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Abstract: This work focuses on the dynamics of vegetation stripes in sloped semi-arid environments
in the presence of secondary seed dispersal and inertial effects. To this aim, a hyperbolic generalization
of the Klausmeier model that encloses the advective downhill transport of plant biomass is taken into
account. Analytical investigations were performed to deduce the wave and Turing instability loci at
which oscillatory and stationary vegetation patterns arise, respectively. Additional information on
the possibility of predicting a null-migrating behavior was extracted with suitable approximations
of the dispersion relation. Numerical simulations were also carried out to corroborate theoretical
predictions and to gain more insights into the dynamics of vegetation stripes at, close to, and far from
the instability threshold.
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1. Introduction

Since the last century, a lot of effort has been made to describe the complex phenom-
ena behind the formation of self-organized patterns observed in several contexts, such as
physics, ecology, chemistry, biology, epidemiology, and others [1–4]. In 1952, Alan Turing
proposed a mechanism through which a pattern-forming instability develops from the
coupling of diffusion and kinetics as a destabilization of a stable, spatially uniform steady
state [5]. In particular, Turing’s idea was successfully applied to provide a suitable descrip-
tion of the spatially periodic structures of vegetation biomass emerging over flat terrains
or along the hill slopes of drylands [6–14]. In the former case, the resulting patterned
configurations usually take different shapes, such as gaps, spots, hexagons, labyrinths, and
others [15–26]. In the latter case, these structures are variously referred to as bands, tiger
bushes, or stripes [12–14,27–32]. They were first observed in sub-Saharan Africa [33–35],
but are also quite common in Australia [36,37], Mexico [38,39], and the Middle East [40–42].

Due to the difficulty of replicating such vegetation patterns in laboratory conditions
as a result of the large spatial scale and the slow evolution of the above dynamics, much
effort has been dedicated to improving mathematical models that can depict the transitions
between homogeneously vegetated states and spatially periodic ones, as well as between
two differently patterned states. In particular, a relevant body of literature on the modeling
of vegetation patterns in sloped semi-arid environments was developed in [6,8,10,11,13,32].
Among the different frameworks, one of the easiest vegetation models was provided
by Klausmeier [6]. In its original formulation, it is in the form of a parabolic reaction–
diffusion–advection system for surface water and vegetation biomass, whose interaction
and dispersal mechanisms give rise to an uphill migration of vegetation bands. In recent
decades, despite the larger availability of experimental observations, some controversial
interpretations of the effective band migration and the occurrence of stationary patterns in
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sloped semi-arid environments were raised [35,37]. Therefore, some generalizations of this
model were proposed [10,11,13,43,44]. In particular, in the model proposed by Consolo and
Valenti [13], the addition of an advection term for mimicking anisotropic seed transport due
to overland flow [20,27,28,31,45] was able to provide the occurrence of stationary periodic
patterns over hill slopes. Recently, in order to account for the inertial effects that were
experimentally observed in vegetation response [46–50], this model was further generalized
through a hyperbolic framework [51]. The hyperbolicity introduced there was also able
to overcome the unphysical paradox of the infinite propagation speed of disturbances,
which is typical of parabolic models, and generally offered a better description of transient
and wave propagation phenomena [52–63]. In that paper, the focus was mainly on the
role played by inertia and on the secondary seed effects on the pattern migration speed
at the onset of instability. Indeed, most of the information was extracted by means of the
characterization of traveling wave solutions.

With this in mind, in the present work, we aim to more deeply inspect the occurrence of
oscillatory and stationary vegetation patterns not only at the bifurcation threshold, but also
close to and far from it. Indeed, approximated expressions of the dispersion relation will
be derived to extract additional information about the migration speed close to the onset of
instability, and numerical simulations will be carried out to validate theoretical predictions.

This manuscript is organized as follows. In Section 2, the hyperbolic generalization
of the Klausmeier model is briefly introduced, and a linear stability analysis is conducted
in order to characterize the qualitative behavior of oscillatory and stationary patterns. In
Section 3, which represents the main novelty of this paper, approximated expressions of
the roots of the characteristic equations are introduced to gain a deeper understanding of
the main features that characterize the emerging pattern. Here, particular emphasis on the
onset of stationary patterns is also given. Concluding remarks are addressed in Section 4.

2. Materials and Methods

The theoretical investigations carried out here originate from the classical version of the
Klausmeier model [6]. It is a simple, conceptual, two-compartment system for vegetation
biomass u(x, t) and surface water w(x, t), and it is able to capture the mechanism behind
vegetation pattern formation along the slopes of semi-arid environments, where x and t
represent the space and time variables, respectively. In its original formulation, the flux of
vegetation biomass obeys a classical gradient-like law, which mimics an isotropic dispersal
of seeds, whereas surface water undergoes a passive transport dictated by downhill flow
through the hillside. Note that water diffusion is neglected here, since advective transport
along slopes is typically the dominant contribution.

Later, this model was generalized [13] to account for the additional phenomenon
of secondary seed dispersal, namely, an advective transport of plant biomass. Indeed,
along sloped terrains, seeds undergo, at first, a primary and isotropic loss from the plant
to the land, and then, a secondary and anisotropic one due to their downhill overland
transport. The simultaneous occurrence of multiple seed dispersal processes — consist-
ing of mobilization, transport, and germination — was investigated in some previous
works [13,20,27,28,31,45]. It was pointed out there that the strength of the seed advection
speed plays a non-marginal role in the resulting vegetation pattern dynamics. In fact, de-
spite its strength, it is just a small fraction of the water advection speed, and the migrating
character (modulus and direction) of the emerging pattern is significantly affected.

Recently, motivated by the experimental evidence regarding the inertia of vegeta-
tion in the context of dryland ecology [46–50], a further generalization of the previous
model was introduced in [51]. In particular, by following the Extended Thermodynamics
theory [64,65], a hyperbolic version of the Klausmeier model was built. In this model, the
flux of vegetation biomass was considered as an additional state variable that satisfied the
classical principles of thermodynamics and that reduced to the classical Fick’s law in the
stationary case.
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In the present work, we make use of this model, which, in the 1D case, can be cast in
matrix form as :

Ut + MUx = N(U), (1)

where

U =


u

w

J

, M =


−ψ 0 1

0 −ν 0
1
τ 0 0

, N(U) =


f (u, w)

g(u, w)

− 1
τ J

 (2)

with
f (u, w) = w u2 − B u, g(u, w) = A− w− w u2, (3)

where A is the average annual rainfall, B is the plant loss, ν is the water advection speed,
ψ is the seed advection speed mimicking the secondary seed dispersal, τ is the inertial
time associated with the vegetation biomass, and J(x, t) is the dissipative flux associated
with the plant evolution. Note that the original parabolic version of the Klausmeier model
is recovered for ψ = 0 and τ → 0. In (1), the subscripts denote partial derivatives with
respect to the indicated variables.

Model (1)–(3), for A < 2B, admits only a spatially homogeneous steady state U∗D = (0, A, 0),
which is representative of a bare-soil ground, whereas for A > 2B, there are two additional
steady states:

U∗L = (uL, B/uL, 0), U∗S = (uS, B/uS, 0) (4)

where:

uL =
A−
√

A2 − 4B2

2B
, uS =

A +
√

A2 − 4B2

2B
, 0 < uL < 1 < uS (5)

which are representative of spatially homogeneous vegetated regions. They coincide in the
limit case for A = 2B.

In the following analyses, according to the values reported in the literature [6,8,15,66],
the rainfall and plant loss are taken in the ranges B ∈ (0, 2) and A ∈ (0, 3), respectively,
whereas the water advection speed depends on the gradient slope and is generally taken
as ν . 200. Moreover, since only a small percentage of seeds that falls onto the land are
transported downhill by water flow, it is realistic to assume ψ� ν [13,51]. In particular, to
get more insights into the mechanisms giving rise to migrating or stationary patterns, let
us now address linear stability analyses with the goal of determining the thresholds for
wave and Turing instabilities, respectively.

To this aim, let us consider the hyperbolic model (1)–(3); we assume that B is the main
control parameter and denote by U∗ a spatially homogeneous positive steady state. Let us
introduce a perturbation of such an equilibrium in the form U = U∗ + Û exp(ωt + i k x),
with Û being the vector of amplitude perturbation, k being the wavenumber, and ω being
the growth factor. By substituting this into the governing system, we get the following
dispersion relation:

τω3 + [a1 − ikτ(ν + ψ)]ω2 + {a2 + ik[τ(ν f ∗u + ψg∗w)− (ν + ψ)]}ω+

+a3 + ik
[
ν f ∗u + ψg∗w − νk2] = 0,

(6)

where
a1 = 1− τ( f ∗u + g∗w),

a2 = τ( f ∗u g∗w − g∗u f ∗w)− ( f ∗u + g∗w) + (1− τνψ)k2,

a3 = f ∗u g∗w − g∗u f ∗w − (g∗w + νψ)k2

(7)

and the asterisk denotes an evaluation at U∗. To determine the occurrence of wave or Turing
instabilities, it has to be checked how each steady state responds to spatially homogeneous
and non-homogeneous perturbations.
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The conditions under which U∗ is stable with respect to homogeneous perturbations
(k = 0) read

f ∗u + g∗w < 0, f ∗u g∗w − f ∗wg∗u > 0. (8)

Therefore, in the above-mentioned realistic range of parameters, the desert state U∗D and the
vegetated one U∗S are always stable, whereas the state U∗L is unstable. Consequently, this
latter state will not be further taken into account for pattern formation. By considering non-
homogeneous perturbations (k 6= 0), it can be easily checked that U∗D still continues to be
locally stable. Consequently, the only state configuration that can give rise to self-organized
patterns is U∗S.

Let us, then, analyze whether a wave instability may originate by means of a spatial
disturbance about the uniform state U∗S. As is known, this instability is associated with
the appearance of a purely imaginary root of the characteristic Equation (6) for a non-null
value of the wavenumber. Moreover, the transition from the negative to the positive real
part of such a root should take place through a maximum. By imposing these conditions,
the locus of wave instability, which defines the critical value of the control parameter in
terms of the other model coefficients, Bw = Bw(A, τ, ν, ψ), can be implicitly expressed as:

27α2
4α2

1 − α2
3α2

2 + 4α3
3α1 + 4α4α3

2 − 18α4α3α2α1 = 0 (9)

whereas the critical wavenumber at onset kw obeys:

α1k6
w + α2k4

w + α3k2
w + α4 = 0 (10)

where

α1 = β0β2
1 + β1β3

[
ν(τB− 1)− ψ

(
τ + τu2

S − 1
)]
− β2

3
(
1 + u2

S − νψ
)
,

α2 = 2β0β1β2 + (β1β4 + β2β3)
[
ν(τB− 1)− ψ

(
τ + τu2

S − 1
)]
+

−2β3β4
(
1 + u2

S − νψ
)
− β2

3B
(
u2

S − 1
)
,

α3 = β0β2
2 + β2β4

[
ν(τB− 1)− ψ

(
τ + τu2

S − 1
)]
− β2

4
(
1 + u2

S − νψ
)
− 2B

(
u2

S − 1
)

β3β4,

α4 = −Bβ2
4
(
u2

S − 1
)
,

β0 = 1− τ
(
1 + u2

S − B
)

β1 = −τ2(1 + u2
S − νψ

)[
ψB−

(
1 + u2

S
)]
− νβ2

0,

β2 = −τ2B
(
u2

S − 1
)[

ψB−
(
1 + u2

S
)]

+ β2
0
[
νB− ψ

(
1 + u2

S
)]

,

β3 = β0
[
τB− 1 + τ2νψ

(
1 + u2

S − B
)]
− τ2[ψB−

(
1 + u2

S
)]{

τ
[
νB− ψ

(
1 + u2

S
)]
− (ν + ψ)

}
,

β4 = β0
{

τB
(
u2

S − 1
)
− β0

[
Bτ
(
u2

S − 1
)
− B + 1 + u2

S
]}

.
(11)

and αi = αi|B=Bw (i = 1, . . . , 4).
Moreover, the results of previous investigations [13,20,27,28,31,45,51] suggested that,

at the onset, the sign of the imaginary part of the most unstable mode can be either positive
or negative, denoting the (hypothetical) possibility of patterns migrating either downhill
or uphill. Since the occurrence of downhill motion has been questioned in the literature,
it is interesting to determine the boundary between these opposite regimes, namely, the
scenario in which patterns become stationary. For this purpose, we look for null solutions
of the characteristic Equation (6) and impose, again, that the transition from the negative to
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the positive real part occurs through a maximum. By following this strategy, it is possible to
identify, for fixed values of ν, ψ, and τ, a Turing point (BT , AT) in the parameter plane as:

νB
(
u2

S − 1
)
+
[
νB− ψ

(
1 + u2

S
)](

1 + u2
S − νψ

)
= 0(

1 + u2
S − νψ

){
(1− τνψ)

[
νB− ψ

(
1 + u2

S
)]

+ τνB
(
u2

S − 1
)
+ ν
(
1 + u2

S − B
)]
+

+ν
[
νB− ψ

(
1 + u2

S
)]{

τ
[
ψ
(
1 + u2

S
)
− νB

]
+ ν + ψ

}
= 0

(12)

where its associated critical wavenumber kT is given by:

kT =

√√√√νBT − ψ
(

1 + u2
ST

)
ν

(13)

where uST = uS|B=BT ,A=AT .
The analysis performed here reveals that the qualitative behavior at the onset of

the emerging patterns is, independently of their oscillatory or stationary nature, strongly
affected by the hyperbolicity. However, due to the highly nonlinear and nontrivial nature
of the above expressions, numerical investigations are required.

3. Results

In this section, we first present the results of numerical simulations with the twofold
goal of corroborating our theoretical predictions and extracting quantitative information
on the emerging traveling (migrating) patterns. Then, we discuss some results of analytical
approximations that allow us to characterize the behavior of both migrating and stationary
patterns. In all of the subsequent analyses, the water advection speed is set to ν = 182.5,
which is in line with the values from the literature [6].

Firstly, let us numerically evaluate the dependence of the critical values of the control
parameter Bw and wavenumber kw at the onset of wave instability on the inertial time τ
and secondary seed strength ψ, as theoretically predicted by (9) and (10), respectively. The
results depicted in Figure 1 reveal that, close to the parabolic limit, i.e., τ . 1, the critical
values do not appreciably vary with τ and ψ. On the other hand, as we progressively move
away from the parabolic limit, effects due to hyperbolicity and secondary seed dispersal
become evident. Indeed, even a small increase in ψ simultaneously yields a significant
decrease in the critical wavenumber—thus giving rise to periodic patterns with larger
wavelengths—and an increase in the critical control parameter, which implies a reduction
in the pattern-forming region.

Figure 1. Inertial–time dependence of (a) the critical value of the control parameter at the onset of
wave instability Bw and (b) its associated wavenumber kw for different values of the seed advection
speed ψ. Fixed parameter: A = 1.7.
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In order to gain a deeper understanding of the phenomenon of wave instability, let us
track the wavenumber dependence of the roots of (6) for two points in the (τ, Bw)-plane,
as reported in Figure 1a. In particular, the points P1 and P2 are chosen in such a way that
they may be representative of dynamics occurring close to and far from the parabolic limit,
respectively. The results are depicted in Figure 2a–d for ψ = 0.2 and in Figure 2e–h for
ψ = 0.8. In this figure, the panels on the left (right) depict the real (imaginary) parts of
the roots of the characteristic Equation (6) evaluated at P1 [panels (a),(b),(e),(f)] and P2
[panels (c),(d),(g),(h)]. As can be noticed, at the configuration P1, Equation (6) always
admits roots with a negative real part (see Figure 2a,e), which is in line with the theoretical
prediction reported in Figure 1a—that this point lies outside the wave bifurcation locus for
all considered values of ψ. On the contrary, at P2, there is at least one root with a positive
real part, so this point lies inside the pattern-forming region for any considered value of ψ
(see Figure 2c,g), which is consistent with results in Figure 1a.

Figure 2. Real (left panels) and imaginary (right panels) parts of the roots ω1,2,3 of the characteristic
polynomial (6) as a function of the wavenumber, obtained for ψ = 0.2 [panels (a–d)] and ψ = 0.8
[panels (e–h)]. Panels (a,b,e,f) correspond to the point P1, whereas (c,d,g,h) correspond to P2. Blue,
red, and black lines are representative of ω1, ω2, and ω3, respectively. Fixed parameters: A = 1.7 and
B = 0.25.
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To further confirm the theoretical predictions of wave instability carried out here, sys-
tem (1)–(3) is now numerically integrated by means of Matlab® [67] in a domain x ∈ [0, 200]
over a time window t ∈ [0, 200]. A small perturbation around the state U∗S is taken as the
initial condition, and periodic boundary conditions are considered. The results are depicted
in Figure 3, and they validate our previous findings. Indeed, at point P1 (panels on the
left), the perturbation is absorbed, and the system relaxes towards the homogeneous steady
state, whereas at point P2 (panels on the right), the spatial perturbation destabilizes the
state and generates a traveling pattern. This observation highlights the role of inertia in
modifying the wave bifurcation threshold. At the same time, the comparison of Figure 3b,d
allows the elucidation of the role of secondary seed dispersal. In fact, as its strength is
increased, the migration speed is reduced (notice the smaller slope of bands in (d) with
respect to (b)) as a consequence of a larger number of seeds being transported downhill by
the overland flow.

Figure 3. Spatio–temporal evolution obtained through the numerical integration of the governing
system (1)–(3) in the configurations P1 [panels (a,c)] and P2 [panels (b,d)]. The results in the top row
were obtained for ψ = 0.2 [panels (a,b)], whereas those in the bottom row were obtained for ψ = 0.8
[panels (c,d)]. The other parameters are as in Figure 2.

Let us now address some investigations to extract additional information from the
characteristic equation. In particular, let us track the behaviors of the three complex roots of
Equation (6) with the aim of identifying and determining at least an approximate expression
of the functional dependence of the root responsible for the stable character of the steady
state. Let us denote the roots as

ω1 = α + iβ, ω2 = γ + iδ, ω3 = θ + iζ, (14)
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where α, β, γ, δ, θ, ζ ∈ R. Then, by substituting (14) into (6) and (7), the following system
in six unknowns (α, β, γ, δ, θ, ζ) is obtained:

α + γ + θ = 1 + u2
S − B− 1

τ

β + δ + ζ = k(ν + ψ)

θ(α + γ)− ζ(β + δ) + αγ− βδ =
[
τB
(
u2

S − 1
)
+ 1 + u2

S − B + (τνψ− 1)k2]/τ

ζ(α + γ) + θ(β + δ) + αδ + βγ = k
[
νB− ψ

(
1 + u2

S
)
− (ν + ψ)/τ

]
θ(βδ− αγ) + ζ(αδ + βγ) =

[
B
(
u2

S − 1
)
+
(
1 + u2

S − νψ
)
k2]/τ

ζ(βδ− αγ)− θ(αδ + βγ) = k
[
νB− ψ

(
1 + u2

S
)
− νk2]/τ

(15)

Owing to the nontrivial structure of the above system, some simplifying assumptions
are needed. One of them has an ecological foundation, i.e., ψ � ν, as the rate at which
seeds are passively transported downhill by the overland flow is quite small in comparison
with the water advection speed [6,8,66]. Some others can be mathematically deduced from
the inspection of the qualitative behavior of the roots reported in Figure 2. In particular,
noticing that the real and imaginary parts of ω3 are different orders of magnitude larger
than those of the other roots, it is reasonable to assume that ζ >> |δ|, |β| and |θ| >> |α|, |γ|.
Consequently, according to (15)1 and (15)2, the real and the imaginary part of ω3 can be
safely approximated with Re(ω3) ≈ f ∗u + g∗w − 1

τ and Im(ω3) ≈ kν, respectively. Note that,
according to (8), Re(ω3) is, thus, always negative, and, indeed, this root does not determine
the stable character of U∗S.

By considering all of the previous assumptions, the system (15) can be approximated as



(
1 + u2

S − B− 1
τ

)
(α + γ)− kν(β + δ) + αγ− βδ =

[
τB
(
u2

S − 1
)
+ 1 + u2

S − B + (τνψ− 1)k2]/τ

kν(α + γ) +
(

1 + u2
S − B− 1

τ

)
(β + δ) + αδ + βγ = k

[
νB− ψ

(
1 + u2

S
)
− (ν + ψ)/τ

]
(

1 + u2
S − B− 1

τ

)
(βδ− αγ) + kν(αδ + βγ) =

[
B
(
u2

S − 1
)
+
(
1 + u2

S − νψ
)
k2]/τ

kν(βδ− αγ)−
(

1 + u2
S − B− 1

τ

)
(αδ + βγ) = k

[
νB− ψ

(
1 + u2

S
)
− νk2]/τ

(16)
so the approximate expression for the first two roots is:

ω1 ≈ η − γ + i
(

θγ−χ
η−2γ + θ

)
,

ω2 ≈ γ + i χ−θγ
η−2γ ,

(17)

where γ is implicitly defined by

4γ4 − 8ηγ3 +
(

5η2 + θ2 − 4µ
)

γ2 − η
(

η2 + θ2 − 4µ
)

γ + ηθχ− χ2 − η2µ = 0 (18)
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and

η =
{1−τ[B−(1+u2

S)]}[B−(1+u2
s )−τB(u2

s−1)]+τν2k2(B−1)−k2−τ[B(u2
S−1−k2)+2k2(1+u2

S)]

{1+τ[1+u2
S−B]}2

+τ2k2ν2
+

+
2τ2νk2[νk2+ψ(1+u2

S)−νB][1+τ(1+u2
S−B)]{

[1+τ(1+u2
S−B)]

2
+τ2k2ν2

}2 ,

θ = − 1
kν

{(
1
τ + 1 + u2

S − B
)

η +
(

1
τ − νψ

)
k2 + B

(
u2

S − 1
)
+ 1

τ

(
1 + u2

S − B
)
+

+
(B−2−u2

S)[B(u2
S−1)+(1+u2

S+νψ)k2]+τνk2[νB−νk2−ψ(u2
S+1)]

{1+τ[1+u2
S−B]}2

+τ2k2ν2

}
,

χ = k{1−τ[B−(1+u2
S)]}[νB−(1+u2

s )ψ]−νk2+τν[B(u2
S−1)+(B−νψ)k2]

{1+τ[1+u2
S−B]}2

+τ2k2ν2
,

µ = −{1−τ[B−(1+u2
S)]}[B(u2

s−1)+(1+u2
S)k2]−νψk2+τν2k2[k2−B]

{1−τ[1+u2
S−B]}2

+τ2k2ν2
.

(19)

To check the validity of the approximated formulation carried out so far, in Figure 4,
we present a comparison between numerically computed (solid lines) and approximated
(symbols) values of the complex roots of the characteristic Equation (6). Without loss
of generality, let us evaluate these roots at the points P1 and P2, which we previously
introduced. Based on the satisfying agreement achieved in all cases, with a particular focus
on the range of wavenumbers where the real part of the roots crosses the zero, it is possible
to inspect the functional dependencies of ω1 and ω2 in more detail.

Figure 4. Comparison between numerically computed (solid lines) and theoretically estimated
(symbols) roots of the complex characteristic Equation (6) when evaluated at the points P1 (panels
(a–c)) and P2 (panels (d–f)). The real parts are depicted in black, whereas the imaginary ones are
depicted in red. Root ω1 is represented in panels (a,d); ω2 is depicted in (b,e), and ω3 is depicted in
(c,f). Fixed parameters: ψ = 0.8, A = 1.7, and B = 0.25.

The results shown in Figure 4 also suggest that ω1 cannot produce any spatial insta-
bility through Turing or wave instabilities. Indeed, its real part does not cross the real
axis through a maximum. Instead, it may give rise to a different kind of instability, as it
originates an infinite range of unstable wavenumbers. Therefore, the only root that might
be responsible for oscillatory or stationary patterns is ω2, whose real part exhibits the
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required behavior (see Figure 4b,e). For an oscillatory instability to take place, we thus
need to impose the following conditions (to hold for k 6= 0):Re(ω2) = 0

∂Re(ω2)
∂k = 0

(20)

which, by virtue of (17) and (18), reduce to:ηθχ− χ2 − η2µ = 0

∂
∂k
[
ηθχ− χ2 − η2µ

]
= 0

(21)

Note that Equation (21) implicitly defines the approximated critical wavenumber and the
locus at which wave bifurcation occurs. Again, to check the validity of the approximated
bifurcation locus, a comparison with the numerical results arising from the exact expression
defined in (9) is addressed. The results shown in Figure 5 confirm a satisfactory agreement
for all of the considered values of inertial times, revealing that Equation (21) may be safely
used as an approximate description of key features associated with oscillatory patterns
near criticality.

With this in mind, the migration speed of the oscillatory pattern at onset, under the
hypothesis that the only excited mode is the one characterized by the largest growth rate,
is proportional to Im(ω2) = δ. In particular, positive (negative) values of δ correspond to
patterns migrating downhill (uphill), whereas null values are representative of stationary
patterns. Therefore, taking (14) and (17) into account, the approximated locus of stationary
patterns is implicitly defined by:

θγ− χ = 0. (22)
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Figure 5. The locus at which spatial bifurcations occur for different values of inertial time τ. Solid lines
represent the numerically computed loci, whereas symbols denote the theoretically approximated
predicted ones. Fixed parameters: ψ = 0.8.

It should be noticed that such a locus exhibits a dependence on the inertial time
through the coefficients θ, γ, and χ. Moreover, due to the implicit definition of γ, it is still
necessary to rely on numerical investigations. However, the approximate expression (22)
enables the possibility of evaluating the occurrence of stationary patterns in the whole



Mathematics 2023, 11, 1084 11 of 14

parameter plane while being conscious that its validity has to be restricted to close-to-
threshold values. To this aim, numerical investigations were carried out, and the results
are depicted in Figure 6 for different values of inertial time τ. First of all, let us focus on
the behavior of stationary patterns at the onset of criticality, which corresponds to the
intersection in the (B, A) plane between the locus of null-migration patterns (red curve)
and the wave instability one (black one). As can be noticed, for τ ≤ 1 (panels (a)–(d)), the
hyperbolicity yields a negligible effect on this intersection point, which is in reasonable
agreement with our previous results (see Figure1), thus confirming that τ ' 1 can be
considered a good approximation of the parabolic limit. When inertial effects become more
relevant, the onset of stationary patterns takes place for progressively smaller values of
the main control parameter (notice the different scales of the axes in panels (e)–(f)), thus
enlarging the region characterized by the uphill migration of bands. Then, moving away
from the wave instability threshold, the behavior of the theoretically predicted locus of
stationary patterns is non-monotonous with respect to variations in inertial time. Indeed,
the region of uphill migration shrinks from panel (a) to (c), whereas it is enlarged from (d)
to (f). All of these results are in line with previous theoretical findings [51].

Finally, as an illustrative example of out-of-equilibrium dynamics, let us integrate the
governing system (1)–(3) over x ∈ [0, 200] in a time window t ∈ [0, 100] by fixing the inertial
time at τ = 1 and considering the configurations in the (B, A) plane depicted in Figure 7a.
In particular, points Q1 = (0.2, 1), Q2 = (0.23, 1.3), and Q3 = (0.25, 1.5) correspond to
near-criticality conditions, whereas Q4 = (0.5, 0.18) and Q5 = (0.5, 0.23) correspond to
far-from-threshold ones. The overall results are shown in Figure 7b–f.

In detail, the theoretically predicted downhill, stationary, or uphill motion of bands
observed near criticality at the configurations Q1, Q2, and Q3, respectively, is confirmed
by our numerical simulations; see panels (b)–(d). On the contrary, in far-from-threshold
conditions, the numerical results confirm the downhill motion occurring at Q4 (see panel
(e)), but contradict the predictions of the uphill motion at Q5, where patterns still migrate
downhill (see panel (f)). These observations provide a rough estimation of the range
of validity of the approximated stationary locus. At the same time, these simulations
suggest that the downhill motion of bands is the predominant behavior occurring in
out-of-equilibrium conditions.

Figure 6. Loci of wave instability (black lines) and null-migration patterns (red lines) for (a) τ = 10−5,
(b) τ = 10−3, (c) τ = 10−2, (d) τ = 1, (e) τ = 10, and (f) τ = 102. Fixed parameter: ψ = 0.8.
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Figure 7. (a) Detail of Figure 6d and configurations Qi (i=1,...,5) in which numerical simulations of
system (1)–(3) are performed. Panels (b–f) denote the spatio-temporal evolutions obtained in (b) Q1,
(c) Q2, (d) Q3, (e) Q4, and (f) Q5. Fixed parameter: ψ = 0.8.

4. Conclusions

A hyperbolic generalization of the secondary seed variant of the Klausmeier model,
which simultaneously accounts for secondary seed dispersal and inertial effects, was consid-
ered here to describe the migration of vegetation stripes in sloped semi-arid environments.
By means of a linear stability analysis, the character of the spatially homogeneous steady
states was investigated, and the conditions for the occurrence of wave and Turing insta-
bilities were also deduced. Moreover, approximated expressions for the wavenumber
dependence of the roots of the characteristic equation were derived to inspect the behavior
of the emerging patterns close to the onset. These results allowed us to gain additional in-
formation on the pattern speed, locus of null-migrating patterns, and excited wavenumber.

The results attained here were corroborated by means of numerical simulations and
allowed us to draw the following conclusions. First, near the parabolic limit, the behavior
of stationary patterns at the onset is slightly affected by hyperbolicity. Instead, by moving
away from criticality, patterns follow different migrating directions that depend on inertia.
On the other hand, far from the parabolic limit, hyperbolicity favors the generation of
patterns migrating uphill. Indeed, when the inertial time τ is progressively increased, the
region in which downhill motion is admitted shrinks.

Finally, it is planned to extend the present study by adopting a weakly nonlinear
analysis to inspect the behavior of pattern amplitude near the onset. In addition, by
employing geometric singular perturbation techniques, we aim to investigate the dynamics
occurring in out-of-equilibrium conditions.
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