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a b s t r a c t

In this paper we consider a 3D three-parameter unfolding close to the normal form of
the triple-zero bifurcation exhibited by the Lorenz system. First we study analytically
the double-zero degeneracy (a double-zero eigenvalue with geometric multiplicity two)
and two Hopf bifurcations. We focus on the more complex case in which the double-
zero degeneracy organizes several codimension-one singularities, namely transcritical,
pitchfork, Hopf and heteroclinic bifurcations. The analysis of the normal form of a
Hopf-transcritical bifurcation allows to obtain the expressions for the corresponding bi-
furcation curves. A degenerate double-zero bifurcation is also considered. The theoretical
information obtained is very helpful to start a numerical study of the 3D system. Thus,
the presence of degenerate heteroclinic and homoclinic orbits, T-point heteroclinic loops
and chaotic attractors is detected. We find numerical evidence that, at least, four curves
of codimension-two global bifurcations are related to the triple-zero degeneracy in the
system analyzed.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is familiar that the dynamics exhibited by a three-dimensional autonomous system can be extremely complicated.
he best known example and one of the most studied is the Lorenz system [1,2]. Although it was derived from a simple
odel of convection in the atmosphere, it also appears in many other fields (see, for instance, [3–11]). Due to their physical
eaning, in most cases, its three parameters take positive values. However, in some situations, it also makes sense for

hem to be negative (see, for example, [6,7]). Therefore, it is interesting to consider that the three parameters can take
ny real value.
Despite the many works dedicated to knowing and explaining its extraordinarily complex dynamical behavior (for

nstance, we cite some of them devoted to chaotic behavior [12–18], heteroclinic loops called T-points [19–21], manifolds
tudy [22–24], invariant algebraic surfaces [25,26] and resonances and periodic orbits [27,28]; see also references therein)
here are still many aspects to be understood. Although numerical tools are essential to be able to carry out its study, the
nalysis of the local bifurcations of the equilibria provides valuable initial information. In this way, the full analysis of the
itchfork, Hopf and Bogdanov–Takens bifurcation exhibited by the origin of Lorenz system has already been carried out
see, for instance, [29–32]).

∗ Corresponding author.
E-mail address: ajrluis@us.es (A.J. Rodríguez-Luis).
ttps://doi.org/10.1016/j.cnsns.2022.106482
007-5704/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cnsns.2022.106482
http://www.elsevier.com/locate/cnsns
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2022.106482&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ajrluis@us.es
https://doi.org/10.1016/j.cnsns.2022.106482
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Algaba, M.C. Domínguez-Moreno, M. Merino et al. Communications in Nonlinear Science and Numerical Simulation 111 (2022) 106482

o
f
z

However, the study of the Hopf-pitchfork and the triple-zero degeneracies presents an additional difficulty since the
rigin is not an isolated equilibrium. In this case, it would be necessary to adapt the standard techniques of normal
orms of the reduced system on the center manifold. This complication has encouraged us to start the study of the triple-
ero bifurcation for systems invariant to the change (x, y, z) → (−x, −y, z) (symmetry exhibited by the Lorenz system),
considering the corresponding normal form [33].

The triple-zero bifurcation is of codimension three when the eigenvalue has geometric multiplicity two. The study of
this case, both in systems without symmetry (such as Rössler’s) and in Z2-symmetric systems (such as Chua’s) illustrates
the richness and complexity of the dynamics that appears as a consequence of this degeneracy (see [34–36] and references
therein). However, if the triple-zero eigenvalue has geometric multiplicity one, then the bifurcation is of codimension
five [33], which reduces to codimension three if the above symmetry condition is assumed. Given the enormous difficulty
of this problem, as a first step, we propose an unfolding with three parameters (see Eq. (3)). This system is of interest
to us not only for small values of the parameters (on which we can do a local analysis) but also for large values (which
are reached by numerical continuation). In fact, this system represents a wide family of Lorenz-like systems studied in
the literature [37–42] (some of them well known, such as the Shimizu–Morioka system), although not only for small
values of the parameters. Concretely, Kokubu and Roussarie demonstrate in this system the existence of non-degenerate
heteroclinic cycles, which give rise to complex dynamical behaviors, in a region of the parameter space where there are
small, unity order, and large parameters [42, Theorem 2.3]. We are interested in finding heteroclinic cycles in other
regions of the parameter space and, in particular, to see its possible relationship with the triple-zero degeneracy.

A starting point to study the existence of heteroclinic cycles is the analysis of codimension-two local bifurcations which
are close to the triple-zero. In this way, we find in the unfolding three local bifurcations of codimension two, Bogdanov–
Takens (double-zero eigenvalue with geometric multiplicity one), double-zero (eigenvalue with geometric multiplicity
two) and Hopf-zero. The Bogdanov–Takens bifurcation has already been analyzed [43]. The first part of this work is
devoted to studying the double-zero bifurcation.

The global connections found, whose existence is guaranteed by the local analysis (Bogdanov–Takens and double-zero
bifurcations), can be numerically continued, with which it is possible to study their degeneracies and their relationship
with the triple-zero degeneracy (see Fig. 10). The corresponding results appear in the second part of this paper.

The final objective that we intend to achieve in this long process is the study of the triple-zero bifurcation in Lorenz-
like systems obtained by perturbations of the Lorenz system, in such a way that an isolated equilibrium undergoes the
triple-zero degeneracy. Thus, the Lorenz system will appear as the limit of a certain family of Lorenz-like systems (we
trust that this procedure will allow to obtain interesting information about its dynamics).

The paper is organized as follows. In Section 2 we introduce the system under study and determine the local
bifurcations it can exhibit, namely pitchfork, transcritical, Hopf, Bogdanov–Takens, Hopf-pitchfork, double-zero and triple-
zero. The study of the double-zero degeneracy (double-zero eigenvalue with geometric multiplicity two) is carried out
in Section 3. The presence of a nonlinear degeneration in the double-zero bifurcation is also discussed (some useful
lemmas appear in Appendix A). Moreover, Hopf bifurcations of the nontrivial equilibria are analyzed and expressions
for the loci in the parameter space where the first Lyapunov coefficient vanishes are provided (all the details appear
in Appendix B). In Section 4 we conduct a numerical study starting near the double-zero bifurcation, taking advantage
of the analytical results previously obtained. In this way we detect a very complex bifurcation scenario where, among
other things, degenerate homoclinic and heteroclinic connections, T-point heteroclinic loops and chaotic attractors are
present. We also show numerical evidence that at least four curves of codimension-two global bifurcations are related to
the triple-zero degeneracy present in the unfolding analyzed. Finally, a section with conclusions is included.

2. A normal form for the Lorenz system

The Lorenz system is given by (see [1,2])⎧⎨⎩
ẋ = σ (y − x),
ẏ = ρx − y − xz,
ż = −bz + xy,

(1)

where σ , ρ and b are real parameters. These equations are invariant under the change (x, y, z) → (−x, −y, z); therefore,
the z-axis is invariant. The equilibria are the origin (0, 0, 0) and, when b(ρ − 1) > 0, a pair of symmetric nontrivial
equilibria

(
±

√
b(ρ − 1), ±

√
b(ρ − 1), ρ − 1

)
. The origin can exhibit the following linear degeneracies:

• a pitchfork bifurcation when ρ = 1, σ ̸= 0, −1, b ̸= 0 [32, Sect. 3];
• a Hopf bifurcation for σ = −1, ρ > 1, b ̸= 0 [30];
• a Bogdanov–Takens bifurcation when σ = −1, ρ = 1, b ̸= 0 [31];
• a Hopf-pitchfork bifurcation for σ = −1, b = 0, ρ > 1;
• a triple-zero bifurcation if σ = −1, ρ = 1, b = 0.

Unfortunately the above Hopf-pitchfork and triple-zero bifurcations cannot be analyzed by the usual techniques
because the origin is a non-isolated equilibrium when b = 0. To circumvent this obstacle in the case of the triple-zero
2
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bifurcation, in this paper we consider a three-parameter unfolding, that is close to the normal form of the triple-zero
bifurcation exhibited by the Lorenz system [33], given by⎧⎨⎩ẋ = y,

ẏ = ε1x + ε2y + Axz + Byz,
ż = ε3z + Cx2 + Dz2,

(2)

where ε1, ε2, ε3 ≈ 0 and A, B, C,D are real parameters. System (2) exhibits a triple-zero bifurcation when ε1 = ε2 = ε3 =

0. These equations are also invariant under the change (x, y, z) → (−x, −y, z).
We remark that several systems studied in the literature appear as particular cases of (2) for certain parameter choices.

Thus, if A = −1, C = 1, B = D = 0 we obtain the Shimizu–Morioka system [37,38] (for ε1 = 1, ε2 = −λ, ε3 = −α)
and a low-order model of magnetoconvection [39] (for ε1 = −λ, ε2 = k, ε3 = −1). If A = −a k, C = h, B = D = 0,
by means of the change x = x̃, y = a(̃y − x̃), z = z̃, a Lorenz-like system is obtained [40,41] (for ε1 = a b, ε2 = −a,
ε3 = −c). Finally, if A = −1, C = 1, B = −γ , D = δ, ε1 = Ã, ε2 = −1, ε3 = −β , the resulting system [42, Eq. (2.7)]
has non-degenerate heteroclinic cycles that connect the equilibria located on the z-axis, in certain regions where ε1 is
sufficiently large, ε2 = −1 and ε3, B < 0 and D > 0 are close to zero (see [42, Theorem 2.3]).

If A C ̸= 0, since system (2) is invariant to the changes

(x, y, z, t, ε1, ε2, ε3, A, B, C,D) −→ (−x, y, −z, −t, ε1, −ε2, −ε3, −A, B, C,D),
(x, y, z, t, ε1, ε2, ε3, A, B, C,D) −→ (−x, y, z, −t, ε1, −ε2, −ε3, A, −B, −C, −D),

we can take without loss of generality A = −1, C = 1⎧⎨⎩ẋ = y,
ẏ = ε1x + ε2y − xz + Byz,
ż = ε3z + x2 + Dz2.

(3)

System (3) can have up to four equilibria, namely E1 = (0, 0, 0), E2 = (0, 0, −ε3/D) if D ̸= 0 and E3,4 =(
±

√
−ε1(ε3 + Dε1), 0, ε1

)
if ε1(ε3 + Dε1) < 0. Note that E1 and E2 are placed on the z-axis, that is an invariant set.

The Jacobian matrix of system (3) at the trivial equilibrium E1 is( 0 1 0
ε1 ε2 0
0 0 ε3

)
, (4)

and then, its characteristic polynomial is given by P(λ) = λ3
+ p1λ2

+ p2λ + p3, where

p1 = −(ε2 + ε3), p2 = ε2ε3 − ε1, p3 = ε1ε3.

herefore, the origin exhibits the following bifurcations:

• a pitchfork bifurcation when ε1 = 0, ε2 ̸= 0, ε3 ̸= 0. The equilibria E3,4 appear when ε1(ε3 + Dε1) < 0.
• A transcritical bifurcation (involving also E2) when ε3 = 0, ε1 ̸= 0, ε2 ̸= 0, D ̸= 0.
• A Hopf bifurcation when ε2 = 0, ε1 < 0, ε3 ̸= 0.
• A Bogdanov–Takens bifurcation (a double-zero eigenvalue with geometric multiplicity one) when ε1 = 0, ε2 = 0,

ε3 ̸= 0. It is of homoclinic type when ε3 < 0 and of heteroclinic type if ε3 > 0.
• A Hopf-zero bifurcation when ε2 = 0, ε3 = 0, ε1 < 0.
• A double-zero bifurcation (a double-zero eigenvalue with geometric multiplicity two) when ε1 = 0, ε3 = 0, ε2 ̸= 0.
• A triple-zero bifurcation (a triple-zero eigenvalue with geometric multiplicity two) when ε1 = ε2 = ε3 = 0.

As a first step in the study of system (3), the Bogdanov–Takens bifurcation has been analyzed in [43] whereas the
double-zero bifurcation is considered in this paper. The study of the Hopf-zero and the triple-zero bifurcations will be
carried out in the future.

Before starting with the study of the double-zero bifurcation, we are going to see that all the bifurcations that the
equilibrium E2 exhibits can be easily deduced from those of E1. Indeed, to study the equilibrium E2 = (0, 0, −ε3/D),
D ̸= 0, we translate it to the origin by means of the change

x = x̄, y = ȳ, z = z̄ −
ε3

D
,

that transforms system (3) into⎧⎨⎩
˙̄x = ȳ,
˙̄y = (ε1 +

1
Dε3)x̄ + (ε2 −

B
Dε3)ȳ − x̄z̄ + Bȳz̄,

˙̄z = −ε3z̄ + x̄2 + Dz̄2,
(5)

with D ̸= 0.
3



A. Algaba, M.C. Domínguez-Moreno, M. Merino et al. Communications in Nonlinear Science and Numerical Simulation 111 (2022) 106482

3

s
e

T
a
D

(

t

w

Since system (3) is symmetric to the change

(x, y, z, t, ε1, ε2, ε3, B,D) −→

(
x, y, z −

ε3

D
, t, ε1 +

ε3

D
, ε2 −

B ε3

D
, −ε3, B,D

)
, (6)

it is immediate to obtain the stability and bifurcations of E2 from the stability and bifurcations of E1.

. A double-zero bifurcation of the origin

The double-zero bifurcation exhibited by the equilibrium E1 occurs when ε1 = 0, ε3 = 0, ε2 ̸= 0. Consequently, to
tudy this codimension-two bifurcation, we fix the value of ε2 = ∆−1

̸= 0 (we use ∆ to facilitate the writing of the
xpressions that will appear later) and assume that ε1 and ε3 are close to zero.
The results obtained in this section are summarized in the following theorem and in Fig. 1.

heorem 3.1. In system (3) the equilibrium E1 exhibits a double-zero bifurcation when ε1 = ε3 = 0, ε2 = ∆−1
̸= 0. In

neighborhood of this codimension-two degeneracy, there are only periodic solutions (arising from a Hopf bifurcation) when
> 0 and ∆ < 0. In this case, the local codimension-one bifurcations involved are (see Fig. 1):

(1) A transcritical bifurcation T, of equilibria E1 and E2, when ε3 = 0.
(2) Two pitchfork bifurcations P1, when ε1 = 0, and P2, for ε3 = −Dε1 + O(ε2

1). They involve E1 or E2 and E3,4.
(3) A Hopf bifurcation h of the equilibria E3,4, when ε3 = −2Dε1 + O(ε2

1), if B ̸= 2∆. It is supercritical when B > 2∆ and
subcritical if B < 2∆.

(4) A heteroclinic loop between E1 and E2, when

ε1 = −
1
2D

ε3 +
∆(B − 2∆)(D − ∆)

2D2(2D − 3∆)
ε2
3 + O(ε3

3), (7)

if B ̸= 2∆. It is attractive when B > 2∆ and repulsive if B < 2∆. This loop is formed by two heteroclinic connections,
one is structurally stable (since it goes from Ej to Ei on the invariant z-axis) and the other one (from Ei to Ej and placed
outside this axis) is more relevant as it is structurally unstable: Heij indicates that the connection between Ei and Ej is
outside the z-axis. Concretely, He21 exists when ε3 > 0 and He12 if ε3 < 0.

To study the double-zero bifurcation exhibited by the equilibrium E1 first we apply the change of variables

x = Y + Z, y = ε2Z, z = X, (8)

that transforms system (3) into⎧⎨⎩Ẋ = ε3X + (Y + Z)2 + DX2,

Ẏ = −∆ε1Y − ∆ε1Z + ∆XY + (∆ − B)XZ,

Ż = ∆ε1Y + (∆ε1 +
1
∆
)Z − ∆XY − (∆ − B)XZ .

(9)

Remark that the hyperbolic manifold of equilibrium E1 (which is semi-hyperbolic at the double-zero) is attractive if
∆ < 0 and repulsive if ∆ > 0 (since Ż ≈ (1/∆)Z). Moreover, note that system (9) is symmetric to the change
X, Y , Z) → (X, −Y , −Z), so the center manifold inherits this symmetry, that is, it will be of the form Z = YΨ (X, Y 2),
where Ψ is a smooth function. Therefore, the reduced system on the center manifold is invariant to the transformation
(X, Y ) → (X, −Y ), so Y = 0 is an invariant curve of the reduced system. Consequently, it is enough to analyze the reduced
system for Y ≥ 0.

To determine the bifurcations that arise from this singularity we begin by studying the reduced system up to second
order on the center manifold Z = ∆2XY + · · ·{

Ẋ = ε3X + DX2
+ Y 2

+ · · · ,

Ẏ = −∆ε1Y + ∆(1 − ∆2ε1)XY + · · · .
(10)

The change of variables

X =
−1
D

z −
ε3

2D
, Y =

1
√

|D|
r, D ̸= 0, (11)

ransforms (10) into{
ṙ = µ1r + arz,
ż = µ2 − sgn(D)r2 − z2, (12)

here

µ1 =
−∆

2D
(2Dε1 + ε3) + O(|ε1, ε3|2), µ2 =

ε2
3

4
, a =

−∆

D
+ O(|ε1, ε3|). (13)

Therefore, sgn(a) = −sgn(∆)sgn(D), i.e., a > 0 if ∆D < 0 and a < 0 if ∆D > 0.
4
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Fig. 1. Bifurcation set of system (3) in a neighborhood of the double-zero DZ exhibited by the equilibrium E1 , for D > 0 and ∆ < 0 when: (a)
> 2∆; (b) B < 2∆. The curves, according to Theorem 3.1, correspond to the following bifurcations: T, transcritical; P1 and P2 , pitchfork; h, Hopf

supercritical when B > 2∆ and subcritical if B < 2∆); He12 and He21 , heteroclinic loop (attractive if B > 2∆ and repulsive when B < 2∆).

To study system (12) we can take advantage of the analysis of the Hopf-saddle–node degeneracy performed in [44]
we remark that (12) would correspond to a Hopf-transcritical bifurcation since µ2 = ε2

3/4 is always positive), whose Eq.
7.4.9) is{

ṙ = µ1r + arz,
ż = µ2 + br2 − z2, (14)

ith b = ±1. In this system there are six possible configurations (see [44, Sect.7.4] and [45, Sect.20.7]), labeled as I (b = 1,
> 0), IIa (b = 1, −1 < a < 0), IIb (b = 1, a ≤ −1), III (b = −1, a > 0), IVa (b = −1, −1 < a < 0) and IVb (b = −1,
< −1). Between them, the cases of interest are IIa–IIb and III, due to the presence of periodic solutions. On the one
and, in case III, a Hopf bifurcation exists when µ2 > 0 and the periodic orbit disappears in a heteroclinic connection. On
he other hand, in cases IIa–IIb, also a Hopf bifurcation exists when µ2 < 0.

Comparing (12) and (14) we see that b = −sgn(D), that is, b = +1 if D < 0 and b = −1 if D > 0. Consequently, we
educe that system (12) is in case III when D > 0 and ∆ < 0. Conversely, system (12) is in cases IIa–IIb, when D < 0 and
< 0. However, as µ2 = ε2

3/4 > 0, there is no Hopf bifurcation (because, in cases IIa–IIb, it only exists when µ2 < 0).
ote that the trivial cases I and IV (IVa–IVb), where only equilibria appear, occur when D < 0 and ∆ > 0 and when D > 0
nd ∆ > 0, respectively.
Therefore, when D < 0 and ∆ < 0 (cases IIa–IIb), the following local bifurcations are present (see [44, Fig. 7.4.4]):
5
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• A transcritical bifurcation when µ2 = 0, that is, when ε3 = 0.
• A pitchfork bifurcation for µ2

1 − a2µ2 = 0, that is, for ε1 = 0 and for ε3 = −Dε1 + O(ε2
1).

As stated above, in this case there is no Hopf bifurcation and, consequently, no heteroclinic connection.
In the rest of this section we will analyze system (12), when D > 0 and ∆ < 0 (case III), by following the steps

given in [44, Sect. 7.4] for the Hopf-saddle–node bifurcation (recall that our case would correspond to a Hopf-transcritical
bifurcation). The equilibria of system (12) are

(
0, ±

√
µ2
)

and

⎛⎝±

√
µ2 −

µ2
1

a2
,
−µ1

a

⎞⎠ when a2µ2 > µ2
1,

that in terms of the original parameters are given by(
0, ±

ε3

2

)
and

(
±

√
−Dε1(ε3 + Dε1)
(∆2ε1 − 1)2

+ O(|ε1, ε3|3),
−2Dε1 − ε3

2(1 − ∆2ε1)

)
, ε1(ε3 + Dε1) < 0.

ote that E1 corresponds to the equilibrium (0, −ε3/2) and E2 to (0, ε3/2).
From the study carried out in [44, Sect.7.4] we can deduce that the following local bifurcations are present (see Fig. 1):

• A transcritical bifurcation T of the equilibria placed on the z-axis when µ2 = 0, that is, when ε3 = 0.
• A pitchfork bifurcation for µ2

1 − a2µ2 = 0 that is, P1 for ε1 = 0 and P2 for ε3 = −Dε1 + O(ε2
1).

• A Hopf bifurcation h of the equilibria placed outside the z-axis when µ1 = 0, µ2 > 0, that is, when ε3 = −2Dε1.

However, the second-order terms are not enough to unfold neither the Hopf bifurcation nor the heteroclinic connection
because, for the values of the parameter where both bifurcations appear, the system is integrable, i.e., it has an analytic
first integral. In fact, for a = 2, it has a polynomial first integral (only case considered in [44]). Hence, it has a continuum
of periodic orbits that ends in a degenerate heteroclinic connection (it corresponds to a Hopf bifurcation in which all the
Lyapunov coefficients are zero, i.e., a center singular point) [44, Fig. 7.4.9]. Thus, to unfold and calculate the curves of Hopf
bifurcation and heteroclinic connections (involving the two equilibria located on the z-axis), as well as their stabilities,
we need the reduced system up to third order.

As the center manifold up to third order is Z = Y (∆2X + ∆3Y 2
+ (D − B + 2∆)∆3X2), we obtain the reduced system

up to order three{
Ẋ = ε3X + DX2

+ Y 2
+ ∆2XY 2,

Ẏ = −∆ε1Y + ∆(1 − ∆2ε1)XY − [∆ − B + ∆2(D − B + 2∆)]∆2X2Y − ∆4ε1Y 3.
(15)

The change

X =
−1
D

z −
ε3

2D
, Y =

1√
D − ∆2ε3

r, (16)

ransforms (15) into{
ṙ = µ̃1r + ãrz + c̃r3 + d̃rz2,
ż = µ̃2 − r2 − z2 + ẽr2z,

(17)

here

µ̃1 = −∆ε1 −
∆

2D
ε3 +

∆3

2D
ε1ε3 +

∆2(B − ∆)
4D2 ε2

3 + O(|ε1, ε3|3),

µ̃2 =
ε2
3

4
+ O(|ε1, ε3|3), ã =

−∆

D
+ O(|ε1, ε3|), c̃ = O(|ε1, ε3|), (18)

d̃ =
∆2(B − ∆)

D2 + O(|ε1, ε3|), ẽ =
2∆2

D
+ O(|ε1, ε3|).

Applying Lemma A.1 of Appendix A, we obtain, modulo translation and scaling,⎧⎪⎨⎪⎩
ds
dτ

= µ̂1s + âsw,

dw
dτ

= µ̂2 − s2 − w2
+ f̂w3,

(19)

here

µ̂1 = µ̃1 + O(|ε1, ε3|3), µ̂2 = µ̃2 + O(|ε1, ε3|3), â = ã + O(|ε1, ε3|),

f̂ =
2∆(B − 2∆)

+ O(|ε1, ε3|). (20)

3D

6
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Thus, in system (19), we can analyze both the Hopf bifurcation and the heteroclinic connection.
On the one hand, the Hopf bifurcation exhibits a first-order degeneracy when B = 2∆. To prove it, we obtain from

ystem (19) the third-order reduced system(
ṡ
ẇ

)
=

(
0 −1
1 0

)(
s
w

)
+

( â
√
2âs1

sw

−
â

2
√
2âs1

s2 −
1

√
2âs1

w2
+

f̃
√
2âs1

w3

)
, (21)

here s1 =

√
(µ̂2â3 − µ̂2

1â − f̂ µ̂3
1)/â3. By using the recursive algorithm developed in Ref. [46], we compute the normal

form of the Hopf bifurcation up to third order

ṙ = a1r3 + · · · , θ̇ = 1 + b1r2 + · · · , (22)

here the first Lyapunov coefficient is given by a1 = 3f̂ /(8
√
2âs1). Therefore, the Hopf bifurcation is supercritical when

a1 < 0, i.e., if f̂ < 0, which occurs when B > 2∆, whereas it is subcritical if a1 > 0, i.e., when f̂ > 0 or, equivalently,
hen B < 2∆. Consequently, a degenerate Hopf bifurcation appears when a1 = 0, i.e., when B = 2∆.
On the other hand, when f̂ ̸= 0, that is, if B ̸= 2∆, Melnikov’s method guarantees the existence of a heteroclinic

onnection whose curve is approximated by [47–49] (in [44] only the Hamiltonian case, â = 2, is considered)

µ1 = −
3â2 f̂

2(3â + 2)
µ2 + O(µ2

2),

hat in terms of our parameters corresponds to

ε1 = −
1
2D

ε3 +
∆(B − 2∆)(D − ∆)

2D2(2D − 3∆)
ε2
3 + O(ε3

3). (23)

oncretely, He21 exists when ε3 > 0 and He12 if ε3 < 0. Note that very recently, using the nonlinear time transformation
ethod (NTT) [50–53], the expression of the heteroclinic curve in system (19) has been computed at any order for all

ˆ ∈ R [49, Eq.(3.20)].
With this we have completed the proof of the results stated in Theorem 3.1. Recall that all the curves mentioned in

his theorem are drawn in Fig. 1.

.1. Degenerate case B = 2∆

Next we show the steps that should be followed to study the degenerate case B = 2∆. In this situation, the Hopf
bifurcation and the heteroclinic connection are not determined by system (19), and therefore we need the reduced system
up to fifth order on the center manifold. Following the same steps as in the calculation up to order three, we obtain⎧⎪⎨⎪⎩

ds
dτ

= µ̂1s + âsw + O(|s, w|
4),

dw
dτ

= µ̂2 − s2 − w2
+ O(|s, w|

4),
(24)

here µ̂1, µ̂2 and â are given in (20). Applying Lemmas A.2 and A.3 of Appendix A, we obtain, modulo translation and
caling,⎧⎪⎨⎪⎩

ds̄
dτ

= µ̄1s̄ + ās̄w̄,

dw̄
dτ

= µ̄2 − s̄2 − w̄2
+ h̄w̄5,

(25)

here

µ̄1 = µ̂1 + O(|ε1, ε3|3), µ̄2 = µ̂2 + O(|ε1, ε3|3), ā = â + O(|ε1, ε3|), (26)

nd the expression for h̄ is not included because it is too long.
When h̄ ̸= 0, the application of the NTT method provides the following expression for the heteroclinic curve [54]

µ̄1 = −
15ā3h̄

2(3ā + 2)(5ā + 2)
µ̄2 + O(µ̄2

2),

hat in terms of the original parameters corresponds to

ε1 = −
1

ε3 −
15∆2h̄

ε2
3 + O(ε3

3).
2D 8D(2D − 3∆)(2D − 5∆)
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3.2. Hopf bifurcations of E3,4 and E2 in the whole (ε1, ε2, ε3)-space

The study made so far for the Hopf bifurcation of the equilibria E3,4 is valid when ε1 and ε3 are small, close to the
ouble-zero bifurcation. In Appendix B.1 we have completed the analysis of this Hopf bifurcation for any value of ε1 and

ε3. Specifically, we provide the value of the first Lyapunov coefficient in Eq. (B.4) and give an expression for the Hopf
surface in the (ε1, ε2, ε3)-parameter space in Eq. (B.5). These results will be useful in the numerical study of system (3)
carried out in Section 4.

On the other hand, in Appendix B.2 we consider the Hopf bifurcation of the equilibrium E2 which is related to a
Bogdanov–Takens bifurcation of E2, as we will see in Section 4. In Eq. (B.6) the value of the first Lyapunov coefficient is
given.

4. Numerical study

We have seen in the previous section that the presence of a double-zero bifurcation in system (3) guarantees the
existence of a heteroclinic loop which initially emerges as a planar phenomenon (in the same way that a Bogdanov–Takens
bifurcation ensures the presence of homoclinic or heteroclinic connections). However, as soon as we move away from the
point DZ, the heteroclinic connection will start to develop a three-dimensional structure. Thus, the numerical continuation
of the heteroclinic curve away from the double-zero will make possible to determine if any point of degeneracy appears.
This situation, in most cases, will imply a greater richness in the dynamics of the system.

The objective of this section is twofold. On the one hand, in Section 4.1 we are going to study the bifurcations that
appear from the degenerate double-zero bifurcation (B = 2∆, where ∆ = 1/ε2), completing the local information
provided in Theorem 3.1 and shown in Fig. 1. On the other hand, in Section 4.2, we will find regions of the parameter
space in which the system (3) exhibits a very complex dynamics.

4.1. Degenerate DZ when B = −1 and D = 1

Taking advantage of the theoretical information obtained in Section 3, we are going to carry out a numerical study of
system (3) by means of the continuation software AUTO [55]. Our goal is to obtain bifurcation sets in the vicinity of the
double-zero bifurcation DZ exhibited by the equilibrium E1 = (0, 0, 0) when (ε1, ε3) = (0, 0) and ε2 ̸= 0. Specifically, we
will take slices ε2 = constant in the (ε1, ε2, ε3)-parameter space, fixing B = −1 and D = 1.

We know from Section 3 that the double-zero bifurcation DZ is degenerate when ε2 = 2/B = −2. Then we will
consider values on both sides of this singularity, for instance, ε2 = −1.5 and ε2 = −2.5, that correspond, respectively, to
the cases B > 2∆ and B < 2∆.

4.1.1. ε2 = −1.5 (case B > 2∆)
Initially, we are going to obtain the bifurcation set for ε2 = −1.5. Thus, as it is usual, in order to continue numerically

the bifurcation curves in a parameter plane we previously draw some bifurcation diagrams. Then, we also fix ε3 = −0.5
and study the evolution of the nontrivial equilibrium E3 =

(√
ε1(0.5 − ε1), 0, ε1

)
versus ε1. It exhibits a Hopf bifurcation

when ε1 ≈ 0.2297234. The bifurcation diagram corresponding to the asymmetric stable periodic orbit emerged from
is drawn in Fig. 2(a). This periodic orbit disappears, when ε1 ≈ 0.2304689, in a heteroclinic cycle He12 between the

addle equilibria E1 = (0, 0, 0) and E2 = (0, 0, 0.5). Recall that this loop is formed by two heteroclinic connections,
ne is structurally stable (since it goes from E2 to E1 on the invariant z-axis) and the other one is more relevant as it
s structurally unstable, of codimension one (the connection from E1 to E2 is placed outside this axis). For this reason
his heteroclinic cycle is labeled with the superscript 12, that is, Heij indicates that the connection between Ei and Ej is
utside the z-axis. The projection of He12 onto the (x, z)-plane appears in Fig. 2(c). Remark that throughout this work,
ith the aim of simplifying the notation, we will label the heteroclinic cycle (in fact, due to the symmetry, a pair of
eteroclinic cycles exists) and the heteroclinic bifurcation with the same symbol, although they are two different objects.
n addition, when necessary, we will use superscripts to indicate the equilibria that are involved in a certain bifurcation,
r in a degeneration of it.
If we fix ε3 = −0.9, we obtain the bifurcation diagram shown in Fig. 2(b). The periodic orbit emerged from h is of

addle type, later it becomes stable in the saddle–node bifurcation sn (ε1 ≈ 0.397233) and, finally, it disappears in a
eteroclinic cycle He12 (ε1 ≈ 0.397237) similar to the previous case. Note that the heteroclinic loop is attractive for both
alues of ε3.
Now we can numerically compute for ε2 = −1.5 the loci where the bifurcations detected in Fig. 2 occur in the

ε1, ε3)-plane. Thus, in the partial bifurcation set drawn in Fig. 3(a), we can observe the curves h (Hopf bifurcation of
he equilibria E3,4), He12 (heteroclinic cycle between the equilibria E1 and E2) and sn (saddle–node bifurcation of periodic
rbits). Moreover, three straight lines intersect at the double-zero point DZ, namely P1 (pitchfork bifurcation of the origin,
1 = 0), P2 (pitchfork bifurcation of E2, ε1 = −ε3) and T (transcritical bifurcation between E1 and E2, ε3 = 0). Note that
n these pitchfork bifurcations the equilibria E3,4 emerge.

Going into more detail, near the origin in the fourth quadrant the equilibria E3,4 arise from the curve P1 as attractive
nodes (their three real eigenvalues are negative). By increasing the value of ε they become attractive foci until they
1
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Fig. 2. For ε2 = −1.5, B = −1,D = 1, bifurcation diagram of the asymmetric periodic orbit emerged from the Hopf bifurcation h, exhibited by the
equilibrium E3 , when: (a) ε3 = −0.5; (b) ε3 = −0.9. (c) Projection onto the (x, z)-plane of the heteroclinic cycle He12 of panel (a) that exists when
1 ≈ 0.2304689.

ndergo a Hopf bifurcation h. On the other hand, in this quadrant the equilibrium E1 is always a saddle–node (λ1,3 <

, λ2 > 0). This implies that, at any point in this region there exists, apart from the heteroclinic connection between
1 and E2, another structurally stable (codimension-zero) heteroclinic connection between the equilibria E1 and E3 (see
ig. 3(b) for (ε1, ε3) = (0.15, −0.5)). When the Hopf curve h is crossed, E3 becomes a repulsive saddle-focus and then
he unstable manifold of E1 connects with the attractive periodic orbit arising from this Hopf bifurcation (see Fig. 3(c)
or (ε1, ε3) = (0.2304, −0.5)). If ε1 continues to increase, the periodic orbit grows and approaches the z-axis until the
eteroclinic connection between E1 and E2 is formed (see Fig. 2(c)) for (ε1, ε3) ≈ (0.2304689, −0.5).
According to Eq. (B.5) of Appendix B.1, for a fixed value ε2 = constant , the Hopf bifurcation curve h that emerges from

he point DZ is given by the equation

ε3 =

3ε2
1 − ε2

2 + 2ε1(1 − ε2) +

√
(ε1 − ε2)4 + 4ε1(ε2

1 + ε1 − ε2
2)

2(−ε1 + ε2)
.

n the fourth quadrant this curve is unbounded and the following inequalities hold −2(ε1 + 1) < ε3 < −2ε1. The
irst one corresponds to the condition p2 > 0 (a necessary condition for the existence of the Hopf bifurcation). The
econd inequality is due to the fact that the line ε3 = −2ε1 is an asymptote of the Hopf curve when ε1 → +∞ and
2 = constant . Moreover, in accordance with the bifurcation diagrams of Fig. 2(a)–(b), a degenerate point Dh appears
n h, when (ε1, ε3) ≈ (0.373821, −0.842653), since the first Lyapunov coefficient a1 of the normal form vanishes (see
ig. 3(a)).
On the other hand, the curve of heteroclinic connections He12 is also unbounded. It emerges from the point DZ to

he right of the Hopf curve h since B > 2/ε2 (this agrees with the bifurcation diagram of Fig. 2(a)). However, when
ε1, ε3) ≈ (0.38281, −0.86445), both curves intersect and then, they change their relative position. Moreover, the curve
e12 exhibits a degeneracy DHe12 at (ε1, ε3) = (7/16, −1). To analyze it in the fourth quadrant of the parameter plane,
e denote the eigenvalues of the Jacobian matrix at the origin E1 as λ1, λ3 < 0 < λ2, where

λ3 = ε3, λ2,1 =

ε2 ±

√
ε2
2 + 4ε1

,

2

9
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Fig. 3. For ε2 = −1.5, B = −1,D = 1: (a) Partial bifurcation set in the vicinity of the double-zero point DZ, in the fourth quadrant. For ε3 = −0.5,
eteroclinic connections: (b) between E2 and E1 on the z-axis, and between E1 and the attractive equilibrium E3 , when ε1 = 0.15; (c) between E2
nd E1 on the z-axis, and between E1 and the stable limit cycle arising from h, when ε1 = 0.2304.

nd the eigenvalues of the Jacobian matrix at E2 = (0, 0, −ε3) as λ∗

1 < λ∗

2 < 0 < λ∗

3, where

λ∗

3 = −ε3, λ∗

2,1 =
ε2 + ε3 ±

√
(ε2 + ε3)2 + 4(ε1 + ε3)

2
.

Now, we consider the saddle quantities δE1 =

⏐⏐⏐max(λ1,λ3)
λ2

⏐⏐⏐ and δE2 =

⏐⏐⏐ λ∗
2

λ∗
3

⏐⏐⏐ .
Fixed a value ε2 = constant < 0, in a neighborhood of the point DZ in the fourth quadrant, δE1 =

⏐⏐⏐ λ3λ2

⏐⏐⏐, and consequently
the locus where δE1δE2 = 1 satisfies

ε3 = ε2

2ε1 + ε2 +

√
4ε1 + ε2

2

1 − ε1 − ε2
.

Along the curve He12 of Fig. 3(a), and in general throughout this quadrant, both equilibria E1 and E2 are always real
addle.
At the degenerate point DHe12, at (ε1, ε3) = (7/16, −1),

δE1δE2 =

⏐⏐⏐⏐λ3λ
∗

2

λ2λ
∗

3

⏐⏐⏐⏐ =

⏐⏐⏐⏐−1 · (−0.25)
0.25 · 1

⏐⏐⏐⏐ = 1,

in such a way that δE1δE2 > 1 in the portion of the curve between the points DZ and DHe12 and, consequently, the
eriodic orbit involved in the heteroclinic cycle is stable (see [56,57]). On the other hand, this periodic orbit is of saddle
ype below DHe12 since δE1δE2 < 1. We remark that the equilibrium E1 has a double eigenvalue (λ1 = λ3 = ε3) when
ε1, ε3) ≈ (0.790525, −1.913196). From this point δE1 =

⏐⏐⏐ λ1λ2

⏐⏐⏐, but it is still true that δE1δE2 < 1. Finally, as can be seen in
Fig. 3(a), the degenerate points Dh and DHe12 are joined by the curve sn, where a saddle–node bifurcation of asymmetric
periodic orbits occurs.

As the value of ε2 increases (approaching the value ε2 = −2 where the degeneration we are analyzing occurs),
it is observed that the degenerate points Dh and DHe12, as well as the intersection point between the curves h and
10
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Fig. 4. For ε2 = −1.5, B = −1,D = 1: (a) Partial bifurcation set, in the second quadrant, in a neighborhood of the point DZ. (b) For ε3 = 1,
ε1 = −0.663, orbit joining the equilibrium E2 and the periodic orbit emerged from the Hopf bifurcation h. (c) Projection onto the (x, z)-plane of the
heteroclinic cycle He21 of panel (a) that exists when (ε1, ε3) ≈ (−2.4604356, 2.3).

He12, are approaching the double-zero point DZ. Thus, for ε2 = −1.9, the curve sn joins the points Dh which occurs
at (ε1, ε3) ≈ (0.092275, −0.189040), and DHe12, placed at (ε1, ε3) = (39/400, −0.2). Moreover, the intersection between
h and He12 occurs when (ε1, ε3) ≈ (0.09369, −0.19201).

According to the theoretical study done in Section 3, we know that the curves corresponding to the Hopf bifurcation
of the nontrivial equilibria E3,4 and to the heteroclinic connections between E1 and E2 also exist in the second quadrant
of the (ε1, ε3)-plane, as can be seen in the bifurcation set for ε2 = −1.5 drawn in Fig. 4(a). The Hopf bifurcation curve h
is now bounded, as it ends at the point BT, which occurs at (ε1, ε3) = (−1.5, 1.5), where the equilibrium E2 undergoes
a Bogdanov–Takens bifurcation [43]. Moreover, the curve h exists in the region −ε1 < ε3 < −2ε1. In this case, the Hopf
bifurcation is always supercritical and the attractive asymmetric periodic orbit arises to the right of the curve h. We note
that the equilibria E3,4 are attractive node when they arise from P2. As the value of ε1 is increased, their evolution is similar
to the one mentioned above for the fourth quadrant, but exchanging the roles of E1 and E2 (now the unstable manifold of
E2 connects with E3). Consequently we would have phase portraits of the same type than those of Fig. 3(b)–(c). However,
the attractive periodic orbit arising from h, which in a neighborhood of the origin gives rise to the heteroclinic cycle He21

(the relevant heteroclinic connection, placed outside the z-axis, goes from E2 to E1), for other values of the parameters
(for example ε3 = 1), it goes approaching the equilibrium E2 (see Fig. 4(b)) ending in a homoclinic connection to E2 for
ε1 ≈ −0.6610023 which will be analyzed later. We note that, in the region between the curves P2 and He21 in Fig. 4(a),
the eigenvalues of E1 are λ3 = ε3 > 0 (whose associated eigenvector is found on the invariant axis) and λ2, λ1 < 0 (since
ε1 < 0), so homoclinic connections to this equilibrium cannot exist in that region.

The curve of heteroclinic cycles He21 also emerges from DZ and it is placed to the right of the Hopf curve h. In this
case, as δE1δE2 =

⏐⏐⏐ λ2λ∗
3

λ3λ∗
2

⏐⏐⏐ > 1, the periodic orbit involved in the heteroclinic cycle is stable.
On the curve He21 a first degeneracy DHe1, placed at (ε1, ε3) ≈ (−0.5625, 0.8834547), appears when the equilibrium

E1 changes from saddle–node to saddle-focus. In the second part of this numerical study we will see the relation that
exists between this degeneracy and the homoclinic connection to E (originated by the periodic orbit drawn in Fig. 4(b)).
2
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Fig. 5. For B = −1, D = 1 and ε2 = −1.5, comparison between numerical continuation (solid) and analytical first-order approximation given by
23) (dashed) for the heteroclinic bifurcation curves He12 and He21 .

There is also a degenerate point DHe21, located at (ε1, ε3) ≈ (−0.853422, 1.210866), similar to that found in the fourth
uadrant, where δE1δE2 = 1, condition that occurs when

ε1 = −ε3

(
1 + 2ε2

(
ε2 + ε3

ε2 + 2ε3

)2
)

,

ince now δE1δE2 =

⏐⏐⏐ Re(λ2)λ∗
1

λ3λ∗
2

⏐⏐⏐. From this point DHe21, δE1δE2 < 1.
Unlike what happens with the degeneracy of the same type located in the fourth quadrant, the point DHe21 that exists in

he second quadrant is not related to the degeneration exhibited by the double-zero bifurcation DZ at the point DDZ, which
ccurs at (ε1, ε2, ε3) = (0, −2, 0). Indeed, when we vary the parameter ε2 approaching the value where the degeneration
DZ occurs, the point DHe21 moves away from the point DZ, and specifically, for ε2 = −2, we obtain DHe21, located at

(ε1, ε3) ≈ (−1.15082, 1.64582).
Subsequently the curve of heteroclinic connections He21 intersects with the line P2 at the point DHe2n, which occurs at

ε1, ε3) ≈ (−2.5007629, 2.5007629), where the equilibrium E2 has a zero eigenvalue λ∗

1 = 0 and, as a consequence, E2 has
a two-dimensional unstable manifold when crossing the line P2. Later, the curve He21 has a turning point outside the range
of Fig. 4(a), for (−10.761538, 5.917409), and cuts again P2 at DHe2n, placed at (ε1, ε3) ≈ (−2.4692096, −2.4692096).
As He21 approaches the Bogdanov–Takens point BT, it experiences a new turning point and thus it intersects a third
time with P2 at DHe2n, which occurs at (ε1, ε3) ≈ (−1.9246322, −1.9246322). In the region of the parameter plane
where E2 has a two-dimensional unstable manifold, a new degeneration DHe2 appears on the heteroclinic cycle, for
(ε1, ε3) ≈ (−2.285538, 2.1724805), because E2 goes from real saddle to saddle focus when crossing this point. As can
be seen in Fig. 4(c), for (ε1, ε3) ≈ (−2.4604356, 2.3), the equilibrium E1 is a saddle-focus (with a two-dimensional stable
manifold). We remark that bifurcations of generic heteroclinic loops (between a saddle–node hyperbolic equilibrium and a
non-hyperbolic equilibrium which undergoes a pitchfork bifurcation) are considered in [58] for a four-dimensional system.
In our case the hyperbolic equilibrium E1 is a saddle-focus at the points DHe2n.

We conclude our study for ε2 = −1.5 showing, for the heteroclinic curves He12 and He21, the good agreement between
the theoretical prediction given by Eq. (23) and the numerical results, in the vicinity of the double-zero degeneracy (see
Fig. 5).

4.1.2. ε2 = −2.5 (case B < 2∆)
Next we set ε2 = −2.5, on the other side of the value where the degeneracy DDZ occurs, and we find partial bifurcation

ets in the fourth and second quadrants of the (ε1, ε3)-parameter plane. In this way we see in Fig. 6(a) the same bifurcation
urves, related to double-zero bifurcation DZ, which are present in Fig. 3(a) except the curve of saddle–node bifurcation
f periodic orbits sn. This is because no point of degeneration appears on the curves h (Hopf of the nontrivial equilibria
3,4) and He12 (heteroclinic cycle) and then, the saddle periodic orbit arisen from h ends at the heteroclinic loop He12 (it
olds δE1δE2 =

⏐⏐⏐ λ3λ∗
2

λ2λ∗
3

⏐⏐⏐ < 1). We remark that the relative position between the curves h and He12 have changed in the

vicinity of the point DZ, with respect to what they had in Fig. 3(a) when ε2 = −1.5 (now we are in the case B < 2/ε2).
In the entire fourth quadrant, as was the case for ε2 = −1.5, both equilibria E1 and E2 are always real saddle.

In Fig. 6(b), for ε2 = −2.5, we see a partial bifurcation set in the second quadrant, with the curves related to the double-
zero bifurcation DZ. As in the case of ε2 = −1.5, the curve of Hopf bifurcation h ends at a Bogdanov–Takens bifurcation BT
exhibited by the equilibrium E , which occurs at (ε , ε ) = (−2.5, 2.5). Initially, in accordance with the theoretical analysis
2 1 3
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Fig. 6. For ε2 = −2.5, B = −1,D = 1, partial bifurcation set in a neighborhood of the point DZ: (a) in the fourth quadrant; (b) in the second
quadrant.

of Section 3, h arises from the point DZ to the right of the curve He21 (both curves are related by a non-stable periodic
orbit). Subsequently h and He21 intersect and moreover at the point Dh, located at (ε1, ε3) ≈ (−0.732961, 1.24975), the
first Lyapunov coefficient vanishes, in such a way that a stable periodic orbit emerges above this point. The curve of
saddle–node bifurcations of periodic orbits sn, arisen from this degeneracy, is drawn in the inset of Fig. 6(b).

As in the fourth quadrant, in a neighborhood of the point DZ, it holds δE1δE2 =

⏐⏐⏐ λ2λ∗
3

λ3λ∗
2

⏐⏐⏐ < 1 on the heteroclinic curve

e21. Later, a degeneracy DHe21, where δE1δE2 =
⏐⏐−0.25 · (−1)

1 · 0.25

⏐⏐ = 1, occurs at (ε1, ε3) = (−9/16, 1). This point is the end
of the curve sn drawn in Fig. 6(b). We note that the existence in the second quadrant of the degeneration points Dh
and DHe21 is due to the symmetry exhibited by system (3). Indeed, starting from the values of the degeneracy DHe12 for
2 = −1.5 in the fourth quadrant, and using the Eqs. (6), the values of the first degeneracy DHe21 in the second quadrant
re obtained for ε2 = −2.5. In particular, the eigenvalues of the equilibrium E1 become those of the equilibrium E2 and
ice versa. On the other hand, the symmetrical point to Dh in the fourth quadrant for ε2 = −1.5 appears in the plane
2 ≈ −2.342652 for (ε1, ε3) ≈ (−0.468831, 0.842652). Logically the points on the line T, for ε3 = 0, remain invariant
nder this symmetry, in particular the point DZ and its degeneracies.
On the Hopf curve h, near the point BT, there is a second degeneration point Dh, located at (ε1, ε3) ≈ (−2.37898,

.51397), where the first Lyapunov coefficient vanishes. This new point arises from the bifurcation BT when ε2 = −2,
nd it is related with a codimension-three Bogdanov–Takens bifurcation [43]. Analogously, on the curve of heteroclinic
onnections He21 there is a second degeneration point DHe21, which occurs at (ε1, ε3) ≈ (−0.94877, 1.53434), where
E1δE2 =

⏐⏐⏐ λ2λ∗
1

λ3λ∗
2

⏐⏐⏐ = 1. Once that point is passed, it holds δE1δE2 < 1.
In this area is now located the degeneration DHe1 at (ε1, ε3) ≈ (−1.5625, 2.1968639) (see Fig. 6(b)) unlike what

happened for ε2 = −1.5, since at that point δE1δE2 > 1 (see Fig. 4(a)). Subsequently the curve He21 intersects with the
line P2 at the point DHe2n, situated at (ε1, ε3) ≈ (−3.7663574, −3.7663574), where E2 has a zero eigenvalue, so that E2
as a two-dimensional unstable manifold when crossing P2.

.1.3. Codimension-two bifurcations around the degenerate DZ
Next, we are going to study in the three-parameter space the loci where the detected codimension-two bifurcations

ccur. In Fig. 7(a) and (b) we represent, in a neighborhood of the point DDZ, which occurs at (ε1, ε2, ε3) = (0, −2, 0), the
rojections of the curves Dh, DHe12 and DHe21 onto the planes (ε2, ε1) and (ε2, ε3), respectively. We have also included
he curve HeDE1 (HeDE2), where the equilibrium E1 (E2) has a non-leading double eigenvalue at the heteroclinic cycle He12
He21).

As can be seen, the curve DHe12 (as is the case with curve Dh) arises from the degeneracy DDZ, exhibited by the
ouble-zero bifurcation DZ and analyzed in this paper for system (3). Moreover, DHe12 intersects with the curve HeDE1

when (ε1, ε2, ε3) = (0.64, −1.2, −1.6). At this point, the eigenvalues of E1 are λ1 = λ3 = −1.6, λ2 = 0.4 and those of
E2 are λ∗

1 = −2.4, λ∗

2 = −0.4, λ∗

3 = 1.6, so that δE1δE2 = 1. Because of the symmetry exhibited by system (3), the same
situation appears for (ε1, ε2, ε3) = (−0.96, −2.8, 1.6), interchanging the roles of the equilibria E1 and E2. We note that
there is no degeneration DHe21 on the surface He21 for ε2 < −2.8, but there is degeneration DHe12 for ε2 > −1.2 to the
right of the curve HeDE1.

4.2. Looking for more complex behavior (B = −0.1,D = 0.01, ε2 = −1)

Our next objective is to analyze some of the degenerations detected on the curves He12 and He21, although now we
will take ε = −1, B = −0.1 and D = 0.01. Thus, for the same value of ε , we will find degenerations of the type DHe2
2 2
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Fig. 7. For B = −1,D = 1, projection in the vicinity of the codimension-three bifurcation DDZ of the curves Dh (degenerate Hopf bifurcation of the
quilibria E3,4), DHe12 and DHe21 (degeneracy condition δE1 δE2 = 1 on the curves of heteroclinic connections He12 and He21 , respectively), HeDE1 and
HeDE2 (non-leading double eigenvalue of E1 on He12 and of E2 on He21 , respectively) onto: (a) the (ε2, ε1)-plane. (b) the (ε2, ε3)-plane.

and DHe1 in the fourth and second quadrants, respectively. This situation was not possible with the previous values of
the parameters. These degeneracies will allow us to find regions in which there are complex dynamical behaviors.

On the one hand, in the partial bifurcation set of Fig. 8(a)–(b) we see that the curve of nondegenerate heteroclinic
cycles He12 arises from the double-zero degeneracy DZ. Initially, these heteroclinic cycles are attractive (δE1δE2 > 1) but
their stability changes when crossing the points DHe12. In the fourth quadrant we have found two of these points DHe12,
placed at (ε1, ε3) ≈ (1.057329, −0.028677) and (ε1, ε3) ≈ (17.952116, −0.653279), where δE1δE2 =

⏐⏐⏐ λ3Re(λ∗
2)

λ2λ∗
3

⏐⏐⏐ = 1 (in
fact, δE1δE2 < 1 at the points on the curve He12 between both of them). Specifically, the eigenvalues of E2, in terms of the
arameters B and D, are given by

λ∗

3 = −ε3, λ∗

2,1 =

ε2 −
B
Dε3 ±

√(
ε2 −

B
Dε3

)2
+ 4

(
ε1 +

ε3
D

)
2

.

Thus, the curve where the equilibrium E2 changes from real saddle to saddle-focus intersects the curve He12 in two
points. Indeed, when ε1 > 0, the equilibrium E1 is always a real saddle along the curve He12. For its part, E2
is also a real saddle when it arises from DZ, but it becomes a saddle-focus from the point DHe2, which occurs at
(ε1, ε3) ≈ (0.2328879, −0.00508985), placed between DZ and the first degeneracy DHe12 (see Fig. 8(b)). Below the second
egeneration DHe12 there is another similar point DHe2, situated at (ε1, ε3) ≈ (72.3710927, −2.7397356), where E2 goes

from saddle-focus to real saddle (see Fig. 8(a)).
Several bifurcation curves emerge from the first of these degenerate points DHe2. Specifically, in Fig. 8(b) we have

drawn two curves of homoclinic connections to the origin, H11 and H12, fulfilling that δE1 < 1 when they arise from DHe2.
These curves H11 and H12 end in other degenerations that exist on He12 for the values (ε1, ε3) ≈ (90, −3.4225563) and
(ε1, ε3) ≈ (75.0355, −2.8429), respectively.

On the homoclinic curve H11 there is a degenerate point DH11, which occurs at (ε1, ε3) ≈ (1.1370815, −0.6777442),
where δE1 = 1, because its eigenvalues fulfill λ1 < λ3 = −λ2. In Fig. 8(b) we also find two curves sn and SN of saddle–
node bifurcations of (asymmetric and symmetric, respectively) periodic orbits. Whereas sn exists between this point and
the degeneration DHe2 closest to DZ, the curve SN connects this DHe2 point with (ε1, ε3) ≈ (75.0355, −2.8429), point
where the curve H12 ends on He12.

These curves (H11, sn, SN, H
1
2, . . . ) are the first of an infinite sequence of curves of the same type (homoclinic connections

to E1, saddle–node bifurcations of asymmetric and symmetric periodic orbits, . . . ) that all arise from the degeneracy DHe2.
Curves of period-doubling bifurcations (exhibited by the asymmetric periodic orbits involved in sn) and of symmetry-
breaking bifurcations (exhibited by the symmetric periodic orbits involved in SN) are also present. As a consequence of
the above, in the region between the aforementioned bifurcation curves and He12, we can find attractors of various types
as shown in Fig. 8(c)–(f).

On the other hand, in the second quadrant (see Fig. 9(a)) there is a single point DHe21 (similar to that found in the
second quadrant in Fig. 4(a)), which occurs at (ε1, ε3) ≈ (−1.11049, 0.01772), where δE1δE2 =

⏐⏐⏐ Re(λ2)λ∗
3

λ3λ∗
2

⏐⏐⏐ = 1. In the
est of the curve He21 (starting from the point DHe21), it is true that δE1δE2 < 1. Remark that these degeneracies DHe21,
n which one of the two equilibria E1 and E2 involved in the heteroclinic cycle is saddle-focus, are not related to the
odimension-three degeneracy DDZ previously analyzed. In this quadrant, the Hopf bifurcation of the equilibria E3,4 is
lways supercritical and the curve h is bounded as it joins the points DZ and BT, placed at (ε1, ε3) = (−10, 0.1) (where
2 exhibits a Bogdanov–Takens bifurcation). Since ε3 > 0, this Bogdanov–Takens bifurcation is of homoclinic type [43].
onsequently, apart from other bifurcation curves, a curve H21 of homoclinic connections to E2 emerges from BT (see
ig. 9(b)–(c)).
14
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Fig. 8. For ε2 = −1, B = −0.1,D = 0.01: (a) partial bifurcation set in the fourth quadrant; (b) zoom of panel (a) in a neighborhood of the point
Z. For ε3 = −1 geometric Lorenz attractor when: (c) ε1 = 3 with initial conditions (x0, y0, z0) = (3, −2, 6.5). (d) ε1 = 5 with initial conditions

(x0, y0, z0) = (2.8, 1, 5). (e) ε1 = 15 with initial conditions (x0, y0, z0) = (0.2, 0.3, 20). (f) ε1 = 16.3 with initial conditions (x0, y0, z0) = (−0.2, 1.2, 17).

When ε1 < 0, the equilibrium E2 is always a real saddle along the curve He21. However, although the equilibrium E1
s also a real saddle when it arises from DZ, it becomes a saddle-focus from the point DHe1, which occurs at (ε1, ε3) ≈

−0.25, 0.004611), placed between the points DHe21 and DZ. Precisely, the homoclinic curve H21, which emerges from the
ogdanov–Takens bifurcation, ends at the point DHe1. As we commented previously, an infinite sequence of homoclinic
onnections to E2 arises from DHe1. In Fig. 9(b)–(c) we have drawn the following two homoclinic connections, H22 and H23, of
he mentioned sequence. Unlike what happened with the bifurcation curves of the fourth quadrant (which were organized
y the degeneracies DHe2 and DHe12), in the second quadrant the following two curves of the sequence of homoclinic
onnections (as well as the first curve H21), now organized by the degeneracy DHe1, do not end on the heteroclinic curve
e21 (that is, they are not related to the principal heteroclinic loop).
15
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Fig. 9. For ε2 = −1, B = −0.1,D = 0.01: (a)–(d) partial bifurcation set in the second quadrant of the (ε1, ε3)-plane. Projection onto the (x, z)-
plane of the T-point heteroclinic loop between E2 and the equilibria E3,4 (note that because of the symmetry a pair of the corresponding orbits
exists): (e) principal T-point when (ε1, ε3) ≈ (−8.3738877, 0.08418346); (f) secondary T-point when (ε1, ε3) ≈ (−8.4159326, 0.08503685). (g) For
(ε1, ε3) = (−8.2, 0.084), geometric Lorenz attractor with initial conditions (x0, y0, z0) = (0.2, 0, −8.2).

On the curve H21 there exists a degenerate point DH21, which occurs at (ε1, ε3) ≈ (−8.533961, 0.085536), where
he condition δE2 = 1 (resonant eigenvalues) is fulfilled (see Fig. 9(c)). Moreover, as we can see in Fig. 9(b)–(c), the
urve H22 ends at the point TP, which occurs at (ε1, ε3) ≈ (−8.37388775, 0.08418346), where there exists a (principal)
eteroclinic T-point loop between E2 and E3,4 [19,59]. Its projection on the (x, z)-plane is drawn in Fig. 9(e). As can
e seen in Fig. 9(b)–(d), three curves of global connections emerge from the point TP: He34 (heteroclinic connections
etween E3 and E4), H3 (homoclinic connections to E3 and E4) and a spiral shaped curve H22 of homoclinic connections to
2. Remark that the curves H3 and H23 end at a secondary T-point heteroclinic loop TPs between E2 and E3,4, which occurs at
ε1, ε3) ≈ (−8.4159326, 0.08503685), whose projection on the (x, z)-plane is drawn in Fig. 9(f). In this scenario of global
ifurcations the presence of chaotic motions is guaranteed [16,17]. For instance, when (ε1, ε3) = (−8.2, 0.084) (a point
laced in the range of Fig. 9(c)), the attractor obtained with initial conditions (x0, y0, z0) = (0.2, 0, −8.2) is represented

in Fig. 9(g). Note that its shape is different from that of the other attractors drawn in Fig. 8(c)–(f).
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Fig. 10. Partial bifurcation set in a neighborhood of the triple-zero bifurcation TZ, for B = −0.1 and D = 0.01: (a) in the (ε1, ε2, ε3)-space; (b)
rojection onto the (ε2, ε1)-plane; (c) projection onto the (ε2, ε3)-plane. Seven curves of codimension-two bifurcations appear: three are local (BT,
Z, DZ) and four are global (DHe1 , DHe2 , DH11 and DH21).

.2.1. Triple-zero bifurcation
Finally, to have a global idea of the bifurcation scenario and the main organizing centers in this region of the parameter

pace of system (3), we have drawn in Fig. 10 a partial bifurcation set in a neighborhood of the triple-zero degeneracy
Z, when B = −0.1 and D = 0.01. The curves in the (ε1, ε2, ε3)-space appear in Fig. 10(a), their projection onto the
ε2, ε1)-plane in Fig. 10(b) and onto the (ε2, ε3)-plane in Fig. 10(c). Specifically, we draw the loci where the following
codimension-two bifurcations occur:

• BT, Bogdanov–Takens bifurcation of equilibrium E1.
• HZ, Hopf-zero bifurcation of E1.
• DZ, double-zero bifurcation (a double-zero eigenvalue with geometric multiplicity two) of E1.
• DHe1 and DHe2, degenerate heteroclinic connections because the equilibria E1 and E2, respectively, change from

saddle–node to saddle-focus.
• DH11 and DH21, degenerate homoclinic connections of E1 and E2 due to the existence of resonant eigenvalues δE1 = 1

and δE2 = 1, respectively.

Finally we emphasize that similar configurations of curves of codimension-two global bifurcations around a triple-zero
degeneracy TZ have been found in previous works, both in the study of some Z2-symmetric control systems particularized
n the Chua’s equation [35] as well as in the analysis of non-symmetric electronic circuits [60].

. Conclusions

In order to continue advancing in the analysis of the Lorenz system (and of so many other quadratic systems called
orenz-like systems) it is necessary to combine analytical and numerical tools. Given the impossibility of studying by
tandard methods the triple-zero bifurcation that the equilibrium at the origin of the Lorenz system exhibits when

= −1, ρ = 1, b = 0, in this work we carry out a partial study of system (3), an unfolding of the normal form of
17
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the triple-zero bifurcation. We remark that several systems studied in the literature appear as particular cases for certain
parameter choices [37–42].

The theoretical analysis of the double-zero bifurcation (a double-zero eigenvalue with geometric multiplicity two)
as allowed to determine the different cases that may appear. For this we have established a connection between the
educed system on the corresponding two-dimensional center manifold and the planar normal form of the Hopf-zero
ifurcation [44, Sect. 7.4]. For its greater interest, we have focused on the case that leads to a more complex dynamical
ehavior (existence of Hopf bifurcation and heteroclinic connection), and we have provided the expressions of the
ifurcation curves organized by the double-zero degeneracy.
Taking as a starting point the theoretical results obtained, we have carried out a numerical study that has allowed

o find bifurcations of codimension one (Hopf, transcritical, pitchfork, saddle–node of periodic orbits, heteroclinic,
omoclinic), two (double-zero, Bogdanov–Takens, degenerate Hopf, degenerate heteroclinic, degenerate homoclinic, T-
oint) and three (degenerate double-zero, triple-zero) in the region considered of the parameter space. On the other
and, we have also found zones of existence of chaotic attractors. Various aspects of the bifurcation set of system (3) are
orth studying in the future. For example, to complete the study of degeneracies that appear on the bifurcation curves
nd to determine the new curves that emerge from those degenerate points.
The double-zero bifurcation has allowed to find a heteroclinic connection. The degeneracies of this heteroclinic cycle

re connected with the triple-zero bifurcation TZ (see Fig. 10). This codimension-three linear degeneracy deserves further
tudy whose results can be applied to the Lorenz system.
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Appendix A. Some useful changes of variables

The first lemma is obtained directly from the results shown in [44, Sect. 7.4]. We state it here for clarity and
completeness.

Lemma A.1. System{
ṙ = arz + cr3 + drz2,
ż = −r2 − z2 + er2z + fz3, (A.1)

for a ̸= 0, by means of the change of variables

s = r, w = z + hr2 + iz2, dτ = (1 + jz)−1dt, (A.2)

where

h =
c
a
, i =

d + ae + 2(a + 1)c
3a

, j =
ae − 2d + 2(a + 1)c

3a
, (A.3)

s transformed into⎧⎪⎨⎪⎩
ds
dτ

= asw + O(|s, w|
4),

dw
dτ

= −s2 − w2
+ f̂w3

+ O(|s, w|
4),

(A.4)

here f̂ = f − j.

emma A.2. System{
ṙ = arz + cr3z + drz3,

2 2 4 2 2 4 (A.5)
ż = −r − z + er + fr z + mz ,
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for a ̸= 0, −1/2, is orbitally equivalent to⎧⎪⎨⎪⎩
ds
dτ

= asw + O(|s, w|
5),

dw
dτ

= −s2 − w2
+ O(|s, w|

5),
(A.6)

y means of the change of variables

s = r(1 + gr2 + hz2), w = z(1 + irz + jz2), dτ = (1 + kr2)−1dt, (A.7)

where

g = −
a2e + (a + 1)c + af − 2am − d

2a(2a + 1)
, h =

d − am
2

, j = m,

i =
a(2a + 5)m + (1 − 2a)d + ae − 2af − c

2(2a + 1)
, k =

ae − am − c + d
2a

, (A.8)

Lemma A.3. System{
ṙ = arz + cr5 + dr3z2 + erz4,
ż = −r2 − z2 + fr4z + gr2z3 + hz5, (A.9)

for a ̸= 0, is orbitally equivalent to⎧⎪⎨⎪⎩
ds
dτ

= asw + O(|s, w|
6),

dw
dτ

= −s2 − w2
+ ĥw5

+ O(|s, w|
6),

(A.10)

here

ĥ = h +
2(1 − 4a2)c − 2(a + 1)d + 2e − 3ag + a(1 − 2a)f

5a
.

ppendix B. Hopf bifurcations of the nontrivial equilibria

In this appendix we analyze the Hopf bifurcations of the nontrivial equilibria E3,4 and E2 of system (3). The results
btained, valid for any value of ε1, ε2 and ε3, will be useful in the numerical study carried out in Section 4.

.1. Hopf bifurcation of the equilibria E3,4

Due to the symmetry, we will only consider in our study one of these equilibria, namely E3 = (
√

−ε1(ε3 + Dε1), 0, ε1),
hat exists when ε1(ε3 + Dε1) < 0.

Firstly, we translate the nontrivial equilibria E3 to the origin by means of the change

X = x −

√
−ε1(ε3 + Dε1), Y = y, Z = z − ε1,

that transforms system (3) into⎧⎨⎩Ẋ = Y ,

Ẏ = ξ2Y − ξ1Z − XZ + BYZ,

Ż = 2ξ1X + ξ3Z + X2
+ DZ2,

(B.1)

ith

ξ1 =

√
−ε1(ε3 + Dε1), ξ2 = ε2 + Bε1, ξ3 = ε3 + 2Dε1. (B.2)

Therefore, the characteristic polynomial of the linearization matrix of system (B.1) at the origin is given by

p = λ3
+ p1λ2

+ p2λ + p3,

where

p1 = −(ξ2 + ξ3), p2 = ξ2ξ3, p3 = 2ξ 2
1 .

Thus, a Hopf bifurcation of E3 occurs when p1p2 = p3, p2 > 0, p1 ̸= 0, that is, when

ξ 2
= −

1
ξ2ξ3(ξ2 + ξ3), ξ2ξ3 > 0, ξ2 + ξ3 < 0, ξ2 < 0, ξ3 < 0.
1 2
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Considering system (B.1) at the critical values where the Hopf bifurcation occurs, we perform the following linear change
to put the matrix of the linear part into the corresponding canonical form(X

Y
Z

)
=

⎛⎝ 0 1 1
ω0 0 −K 2

1
K2 K3 K4

⎞⎠(u
v

w

)
,

here

ω0 =

√
ξ2ξ3, K1 =

√
−(ξ2 + ξ3), K2 =

√
2ξ2
K1

, K3 =

√
2ω0

K1
, K4 =

√
2ω0K1

ξ2
.

hus, with this change, system (B.1) becomes( u̇
v̇

ẇ

)
=

⎛⎝ 0 −ω0 0
ω0 0 0
0 0 −K 2

1

⎞⎠(u
v

w

)
(B.3)

+
1
C

⎛⎝ A1u2
+ A2v

2
+ A3w

2
+ A4uv + A5uw + A6vw

A7u2
+ A8v

2
+ A9w

2
+ A10uv + A11uw + A12vw

−A7u2
− A8v

2
− A9w

2
− A10uv − A11uw − A12vw

⎞⎠ ,

where

C = ξ2K2 + ξ3K2 + K3ω0 − K4ω0 ̸= 0,
A1 = K2 (K3 ω0−K4 ω0 − ξ2 K2 − ξ3 K2) ,

A2 = K3
2E2 + K3

2E3 − K3
2
+ K3 K4 + E2 + E3,

A3 = −K3 K4 E2 + 2 K4
2E2 − K3 K4 E3 + 2 K4

2E3 − K3 K4 + K4
2
+ E2 + E3,

A4 = 2 K2 K3 E2 + 2 K2 K3 E3 − K3
2ω0 + K3 K4 ω0 − K2 K3 + K2 K4,

A5 = −K2 K3 E2 + 3 K2 K4 E2 − K2 K3 E3 + 3 K2 K4 E3 − K3 K4 ω0

+ K4
2ω0 − K2 K3 + K2 K4,

A6 = −K3
2E2 + 3 K3 K4 E2 − K3

2E3 + 3 K3 K4 E3 − K3
2
+ K4

2
+ 2 E2 + 2 E3,

A7 = 2ω0K2
2,

A8 = ω0K3
2
+ K3 K2 + ω0,

A9 = K4 ξ2 K2 + K4 ξ3 K2 + K4
2ω0 + K4 K2 + ω0,

A10 = K2 (3 K3 ω0 + K2) ,

A11 = K2 (ξ2 K2 + ξ3 K2 + 3 K4 ω0 + K2) ,

A12 = K3 ξ2 K2 + K3 ξ3 K2 + 2 K4 ω0K3 + K3 K2 + K4 K2 + 2ω0.

Now, considering the second-order approximation to the center manifold

w = α1u2
+ α2uv + α3v

2
+ · · · ,

we obtain the reduced system up to third order on the center manifold. And, by using the recursive algorithm developed
in [46], we obtain the normal form for the Hopf bifurcation to third-order (22), where the first Lyapunov coefficient is
given by

a1 =

√
ξ2 ξ3N1

4ξ2ξ3 (ξ2 + ξ3)
(
ξ2

2
+ 6 ξ2 ξ3 + ξ3

2) (ξ22 + 3 ξ2 ξ3 + ξ3
2) , (B.4)

ith

N1 = 2 ξ2
5
+ 31 ξ2

4ξ3 + 39 ξ2
3ξ3

2
+ ξ2

2ξ3
3
− ξ2 ξ3

4
+ 4 ξ2

4
+ 56 ξ2

3ξ3

+ 25 ξ2
2ξ3

2
− 12 ξ2 ξ3

3
− ξ3

4
+ 2 ξ2

2ξ3 − 24 ξ2 ξ3
2
− 2 ξ3

3.

ince ξ2ξ3 > 0, we obtain that a1 = 0 if, and only if, N1 = 0.
In Fig. B.1 we have drawn the curve N1 = 0 in the (ξ2, ξ3)-plane near the origin. It is a bounded curve connecting the

oints (−2, 0) and (0, −2).
In terms of the original parameters of the system, the Hopf surface of the equilibria E3,4 is given by

ε3 =
2ε1 − 2(B + 2D)ε1ε2 − B(B + 4D)ε2

1 − ε2
2

2(Bε1 + ε2)

+

√
(Bε1 + ε2)4 + 4ε1(ε1 − 2D(Bε1 + ε2)ε1 − (Bε1 + ε2)2)

2(Bε1 + ε2)
, (B.5)

n the zones where the above inequalities are fulfilled.
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Fig. B.1. Curve N1 = 0 in the (ξ2, ξ3)-plane in the vicinity of the origin. It corresponds to the degeneracy a1 = 0 in the Hopf bifurcation of the
equilibria E3,4 .

Fig. B.2. For ε2 = −1, B = −0.1, curve on the Hopf surface where M1 = 0 in the (D, ε1, ε3)-space. It corresponds to the degeneracy a1 = 0 in the
Hopf bifurcation of equilibrium E2 .

B.2. Hopf bifurcation of the equilibrium E2

Now we consider the equilibrium E2 = (0, 0, −ε3/D). According to Section 2, it exhibits a Hopf bifurcation when
Bε3 = Dε2, if ε1 + ε3/D < 0 and ε3 ̸= 0. Repeating the previous calculations we obtain that the first Lyapunov coefficient,
in terms of the original parameters of the system, is given by

a1 =
B2 M1

8
√

−
B ε1+ε2

B D ε2

(
4 B2 ε1 + 4 B ε2 − D2 ε2

2
) , (B.6)

with

M1 = 8 B2 ε1 + 8 B ε2 − D2 ε2
2
− 2D ε2.

If B ̸= 0, we obtain that a1 = 0 if, and only if, M1 = 0.
For ε2 = −1 and B = −0.1 < 0, in Fig. B.2 we have drawn, in the (D, ε1, ε3)-space, the curve on the Hopf surface where

M1 = 0. This curve exists between the points (0, −10, 0) (where a triple-zero bifurcation in a continuum of equilibria
occurs) and (2, −10, 20) (that corresponds to a degenerate Bogdanov–Takens bifurcation) [43]. Also, if we set a value
D ∈ (0, 2), there is a unique degeneracy a1 = 0 on the Hopf curve of E2 when ε1 < −10, and there are no degenerations
if D < 0.
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