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A B S T R A C T   

Chromogranin A (CgA) has recently reported as stress marker in superior vertebrates. It is stored in granules of 
the chromaffin tissue and released to the bloodstream from the adrenal medulla and pituitary after stress situ-
ations. The objective of this work was to study the chromogranin A variation for acute and chronic stress in fish, 
aiming at determining if those proteins could be suitable stress markers. A chronic stress experiment was con-
ducted consisting of two treatments, stressed and control meagres (Argyrosomus regius) for 6 months. The stressed 
groups were submitted to confinement and netting/chasing stress. The control group tanks were not disturbed 
along the experiment. A complementary acute stress challenge was performed exposing control fish to air for 3 
min. Fish were sampled for blood, tissues and biometry. Plasma lactate and cortisol increased significantly after 
acute stress although glucose and proteins remained stable, and kidney cortisol and brain adrenaline were 
significantly higher. Kidney CgA decreased significantly in the acute stressed fish though brain CgA did not 
change. Final weight and length, growth and condition index were significantly lower in chronically stressed fish, 
though survival rate was not different between treatments. Plasma markers did not change significantly though 
kidney cortisol increased in chronically stressed fish. Brain noradrenaline was lower in chronically stressed fish. 
Both brain and kidney CgA concentrations decreased in stressed (chronic and acute) fish. Concluding, only 
kidney CgA and cortisol kept the same variation pattern in both stress types. Although cortisol concentrations in 
plasma and tissues have been widely studied, the tissue CgA concentrations related to stress have not still re-
ported in fish. Initially, the depletion of kidney CgA could be considered as a chronic stress marker though it 
needs to be supported by future research.   

1. Introduction 

The physiological variables which indicate teleost fish stress are very 
diverse; in fact, any parameter indicating deviation from the homeo-
stasis status could be considered as a stress indicator. The most part of 
those markers are linked to the endocrine response. Overall, this initially 
consists of a response called General Adaptative Syndrome (GAS), a 
hormonal cascade which leads to other responses to stressors (Schreck 
and Tort, 2016). The HPI (Hypothalamus-Pituitary-Interrenal) and HSC 
(Hypothalamus-Sympathetic-Chromaffin) are activated for this primary 
response, releasing corticosteroids (mainly cortisol) and catecholamines 
(adrenaline, noradrenaline and dopamine) to the bloodstream. Then, the 
above-mentioned indicators are detectable in blood and tissues, as 
described by Salamanca et al. (2021). Following, several intermediary 
metabolism pathways are enhanced, which is the stress secondary 
response and, if stress persists (distress), severe fails at organism level 

appear (Iwama et al., 2006; Schreck and Tort, 2016). The secondary 
responses are mainly assessed studying the circulation and trans-
formation of reserve substances through blood/tissues and enzyme ac-
tivity analyses (Sangiao-Alvarellos et al., 2005; Herrera et al., 2015). 
The tertiary responses are identified by general dysfunctions coming 
from multiorgan failures, such as growth decrease, mortality, lower 
resistance to pathogens, losses in the reproductive performance, etc. 
(Madaro et al., 2015; Refaey et al., 2018). 

The meagre (Argyrosomus regius) is a relatively new species in 
aquaculture research, though its stress responses have been previously 
studied, being like other teleosts (Fanouraki et al., 2011; Samaras et al., 
2016; Fernández-Alacid et al., 2019; Asencio-Alcudia et al., 2019; 
Monteiro et al., 2021; Salamanca et al., 2021; Herrera et al., 2020, 
2021). However, some authors have stated that the differences between 
basal and stressed values of stress markers are lower than other fish 
species, though significant (Fanouraki et al., 2011; Samaras et al., 2016). 
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The primary stress markers based in the HPI reactivity (cortisol, 
corticotropin releasing hormone) are much more used than those 
deriving from the HSC. It is due to HSC indicators (mainly catechol-
amines) are released and removed quickly from the bloodstream after 
stress, meanwhile HPI markers are more stable (Barton, 2002). Never-
theless, it has been described that an HPI axis acclimation to chronic 
stress conditions can exist, hence the efficacy of those indicators is 
sometimes poor, despite there is no information on the physiological 
processes involved (Montero et al., 1999; Procarione et al., 1999; Hau-
kenes and Barton, 2004; Barton et al., 2005). The circadian rhythms 
affecting cortisol release do not either support its efficacy as stress 
marker (Sánchez Vázquez et al., 2019). In this sense, the search of new 
stress markers based on the HSC axis response could be an interesting 
topic. As mentioned, the catecholamines reflect a prompt response and 
are quickly released and removed from the bloodstream, although there 
are some proteins released at the same time, the chromogranins, which 
are more stable in the blood (Srithunyarat et al., 2018). 

Chromogranins belong to the granin family, a group of soluble acid 
proteins which express in several endocrine, neuroendocrine and 
neuronal cells (Taupenot et al., 2003a). Specifically, the biosynthesis of 
chromogranins has been described in cells from the gastrointestinal and 
respiratory tracts, adeno- and neuro-hypophysis, parathyroid glands, 
endocrine pancreas, and the adrenal medulla from humans, cows, mice, 
and rats (Taupenot et al., 2003a, 2003b; Helle et al., 2007; Bartolomucci 
et al., 2011; D’amico et al., 2014; Corti et al., 2018). 

They are stored in secretory granules and released together with 
peptidic hormones, neurotransmitters or amines as response to a range 
of stimuli (D’amico et al., 2014). At intracellular level, chromogranins 
regulate the calcium and pH levels, also interacting with other bio-
molecules to form secretory granules (Taupenot et al., 2003a, 2003b). 
From an endocrinological perspective, it has been suggested that chro-
mogranins act as prohormones, giving rise to several bioactive peptides. 
Hence, peptides derived from chromogranin A (CgA) would have 
autocrine, paracrine, and endocrine activities (Taupenot et al., 2003a, 
2003b). For instance, pancreastin inhibits glucose-stimulated insulin 
and amylase releases, activates hepatic glycogenolysis, and inhibits 
vasoconstriction in superior vertebrates (Tatemoto et al., 1986; Aardal 
et al., 1993; Sanchez-Margalet et al., 2000; Cadman et al., 2002). 

Moreover, CgA has recently reported as stress marker in tetrapods, 
and also humans (Toda et al., 2007; Escribano et al., 2013; Srithunyarat 
et al., 2016, 2018). This glycoprotein is stored in granules of the chro-
maffin tissue and released into the bloodstream from the adrenal me-
dulla and pituitary after stress situations (Taupenot et al., 2003a, 
2003b). In this sense, CgA and/or derived peptides can modulate the 
release of catecholamines from sympathoadrenal chromaffin cells and 
inhibit the secretion of proopiomelanocortin hormone (Wand et al., 
1991; Mahata et al., 1997; Taupenot et al., 2000). Blood CgA concen-
tration is more stable than catecholamines, not being submitted to 
circadian rhythms. These facts, together with its easier analysis and 
preservation, make them a remarkable candidate for stress markers 
based on the SAM (sympathetic-adreno-medullar) axis reactivity, as 
described in pigs and other animals (Hayashi et al., 2014; Martínez-Miró 
et al., 2016). 

Although the features of peptides derived from chromogranins acting 
as cardiac stabilizers have been studied in fish, their relationship with 
the stress response has been not described to the best of our knowledge 
(Imbrogno et al., 2019). In this sense, it has been reported that these 
peptides show cardio-inhibitors effects in teleosts and use several stra-
tegies for the cardiac control, despite its biological meaning still remains 
unclear (Mazza et al., 2007; Imbrogno et al., 2017). 

From the first CgA sequence, coming from bovines, the expression, 
structure and function of chromogranins (CgA and CgB) have been 
studied in several species. Therefore, their presence have been demon-
strated in the whole animal kingdom including invertebrates, high-
lighting their high phylogenic preservation (Bartolomucci et al., 2011). 
Despite existing differences in the amino acid composition among 

species, some specific parts of those molecules have a high level of 
amino acid homology, hence the analytical methods which antibodies 
direct to specific epitopes can use to measure samples of different species 
(Stridsberg and Angeletti, 2000). 

Therefore, the objective of this work was to study the chromogranin 
A variation for stress in meagre, aiming at determining if those proteins 
could be a suitable stress marker, mainly for chronic stress conditions. 

2. Material and methods 

2.1. Experimental cultures and sampling 

The experimental cultures were carried out at the IFAPA Agua del 
Pino (Cartaya, Spain) facilities. 900 L circular tanks (0.65 m radius) 
integrated in a close water system were used. Culture water was depu-
rated with sand, physical, UV and biological filters. The water temper-
ature and dissolved oxygen were checked daily, the temperature being 
constant at 20 ◦C (20 ± 0.06 ◦C, mean ± SEM) through a heat 
exchanger, and the dissolved oxygen above 5 ppm (6.57 ± 0.03 ppm; 
88.8 ± 0.5% air saturation) by means of air stones. Photoperiod was 
natural, with a light intensity of 500–1000 lx. The renewal rate was 
400% daily. The feeding consisted of commercial fish feed (L3 Alterna® 
Skretting, Burgos, Spain: 46.5% protein, 20% fat, 8.4% ash, 4.3% cel-
lulose, 1.4% total phosphorous, 18 MJ Kg− 1 energy) ad libitum, being 
2–3% tank biomass. 

Meagre juveniles were purchase from MARESA (Ayamonte, Spain) 
and submitted to an acclimation period in the above conditions for two 
weeks (20 fish tank− 1). After, fish were initially sampled for body weight 
(181.5 ± 15.1 g) and total length (37.3 ± 0.88 cm). There were two 
experimental procedures: chronic stress culture and acute stress 
challenge. 

Chronic stress culture: It consisted of two treatments (per duplicate), 
stressed (CS) and control (CT) for 6 months. The CS groups were sub-
mitted to confinement and netting/chasing stress. Those tanks had a 
water column of 20 cm, thus an initial stocking density of 14 Kg m− 3. 
Additionally, fish were randomly net-chased and netted (with no 
exposure to air) daily for 5 min twice a day. The CT group tanks had a 
water volume of 500 L (40 cm water height, 7 Kg m− 3) and were not 
disturbed along the experiment. All tanks were supervised daily for 
cleaning and possible dead fish. 

Acute stress challenge: After completing the chronic stress culture, all 
remaining fish from the control groups were kept in the same non- 
stressing culture conditions. After 15 days, 10 fish were netted and 
exposed to air stress for 3 min, taken back to tanks and sampled after 15 
min. 

Fish were sampled at the end of the experimental chronic stress 
culture (6 months), and after the air stress challenge (see above) for 
blood, tissues and biometry. Fish were sacrificed with 2-phenoxyethanol 
(1 mL L− 1). Blood was collected by puncturing the caudal peduncle with 
1 mL heparinized syringes (25,000 units of ammonium heparin 3 mL− 1 

of 0.6% NaCl saline, Sigma H6279). Plasma was separated from cells by 
centrifugation of whole blood (10 min; 1200 ×g; 4 ◦C), and stored at 
− 80 ◦C until the analysis of glucose, lactate, protein, and cortisol and 
catecholamine hormones was performed. The brain and a portion of 
head kidney were removed from each fish and stored at − 80 ◦C until 
analyzed. Besides mean final weight and length, several zootechnical 
parameters were calculated: Specific Growth Rate, SGR = 100⋅ (ln Wf – 
ln Wo)/t; condition factor, K = BW / TL3, and survival rate (Wf, Wo, t, 
BW and TL are final and initial weight, time, final body weight and total 
length, respectively). 

The IFAPA facilities are certified and have the necessary authoriza-
tion for the breeding and husbandry of animals for scientific purposes 
(REGA code ES210210000303). All procedures involving the handling 
and treatment of the fish were approved as far as the care and use of 
experimental animals are concerned, by the European Union (2010/63/ 
EU) and the Spanish Government (Royal Decree 53/2013, February 1, 
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on the basic guidelines for the protection of animals used for experi-
mentation and other scientific purposes, including training). 

2.2. Plasma analysis 

Plasma glucose, proteins, lactate, adrenaline and noradrenaline 
levels were measured using commercial kits from Química Analitica 
Aplicada S.A. (QCA Glucose Liquid Ref. 998,225, QCA Total Proteins 
Ref. 997,180, Tarragona, Spain), Spinreact (Lactate Ref. 1,001,330, 
Barcelona, Spain), and 2-CAT (A-N) Research ELISA (Ref. BA E-5400, 
Nordhorn, Germany) adapted to 96-well microplates (Herrera et al., 
2012; Salamanca et al., 2021). Plasma chromogranin A concentration 
was determined through an ELISA commercial kit (FineTest ChgA ELISA 
Kit, ref. ER0468, Wuhan Fine Biotech, Wuhan, China), 31.25 pg mL− 1 

being the lower limit. The inter-assay coefficient of variation was 11.1%, 
while the mean intra-assay coefficient of variation was 9.7%. No sig-
nificant cross-reactivity or interference has been observed for this ELISA 
method. 

All assays were performed with a Tecan Sunrise microplate reader, 
using Magellan v2.5 software for Windows (Tecan Austria, Salzburg). 
Plasma cortisol levels were quantified by an ELISA kit (EA65, Oxford 
Biomedical Research, MI, USA) modified and adapted to fish (Herrera 
et al., 2014). Cortisol was extracted from 20 μL plasma in 200 μL diethyl 
ether. The lower limit of detection (88.2% of binding) was 0.005 ng 
mL− 1 plasma. The inter-assay coefficient of variation was 9.8%, while 
the mean intra-assay coefficient of variation was 4.6%. The mean per-
centage of recovery was 90%. The main cross-reactivities (>5%; given 
by the supplier) were detected with prednisolone (66.9%), 11-deoxycor-
tisol (58.1%), cortisone (15.9%), prednisone (13.7%), and 17-hydroxy-
progesterone (5.4%). 

2.3. Tissue analysis 

For brain catecholamines and chromogranin A concentrations, 
20–50 mg of brain tissue was homogenized by ultrasonic disruption with 
150 μL of perchloric acid (PCA), and then mixed with 150 μL of potas-
sium dichromate 0.15 M. Following this, the mixture was centrifuged 
(1200 g; 4 ◦C; 10 min) and the supernatant removed. The precipitate was 
air dried for 2 h at 25 ◦C. Finally, 250 μL of distilled water was added to 
the tube and the solution used for ELISA kit determination. Adrenaline, 
noradrenaline and dopamine were measured through the 3-CAT 
Research ELISA (Ref. BA E-5600, LDN, Nordhorn, Germany, sensitivity 
of 0.25 ng mL− 1 for adrenaline and dopamine, and 0.1 ng mL1 for 
noradrenaline), as reported in Salamanca et al. (2021). And chromog-
ranin A concentration was determined by means of the FineTest ChgA 
ELISA Kit (Ref. ER0468, Wuhan Fine Biotech, Wuhan, China, sensitivity 
of 31.25 ng mL− 1). The inter- and intra-assay coefficients of variation 
were lower than 10 and 8%, respectively. Head kidney was also ho-
mogenized and analyzed for cortisol and chromogranin A concentra-
tions according to the above procedures. 

2.4. Statistical analysis 

Normality and homoscedasticity of all data sets were checked 
through the Kolmogorov–Smirnov and Levene tests, respectively. Dif-
ferences among treatments were detected through a Student’s t-test 
(normal variables) or U–Mann Whitney (non-normal variables) test. 
Data are expressed as mean ± standard error of mean (n = 7–10). The 
significance level was 0.05. 

3. Results 

3.1. Acute stress 

Within the classical stress markers, lactate and cortisol increased 
significantly 15 min post-stress although glucose and proteins remained 

stable (Fig. 1 and Fig. 2). Plasma lactate after acute stress grew three- 
fold over non-stressed values (7.19 ± 1.24 versus 21.1 ± 1.73 mg 
dL− 1). Similarly, plasma cortisol in stressed fish was 84.1 ± 8.49 ng 
mL− 1, significantly higher than 32.5 ± 9.26 ng mL− 1 for non-stressed 
fish. As plasma cortisol, kidney cortisol after stress was significantly 
higher, 0.37 ± 0.01 versus 0.23 ± 0.04 pg g− 1 (Fig. 2). Regards cate-
cholamine concentrations in brain, only adrenaline increased signifi-
cantly after stress, being 30.7 ± 4.11 and 16.4 ± 3.13 pg g− 1 for stressed 
and non-stressed fish, respectively (Fig. 3). 

Plasma chromogranin A (CgA) concentrations were not detected 
through the ELISA kit (values under the detection limit). Kidney CgA in 
stressed fish was significantly lower (0.64 ± 0.04 pg mg− 1) than in non- 
stressed fish (10.3 ± 2.91 pg mg− 1); however, brain CgA did not change 
significantly between treatments (Fig. 4). 

3.2. Chronic stress 

Several biometric parameters varied between treatments signifi-
cantly (Table 1). Final weight and length, growth and condition index 
were significantly lower in chronically stressed fish, though survival rate 
was not different between treatments (75 ± 5 and 68 ± 2.5% for non- 
stressed and stressed groups, respectively). Indeed, growth rate in con-
trol fish was approximately twice the chronically stressed one (0.41 ±
0.04 and 0.22 ± 0.08 day− 1, respectively). 

Plasma stress markers did not change significantly (Fig. 1 and Fig. 2). 
However, kidney cortisol increased in stressed fish (0.42 ± 0.01 versus 
0.23 ± 0.04 pg g− 1). Brain catecholamine concentrations only changed 
for noradrenaline (Fig. 3). This hormone concentration dropped from 
98.3 ± 7.91 in control fish to 42.8 ± 6.85 pg g− 1 in chronically stressed 
fish. Spite of adrenaline increased in stress status; this was not 
significant. 

Both brain and kidney CgA concentrations decreased in stressed fish 
(Fig. 4). However only the kidney CgA variation was significant (from 
10.3 ± 2.91 to 1.22 ± 0.3 pg g− 1). 

4. Discussion 

In this work, the determination of CgA concentrations in meagre 
(Argyrosomus regius) tissues has been reported for the first time. Only 
two previous works have studied the concentrations of chromogranin- 
derived peptides in fish hearts (through in vivo preparations), stating 
their role as cardiac modulators (Mazza et al., 2007; Imbrogno et al., 
2017). 

As a result, the efficacy of CgA as stress marker in fish has been 
assessed for the first time. Both acute and chronic stress responses led to 
a tissue CgA decrease, especially in kidney. Plasma CgA values were not 
detected due to the sensitivity of the ELISA method, hence they would be 
lower than 31.25 pg mL− 1 (the kit lower limit). To our knowledge, no 
work has stated that circulating chromogranins in plasma are bound to 
proteins (Taupenot et al., 2003a, 2003b; Helle et al., 2007; Bartolomucci 
et al., 2011; D’amico et al., 2014; Yang et al., 2015; Corti et al., 2018; 
Malczewska et al., 2020). Therefore, the method detections (mainly 
ELISA) are usually based on the use of antibodies detecting various 
epitopes of the plasma free-protein surface (Malczewska et al., 2020). It 
seems that, in our case, a more sensitive ELISA should have been used. 

4.1. Acute stress assay 

The acute stress responses are usually measured by plasma analysis, 
mainly lactate, glucose and cortisol (Vargas-Chacoff et al., 2011; Herrera 
et al., 2012; De la Roca et al., 2017). Other works have also assessed the 
changes in plasma catecholamines since reflect the HSC axis reactivity 
(Salamanca et al., 2021; Datta et al., 2022). Our results have shown that 
the experimental conditions caused acute stress responses in the fish 
since several plasma indicators increased significantly 15 min after the 
stress challenge (Table 2). Additionally, kidney cortisol also increased its 
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Fig. 1. Plasma glucose, lactate and protein concentrations measured after stress treatments. Asterisk (*) and number sign (#) indicate significant differences from the 
control (no stress) for acute and chronic stress, respectively (p < 0.05). 

Fig. 2. Plasma and kidney cortisol concentrations measured after stress treatments. Asterisk (*) and number sign (#) indicate significant differences from the control 
(no stress) for acute and chronic stress, respectively (p < 0.05). 
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concentration significantly along with the other markers. To the date, 
few works have studied the changes in kidney cortisol concentration, 
spite of being produced and released from that tissue (Mommsen et al., 
1999). However, several works have focused on the gene expression of 
cortisol receptors and precursors from kidney samples (Herrera et al., 
2021; Samaras and Pavlidis, 2018), agreeing that stressors enhance 
them. Therefore, our stress conditions derived in a quick stress response, 
at both plasma and tissue level. 

The catecholamines are released and cleared quickly in the blood-
stream during stress conditions, hence sometimes these are not reliable 
stress indicators (Barton, 2002). However, recent studies have demon-
strated that they can be useful linked to other indicators if a suitable 
sampling methodology is followed (Salamanca et al., 2021, 2022). In 
our work, plasma adrenaline grew significantly after stress, confirming 
the stress status, as the cortisol variations pointed out previously. 

In superior animals, CgA is present in the chromaffin granules of 
endocrine cells, neurons, and neuroendocrine cells (Di Comite and 
Morganti, 2011). According to the present work, CgA can also be 
detected in head kidney and brain, hence those proteins could come 
from the fish chromaffin cells and neurons, as said above. Tissue CgA 
concentration decreased after acute stress, although that change was 
only significant in the kidney. To the date, CgA have not been measured 
in animal tissues for assessing stress responses. 

Srithunyarat et al. (2016) found a direct relationship between 
plasma CgA, cortisol and catecholamines in dogs after acute stress. In 
addition, salivary CgA in pigs submitted to restraint stress increased 
significantly (Escribano et al., 2015). This pattern has also registered in 
samples of human saliva and plasma (Nakane et al., 1998). In our work, 
the measurement of plasma CgA concentration was not possible due to 
the methodology applied although there were important decreases in 
tissue. To our knowledge, it has not been stated if CgA produced in 

kidneys is released into the bloodstream or catabolized in situ. However, 
it has been reported that kidneys have a crucial role in eliminating CgA, 
since renal failures lead to a plasma CgA increase in humans (Hsiao 
et al., 1990; Takiyyuddin et al., 1990; Taupenot et al., 2003a, 2003b). 
Whereas fish kidneys also could influence CgA circulation significantly, 
the decrease in kidney CgA after stress in our work could be due to a 
relevant release of CgA into the bloodstream, supposing a quick deple-
tion of CgA synthetized and/or stored at the kidney. 

The pattern in brain was very similar, thus the distribution of these 
proteins to tissues through the bloodstream seems to be crucial during 
the stress response. It could explain that other biological samples as 
saliva and urine could also present high CgA concentrations after acute 
stress (Ott et al., 2014; Escribano et al., 2014, 2015; Huang et al., 2017). 

4.2. Chronic stress assay 

Fish submitted to chronic stress showed a significant lower growth. 
The loss of weight or slower growth are usually stress tertiary responses 
(Iwama et al., 2006), hence it is possible to confirm that confined fish 
were chronically stressed. It has been widely reported that chronic stress 
can alter growth rates (Pérez-Sánchez et al., 2018; Triantaphyllopoulos 
et al., 2020; Li et al., 2021). As mentioned above, it is a general response 
in many species to several stressor types. In that sense, chronic stress due 
to high stocking density led to lower growth rates in Chelon labrosus, 
Scophthalmus maximus, Clarias gariepinus, Ictalurus punctatus and Oreo-
chromis niloticus (De Heras et al., 2015; Jia et al., 2016; Wang et al., 
2017, Refaey et al., 2018; Zaki et al., 2020). Additionally, chronic stress 
due to thermal conditions or other different stressors also had negative 
effects on growth in Labeo rohita and Salmo salar (Kumar et al., 2014; 
Madaro et al., 2015). Nevertheless, sometimes the tertiary stress 
response has not been detected, with no changes in fish growth (Montero 

Fig. 3. Brain adrenaline, noradrenaline and dopamine concentrations measured after stress treatments. Asterisk (*) and number sign (#) indicate significant dif-
ferences from the control (no stress) for acute and chronic stress, respectively (p < 0.05). 
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et al., 1999a, 1999b; Costas et al., 2012; Herrera et al., 2015). 
Contrarily to biometric variables, other classical stress markers as 

plasma cortisol, glucose and lactate did not change significantly in our 
experiment (Table 2). This is due to the HPI axis sometimes habituates to 
stress conditions and does not react through the release of metabolites 
and hormones into the bloodstream (Haukenes and Barton, 2004; Barton 
et al., 2005). This adaptation could be related to changes in corticoste-
roid receptors along the body during chronic stress conditions (Valen-
zuela et al., 2018; Jerez-Cepa et al., 2019). Indeed, that is one of the 
reasons why the search of new chronic stress markers is a subject of 
interest in the study of fish stress responses. 

Kidney cortisol increased significantly in stressed fish, indicating 
that there was a high cortisol biosynthesis. No previous work on the 
relationship between kidney and plasma cortisol concentrations has 
been published. In fact, as indicated above, kidney cortisol analyses in 
the literature have been based on the expression of stress-related genes, 
reporting an over-expression of the most of them after stress submission 

(Samaras et al., 2018; Herrera et al., 2021; Earhart et al., 2022). How-
ever, it seems that here the HPI axis did not react, as commented above 
(habituation), and hence some stress markers like cortisol were not 
released into the bloodstream, as the plasma results show. Therefore, 
probably kidney cortisol would be a more reliable stress indicator than 
plasma cortisol under chronic conditions. 

Regards the CgA concentration, the pattern was similar to the stress 
acute experiment, both CgA brain and kidney decreasing. Previous 
works on superior animals have demonstrated the use of CgA 

Fig. 4. Brain and kidney CgA concentrations measured after stress treatments. Asterisk (*) and number sign (#) indicate significant differences from the control (no 
stress) for acute and chronic stress, respectively (p < 0.05). 

Table 1 
Biometric parameters registered for non-stress and chronic stress treatments. 
Asterisks indicate significant differences between non-stressed and stressed 
status (n = 10; Student t-test; values are mean ± SEM).   

Non-stressed Chronic stress 

Initial weight (cm) 181.5 ±15.1 
Initial length (cm) 27.2 ±0.88 
Final weight (g) 403.1 ± 29.1 * 302.3 ± 46.8 
Final length (g) 34.5 ± 0.93 * 31.5 ± 1.36 
Specific Growth Rate (day− 1) 0.41 ± 0.04 * 0.22 ± 0.08 
K 0.94 ± 0.02 * 0.90 ± 0.02 
Survival rate (%) 75 ± 5 68 ± 2.5  

Table 2 
Significant changes between control and stressed fish during the experiments. C 
= no significant change; R↑/ R↓ = significant increase/decrease regards the 
control (non-stressed) group.  

Parameter Stress type 

Acute Chronic 

Biometric   
Growth – R↓ 
Final weight/length – R↓ 
K – R↓ 
Physiological   
Plasma glucose C C 
Plasma lactate R↑ C 
Plasma proteins C C 
Plasma cortisol R↑ C 
Kidney cortisol R↑ R↑ 
Brain adrenaline R↑ C 
Brain noradrenaline C R↓ 
Brain dopamine C C 
Brain CgA C C 
Kidney CgA R↓ R↓  
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concentration as acute stress indicator (Toda et al., 2007; Escribano 
et al., 2013; Srithunyarat et al., 2016, 2018). Although its efficacy for 
chronic stress has not studied in animals yet, it has been reported that 
CgA and other chromogranins are valuable markers of psychological and 
psychosocial stress in humans (Kanamaru et al., 2006; Miyakawa et al., 
2006; Tammayan et al., 2021; Liu et al., 2022). In our work, it seems 
clear that both chronic and acute stress led to the depletion of CgA in 
kidney and brain. Therefore, CgA could be released into the bloodstream 
from the main source (kidney), transferred and accumulated to other 
different organs as gut, liver or heart (D’amico et al., 2014). In this 
sense, CgA and derived peptides have been reported as cardiac stabi-
lizers in fish, which could help to cope with stress situations since these 
alter significantly several cardiac variables as heart rate and stroke 
volume (Brijs et al., 2019). 

5. Conclusions 

According to our experiments, only kidney CgA and cortisol kept the 
same variation pattern in both stress types. Although cortisol concen-
trations in plasma and tissues have been widely studied, tissue CgA 
concentrations related to stress have not still reported in fish. Initially, 
the depletion of kidney CgA could be considered as a chronic stress 
marker though it needs to be supported by future research. Accordingly, 
both the development of more sensitive methods for analyzing plasma 
CgA and the analysis of CgA concentrations in other tissues and bio-
logical matrixes would be key tasks. As stress is closely linked to animal 
welfare, those matrixes should be based on non-invasive sampling pro-
tocols, thus studies on CgA determination in fish samples as scales, skin 
mucus and feces would be interesting future research lines. 
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