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Why the Agassi model?

o It is a solvable many-body model that allows to mimic the main
characteristics of the pairing-plus-quadrupole model.

@ [t can be exactly solved even in the case of large systems.

@ Nowadays, it is used to benchmark many-body approximations because
of its great flexibility and simplicity to be solved for large systems.

@ The model (and in particular its extension) owns a very rich phase
diagram and even presents shape coexistence.

@ The model is, somehow, an extension of the two-level
Lipkin-Meshkov-Glick model that incorporates pairing interaction.

o It is a model slightly more complex than the used ones in Quantum
Information Science (e.g, Lipkin, Dicke, Tavis-Cumming or Hubbard
models) and, therefore, of great interest.
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What a (digital) Quantum Computer

A device composed of:
@ m 2-level quantum systems (qubits),
@ aset of quantum gates (acting as unitary operators),
@ aset of measurement operators (measuring the state of defined subset of qubits),
o

a classical control unit which determines which gate should be applied.

I. M. Georgescu, S. Ashhab, and Franco Nori, Rev. Mod. Phys. 86, 153 (2014).
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Implementations

@ Trapped ions.

@ Superconducting
cirquits.

@ Nouclear spins
(NMR).

@ Photons.

@ Neutral atoms.

@ Cavity arrays.
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Agassi model

The first appearance

“Validity of the BCS and RPA approximations in the pairing-plus-monopole
solvable model”, Dan Agassi, Nuclear Physics A 116, 49 (1968).

The original Hamiltonian
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Agassi model

The O(5) as the spectrum generator algebra
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Jr= > C1]me*1m - (Ji)f; L= % > (c;rm(“”” - C]L—1mcf1’")

m=—j m=—j

m=

J J J
t_ T . _ T . T T t T t
A= C1Tmc1,7m' AL => C—1mCT—1,—m’ A= (C—1mc1,—m - C—1—mc1,m)
m=1

i
No = 3> clncom,  N=Ny+N_y

m=——j

Lamata, Pérez-Fern: Quantum Simulation: the Ag



Agassi model

The O(5) as the spectrum generator algebra
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I J
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A pictorial view
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© The phase diagram and the different shapes




The phases of the system

@ The spherical phase: o = 0 and § = 0.

@ The Hartree-Fock deformed phase: ¢ # 0 and 8 = O.

@ The BCS deformed phase: ¢ = 0 and 3 # 0.

@ The Hartree-Fock plus BCS deformed phase: ¢ # 0 and 5 # 0.
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The phases of the system

@ The spherical phase: o = 0 and § = 0.

@ The Hartree-Fock deformed phase: ¢ # 0 and 8 = O.

@ The BCS deformed phase: ¢ = 0 and 3 # 0.

@ The Hartree-Fock plus BCS deformed phase: ¢ # 0 and 5 # 0.

In the original formulation of the Agassi model only the three first phases
were present, but in the extended version of the model the four basis can be
found and, moreover, there is coexistence of some of the phases.
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The energy surfaces

o Hartree-Fock variational parameter. /3 Bogoliubov variational parameter

The energy surface A

Ej = —¢jcos pcos 3 — gj? sin? B — Vj? sin® ¢ cos? 8

pu
A — cos pcos B — = sin? 3 — Ksinchcoszﬁ
je 2 2
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The energy surfaces

Hartree-Fock variational parameter. 3 Bogoliubov variational parameter

The energy surface A
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The phase diagram

¥ 05 1 15 2
Y

Phase transition for the extended and simple Agassi model

(JEGR, J. Dukelsky, P. Pérez-Fernéndez, and J. M. Arias, PRC 97, 054303 (2018))
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Numerical calculations
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Figure: Comparison of HFB and exact results. j = 100 and Hamiltonian parameters
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Numerical calculations
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Figure: Comparison of HFB and exact results. j = 100 and Hamiltonian parameters
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The Jordan-Wigner transformation

o It is a non-local transformation that maps the fermion
creation/annihilation operators into Pauli matrices.

@ It is usual to relabel the fermion index, i.e., o, m — i.

The transformation

d=h®.0Ilieded,® .. 00,

1

Ci=h®..Ql.1®0 Qo741 Q ... ®0f,

with ) ]
+ o +idY . oX—ioY
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The case of 4 sites, j = 1

The mapping of the building blocks

JI = —0f®0j®o, —0f ®0®0y,
Cci1 — Ci, S = (1/8)(of + 05 — 0§ — 0F),
Ci,—1 — OCo JT=(H = —0y ®U§®JI—U1_ ®0’§®0’;—,
C11 — Cg, A;r = U1+®ffz+’ Af—1 :‘7:—; ®UI’
C. 1,4 — C4. Al = 0y Qo,, A 1=0; Qo, .
y
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The case of 4 sites, j = 1

The mapping of the building blocks

JI = —0f®0j®o, —0f ®0®0y,
Cig — Gy, S = (1/8)(of + 05 — 0§ — 0F),
cl 1 — C, JT=UN = -0, ®0i®0f —0] ®ER0],
o b
C11 — Cg, Al = Ur®”;’ A—1*Jg—®02—?
Co1-1 — Ca A = 0y B0y, A1 =03 Q0.
y
The Hamiltonian
H = Hi+H+ Hs,
- +
Hoo= 20t +08) - T (oF +05),
4 4
H, = —%(af@aé—l—aé@af),
Hi = —(9+V)(of ®0f ®05 ®0; +07 ®o; QaF ®0aF).
[Hi,H2] =0,  [H2,H3] =0,  [Hy,Hs] #0.
v
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The phase diagram (1D) for 4 sites, j = 1

@ Forj=1= N=4sitessg=Xand V = x
@ The hamiltonian only depends on g + V
e Two phases: symmetric g + V' < 1 and broken symmetry g + V > 1

Symmetric Broken—symmetry

] |
0 1

g+V
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What do we measure?

The evolution operator

U(t) = exp(—i Ht)

Experimentally it is implemented through the Lie-Trotter-Suzuki
decomposition (Trotter in short)

U(t) ~ {exp[—i(Hy + Hz)(t/n7)l exp[—iH3(t/ 7)1},

where the error produced will depend on the commutator [(H; + Hz), H3] and
scale as 1/n7, where nt denotes the number of Trotter steps.

4
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How good is the Trotter approach?

The fidelity
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The initial state is | |1 @ Jo @ T3 @ T4) (with minimum value of
(J%) = —1). The parameters of the Hamiltonian are ¢ = 1 and g = V = 1.
V.
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How good is the Trotter approach?

The value of (ny)
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The survival probability
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Feasibility

@ exp(—iH;t): single-qubit gates with fidelities often above 99.99% (in trapped
ions).
@ exp(—IiHat): two two-qubit gates carried out via Mglmer-Sgrensen gates with

fidelities above 99.9%, plus single-qubit gates to rotate the basis from X to Zz.

@ exp(—iHst): two Mglmer-Sgrensen gates and a local gate, plus single qubit
gates to rotate the bases. All the terms of H3 are implemented with a single
Trotter step.

JEGR, Arias, Lamata, Pérez-Fernandez, Sdiz Quantum Simulation: the Agassi Model



Feasibility

@ exp(—iH;t): single-qubit gates with fidelities often above 99.99% (in trapped
ions).

@ exp(—IiHat): two two-qubit gates carried out via Mglmer-Sgrensen gates with
fidelities above 99.9%, plus single-qubit gates to rotate the basis from X to Zz.

@ exp(—iHst): two Mglmer-Sgrensen gates and a local gate, plus single qubit
gates to rotate the bases. All the terms of H3 are implemented with a single
Trotter step.

@ The scaling of our protocol is efficient: the number of elementary gates is
polynomial in the number of interacting fermions, N.

@ With a classical computer the scaling would be inefficient™: the Hilbert space
dimension would grow exponentially in N.

@ 4-qubit proposal: 52 single-qubit gates and 50 two-qubits gates. Assuming gate
errors of 0.0001 for the single-qubit and 0.001 for the two-qubit one, the total
gate error, assuming N7 = 5, with be Eg ~ 0.28 (fidelity above 70%).
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Is it possible to determine the shape/phase of the system?

The obvious things

@ Shape is not really an observable.

@ The shape of the system is a property of its ground state (it is true that it
can be also defined for a excited state).

@ It is well defined at the mean-field level.
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system. That, in general, will happen for the time evolution of the matrix
element of a non-eigenstate.
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Is it possible to determine the shape/phase of the system?

The obvious things

@ Shape is not really an observable.

@ The shape of the system is a property of its ground state (it is true that it
can be also defined for a excited state).

@ It is well defined at the mean-field level. )

A different view

@ The shape of the system characterizes its spectrum.

@ An observable depending on the spectrum could encode the shape of the
system. That, in general, will happen for the time evolution of the matrix
element of a non-eigenstate.

@ Most probably the results will depend on the state and on the used
operator. Difficult to determine a priori the best state and operator.

@ These types of measurements are the easiest ones in Quantum
Computing.
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Is it possible to determine the phase of the system?

The correlation function

o o o iy
> o © o

Correlation 0,(12)

o
[N

0 2 0 1 2 0 1 2
(g+V)t (g+V)t

The initial state is | [1 ® J» ® T3 @ T4) (exact and Trotter results).

1
(g+V)t
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Is it possible to determine the phase of the system?

The maximum value of the correlation function as an “order
parameter”

Max. correlation 0,(12)
© © © © © =
o N £ )] o o

0 1 2
g+V with g=V
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How to determine the phase in this case?
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Different patterns everywhere

Symmetric  HF

7=05,£=05,A=0 2=15,£=05, A=0

Symmetric BCS
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A different approach: machine learning to recognize the
shape of the system

Machine learning in a classical computer

@ Regression

Clustering

Decision Trees

°
°

o Reinforced Learning
@ Genetic Algorithms

°

Neural Networks

G

@ To use supervised learning.

o Consider the knowledge of the phase diagram to define the categories.

@ Train the algorithm with the time evolution of the correlation function.
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Steps to implement a Convolutional Neural Network

Machine learning in a classical computer

@ Convolution layer: the layer responsible of performing the convolution
operation.

@ Activation layer: the layer that applies the activation function together with the
filter of the convolution layer.

@ Pooling layer: the pooling layer performs a dimension reduction of the data,
collapsing data by connecting clusters of neurons to a single neuron each.

@ Dropout layer: this optional layer temporarily deactivates, or drops out,
randomly selected training parameters from the previous layer that has trainable
parameters. Its goal is to avoid the “overfitting”.

@ Fully Connected layer: Also know as dense layers, they connect every neuron
of the input to every neuron of the output.

@ Softmax layer: This layer is a fully connected or dense layer that applies a
specific kind of activation function, called a softmax function, which is a
normalized exponential function.
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Results for a Convolutional Neural Network
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Conclusions and outlook

o It has been proposed and analyzed the quantum simulation of the Agassi
model for a size N = 4.

@ Numerical simulations and analytical estimations show that this protocol
is feasible with current technology.

@ Time dynamics of a quantum correlation function allows to determine
the different quantum phases of the model.

@ The analysis has been extended up to N = 8 and to the full fledged
Agassi model.

@ Machine learning has shown its power to recognize phases in cases
where noise is present.
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Thank you for your attention
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