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Abstract: Since the emergence of COVID-19, most health systems around the world have experienced
a series of spikes in the number of infected patients, leading to collapse of the health systems in
many countries. The use of clinical laboratory tests can serve as a discriminatory method for disease
severity, defining the profile of patients with a higher risk of mortality. In this paper, we study the
results of applying predictive models to data regarding COVID-19 outcome, using three datasets after
age stratification of patients. The extreme gradient boosting (XGBoost) algorithm was employed as
the predictive method, yielding excellent results. The area under the receiving operator characteristic
curve (AUROC) value was 0.97 for the subgroup of patients up to 65 years of age. In addition, SHAP
(Shapley additive explanations) was used to analyze the feature importance in the resulting models.
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1. Introduction

The beginning of the SARS-CoV-2 pandemic at the end of 2019 resulted in changes in
people’s way of life, their relationships with others and changes in work, and above all it
has posed and currently continues to constitute one of the greatest societal challenges of
our time. In this sense, the health crisis is noteworthy, not only due to the mortality of the
coronavirus, but also because of the indirect consequences it has generated, since many
patients have been unable to be diagnosed and treated for other pathologies. We must also
add the economic consequences that this pandemic is causing in every country [1].

The coronavirus occurs in many patients, initially presenting with respiratory disease,
which in some cases later derives in respiratory failure and death in a significant percentage
of those infected. Respiratory involvement is not the exclusive symptom of COVID-19,
since many other patients develop a severe acute respiratory syndrome, which occurs with
an increase in pro-inflammatory cytokines, which can cause systemic inflammation with
multi-organ failure and death [2]. On the other hand, a significant percentage of patients
develop coagulation alterations, entering a prothrombotic state; these patients undergo
thrombi in the lungs, brain and elsewhere in the body, which on many occasions lead to
the patient’s death [3].

Since the emergence of COVID-19, most health systems around the world have ex-
perienced a series of spikes in the number of infected patients. This exponential increase
in cases has caused an unparalleled collapse of the health systems in many countries.
Healthcare systems have come under pressure to such an extent that it has been necessary
to choose which patients are candidates for treatment and which are not. In addition, in the
initial moments of the pandemic rapid diagnostic methods were practically unavailable,
leading to several patients not receiving adequate treatment [4].

To prioritize the treatment of infected patients, the World Health Organization (WHO),
together with the USA’s Center for Disease Control and Prevention (CDC), defined the
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profile of patients with a higher risk of mortality. The risk group was defined as patients
over 65 years old, those who lived in a nursing home and people with at least one of the
following health problems: chronic lung disease, severe heart disease, obesity, diabetes,
hypertension, kidney failure, liver disease or patients with immunodeficiency [5]. This
classification of risk factors has evolved, making it necessary to stratify according to
patient’s age.

Machine learning is a branch of artificial intelligence that allows machines to make
systems capable of identifying patterns in data to make predictions. It has been successfully
applied to tasks related to healthcare [6,7]. By applying machine learning techniques to
clinical laboratory data from patients’ hospital stays [8], we developed mortality prediction
models after stratification of patients according to age (up to 65 years, 65–80 years and
older than 80 years). For each age group we also studied the influence of laboratory
parameters on the model predictions. This enables healthcare professionals to provide
more personalized attention to patients, focusing on possible complications depending on
the age group, which translates into a better evolution of the disease in these patients.

The rest of this paper is organized as follows. The Section 2 gives a description of
the data and methods employed. Sections 3 and 4 detail and discuss the results obtained.
Finally, some concluding remarks are stated in Section 5.

2. Materials and Methods

In this section, the dataset used in this work is described first. Next, a detailed
description of the machine learning techniques employed is provided.

2.1. Materials

In this study, we used anonymized clinical data provided by a private Spanish hospital
group (HM Hospitales), which has facilities mainly in the Autonomous Communities of
Madrid and Galicia, and also in the city of Barcelona. This group made its data available to
the scientific community for research purposes.

Using these electronic medical records, we used the available data of patients admitted
with a possible diagnosis of COVID-19 between March and June 2020. From all the data
tables provided, the following were selected:

• A main table containing specific data on patient hospitalization (2547 records).
• A table of laboratory data with the results of different tests performed on patients both

on admission to the hospital and during their hospitalization (584,136 records).

In the main table there is an ‘Outcome’ feature, with the values: ‘Death’ (15.0%),
‘Home’ (77.2%), ‘Transfer to hospital’ (3.7%), ‘Transfer to socio-sanitary center’ (2.1%),
‘Voluntary discharge’ (0.1%) and without value (1.9%).

2.2. Methods
2.2.1. Data Preprocessing

As an initial step in any machine learning procedure, a data preprocessing stage was
performed. The information from the two tables was preprocessed as follows:

• Selection of patients with a confirmed diagnosis of SARS-CoV-2 with an ‘Outcome’
value of ‘Home’ or ‘Death’, to analyze the data likely related to the patient’s survival.

• Combination of data from both tables using the patient ID. Since patients may present
a variable number of results for each laboratory parameter, the mean value was
calculated and assigned to each of them.

• Due to the considerable number of missing values in the laboratory parameters, a
filtering process was carried out both in the records and the features to obtain a clean
dataset with no missing values. In this work, for the sake of uniformity and simplicity,
we used the following procedure: first, we eliminated those features that had missing
values in more than 10% of all records; subsequently, only those records with values
in the set of features selected in the previous step were selected.
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• The values of the discrete features were transformed into numerical values. Among all
the features used in this study, the only two variables with discrete values were ‘Sex’
and ‘Outcome’, which are the classes to be predicted. Both features have two possible
values, so they were transformed into binary values.

2.2.2. XGBoost

The algorithm XGBoost is a gradient boosted decision tree model presented by Chen
and Guestrin [9]. It offers parallel tree boosting to address a wide range of data science
problems quickly and accurately. It is an open-source software library which provides a
gradient boosting framework designed to be highly efficient and flexible. This algorithm
stands out due to its ability to produce accurate predictions which are often comparable to
or better than those produced by more computationally complex models.

This method trains decision trees sequentially and adds a new decision tree to the
previous one if it improves the objective function’s value. During training, XGBoost
produces several “weak” prediction models sequentially (decision trees), and then it uses
the effects of the previous model to construct a “stronger” model with improved predictive
strength and greater stability in its results.

This algorithm aims to minimize the objective functions by adjusting the parameters in
each tree. An optimization algorithm is used to select which tree to add to create a stronger
model. Each model is compared to the one before it. When a new model performs better, it
is added to the strong model. If, on the other hand, the outcomes are poor, it is returned to
the best previous one and updated in a different way.

This method is repeated until the gap between successive models is negligible, in-
dicating that we have found the best possible model. XGBoost has been successfully
applied to medicine tasks, such as prediction of diabetes risk [10], hypertension [11],
drug response [12], smoking-induced diseases [13], lung cancer [14], mortality in elderly
patients [15] or bone mass loss [16].

In this study, all experiments were performed using the XGBoost library for Python [17].

2.2.3. Feature Importance

A crucial feature in machine learning research is the interpretability of the results. In
the field of medicine, this characteristic is paramount for healthcare professionals to be
able to draw conclusions and make decisions based on the results obtained using machine
learning algorithms [18]. Machine learning interpretability can be defined as the degree to
which the user can understand and interpret a prediction made by a model [19].

In this paper, we used the SHAP framework to assist in interpreting machine learning
models [20]. SHAP is based on game theory [21] and enables the identification and ranking
of the features that most influence the prediction model, selecting the optimal set from
these features.

This technique can assign values to the importance of features in complex machine
learning models, providing an interpretable prediction for a test sample. SHAP values
have been proposed as a unified metric of feature significance, since they assign an impor-
tance value to each feature that reflects the impact of including that feature in the model
prediction, and they can be calculated according to (1):

∅i(v) = ∑
S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(v(S ∪ {i})− v(S)) (1)

Using SHAP with XGBoost has an additional advantage, which is the possibility of
using TreeSHAP, a quick variant of SHAP for tree-based machine learning. It enables the
exact computation of Shapley values in polynomial time [22].

Figure 1 outlines the procedure used in this work. The importance of a feature is
calculated as the average of the absolute SHAP values for all the instances of the dataset.
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Figure 1. Diagram depicting the process for calculating feature importance according to SHAP values
for each feature in each instance of the dataset.

2.2.4. Feature Selection

In statistics and machine learning, feature selection involves the procedure to select
the subset of relevant features (variables) and use it to build a model. Some possible
advantages that can derive from a reduction in the features used include: a reduced
processing time to train the model, a simplified model that is more interpretable and an
improved generalization capability in the model.

It is important to consider that there may be some features that may be redundant or
irrelevant, meaning that they can be omitted without affecting the quality of the model
obtained [23].

In this work, a simple feature selection technique was chosen, which can be considered
within the category of wrapper methods, with the aim of reducing the number of features
used without affecting the performance of the model. Moreover, in the field of medicine,
where this study is developed, considering a smaller number of features has an additional
advantage in this case. Because laboratory test results are involved, the time and cost
associated with analytical tests can be reduced, and medical professionals can focus their
efforts on the characteristics that most influence the model’s output.

The procedure involved uses the feature importance values, which in this work are
related to the SHAP values, to select a subset of features. Specifically, we selected the
12 features with the highest feature importance value in a first model (intermediate model)
after performing a hyperparameter tuning process. Then, using only these 12 features, the
hyperparameter tuning process was repeated to obtain the final model. Figure 2 shows a
diagram of the described procedure.
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2.2.5. Hyperparameter Optimization

During the training phase of a predictive model, it is generally necessary to fix the
values of certain parameters (hyperparameters). Among the variety of existing parameters
in XGBoost, some of the most relevant ones were considered for adjustment, leaving the rest
at their default values. The six parameters selected for tuning affect both the number and
structure of the gradient boosted trees (n_estimators, max_depth, and min_child_weight),
as well as the learning process itself (learning_rate, subsample, and colsample_bytree).
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The values for these hyperparameters were chosen using hyperopt, a Python library
for distributed hyperparameter optimization [24]. The metric used in the optimization was
the AUROC (area under the receiving operator characteristic curve), and the algorithm
used was the tree-structured Parzen estimator (TPE). It was carried out in 1000 tuning
cycles, and in each tuning cycle 10-fold stratified cross-validation was used to estimate the
value of the AUROC.

2.2.6. Evaluation Metrics

In order to evaluate the performance of the predictive models obtained, the AUROC
value was calculated, based on its ROC (receiver operating characteristics) curve, which
plots the true-positive rate against the false-positive rate. In addition, the accuracy value
was calculated (2), and also, by determining the cut-point that maximizes the Youden
index (3), the associated sensitivity (4) and specificity (5) values [25].

accuracy =
true positives + true negatives

true positives + f alse positives + true negatives + f alse negatives
(2)

sensitivity =
true positives

true positives + f alse negatives
(3)

speci f icity =
true negatives

true negatives + f alse positives
(4)

J = sensitivity + speci f icity− 1 (5)

The calculation of these metrics was carried out using the bootstrap method, which
iteratively resamples a dataset with replacement [26], and goes through 200 iterations for
this purpose.

3. Results

After the initial preprocessing phase, data from 1823 patients were selected. Given
that this study focuses on comparing results according to age subgroups, the resulting
dataset was divided according to the patients’ age. Thus, three datasets were obtained: the
first with patients under 65 years of age, the second with those between 66 and 80 years of
age and the third with those over 80 years of age.

Table 1 shows information about these datasets, detailing the distribution of patients
according to ‘Sex’ and ‘Outcome’. The number of selected features was 32, corresponding
to age, sex and laboratory test results. Table A1 in Appendix A provides the features
corresponding to laboratory tests, together with their units and reference values.

Table 1. Distribution of patients according to ‘Sex’ and ‘Outcome’.

Sex Outcome
Dataset Patients Male Female Home Death

Age (-,65] 798 532 (66.6%) 266 (33.3%) 769 (96.4%) 29 (3.6%)
Age (65,80] 623 377 (60.5%) 246 (39.5%) 518 (83.1%) 105 (16.9%)
Age (80,-) 402 205 (51.0%) 197 (49.0%) 274 (68.2%) 128 (31.8%)

3.1. Evaluation of the Models

In order to evaluate the final models obtained, we used the bootstrap technique,
calculating the average value for the different metrics described above. Table 2 shows
the results obtained for each of the established age subgroup. For all three datasets, high
values were obtained for all measurements, all of them exceeding the AUROC value of 0.93.
The model obtained from the dataset of the age subgroup up to 65 years was the one that
obtained the best result in all the measures, highlighting its 0.97 AUROC value. The results
show the robustness of the model for all the age subgroups. Figure 3 illustrates the ROC
curves corresponding to each age subgroup.
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Table 2. Results for the evaluation metrics in the final models.

Model AUROC Accuracy Youden Sensitivity Specificity

Age (-,65] 0.967 0.980 0.892 0.951 0.941
Age (65,80] 0.960 0.918 0.844 0.950 0.894
Age (80,-) 0.932 0.871 0.752 0.873 0.879
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As described in Section 2.2.5, a tuning process was performed to find the optimal
values for some of the hyperparameters used by the XGBoost algorithm. As can be seen
in Table 3, the values obtained differ for each model, adapting to the nature of the data in
each dataset. As can be seen, the simplest model, in terms of the number of trees used and
their depth, is the one obtained for the over-80 subgroup.

Table 3. Values for the XGBoost hyperparameters of each model after tuning.

Hyperparameter Age (-,65] Age (65,80] Age (80,-)

n_estimators 130 140 100
max_depth 5 6 2

min_child_weight 3 10 5
learning_rate 0.132 0.185 0.285

subsample 0.972 0.713 0.949
colsample_bytree 0.200 0.383 0.214

3.2. Feature Selection

To evaluate the effect of the feature selection process described in Section 2.2.4, a test
of the models’ performance in the process was carried out. For this purpose, we compared
the AUROC and accuracy values in the intermediate model (with all variables) and in the
final model (with 12 variables), using the bootstrap technique to calculate them. Table 4
shows the mean values obtained together with a confidence interval of 95%. It can be seen
that performance improved in all age subgroups after performing the feature selection
process. Thus, having fewer features, the models are more interpretable and, in addition,
present better values for the quality measures used.



Healthcare 2022, 10, 2027 7 of 14

Table 4. Evaluation of the models before and after the feature selection process. For each metric,
mean value and 95% confidence interval are shown.

Before Feature Selection After Feature Selection
Model AUROC Accuracy AUROC Accuracy

Age (-,65] 0.957
(0.883–0.996)

0.978
(0.959–0.993)

0.967
(0.917–0.997)

0.980
(0.966–0.993)

Age (65,80] 0.957
(0.933–0.979)

0.916
(0.884–0.941)

0.960
(0.935–0.979)

0.918
(0.888–0.943)

Age (80,-) 0.926
(0.885–0.962)

0.867
(0.809–0.914)

0.932
(0.885–0.966)

0.871
(0.825–0.916)

3.3. Feature Importance

One of the main objectives of this study is to obtain predictive models with optimal
values for quality measures that are, in turn, easily interpretable by healthcare professionals.
In general, the models obtained using predictive machine learning algorithms are presented
as black boxes that are difficult to interpret and, therefore, it is not possible to know which
variables or features have the greatest influence on the model.

For this purpose, the present study included a process to obtain the most relevant
features for the prediction of the ‘Outcome’ feature, based on the calculation of the SHAP
values for each feature. Figure 4 shows the 12 features that most influence the models
obtained for each age subgroup. It is noteworthy that the significance of the features, which
mainly represent different laboratory measurements performed on patients, are different
for each subgroup. Thus, the LDH feature is the most relevant in the (-,65] and (65,80]
subgroups, and yet the most important feature in the (80,-) subgroup is the CRP. In the case
of D-Dimer, it is the second most relevant feature in the (-,65] subgroup, and yet it ranks
seventh in the (65,80] subgroup and is not among the 12 most relevant in the (80,-) subgroup.
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4. Discussion

SARS-CoV-2 has produced an increase in mortality due to COVID-19. This excess
mortality has been very well defined in those places where the healthcare system collapse
has been more evident and has occurred much more quickly. In Italy, we have found that
in the north of the country, where the pandemic began earlier, the excess mortality was
much higher than in the areas of the country where there was time to establish prevention
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and protection measures for the population [27]. In Spain, this became evident in places
with the highest population density, such as Madrid and Catalonia, as well as in regions
with an older population.

The need to find an explanation for the aforementioned excess mortality has led to the
stratification of the population according to different variables in order to explain higher
mortality rates in each group. The first population groups that best explained the excess
mortality were sex and age [28]. It is currently known that men have a higher mortality
rate compared to women. This is due to different immunological mechanisms. It is true
that the infection rate is the same in men and women, but later, the body’s physiological
response to the virus is different depending on sex. In this sense, women display a more
effective activation of the immune system. This means that women’s systems have more
effective and faster clearing mechanisms for the virus than those of men. In men, the
immune system undergoes a dysregulation when it comes into contact with the virus more
frequently than in women, which produces a pro-inflammatory state and an increase in
circulating cytokines in the blood, and as a consequence an acute inflammatory syndrome
occurs with the consequent increase in mortality in this group [29]. If we add to this
theory that men have a higher prevalence of cardiovascular disease, it increases the risk of
mortality. If we stratify by age, it is logical to think that the older the patient, the higher
the mortality, as occurs in most infectious diseases. Therefore, at an older age, mortality
increased significantly [30]. Age combined with other parameters will make it possible to
make a better prediction of mortality in these groups and therefore improve treatment [31].
If the risk of mortality as a function of age is divided by sex, we see that men present higher
mortality than women in all age groups [32].

It is clear that stratification by age and sex is very important to understand how
other factors can influence COVID-19 mortality. The individual risk factors, among which
cardiovascular risk factors and diabetes stand out, will enable an approximation of the
mortality risk for each individual [33].

Following the recommendations to stratify patients according to age, the proposed
model includes the laboratory parameters obtained from patients upon entering the hospi-
tal. These parameters have made it possible to better understand why mortality is higher
in each of the age groups, and, therefore, to carry out a treatment directed towards these
alterations. In Figure 4, you can see the laboratory parameters that have been considered
more clinically significant, in terms of patients who died compared to those who were
discharged. As it can be seen in Table 5, all the comparisons using Mann–Whitney tests are
statistically significant except in the case of creatinine in those up to 65 years of age and
ALT in those over 65 years of age.

Table 5. Results for Mann–Whitney tests (p-values).

Feature Home (-,65] vs.
Death (-,65]

Home (65,80] vs.
Death (65,80]

Home (80,-) vs.
Death (80,-)

ALT <0.01 0.57 0.11
AST <0.01 <0.01 <0.01

Creatinine 0.14 <0.01 <0.01
CRP <0.01 <0.01 <0.01

D-Dimer <0.01 <0.01 <0.01
Glucose <0.01 <0.01 <0.01

Platelets count <0.01 <0.01 <0.01
LDH <0.01 <0.01 <0.01

Lymphocytes <0.01 <0.01 <0.01
Sodium <0.01 <0.01 <0.01

Urea <0.01 <0.01 <0.01

Figure 5 shows boxplots of LDH among patients who die and those who are discharged
according to age group. It is noteworthy that in all age groups there is a clear difference
between the group that dies and the one that is discharged, except in the group over 80



Healthcare 2022, 10, 2027 9 of 14

years of age. Both in the under-65 group and in the 65–80-year-old group, LDH is the
laboratory variable that best explains mortality; however, in the group over 80 years of age,
it is the second one, below CRP. It has already been established that laboratory tests better
predict the severity of COVID-19 infection, with biomarkers such as D-Dimer, CRP and
LDH considered as the most important in the initial screening of patients infected with
COVID-19 when they visit a hospital. In this sense, the D-Dimer is the most important
parameter to screen in young patients; it can even be performed in emergency units when
patients are classified according to severity upon arrival [34].
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Figure 6 shows the corresponding boxplots for D-Dimer, and according to the results
obtained using our models, Figures A1–A3 in Appendix A show the boxplots with sig-
nificant variables regarding mortality according to age groups. In addition to LDH, the
importance of CRP in the over-80 age group is noteworthy. The D-Dimer is relevant in the
under-65 age group, and platelet count is important in the 65 to 80 age group.

Furthermore, making a more exhaustive diagnosis will improve the prognosis of these
patients, as the treatment will be better and more targeted, reducing the excess mortality
from COVID-19 in each of the age groups. In younger patients (<65 years), establishing a
treatment based on D-Dimer levels will improve the prognosis for these patients. Therefore,
the benefit of establishing treatment with Enoxaparin or Apixaban will decrease mortality
in those patients who have a D-Dimer greater than 1000 pg/L, compared to those patients
with a D-Dimer value lower than 1000 pg/L [35]. However, in older patients, in whom
inflammation measured by CRP is the best predictor of mortality, treatment should be
directed towards blocking the immunological mechanisms that increase this inflammatory
reaction, such as corticosteroids or IL-6 blockers (Tocilizumab or Sarilumab). The increase
in therapeutic options will improve COVID-19 survival in the short term, and having
successful treatments based on the risk of mortality will facilitate the work, until vaccines,
in the long term, reduce mortality [36].

Having tools that allow a rapid diagnosis of COVID-19 through rapid tests such as
real-time PCR in saliva [37], together with predictive models that use laboratory parameters
upon arrival to the emergency room or medical center, will enable a quicker classification of
patients according to their propensity to complications. Thus, patients will benefit from a
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more personalized treatment that will be established much earlier. All of this will translate
into a reduction in COVID-19 mortality.
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5. Conclusions

This work presents a machine learning analysis of data regarding COVID-19 outcome.
Using age-stratified data, three different predictive models were trained and evaluated,
mainly employing as predictor features the patients’ laboratory test results.

By employing the XGBoost method, excellent results were obtained after an evaluation
using the bootstrap method on several performance metrics, showing high accuracy to
predict a patient’s outcome. In addition, the importance of the features used in each of
the three models was analyzed using SHAP, and differences between the three age groups
were found.
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Abbreviations

ALT alanine aminotransferase
AST aspartate aminotransferase
AUROC area under the receiving operator characteristic curve
CRP C-reactive protein
LDH lactate dehydrogenase
MCH mean corpuscular hemoglobin
MCHC mean corpuscular hemoglobin concentration
MCV mean corpuscular volume
MPV mean platelet volume
RBCs red blood cells
SHAP Shapley additive explanations
XGB XGBoost, extreme gradient boosting

Appendix A

Table A1. Units and reference values for the clinical lab features in the dataset.

Feature Units Reference Value

ALT U/L <40
AST U/L <40

Anisocytosis coefficient % 11.5–14.5
Basophils % 0–1

Basophil count 1 × 103/µL 0–0.1
CRP mg/L <5

Creatinine mg/dL 0.6–1.0
D-Dimer ng/mL <500

Eosinophils % 2–7
Eosinophil count 1 × 103/µL 0.1–0.6

Glucose mg/dL 70–105
Hematocrit % 40–54

Hemoglobin g/dL 13.5–17.5
LDH U/L 120–230

Leukocyte count 1 × 103/µL 4.4–11.3
Lymphocytes % 20–48

Lymphocyte count 1 × 103/µL 1.2–3.4
MCH pg 28–33

MCHC g/dL 33–36
MCV fL 80–95
MPV fL 7.4–10.4

Monocytes % 1–11
Monocyte count 1 × 103/µL 0.1–1

Neutrophils % 40–75
Neutrophil count 1 × 103/µL 1.5–7.5

Platelets count 1 × 103/µL 150–450
Potassium mmol/L 3.5–5.1

RBCs 1 × 103/µL 4.1–5.9
Sodium mmol/L 135–145

Urea mg/dL 5–50
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