the modeling
accuracy and increase the reliability of the building control.

Models based on data and machine-learning techniques will give great value for
optimal control of future buildings. Virtual sensors are predictive models that provide
several properties, such as:

- Lower cost than expensive hardware devices, allowing for more comprehensive
monitoring networks;

- They can work in parallel with physical sensors, providing helpful information for
fault-detection tasks, thus enabling more reliable control processes;

- They can be easily implemented on existing hardware (e.g., microcontrollers) and be
updated as system parameters change.

Despite the significance of data-quality monitoring in smart buildings, most research
on smart buildings only focuses on technical costs [3,5], user behaviors [6–8], and predic-
tion [6,7] and control [9–11]. There has been no dedicated approach for data compensation
in smart-building applications. Research on data compensation in smart buildings still
remains a literature gap.

The issues of data compensation and virtual sensors have been seriously addressed in
environmental applications such as air-quality monitoring over a city/country, in which
the measurements of several locations’ air quality by low-cost sensors are used to infer
air-quality data at the other locations.

The researchers typically employ neural network models such as the nonlinear auto-
regressive exogenous model (NARX) and long short-term memory model (LSTM) [12–14],
and statistical models such as Gaussian process regression (GPR) [15].

In [15], Gaussian process regression is proven to give accurate results in estimating air
pollution at a location in which monitoring stations are unavailable from the air pollution
measured at other places. Gaussian process regression has some substantial advantages
over neural network methods, i.e., it provides an explicit uncertainty measure that helps to
quantify the confidence of the measurement, and it does not necessitate the same lengthy
‘training’ as a neural network [16].

In the literature review, GPR models can also contribute to the control solutions. For
example, the GPR models are applied in MPC, such as a linear predictive controller [17–19]
and a nonlinear predictive controller [20]. The characteristics of the dataset related to
the quality of the predictive models include data length, sampling frequency, quantity
and variety of data, and data quality [21]. The approaches to speed up the standard GPR
prediction time are noted in [22,23]. The potential of GPR in predictive Solar Radiation
Forecasting models has been shown in [24].

In [25], the GPR approach is proved effective at developing an online GHI model.
However, the research depends on the availability of data from a high-resolution weather
station, which is sometimes unavailable in all areas.

This paper presents a method to exploit the richness of sensor nodes for data-quality
monitoring and data compensation in smart buildings. The data loss and inconsistent
data at a sensor node can be detected and compensated based on the data at other nodes.
Gaussian process regression is selected to train models and generate the compensation. In
this study, our aims include:
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- Evaluating the suitability of GPR in the different datasets of sensor nodes in the building.
- Evaluating the ability to detect data errors and compensate data based on the correla-

tion of the available data of the sensor nodes in a building and shared building data in
the local area.

- Evaluating the computational performance of the model considering the data size for
online models, which can participate in the building management system in smart
buildings, smart grids, etc.

Section 2 presents the infrastructure and the roles of a building monitoring system, as
well as its existing issues. Section 3 proposes a new method to handle the issues. Section 4
evaluates the proposed method’s performance with real experiments and discussions, and
Section 5 concludes the paper.

2. Building Monitoring Systems: Infrastructure and Functions

As shown in Figure 1, a building monitoring system is mainly composed of a sensors
network used to collect the building data: a number of actuators equipped with communi-
cation ability to remotely regulate the building’s devices, gateways, and database storage
systems (cloud, local servers, etc.).

Energies 2022, 15, x FOR PEER REVIEW 3 of 18 
 

 

at a sensor node can be detected and compensated based on the data at other nodes. 
Gaussian process regression is selected to train models and generate the compensation. In 
this study, our aims include: 
- Evaluating the suitability of GPR in the different datasets of sensor nodes in the 

building. 
- Evaluating the ability to detect data errors and compensate data based on the corre-

lation of the available data of the sensor nodes in a building and shared building data 
in the local area. 

- Evaluating the computational performance of the model considering the data size for 
online models, which can participate in the building management system in smart 
buildings, smart grids, etc.  
Section 2 presents the infrastructure and the roles of a building monitoring system, 

as well as its existing issues. Section 3 proposes a new method to handle the issues. Section 
4 evaluates the proposed method’s performance with real experiments and discussions, 
and Section 5 concludes the paper.  

2. Building Monitoring Systems: Infrastructure and Functions 
As shown in Figure 1, a building monitoring system is mainly composed of a sensors 

network used to collect the building data: a number of actuators equipped with commu-
nication ability to remotely regulate the building’s devices, gateways, and database stor-
age systems (cloud, local servers, etc.). 

 
Figure 1. Schematic of a building monitoring platform [26]. 

A building monitoring system plays a central role in building energy-management. 
As in Figure 2, the building monitoring system collects the following information:  
• Environmental parameters: solar irradiance, indoor and outdoor temperature, hu-

midity, and air quality of multiple zones of the building. 
• HVAC parameters: hot/chilled airflow rate, hot/chilled water flow rate, set points. 
• Building profile: building architecture, occupancy density, operation schedule, user 

interests (cost, time, comfort, window open/close). 
• Power generation: solar generation, stored solar thermal energy, stored electricity, 

grid. 
• Loads: states and consumption of electrical loads and thermal loads. 

Figure 1. Schematic of a building monitoring platform [26].

A building monitoring system plays a central role in building energy-management.
As in Figure 2, the building monitoring system collects the following information:

• Environmental parameters: solar irradiance, indoor and outdoor temperature, humid-
ity, and air quality of multiple zones of the building.

• HVAC parameters: hot/chilled airflow rate, hot/chilled water flow rate, set points.
• Building profile: building architecture, occupancy density, operation schedule, user

interests (cost, time, comfort, window open/close).
• Power generation: solar generation, stored solar thermal energy, stored electricity, grid.
• Loads: states and consumption of electrical loads and thermal loads.

Subsequently, the collected data are analyzed for building monitoring and control,
and energy audits. A typical building control schematic—for example, Model predictive
control—is shown in Figure 3 below.
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Figure 3. An example of a building control schematic.

In this control scheme, the power flows to and from storage units. Renewable resources
and controllable loads are regulated in order to attain multiple objectives: maximize
renewable energy utilization, save energy, reduce CO2 emissions, minimize costs, etc. This
scheme requires the building energy model, user behavior model, and weather forecast
model to perform its predictive control [27].

• User behavior model: in order to develop the user behavior model, building pro-
file data such as occupancy density, operation schedule, and user interests are
essential [6,8,11,28].

• Renewable resource forecast model and weather forecast model: environmental data
such as outdoor temperature, outdoor humidity, wind speed, and solar radiation are
valuable for developing a wind-speed prediction model, solar radiation prediction
model, outdoor temperature prediction model, etc. [29,30].

• Building-energy model: The building-energy model includes a PV system model,
battery system model, and HVAC model. Electrical data, such as battery state of charge,
HVAC power consumption, PV production, etc., are required to update these models’
states. The building model is also an essential component of the building-energy
model. Building a thermal model takes into account wall and roof heat transfer, zone
air infiltration, and solar radiation impact, where wall heat-transfer can be modeled
as 3R2C [11,31,32] as in Figure 4 with Rout, Rin, Cout, Cin representing the thermal
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resistance and thermal storage capacity of the wall and Tout, Tin, Tsur f _out, Tsur f _in
being outdoor temperature, indoor temperature, wall-outside-surface temperature
and wall-inside-surface temperature, respectively. Data of wall-surface temperatures
need to be collected to find the model’s parameters (capacitances and resistances) [11].
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Figure 4. Wall heat-transfer model.

The database acquired by the building monitoring system is significant for develop-
ing control strategies in smart buildings. That is why sensor maintenance, data quality
issues, and data compensation must be taken seriously. However, sensors might work
inconsistently for multiple reasons: harsh environments, manufacturing defects, sensor
positions (near to metal cabinets, far away from the gateway, etc.), power failure, and Wi-Fi
disconnection. Figure 5 gives an example of data loss due to Wi-Fi disconnection in a PV
power system. As can be seen in this figure, the data of PV power generation were lost for
a number of days in August, 2022.
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Figure 5. Data loss of power generation from a PV system due to Wi-Fi disconnection in August 2022.

The diverse datasets can provide a lot of information that allows us to accomplish the
task of ensuring the reliability and data recovery of the measuring points in the network.
However, more parameters in a model are not ensuring a good model due to a lot of
uncertain input parameters [33]. Considering the correlation between input selection and
dataset size for the model is still a challenge, as missing data or redundant data can lead to
prediction errors.

Research on the detection of inconsistent data and data compensation in smart build-
ings not only helps us to early identify sensor failures, but also allows us to compensate
for the lost and low-quality data, which is essential to improve the building control and
management system resilience and reliability.

3. Methodology
3.1. Approach

The idea of this paper is to develop a model that can infer the data at a preselected
sensor node (the output) in the sensor network from the data at several other sensor
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nodes (the inputs) in the same network. The model belongs to the class of statistical
models or the class of neural network models. This approach is illustrated in Figure 6
below. The input–output selection depends on the correlation degree of these variables.
For example, the total power consumption of a building is usually correlated with the
indoor and outdoor temperatures and the occupancy of that building. The input–output
mapping—the estimation model—is trained by Gaussian process regression. Afterward,
the estimation model is used to detect inconsistent data and data loss at the output sensor
node by comparing the inference (the estimation) and the actual measurement (observation).
The lost data can be compensated by taking the estimation in place.
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The input–output pair could be diverse due to the richness of sensor nodes in a build-
ing. However, adequate data compensation certainly improves the accuracy of building
modeling and building control reliability.

Predicted models detect anomalies and compensated data, but it will be challenging
to process a relatively large amount of data simultaneously. The data-driven approach can
be time consuming in testing and requires computing capacity, but it is reliable to address
in practice. In this work, we will approach GPR with small datasets with a minimized
number of input variables to reduce the complication and computing speed.

3.2. Principle of Gaussian Process Regression

Gaussian process regression is a statistical approach that tries to approximate input–
output mappings from empirical data using a Gaussian process model [34]. This is used in
regression and prediction problems. Suppose that the input–output mapping is expressed
by the following function:

y = f (X) =


f (x[1])
f (x[2])
f (x[3])

...
f (x[n])

 =


y[1]
y[2]
y[3]

...
y[n]

 (1)

where x[i] is an input vector at sample i and y[i] is the corresponding output. The basic

assumption is that the output vector y =


y[1]
y[2]
y[3]

...
y[n]

 has a multivariate Gaussian distribution.
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Then, if a subset of y is observed, the distribution of the complementary subset could be
derived using the properties of multivariate Gaussian distributions.

A Gaussian Process is formally defined as a collection of random variables, any finite
number of which have a joint Gaussian distribution. A Gaussian Process of a real process
y = f (X) is fully specified by the mean function m(X) and the covariance matrix formed
from a covariance function k(x[i], x[j])

m(X) = E[ f (X)]
k(x[i], x[j]) = cov( f (x[i]), f (x[j]))

(2)

where E denotes the expectation.
In this research, the mean function is initialized at 0 [34], while the square exponential

or Radial Basis Function (RBF) is selected as the covariance function (also called the kernel),
since it is infinitely differentiable and is therefore appropriate for modeling the characteristic
of smoothness of a function [24]. The RBF kernel is given by [34]:

k(x[i], x[j]) = e
1

2l2
‖x[i]−x[j]‖2

(3)

The RBF kernel is based on the idea that the closer the two vectors in input space,
the higher the covariance between them. RBF kernel has one hyper-parameter l (called
length-scale) to control how the distance in the input space is considered as “close”.

Now, consider two subsets of y: y1 = f (X1) and y2 = f (X2) with X =

[
X1
X2

]
such

that:

y =

[
y1
y2

]
∼ N

(
0,
[

∑11 ∑12
∑21 ∑22

])
(4)

with ∑ij = k
(
Xi, Xj

)
being the covariance matrices. The conditional distribution P(y2|y1, X1, X2)

is multivariate normal:

P(y2|y1, X1, X2) ∼ N

(
∑
21

∑
11

−1y1, ∑
22
−∑

21
∑
11

−1 ∑
12

)
(5)

With the mean to be selected as a replacement of y1 in case this output subset is lost.
The Gaussian process model y = f (X) is fitted to the training set using the maximum

log likelihood method to tune the hyper-parameter (s) in the kernel (l in RBF). Finally,
it is tested on the test set by using (Equation (5)) to compute the mean and deviation or
confidence interval.

4. Experiments and Results

The test case of this research is an office in the Vietnam–Korea Vocational college of
Hanoi (VHH). The office was equipped with a low-cost building monitoring platform.
Sensor types and locations are shown in Figure 7. There are six multi-sensors (measuring
environment parameters) and door sensors/five motion sensors/three energy meters
(measuring sub-loads: HVAC, Lighting, and total load power).

Among six multi-sensors, four sensors (Zway01, Zway02, Zway03, and Mi01) are
placed on four inner wall surfaces to study the thermal behaviors of the four walls of this
building zone. The indoor environment is monitored by Mi02. All the data are collected
every 10 min for one year. Although this approach is possibly applicable to different types
of input–output pairs of a building’s sensor network, this section presents this research’s
application on inconsistent data detection and data compensation for HVAC power, indoor
temperature, and PV power.
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The objectives of the experiments presented in the following sections are:

- To use correlations of high-resolution (several minutes) and locally available data
(including data from sensor nodes within the building and data from nodes in other
buildings within the same area) to develop a predictive model with the goal of data
compensation in a sensor network.

- Considering the fitness of GPR in the predictive models for different types of data
nodes (such as power consumption, PV power, and indoor temperature).

- Evaluate the model’s computational performance for small dataset sizes (weeks
and months).

All code is written in Python. The hardware used in all of the following experiments
is an Intel Core i7-8550U 1.80 GHz CPU.

4.1. Experiment 1: Detection and Compensation of Inconsistent HVAC Data

This experiment includes two small experiments to evaluate the performance of the
proposed method in detecting the appearance of inconsistent data, and compensates for
inconsistent data and data loss for HVAC power data. The computation efficiency of the
proposed method is considered as well.

In the experiment detecting inconsistent data, the training dataset was collected in
July 2020, while the data for August 2020 were used as the test dataset. The HVAC data in
the test dataset are intentionally distorted by a bias of 10 W, since sample 25. The input–
output of the model is shown in Table 1, where TiZ3[k] is the temperature at node Zway
03, HVAC[k] is the HVAC power of the office at time t and HVAC[k− 1] is the previous
sample; Total_power[k] is the total power consumption of the office, assuming that not all
the load powers of the office are measured.
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Table 1. Input–output pair of Experiment 1.

Inputs Output

x[k] = [TiZ3[k], HVAC[k− 1], Total_power[k]] y[k] = HVAC[k] = f(x[k])

Inconsistent data are detected by comparing the observation in the test dataset to
the output inference of the trained model (the estimation). Figure 8a below displays the
estimation and observation with the boundaries of a 70% confidence interval to be an
indication of the observation’s uncertainty. It can be seen that, after sample 25, there
are a number of observations (blue points) outside the confidence interval. In Figure 8b,
the square deviation of the estimation and observation is shown. As a result, the error
increases significantly after sample 25, signaling the moment at which the inconsistency
in the HVAC power data appears. This kind of fault detection provides a great benefit to
the building operators for monitoring the sensor network’s operation, sensor calibration
and maintenance.
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In the experiment of HVAC data compensation, the proposed method’s ability to
compensate HVAC power inconsistent data and data loss and its computation efficiency
are considered.

The input–output pair is shown in Table 2, where TiZ3[k] is the temperature at
node Zway03, outTemp[k] is the outdoor temperature collected from a web service, and
Total_power[k] is the total power consumption of the office.

Table 2. Input–output pair of Experiment 1.

Inputs Output

x[k] = [TiZ3[k], outTemp[k], Total_power[k]] y[k] = HVAC[k] = f(x[k])

The dataset was collected in July and August 2020. Different dataset lengths, including
one week, two weeks, four weeks, and eight weeks, are selected to evaluate the performance
of the proposed method with different small datasets. The test dataset is taken randomly
with a ratio of 50%, except for the 8-week dataset, for which the training dataset is the data
for the first four weeks (in July) and the test dataset is the remaining data (in August), in
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order to assess the proposed method’s capability in compensating data loss for a continuous
period of time.

The data compensation results are illustrated in Figure 9a–c, and d below for the
dataset length of one week, two weeks, four weeks, and eight weeks, respectively. It can be
seen in Figure 9a–c that with data loss at random moments, the estimation closely follows
the observation.
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However, it is different in Figure 9d when the proposed method compensates for the
continuous data loss in a month. The deviation of the estimation and the observation, and
the computation of the proposed method for the different dataset lengths are quantified in
Table 3, in which the root mean square errors are around 20 W and the highest maximum
absolute error is 51.7 W, which are small numbers regarding the HVAC power range of
1200 W. The training times vary from 4.4 s to 15.5 min as the dataset length increases from
1 week to 8 weeks.
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Table 3. Performance indices of the compensation of HVAC data.

Dataset
Training Dataset (50%) 1 Week 2 Weeks 4 Weeks 8 Weeks

HVAC

Root Mean Square Error (W) 18.21 20.47 23.8 20.5

Maximum Absolute Error (W) 45.97 48.65 50.9 51.7

Traning Time (second) 4.4 49 154.4 930

4.2. Experiment 2: Compensation of Lost Temperature Data

As explained in Section 2, temperatures are important data for building thermal
modeling, user comfort monitoring, as well as real-time building control. This experiment
illustrates the proposed method’s ability to compensate for the indoor temperature data.

The same four datasets with different lengths of one week, two weeks, four weeks,
and eight weeks are selected, as in Experiment 1. The input–output pair is shown in Table 4
below, where TiM2 is the indoor temperature at sensor node Mi02, while TiZ1 and TiZ2 are
wall-surface temperatures at nodes TiZ1, TiZ2 in the office room correspondingly within
the office room.

Table 4. Input–output pair of Experiment 2.

Inputs Output

x[k] = [TiZ1[k], TiZ2[k]] y[k] = TiM2[k] = f(x[k])

The estimation of the indoor temperature TiM2 is compared to the observed (mea-
sured) data in the test set, as in Figure 10a–d, for the different dataset lengths, and the
quantitative comparison is demonstrated in Table 5. It is noticeable in these figures that for
both data loss at random moments and continuous one-month data loss, the estimation can
tightly track the observation.

According to Table 5, the highest root means the square error is 0.32 ◦C, and the highest
maximum absolute errors are from 0.46 ◦C to 0.6 ◦C, which is acceptable considering that the
highest indoor temperature TiM2 is more than 33 ◦C. The training times of this experiment
varied from 3.25 s to 8 min for the dataset length changing from 1 week to 8 weeks.
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Table 5. Performance indices of the compensation of TiM2 data.

Dataset
Training Dataset (50%) 1 Week 2 Weeks 4 Weeks 8 Weeks

TiM2

Root Mean Square Error (◦C) 0.17 0.22 0.2 0.32

Maximum Absolute Error (◦C) 0.48 0.5 0.46 0.6

Traning Time (second) 3.25 19 95.5 438

4.3. Experiment 3: Compensation of Photovoltaic (PV) Power Data

The proposed method is applied in this experiment to compensate for PV power data.
The data loss for one PV system is compensated with the available data for the other three
PV systems in the same area. The input–output pair is shown in Table 6 below, where PV
[k] is the PV power at the PV system to compensate and PV1 [k], PV2 [k], and PV3 [k]
are the available PV powers for the other three PV systems in the local area. The training
dataset was collected in July 2022, and the test dataset was acquired in August 2022.

Table 6. Input–output pair of Experiment 3.

Inputs Output

x[k] = [PV1[k], PV2[k], PV3[k]] y[k] = PV[k] = f(x[k])

The compensation results are demonstrated in Figure 11 below. In the figure, the
estimation goes up and down with the observation, as PV power goes up and then goes
down within one day.

The compensation’s performance is detailed in Table 7. The root mean square error
is 209.6 W, and the mean absolute error is 171.5 W—around 3% and 2.8%, respectively, of
the PV system’s maximum power. Meanwhile, the maximum absolute error is 429.3 W,
representing 7% of the maximum power. These measured indices are pleasant, although
they can be improved when the distances between these PV systems become smaller.
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Table 7. Performance indices of the compensation of PV power data.

PV Power

Root Mean Square
Error (W)

Mean Absolute Error
(W)

Maximum Absolute
Error (W)

209.6 171.5 429.3

5. Discussions

In Experiment 1, data gaps in the HVAC power due to a failure power meter were
filled by Gaussian-process-associated confidence intervals.

Figure 9 shows that the computational time requirement of GPR increases rapidly as
the training dataset sizing decreases. In Table 3, the root mean square error was used to
evaluate the fitting quality of the Gaussian process regression over different time periods.
The goodness of fit can also be assessed by interpreting the 95% confidence interval on the
regression points. This approach introduces average error and a local assessment of GPR
on the short data.

The results show that the GPR approach provides good prediction and compensation
results for HVAC, room temperature, and PV power data with datasets under one month.
In addition, the correlation of the data can improve model quality.

Weather data are used in many studies to forecast PV output and HVAC consumption.
However, high-resolution weather data (minute by minute) are unavailable in the local
area. Experiments 1 and 3 show that it is possible to compensate by correlating local data,
such as the indoor temperature for HVAC consumption forecasting, or using data from PV
power measurement nodes in neighboring stations for capacity forecasting PV.

In Experiment 2, the high spatially dense distribution of room-temperature sensor
nodes allows data compensation and the development of a virtual temperature sensor with
high accuracy.

We calculate the average time required for the trained models at a query data point. The
computation time of GPR is significantly lower with the small dataset, at one week, two weeks,
or four weeks (a rounding of 200, 400, and 800 samples) but ensures prediction accuracy.
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Particularly in Experiment 2, we note the room-temperature data at the TiM2 sensor
location for eight weeks with the train-set ratio 50–50. Figure 12 below shows the data
compensation for August using the model trained with these data in July. In this figure,
there is a significant compensation error on the test data of the last two weeks of the month,
which is of a higher temperature range. To explain, it may be the difference in data features
in months, such as weather and user activity in the two months. This explanation is also
consistent with previous studies. For example, a study in [21] shows the importance of input
features in predictive models. The data structure combines the fluctuation components
such as weather by seasons and human activities by the time [25,26], which could give a
more robust model. Therefore, adding the correlation variables to the model and more
data for model training may need to be considered. However, this can increase the model’s
complexity and computation time.
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Splitting to the sub-datasets for GPR models will speed up the model computation
while ensuring prediction results. Furthermore, the length of the dataset in this experiment
is about 200 samples for the training model, and the computation speed is less than 5 s,
which is quite suitable for the online model.

The computing speed depends on the configuration of different computers. However,
choosing standard configurations of computers in offices can allow us to conclude the
model’s complexity (including the number of involved variables and the length of the
dataset available for the model) and calculation cost.

6. Conclusions

Applications in smart buildings always require a monitoring system with a large
number of sensor nodes. The monitoring system is responsible for establishing a database
that, in turn, serves optimal energy control and management while guaranteeing human
comfort. Sensor operation and maintenance and data quality monitoring are essential but
challenging tasks.

This paper developed a data-analysis method based on Gaussian process regression
to analyze data for detecting and compensating for inconsistent data and data loss due
to sensor imperfections. The experiments implemented in the VHH building in this
research prove the proposed method’s efficiency at detecting HVAC-inconsistent data and
compensating data of HVAC power, indoor temperature, and PV power. The research
results demonstrate that the method presented in this paper applies to different data types
in building energy management.

This paper also confirms the computation efficiency of the proposed method and
its fitness in building online control tasks. The proposed method effectively solves the
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problem of sensor operation and maintenance. Its ability to improve data quality supports
the control system in smart buildings. This research is a stepping stone for further research
on online monitoring and control systems in larger-scale smart buildings in particular, and
smart grids in general.
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