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a b s t r a c t

Open-pit mines are an important source of atmospheric particulate matter (PM) owing
to the constant earth-moving and crushing. The well-known association between high
PM concentrations and adverse health effects has made the permanent control of
fugitive emissions from mines a public health concern. Nevertheless, the large size
of these mines renders this task difficult and expensive to perform with regulatory
apparatuses; subsequently, the mining industry requires other technologies with a
suitable quality/price ratio. In this study, a novel methodology for the space–time
monitoring of PM concentrations in open-pit mines using mobile low-cost sensors
(LCSs) is proposed. The study was carried out in the renowned mine of Riotinto for
three years (2019–2021). It included a detailed calibration of the mobile LCSs that
fulfilled the European/US standards. Time tendency diagrams determined the maximum
PM concentrations emitted (≈1600 µg PM10/m3) and also the seasonal variations. The
spatial distribution also revealed the main sources of PM within the mine, which were
the mining pit, mineral processing plant, spoil heap of fine materials, and main mining
tracks. Finally, the integration of these data together with meteorological information
allowed the discovery of the routes of escape of fugitive emissions from the mine toward
nearby populations: toward W-SW, with concentrations primarily ranging between 50–
100 µg PM10/m3 and 20–50 µg PM2.5/m3. The results of this research are important
as mobile LCSs seem to solve the issue of fugitive emissions monitoring in mining
ambiances and will aid the exploitations to become more environmentally friendly.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The World Health Organization has declared that atmospheric particulate matter (PM) is responsible for 4.2 million
remature deaths every year (World Health Organization, 2018), thus confirming atmospheric pollution to be a threat to
lobal public health. Epidemiological researchers have found that prolonged exposure to PM can result in multiple negative
ffects on health, including respiratory ailments such as lung cancer (Clark et al., 2010; Zhou et al., 2015; Falcon-Rodriguez
t al., 2016; Raaschou-Nielsen et al., 2016), cardiovascular mortality (Burnett et al., 2018), and more adverse consequences
n newborns (Lee et al., 2013; Klepac et al., 2018). Concerns over the negative effects of PM on health have prompted
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legislation worldwide (e.g., Europe, Directive 2008/50/EU, China, MEP, 2012 or the USA, U.S. Environmental Protection
Agency, 2012), with the establishment of threshold concentrations for fine (<2.5 µm, PM2.5) and coarse (<10 µm, PM10)
M, thereby aiming to control the devastating consequences of air pollution (World Health Organization, 2021).
PM concentrations in the air have traditionally been measured and monitored using fixed-site air quality stations

quipped with regulatory apparatuses that despite being extremely precise, have frequent prohibitive costs of acquisition,
peration, and maintenance (Brauer et al., 2019; Brauer, 2010; Pope et al., 2011). Therefore, these stations were limited to
par locations in large cities or to specific points of interest (Apte and Pant, 2019). However, in certain studies involving
icroenvironments (e.g., offices, industrial plants, underground mines), a higher degree of scale and resolution is needed
ecause concentrations of PM can vary significantly at very small distances and during short periods (Snyder et al., 2013).
ence, more complex problems require higher spatial resolution for air pollutants. In this context, recent technological
dvances have led to the proliferation of mobile low-cost sensors (LCSs) for air quality monitoring (Borghi et al., 2017;
cKercher et al., 2017). These have emerged as a novel and promising technology that has increasingly been used for
onitoring small-scale PM10/PM2.5 concentrations and air pollution assessment because they can easily be transported
ith mobile platforms, such as cars or unmanned aerial vehicles (UAVs) (Van den Bossche et al., 2015; Apte et al., 2017;
ang et al., 2021; Yu et al., 2022).
Nevertheless, a critical issue involving air pollution monitoring through mobile LCSs must be acknowledged, which

s the reliability of the data. Laboratory and field tests have revealed that the performance of these LCSs may vary
ubstantially between different models or even between different units within the same model (Singh et al., 2021;
evy Zamora et al., 2019; Hagan et al., 2018; Kelly et al., 2017). Therefore, calibration of the devices is mandatory to
nsure correct measurements. This is frequently done by comparing the results of mobile LCSs with the above-mentioned
ixed-site stations (Riley et al., 2016; Tessum et al., 2018). It is worth mentioning that calibrations have greatly been
mproved in recent years, sometimes by complex mathematical algorithms, and it has become possible to obtain very
ccurate results (Báthory et al., 2022; Zimmerman et al., 2018; Spinelle et al., 2017, 2015). Thus, networks of LCSs have
egun to be established and scientifically approved. LCSs have been included in massive air quality monitoring networks,
amely large-scale applications, promoted by governments and private corporations, such as the USA’s Imperial County
ommunity Air Monitoring Network (English et al., 2017), the Community Air Sensor Network Southeast (CAIRSENSE,
iao et al., 2016), or the Swiss ‘‘Open-Sense’’ network (Hasenfratz et al., 2015). There are also applications on a mid-scale,
eferred to specific contexts where mobile LCSs have also been successfully implemented and where there are no other
olutions for the permanent monitoring of PM concentrations in 3D space. For instance, Rodríguez and López-Darias (2021)
sed LCSs to assess the stratification of Saharan dust in Santo Antão island (785 km2). In another study, Popoola et al.
2018) used mobile LCSs to assess the contribution of air traffic to air pollution at London Heathrow Airport (12.14 km2).

The novelty of mobile LCS is that they allow to provide information of PM concentrations every second at any location,
eing very useful as warning systems against dust emissions in places where potentially toxic PM is highly produced and
ermanent monitoring is required. In line with these mid-scale applications, it was found that mines are indisputable
ources of PM, sometimes even containing high concentrations of potentially toxic elements (Patra et al., 2016; Noble
t al., 2017; Gautam et al., 2018; Roy et al., 2019). Therefore, PM monitoring is very important to protect the health
f workers and individuals residing in surrounding areas in light of possible environmental disasters involving health
rgencies (Johnson et al., 2019; Mpanza et al., 2022). Surprisingly, this simple task cannot be adequately performed
ecause of the lack of technologies for the permanent monitoring of PM in mines, which hampers the possibility of
ontrolling fugitive emissions. More specifically, this study aimed to provide researchers and mining companies with
novel methodology to spatially control the distribution of PM based on the data obtained from mobile LCSs regularly

ransported within the mining facilities by pickup trucks for three years (2019–2021). The present study was carried out in
he large and prestigious mine of Riotinto (18.74 km2). In this place, Boente et al. (2022) reported a considerable amount
f PM released by mining operations, and its impact was reflected in populations residing nearby (Sánchez de la Campa
t al., 2020). Therefore, this area was optimal for the development of this innovative application of mobile LCSs that has
ever been tested before.

. Materials and methods

.1. Study area

The Riotinto mining district (Huelva, Spain; Fig. 1) is one of the largest polymetallic sulfide open-pit mines in the
orld (Leistel et al., 1997). It is located in the Iberian Pyrite Belt (sub-Portuguese section), and its predominant ores are
yrite, chalcopyrite, arsenopyrite, sphalerite, and galena. The main metal exploited was copper (Cu), with a mean ore
rade of 0.42% (Tornos, 2006). This prominent mineral wealth attracted various international corporations that kept the
ine operational between 1873 and 2001, when it closed by profit motives. However, the mine was reactivated in 2015
ecause of the novel technological advances that allowed the exploitation of ores of low grade, up to 0.20%; currently,
pproximately 9000 people reside in three towns surrounding the exploited mine (Instituto de Estadística y Cartografía
e Andalucía, 2021).
The low-grade ores exploited required hard earth and rock movements. Moreover, the mine was large (approximately

2
0 km in area). The climate was dry with low precipitation, and the area was mountainous, with strong winds throughout
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Fig. 1. Location of the Riotinto mine in Huelva, Spain. Vehicles used and position of the mobile Low-cost sensor. Mining tracks for the routes and
the different mining areas they crossed.

the year. All these factors encouraged the production of high amounts of PM. Thus, air pollution was considered to be
one of the main environmental concerns in the Riotinto mining district (Sánchez de la Campa et al., 2020).

To control air quality, mining companies implemented emission abatement systems for controlling fugitive emissions
into the atmosphere. The main technology used was irrigation performed with water neutralized with calcium carbonate
from the mining processes. The production of Cu in the Riotinto mine in 2021 was 56,139 tons after treating the plant
with 15.8 million tons of mineral, one million more than the year before (ATYM, 2021). Thus, the main sources of PM
were open-pit mining operations and mineral processing plants (Boente et al., 2022). The main areas of the mine are
shown in Fig. 1.

2.2. Mobile LCSs

Data acquisition was performed using a single low-cost (<300 USD) and consumer-based unit for the entire study
Badura et al., 2019). The unit contains a PMS7003 internal optical particle sensor from Plantower Co. LTD. (Beijing, China)
o measure the PM, with dimensions of 13.23× 9.83× 2.79 cm and a weight of 142 g. The detectable particle sizes are
maller than 10, 2.5, and 1 µm (namely PM10, PM2.5 and PM1, respectively), and the effective range of detectable particle
oncentrations is from 0 to 500 µg/m3, with a maximum consistency error of ±10% at 100–500 µg/m3, a resolution of
µg/m3, and durability of more than three years. Additionally, the device also has a relative humidity (RH) sensor (HIH-
030-001, Honeywell, Golden Valley, Minnesota) with an accuracy of ±3% RH (max.) at 11%–89% RH and a temperature
T) sensor (MCP9700T-E/TT, Microchip, Arizona, USA) with an accuracy of ±4 ◦C (max.) at 0–70 ◦C. All three sensors have
1 s time resolution and a 2000 mAh 3.7 V rechargeable lithium battery that can power the instrument for 10 h when

ully charged. Using Bluetooth
®
, the device can be paired with a smartphone (Android© OS) running the AirCasting

pp (aircasting.org). At the end of each mobile session, the data collected from PM, RH, and T were sent to a free and
pen-source platform, Crowdmap, where the data were combined with geographic coordinates collected by GPS (Google
aps©) to generate heat maps that indicated where the PM concentrations were highest and lowest, making the device
mobile LCSs.
3
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2.3. Calibration of mobile LCSs and validation

The mobile LCSs for PM used in this study (Plantower PMS7005) were originally calibrated using a standard aerosol
ISO 12103 – A1, 2016), outdoors in the Arizona Desert (USA). The physical properties of this material and the climatic
onditions in the study area were different from those in the Riotinto mine. For this reason, some authors have highlighted
he importance of proper calibration prior to its use utilizing regulatory apparatuses and emulating workplace conditions
Giordano et al., 2021).

Prior to the start of the sampling campaign, a comprehensive calibration of the PM sensor Plantower PMS7003 was
arried out following the recommendations of previous researchers (Badura et al., 2018), the EPA (U.S. Environmental
rotection Agency, 2021a), and EU protocols (EU Working Group, 2010). This was done by means of an outdoor field
ampaign for 64 days (24 h per day, totalizing 1536 h) using two apparatuses located in an official air quality monitoring
tation belonging to the Andalusian government. The station is located at 55 km in straight line in the city of Huelva, which
resents the same climate conditions, due to availability of equipment, it was not possible to calibrate it in a closest area.
hus, mobile LCSs were measured simultaneously with (1) a beta attenuation 5014i model (Thermo Scientific, Franklin,
SA, UNE-EN 16450, 2017), with a resolution of 0.1 µg/m3, equipped with a smart heathy system. This is a piece of fixed-
ite monitoring equipment that offer continuous and real-time measurements of PM10 and PM2.5 concentrations with a
ime resolution of 1 s. (2) a regulatory (UNE-EN 12341, 2015) high-volume air sampler (MCV CAVF-PM1025, 30 m3 h−1,
arcelona, Spain) equipped with PM10 and PM2.5 Munktell quartz fiber filters that collect PM for 24 h. PM10 and PM2.5
oncentrations were determined in the laboratory following the gravimetric standard procedure (UNE-EN 12341, 2015).
The process of data treatment for calibration was the same as that used by some researchers (Zimmerman, 2022;

.S. Environmental Protection Agency, 2021b; Kang et al., 2017). It consisted of a time resolution transformation: data
rom mobile LCSs and beta attenuation devices are directly comparable because they have the same time resolution (1
); however, to make both comparable with the high-volume air sampler (MCV), which has a different time resolution
24 h), all 1 s measures from mobile LCSs and beta attenuation device needed to be averaged for the same 24 h period.

Afterwards, the quality of calibration was carried out via linear regression between (1) the mobile LCSs and beta
ttenuation device and (2) mobile LCSs and MCV. These two linear regressions were compared to the results obtained
y other researchers. Once approved, a calibration factor was extracted from mobile LCSs and MCV regressions. Owing to
his calibration factor, it was possible to correct the PM raw data directly measured by the mobile LCSs, thus obtaining
imilar results to those obtained by the regulatory apparatuses.
Finally, up to five goodness-of-fit statistical indicators were used to validate whether the corrected LCS PM10/PM2.5

oncentrations are more proxy for reality than the raw LCS concentrations (Table SM1). Researchers have previously
pplied all these to fine PM air sensors (Gressent et al., 2020; Wu et al., 2020). The indicators are the mean bias (MB),
ormalized mean bias (NMB), root mean square error (RMSE), normalized mean error (NME), and normalized root mean
quare error (NRMSE).
Another issue involving mobile LCSs is their behavior after multiple hours of use. PM measurements can worsen over

ime because of the effect of drift. In this respect, although studies by authors such as Mukherjee et al. (2017) showed
hat Plantower PMS7003 has a long precision even in the long term, others noticed that it can undergo damages that
ay affect the quality of the measurements in the long term under certain outdoor conditions (Bulot et al., 2019). In this
tudy, the drift was quantified for PM10 using the results from beta attenuation 5014i. Thus, following the EPA protocols
U.S. Environmental Protection Agency, 2021b), data were selected from the first and the last five days of the total 64
ays that the calibration lasted for. Differences were established through linear regression for the first and last five days
Unal-Palmira, 2019; U.S. Environmental Protection Agency, 2021b).

.4. Sampling campaign

The sampling campaign with the mobile LCSs was conducted for three years (January 2019–December 2021). In 2019,
9 samplings were carried out, corresponding to one per week and two during summer, which is a dryer season than
inter. In 2020, two samples were collected every week for a total of 110 samplings. In 2021, the frequency increased
o three per week for a total of 155 samples. Thus, 334 samples were collected over the three years. The condition of
o sampling during rainfall events was imposed in order to avoid the influence of rain that would distort results and
nterpretations.

Each sampling corresponded to a route across the mine with the mobile LCSs located on the side of a pickup truck
Fig. 1), ensuring that the particles suspended by driving do not reach the sensor. The route in the mining vehicle was
lways covered at a low speed (<30 km/h), which was the maximum speed allowed by the mining company. In this
ontext, Gressent et al. (2020) stated that up to 50 km/h, the motion of the vehicle does not affect the measurement of
he mobile LCSs. Higher speeds cause errors in the measurements, and speeds of more than 80 km/h contest the validity
f the data acquired. After each sampling, the mobile LCS is stored in a metal box at 20 ◦C to prevent deterioration of the
quipment.
The route consisted of a long-distance tour across a mine with a duration of 1 h. It crossed the main mining tracks,

ineral processing plants, berms, and spoil heaps of coarse and fine materials. When covering the route, pickup trucks
requently encountered operators performing typical mining activities, such as mining machine traffic, drilling, and loading
f ore and waste material. It is worth mentioning that the track may change slightly because the mine is constantly
volving and mining tracks are frequently getting modified. However, these areas, which were identified as the main
ources of atmospheric PM in a previous study (Boente et al., 2022), were always crossed.
4
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Fig. 2. (a) Intercomparison between mobile LCSs and beta attenuation 5014i (Reference). Average PM10 concentrations for 24 h. (b) Intercomparison
etween mobile LCSs and MCV CAVF-PM102 (Reference). Average PM10 concentrations for 24 h. (c) Intercomparison between mobile LCSs and MCV
AVF-PM102 (Reference). Average PM2.5 concentrations for 24 h. . (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

2.5. Data treatment

Hourly data for the meteorological parameters were obtained from the MeteoBlue© platform. MeteoBlue© is a
software that assembles meteorological data from different models (NEMSGLOBAL, ERA5, NEMS12 y NEMS4, ICON, among
others, Müller, 2021), from series ranging from 1984 to today through the premium package History+. The meteorological
station selected was Nerva (37.696◦N 6.550◦W, 336 m.a.s.l.), the one closest among those available to the Riotinto mine
(3 km). The spatial resolution is 30 km (between 1984 and 2007) and 4 km (from 2008 to now). Although the platform
can provide multiple meteorological parameters (e.g., T, precipitation, radiation), in this study, there were exclusively
extracted wind speed and wind direction. All data related to wind speed and direction were introduced in the statistical
package OpenAir (Carslaw, 2021; Carslaw and Ropkins, 2012), constructed with the integrated development environment
of RStudio (RStudio Team, 2020). OpenAir offers a rapid and versatile series of R scripts that provide graphical outputs of
time series for meteorological data, which can substantially support the interpretation of the study results. For the present
research, the following OpenAir commands were used to obtain different graphical outputs: calculate nonparametric
smooth trends (Function smoothTrend), diurnal, day of the week, monthly variation (timeVariation), pollution rose
variation (pollutionRose), and flexible scatter plots (scatterPlot). Additionally, a principal component analysis (PCA) was
performed using SPSS v.22 to study the relationship between these variables. As proposed for geochemical data (Reimann
and de Caritat, 2005), the varimax/orthogonal rotation was used to extract factors using the Kaiser/Gutmann criterion.

3. Results and discussion

3.1. Evaluation of mobile LCS monitoring in the mining environment

After calibration was performed as described in Section 2.3, first, the results for the intercomparison between the
mobile LCSs under examination and the apparatuses already installed (the beta attenuation 5014i device and the
regulatory MCV CAVF-PM1025 High-Volume Air Sampler) are shown (Fig. 2). At first glance, PM data corresponding
to calibrated data (green) overlap more with the reference (blue) lines than with the raw data (orange). Indeed, after
collating raw data, it was observed that, by default, the mobile LCSs underestimate the risk-providing concentrations that
are most of the time below those provided by official apparatuses. With the new calibration, this has been corrected.
5
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Table 1
Results of linear regression between mobile LCSs (PM2.5 Plantower PMS7003) and MCV CAVF-PM102 for PM2.5 filters.
Source Sensor Slope Intersection R2

Badura et al. (2018)
Plantower
PMS7003

PM2.5

3.57 −11.82 0.91
(AQ-SPEC, 2016) 1.35 −7.21 0.84
Unal-Palmira (2019) 0.56 −8.48 0.44
Frederick et al. (2020) Not provided Not provided 0.47
Mukherjee et al. (2017) 0.36 4.91 0.62
Own 0.71 −4.95 0.83

Table 2
Average 24 h concentration of PM10 for the raw and calibrated data in the reference equipment and the mobile LCSs
during the calibration. Deviations for goodness-of-fit statistical indicators for raw and calibrated data.
PM10 (µg/m3) Beta Atte. 24 h MCV 24 h

Reference (µg/m3) 22.9 40.2

Raw Calibrated Raw Calibrated

Mobile LCSs (µg/m3) 15.6 25.1 16.2 44.4

Statistical indicators Deviations

MB (µg/m3) −7.29 2.21 −24.0 4.25
NMB (%) −31.9 9.66 −59.8 10.6
RMSE (µg/m3) 11.3 10.5 27.8 18.4
NME (%) 36.8 36.5 59.7 38.2
NRMSE (%) 49.5 45.9 69.1 45.8

In this context, the results obtained from the calibration of PM2.5 were excellent when compared to the calibrations
erformed in other studies via linear regression (Table 1). For instance, the R2

= 0.83 for PM2.5 MCV CAVF-PM102
filters is the third best adjustment among other calibrations for the same sensor. These results are acceptable as it is a
comparison between equipment that measures everything that accumulates in the PM10/PM2.5 filters every second for
over 24 h. These differences are frequently attributed to climatic conditions. Malings et al. (2020) detected that RH, T, and
high concentrations of PM may negatively affect measurements by LCSs. Based on this, Magi et al. (2020) confirmed that
high RH may change the refraction indices of atmospheric PM and lead to their hygroscopic growth, inducing errors in
the measurements.

To evaluate how the calibrated data fit the real measure, goodness-of-fit statistical indicators were applied apart from
R2. For PM2.5, some international organizations involving air pollution, such as the EU (EU Working Group, 2010), the
United Kingdom (Breathe London, 2019), and the United States (U.S. Environmental Protection Agency, 2021a) have
delimited threshold errors for goodness-of-fit statistical indicators. These are summarized in Table SM2, where it can
be observed that the calibrated LCS values fulfill the objectives established in the USEPA recommendations for slope,
the intersection of the calibration line, R2, RMSE, and NRMSE statistical indicators (U.S. Environmental Protection Agency,
2021b). All the calibrated data were highly improved in comparison to the raw data. Therefore, this calibration was optimal
for PM2.5.

Regarding the calibration of PM10 measurements, Table 2 shows a comparison between the different statistical
indicators calculated using raw and calibrated data. The average concentration of PM10 for the calibrated data in the mobile
LCSs was a better proxy to those of the reference equipment than the raw data. Moreover, the deviations obtained for the
statistical indicators were lower for the calibrated data. According to Gressent et al. (2020), the following requirements
must be fulfilled with these statistical indicators: MB ≤ NMB ≤ RMSE ≤ NME ≤ NRMSE, to ensure a correct measure of
the concentration of PM10 by the sensor. This condition is fulfilled in this case: 4.25 ≤ 10.6 ≤ 18.4 ≤ 38.2 ≤ 45.8. Thus,
it is concluded that the calibration resulted in an improvement, and the calibrated data obtained will be similar to those
obtained by the reference equipment for PM10.

Once the measures of the mobile LCSs are precise, it is necessary to describe the drift that it undergoes after running
for hours. The drift assessment performed in this study for 64 days (1536 h) resulted in a reduction of 5.6% in PM10
concentrations during the last five days of the calibration campaign, concerning the first five. In the study of drift
performed by EPA (U.S. Environmental Protection Agency, 2021b), which lasted for 64 days (1536 h), researchers found
evidence of drift when comparing the first five days to the last five. In this case, it resulted in a decrease of 6.5% in the
concentration of PM. These results are similar to those presented here. However, the sampling campaign comprised 334
routes with an approximate duration of 1 h (total 334 h). Thus, assuming that the drift follows a linear decrease in time,
as suggested by (Unal-Palmira, 2019), the real PM concentrations during the last samplings of 2021 would be 1.2% lower
than those in the first samplings in 2019, an error that can be considered acceptable. Thus, additional correction of the
final data was performed in this respect.
6
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Table 3
Annual mean levels (January 2019–December 2021) for PM10 and PM2.5 obtained via mobile LCSs in the Riotinto mine.
Year Number of routes Duration PM10 (µg/m3) PM2.5 (µg/m3)

Mean Std RSD Min Max Mean Std RSD Min Max

2019 69 1 h 13 min 55 23 42 3 1042 25 11 44 2 270
2020 110 1 h 5 min 84 35 42 5 1578 35 11 33 4 304
2021 155 1 h 1 min 84 31 37 5 1588 32 11 35 4 280

2019–21 334 1 h 6 min 78 33 42 3 1588 32 12 37 3 304

3.2. Trends of PM10 and PM2.5 concentrations

The previous calibrations allowed corrections of the raw data obtained by the mobile LCSs. Hereafter, every result
corresponded to the accurate data found in the study area. The annual average PM10 and PM2.5 concentrations for each of
the years of study are summarized in Table 3. For PM10, the year 2019 registered mean concentrations of 55 µgPM10/m3,
number that increased by 55% during the next year, 2020 (rising up to 84 µgPM10/m3). This fact was consistent with

the increase in the production in the Riotinto mine: from 10.5 million tons in 2019 to 14.8 million tons in 2020 (ATYM,
2021). In 2021, even with a more intense sampling campaign, the mean concentration was equal to the previous year
(84 µgPM10/m3) in spite of the mine getting treated with more materials (15.8 million tons, ATYM, 2021), indicating a
better control of the PM. The maximum concentrations registered also increased from 1042 µgPM10/m3 in 2019 to 1588
µgPM10/m3 in 2021. For PM2.5, the trends were practically similar. The mean concentration in 2019 (25 µgPM 2.5/m3) was
lower than that in 2020 (35 µgPM 2.5/m3) and 2021 (32 µgPM 2.5/m3). However, the proportion of PM2.5/PM10 ranges
between 39%–45%. In the event of extreme or maximum concentration, this proportion diminishes to 17%–26%. This should
present low values because the finest particles are more hazardous to health.

With respect to the statistical reliability of the data, a standard deviation that was always regular and below the mean
was observed. The relative standard deviations were approximately between 33 and 44% for both PM10 and PM2.5, which
reveals consistency in the measures with the mobile LCSs. The extreme values appearing in the maxima can be therefore
considered to be punctual and limited to specific locations, which can be easily identified owing to the GPS features of
the mobile LCSs.

Additionally, Fig. 3 reveals the increase in PM concentrations over time using tendency diagrams. Box whisker plots
showing the variation by months and weekdays can be found in Supplementary Materials (Figures SM1, SM2 and SM3).
Obtaining all these figures would be unconceivable in the absence of a LCS. The one represented in Fig. 3a clarifies
the distribution of PM10 and PM2.5 throughout the study period. PM10 concentrations varied widely depending on the
onth. The maximum means for each year were found in July: 80 µgPM10/m3 in 2019, 100 µgPM10/m3 in 2020, and 95
gPM10/m3 in 2021. In this context, the diagram reveals that the concentrations of PM can be duplicated during summer
onths concerning the concentrations during winter months: approximately 40 µgPM10/m3 in all the years. Another
spect that Fig. 3a reveals is that the tendency of PM10 concentrations increased significantly from 2019 to 2020 and

remained stable during 2021, a fact that was mentioned before and was coincident with the intensification of production
of PM in mines. Moreover, the COVID-19 pandemic’s containment, which occurred in Spain during March–June 2020, did
not have an effect on the production of PM in this mine.

With respect to the concentrations of PM2.5, the tendency was similar to that of PM10 but on a smaller scale.
Fluctuations between summer and winter months still existed, but were less evident, and the data were generally more
consistent. Major peaks were also found in July. However, the increase in PM2.5 observed in 2020 and 2021 was not as
significant as that observed in PM10.

Taking advantage of the degree of detail that these LCSs can reach, it was possible to identify those months and days
where the production of PM is intensified (Fig. 3b). Thus, the months with the highest production of PM are months of
summer (June, July, and August) and those with the lowest are months of winter. Considering the days of the week, it
was found that the Riotinto mine produced a similar degree of PM by the years, around 70–100 µgPM10/m3 in 2020–2021
and 45–65 µgPM10/m3 in 2019.

Taking all these into consideration, it can be concluded that 2020 and 2021 were similar in terms of dust production,
and the mine will need to apply measures for dust abatement if levels of 2019 are desired, which is especially worrying
during the summer months. Considering the strong bond observed between PM and climatic seasons, it is worthwhile
to study certain climate variables associated with air pollution to deeply understand the reasons for these variations in
PM concentrations. Thus, the T and RH from the mobile LCSs and wind speed data from MeteoBlue© were compared
with the mean PM10 concentrations for each of the 334 routes. For this part of the study, no data of PM2.5 is used since
the coarsest material (PM10) is considerably more present and PM2.5 follows its same tendency, also in accordance with
previous results as well as other research studies (Boente et al., 2022; Sánchez de la Campa et al., 2020).

The comparative analysis started with factor analysis (PCA and varimax rotation) to assess the linkages between
variables (Table 4). PM10 appears in both Factor 1 and Factor 2, showing a positive correlation with T and wind speed and
a negative correlation with RH. This implies that high T, high wind speeds, and RH are favorable conditions for obtaining

high concentrations of PM10 in mines. However, for these results, it should be taken into consideration that although
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Fig. 3. (a) Tendency diagram for PM10 and PM2.5 for the whole period of 2019–2021. Each point represents the mean of the corresponding month
nd standard deviation is represented by vertical lines. (b) Monthly and weekday distribution of PM10 and PM2.5 for each year.

Table 4
Factor loadings and percentage of variance explained by the varimax-rotated factors extracted by
principal components and communalities.
Variable F1 F2 Communality

Mean T 0.912 −0.101 0.842
Mean RH −0.814 0.075 0.669
Mean PM10 0.539 0.455 0.498
Mean wind speed −0.149 0.902 0.836

% Variance explained (Accumulated) 45.264 71.119 –

the percentage of variance explained is relatively high (71%), the communality and the factor loadings for PM10 are low
0.498).

A visual representation of this finding is shown in Fig. 4. Each point in the figure represents a single route. The colors
f the climate variable and the position over the y-axis represents the concentration of PM10. The highest concentrations
ere reached during the months with the highest T (Fig. 4a, red points), whereas the majority of routes covered on cold
ays (blue points) had concentrations below 100 µg/m3, with some exceptions in 2021. A better definition is appreciated
hen considering the RH (Fig. 4b). Routes covered under a high value of RH (>80%) tended to have PM10 concentrations

of approximately 50 µg/m3, whereas the highest concentrations were reached under a low RH value. Discussing the effect
of RH on particles, Badura et al. (2018) stated that the impact of high relative humidity level was observed for LCS above
80% RH. Apart, Jayaratne et al. (2018) confirmed that it is in conditions close to the 100% RH, when the formation of fog
or mist may occur and the water droplets may be detected as particle by the mobile LCS. In the present study, values
tend to be below 80% (Fig. 4b), so the inference of RH is minimal. Finally, the wind speed diagram (Fig. 4c) showed that
high concentrations of PM10 were reached when the wind speed was high. This is because strong winds cause PM lifting,
thus provoking a dispersion effect of particles.
8
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Fig. 4. Mean PM10 dispersion diagram during 2019–2021 for (a) temperature, (b) relative humidity, and (c) wind speed. Each point represents a
route. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.3. Spatial distribution of PM10 and PM2.5

The mobile LCS performs measurements every second. This allows the concentration of PM to be mapped to assess
here higher concentrations of PM10 and PM2.5 are located and support the search for solutions to reduce emissions. Fig. 5
hows the mean concentrations of PM10 and PM2.5, respectively, for each year and all periods. Pollution roses represent
he main direction of the wind and the dispersion of PM considering their concentration.
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Fig. 5. (a) to (d): Spatial distribution for PM10 in different periods of study; (e) to (h): Spatial distribution for PM2.5 in different periods of the study.
ind roses for the periods of study are also included.

Based on the mean distribution of PM10 (Fig. 5(a) to (d)), it was observed that the concentrations generally surpassed
50 µg/m3 in practically the entire mine area, with some areas surpassing 100 µg/m3. Among these are the spoil heap
f fine materials (a), mining pit (b), mineral processing plant (c), and main mining tracks (d). Analyzing every year,
020 was the year with the highest surface area, when concentration surpassed 100 µgPM10/m3. 2021 was similar, and

both years presented higher PM concentrations than 2019 in practically the entire mine area. The maps were very
10
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similar for the entire period. With respect to PM2.5 (Fig. 5(e) to (h)), as it has been previously observed, the pattern
is the same as that of PM10 but with lower concentrations. There were practically no changes during the three years,
lthough the concentrations were moderate (20–50 µgPM 2.5/m3) and practically disappeared within the limits of the

mine (<20 µgPM10/m3), which implied a low dispersion of the finest particles outside the mine. In this context, the
significantly higher concentrations of PM10 in comparison with PM2.5 reveal that coarse particles are predominant in the
study area. Although further conclusions about PM distribution cannot be obtained without the use of a cascade impactor,
all these values are far from those that can be obtained by haulage in underground metallic mining, which can surpass
350 µgPM10/m3 (Paluchamy and Mishra, 2021).

Concerning this dispersion, winds were predominant in the W-SW direction during the entire study period. Thus, the
majority of PM10 and PM2.5 will travel toward these ranges of directions in the abovementioned high concentrations. In
this way, the town of Minas de Riotinto is located, with a population of approximately 4000 inhabitants.

Thus, the predominant concentrations within the mine of Riotinto are high for PM10 (approximately 50–100 µg/m3)
and moderate for PM2.5 (20–50 µg/m3). To the best of the authors’ knowledge, mobile LCSs have not been previously
applied in mines. Subsequently, it is not possible to offer results from other similar studies to discuss and give readers a
global idea of the magnitude of the concentrations in this source of pollution. However, studies implementing mobile LCSs
in other fields have shown interesting results. For instance, forest fires can emit a daily mean exceeding 100 µgPM 2.5/m3

(Sayahi et al., 2019). Another field study performed with a network of mobile LCSs stated that spatiotemporal variations
in the large city of Xi’an (China) may range between 2 and 413 µgPM 2.5/m3 (Gao et al., 2015). In another city in China
(Cangzhou), a network of mobile LCSs coupled with taxis allowed the mapping of pollution in the entire city and obtained
values surpassing 250 µgPM 2.5/m3 (Wu et al., 2020).

The mine in Riotinto, as shown in the previous maps (Fig. 5), is far from reaching the majority of the levels mentioned
above. The harm the mine can cause is not attributable to excessive PM concentrations but to the permanent activity and
the punctual extreme peaks of PM that specific mining operations can produce, the point where mobile LCSs could play
a key role with their constant surveillance and their competitive quality/price ratio. To reduce the PM concentrations in
those identified concerning locations, measures like punctual irrigation through CaCO3-neutralized water from mining
processes, or creating a film of impervious material to retain dust via bitumen from polymers or Portland cement can be
used to reduce the impact of PM pollution in surface (Darling, 2011). However, these concentrations were studied within
the surface of the mine. In future research, these types of mobile LCSs can be transported using UAVs, and the scattering
at different altitudes can be addressed to evaluate the final concentrations that reach the neighboring populations.

4. Conclusion

The use of mobile LCSs has increased in recent times because it allows the permanent monitoring of air quality
parameters in known coordinates at a very low cost. Their utility has been previously proven in multiple applications
but never in open-pit mining, which is a prominent source of PM. In this study, atmospheric pollution caused by PM10
and PM2.5 was addressed by means of mobile LCS after a comprehensive calibration that included intercomparison with
MCV high-volume air sampler and beta attenuation devices. With the calibrated mobile LCS, we stated that it is possible
to detect the location and time of peak concentrations, as well as to perform tendency diagrams to study the evolution
of PM during different seasons, months, or days; thus, locating points of maximum dust production with high precision.
In these areas, measures for dust abatement, such as water irrigation, may be introduced.

Moreover, mobile LCSs frequently measure other parameters, such as T or RH. This information, statistically treated
together with other climate data, such as wind speed or wind direction, allows to discern the climate conditions that
encourage the appearance of the highest concentrations, which is undoubtedly useful for preventing days when maximum
concentrations may compromise the health of humans. In the case of Riotinto, favorable conditions were high T, low RH,
and high wind speed. Finally, the GPS system integrated in the mobile LCSs allowed the mapping of the spatial distribution
of PM10/ PM2.5 and to identify those areas of the mine that are the highest emitters of PM. In Riotinto, these were the
mining pit, mineral processing plant, spoil heap of fine material, and main mining tracks. Moreover, it was possible to
assess the escape of fugitive emissions by combining data from mobile LCSs and meteorological information to assess the
impact of the mine on nearby populations. In this study, the scattering of PM was predominantly in the W-SW direction,
with concentrations primarily ranging between 50–100 µgPM10/m3 and 20–50 µgPM 2.5/m3.

This vast amount of information was gathered with a degree of detail that would be unaffordable with the regulatory
methods of air quality monitoring. In this context, with the proper calibration mobile LCSs can show results in the same
level to other more precise air quality monitoring devices, such as a high-volume air sampler or a beta attenuation
equipment. However, the function of mobile LCS is not substitute but to complement their results by providing measures
every second with GPS functionality, which allows the fast identification of concerning areas in such a way this novel
application might be very useful for mining companies.

All things considered, mobile LCSs have strong potential for permanent dust control in open-pit mining. They can
operate as an early warning system to act against extreme events or can be used to study areas where the concentrations
of PM are high to implement measures for dust abatement, such as irrigation or ventilation, and to protect the health of
workers and people residing in the surroundings of the mine.
11
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