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a b s t r a c t

Canard explosion is an appealing event occurring in singularly perturbed systems.
In this phenomenon, upon variation of a parameter within an exponentially small
range, the amplitude of a small limit cycle increases abruptly. In this letter we
analyze the canard explosion in a limit cycle related to a degenerate center (with
zero Jacobian matrix). We provide a second-order approximation of the critical
value of the parameter for which the canard explosion occurs. Numerical results are
compared with the analytical predictions and excellent agreements are found. As
in this problem the canard explosion ends in a homoclinic connection, a very good
approximation for the homoclinic curve in the parameter plane is also obtained.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In dynamical systems with multiple time scales, canard explosion alludes to a sudden transition between a
small amplitude limit cycle (canard cycle) and a relaxation oscillation (see, for instance, [1–8] and references
therein). An important problem is the determination of the critical value of the parameter for which the
canard explosion occurs. One efficient way for its computation is the asymptotic expansion method [9–11].

When the canard cycle emerges from a Hopf bifurcation, the problem is well studied and understood
under generic conditions (in this case there is an algebraic solution) [1,5,9]. However, when some non-
generic conditions occur, there is no explicit expression for the first integral and the computations become
harder [10]. The situation is more complicated when the canard cycle appears from a nilpotent center [12].
In this case, the period of the emerging orbit becomes unbounded [2]. A new situation corresponds to the
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Fig. 1. (a) Phase portrait of the unperturbed system (1). The straight line y = −1 (in red) corresponds to a heteroclinic connection
at infinity. For δ = 0.1 and a = 1 in system (2): (b) bifurcation diagram L2-Norm versus µ near the canard explosion which occurs
when µ ≈ −2.73441 · 10−3. Four limit cycles (labeled A-D) illustrate the very rapid growth of the amplitude which is limited by a
homoclinic connection (E) to the equilibrium marked with a bullet; (c) bifurcation diagram Period versus µ. In this case, the period
tends to infinity since a homoclinic orbit, E, exists; (d) and (e) temporal profiles of orbits A (black), C (red) and E (blue), where
period is normalized to 1. (f) Curve of the homoclinic connections in the (µ, δ)-parameter plane, when a = 1. The circles correspond
to the analytical approximations (first-order in blue, second-order in red) provided in Theorem 1.

presence of a degenerate center (with zero Jacobian matrix). The aim of this letter is to provide a first
example in the literature where the unperturbed system has a degenerate center. Specifically, we will consider

ẋ = y3, ẏ = −x3(1 + y). (1)

This system has a degenerate center at the origin (surrounded by a continuum of periodic orbits which rotate
clockwise) and the straight line y = −1 is a heteroclinic connection at infinity (see Fig. 1(a)).

We choose a simple perturbation of system (1) to analyze the canard explosion, namely

ẋ = y3 + δx := P (x, y, δ), ẏ = −x3(1 + y) + δµ + δ2ax := Q(x, y, δ, µ). (2)

Note that the scaling
X = ϵ−1/4x, Y = y, τ = ϵ3/4t, (3)

where δ = ϵ3/4, 0 < δ ≪ 1, transforms system (2) into the singularly perturbed system

ϵ
dX

dτ
= Y 3 + ϵX,

dY

dτ
= −X3(1 + Y ) + µ + ϵaX. (4)

The main result of this work is the following theorem that provides an approximation to the critical
parameter value for which the canard explosion occurs in system (2) (and also in the singularly perturbed
system (4)).

Theorem 1. A canard explosion occurs in system (2) when µ = µ2δ2 + µ4δ4 + O(δ6), where µ2 and µ4 are
iven in Eqs. (11) and (25), respectively. In system (4) it occurs for µ = µ ϵ3/2 + µ ϵ3 + O(ϵ9/2).
2 4
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The rest of the letter is organized as follows. Section 2 is devoted to prove Theorem 1. Numerical results,
which illustrate very good agreements with the theoretical predictions, are shown in Section 3. Finally, some
conclusions are included.

2. Asymptotic expansion

The goal of this section is to demonstrate Theorem 1. First, eliminating the time variable, we obtain
Q(x, y, δ, µ) − y′(x)P (x, y, δ) = 0, where ′ := d/dx. We look for a solution in the following form

y(x) =
∞∑

i=0
δiyi(x), µ =

∞∑
i=0

δiµi. (5)

hen, for the zero-order solution, we have y0 = −1, which is actually the critical manifold corresponding to
he canard explosion.

In each order, we can obtain the corresponding linear equation as follows

y′
i(x) − x3yi(x) + µi−1 = Ri(x), (6)

f which Ri(x) comprises all terms determined in preceding orders and u(x) = e−x4/4 is an integrating factor
atisfying u′ = −ux3. Then, (6) can be rewritten as

(uyi)′ + uµi−1 = uRi. (7)

hus, looking for solutions satisfying limx→±∞
yi(x)
e|x| = 0, the values of µi−1 and yi(x) are uniquely found as

µi−1 =
∫ ∞

−∞ u(x)Ri(x)dx∫ ∞
−∞ u(x)dx

, yi(x) = 1
u(x)

∫ x

−∞
u(s) [Ri(s) − µi−1] ds. (8)

Before finding the exact value of µi−1, we first define the following improper integral

In =
∫ ∞

−∞
xnu dx, n ∈ N, (9)

that satisfies In = [1 + (−1)n] 2
n−3

2 Γ
(

n+1
4

)
. Note that, In = 0 if n is an odd number.

From the first-order equation, y′
1 − x3y1 + µ0 = 0, we obtain µ0 = 0 and y1(x) = 0.

Considering the second-order equation, y′
2 −x3y2 +µ1 = −ax, we deduce that µ1 = 0 and (uy2)′ = −aux.

n later calculations it will be useful to define Tm,n =
∫ ∞

−∞ xmuyndx for m ≥ 0 and n ≥ 2. For
= 2,

Tm,2 = 1
m + 1

∫ ∞

−∞
uy2dxm+1 = − 1

m + 1

∫ ∞

−∞
xm+1 (−aux) dx ⇒ Tm,2 = a

m + 1Im+2. (10)

herefore, Tm,2 = 0 for odd m.
The analysis of the third-order equation allows to determine the first non-zero µi coefficient:

y′
3(x) − x3y3(x) + µ2 = xy′

2 ⇒ (uy3)′ = u (xy′
2 − µ2) ⇒ µ2I0 =

∫ ∞

−∞
xu

(
x3y2 − ax

)
dx

⇒ µ2 = (T4,2 − aI2)
I0

= −a
2
√

2
5π

[
Γ

(
3
4

)]2
≈ −0.2703912958a. (11)
3
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Now, for n = 3,

Tm,3 = − 1
m + 1

∫ ∞

−∞
xm+1 (uy3)′ dx = − 1

m + 1

∫ ∞

−∞
xm+1u

[
x

(
x3y2 − ax

)
− µ2

]
dx (12)

= 1
m + 1 (aIm+3 + µ2Im+1 − Tm+5,2) = 1

m + 1

(
aIm+3 + µ2Im+1 − a

m + 6Im+7

)
.

Considering the fourth-order equation, y′
4(x) − x3y4(x) + µ3 = xy′

3 + 3y2y′
2, we obtain µ3 = 0 and

uy4)′ = u (xy′
3 + 3y2y′

2).
Now we define Sm =

∫ ∞
−∞ xmuy2

2dx with m ≥ 0 for convenience. Then,

Tm,4 = − 1
m + 1

∫ ∞

−∞
xm+1 (uy4)′ dx

= − 1
m + 1

∫ ∞

−∞
xm+1u

[
x

(
x3y3 − µ2 + x

(
x3y2 − ax

))
+ 3y2

(
x3y2 − ax

)]
dx

= 1
m + 1 (aIm+4 + µ2Im+2 + 3aTm+2,2 − Tm+6,2 − Tm+5,3 − 3Sm+4)

= 1
m + 1

[
a

(m + 6)(m + 11)Im+12 − (2m + 13)a
(m + 6)(m + 7)Im+8 − µ2

m + 6Im+6

+
(

1 + 3a

m + 3

)
aIm+4 + µ2Im+2 − 3Sm+4

]
. (13)

The analysis of the fifth-order equation, after some laborious calculations, leads to the value of µ4.

y′
5(x) − x3y5(x) + µ4 = 3y2y′

3 + 3y3y′
2 + xy′

4 ⇒ (uy5)′ = u (3y2y′
3 + 3y3y′

2 + xy′
4 − µ4)

⇒ µ4I0 = 3
∫ ∞

−∞
u d(y2y3) +

∫ ∞

−∞
xu dy4 = 3

∫ ∞

−∞
x3uy2y3 dx +

∫ ∞

−∞

(
x4 − 1

)
uy4 dx = 3α + β. (14)

Then, using (10), (11) and (12)–(14), the integrals α and β can be computed as

α =
∫ ∞

−∞
x3uy2y3 dx =

∫ ∞

−∞
(uy2) (uy3) d

(
1
u

)
=

∫ ∞

−∞
u

[
axy3 − y2

(
x

(
x3y2 − ax

)
− µ2

)]
dx

= aT1,3 + aT2,2 + µ2T0,2 − S4 ⇒ α = 3aµ2

2 I2 + 5a2

6 I4 − a2

14I8 − S4,

β =
∫ ∞

−∞

(
x4 − 1

)
uy4 dx = T4,4 − T0,4 = −µ2I2 − (1 + a) aI4 + 11µ2

30 I6

+(107 + 18a) a

210 I8 − µ2

50 I10 − 4a

75 I12 + a

750I16 + 3S4 − 3
5S8. (15)

he following proposition is useful in finding S4 and S8.

roposition 1. For m ≥ 0,

Sm = − 1
m + 1Sm+4 + 2a2

(m + 1)(m + 3)Im+4. (16)

roof. From the definition of Sm, we have

Sm = −
∫ ∞

−∞
xm−3y2

2 du =
∫ ∞

−∞
u

[
(m − 3)xm−4y2

2 + 2xm−3y2
(
x3y2 − ax

)]
dx

= (m − 3)Sm−4 + 2 (Sm − aTm−2,2) ⇒ Sm = −(m − 3)Sm−4 + 2a2

m − 1Im, (17)

rom which (16) follows if m is replaced by m + 4 in (17). This completes the proof. □
4
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From (17), we have

S8 = −5S4 + 2a2

7 I8 and S4 = −S0 + 2a2

3 I4. (18)

t follows from (16) that

S0 = − lim
n→∞

(−1)nS4n+4∏n
i=0(4i + 1)

+ 2a2
∞∑

n=0

(−1)nI4n+4

(4n + 3)
∏n

i=0(4i + 1)
. (19)

he following proposition shows that the limit in (19) vanishes.

roposition 2. limn→∞
S4n+4∏n

i=0(4i+1)
= 0.

roof. We first show that
x2 [u(x)y2(x)]2 ≤ a2[u(x)]2. (20)

e assume that a < 0 and define

f(x) = −au(x)
x

− u(x)y2(x), x ∈ (−∞, 0). (21)

ifferentiating (21) with respect to x, we have f ′(x) = a
(
x4 + x3 + 1

)
u(x)/x2 < 0, for all x ∈ (−∞, 0).

herefore, f(x) is strictly decreasing. Moreover, limx→−∞ f(x) = 0. Hence, for x ∈ (−∞, 0), we have f(x) <

, that is, −u(x)y2(x) < au(x)/x. Furthermore, both sides are positive since y2(x) = − a
u(x)

∫ x

−∞ su(s) ds

nd then y2(x) < 0 for x ∈ (−∞, 0).
Therefore, we have proved (20) for a < 0 and x ∈ (−∞, 0). Taking into account that y2(−x) = y2(x) and

(−x) = u(x) for all x ∈ (−∞, ∞), the inequality (20) is verified for all a ∈ R and x ∈ (−∞, ∞).
Thus, using (20) we have S4n+4 =

∫ ∞
−∞

x4n+4

u(x) [u(x)y2(x)]2 dx ≤ a2 ∫ ∞
−∞ x4n+2u dx = a2I4n+2. Since

4n+2 = 4n
√

2Γ
(
n + 3

4
)

=
√

2Γ
( 3

4
) ∏n−1

i=0 (4i + 3), we have

0 ≤ lim
n→∞

s4n+4∏n
i=0(4i + 1)

≤
√

2a2Γ

(
3
4

)
lim

n→∞

[
1

4n + 1

n−1∏
i=0

(
4i + 3
4i + 1

)]
= 0. (22)

his completes the proof. □

Furthermore,

I4n+4 = 1√
2
Γ

(
1
4

) n∏
i=0

(4i + 1) and
∞∑

n=0

(−1)n

(4n + 3) =
√

2
4

[π

2 − ln(1 +
√

2)
]

. (23)

rom (19), (22) and (23), we obtain

S0 = a2

2 Γ

(
1
4

) [π

2 − ln(1 +
√

2)
]

. (24)

ccording to (14), µ4 = (3α + β) /I0. Thus, using (15), (18) and (24) we obtain

µ4 =
(

16
25 − 9a

)
2a

5π2

[
Γ

(
3
4

)]4
+ a2

(
2 − 3

√
2π

4 + 3
√

2 ln(1 +
√

2)
2

)
− 38a

525
≈ −a (0.01389179008 + 0.2849903285a) . (25)

n this way we have proved the result stated in Theorem 1.

5
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Table 1
Comparison between analytical predictions and numerical results for a = 1 and for a = −1.

a = 1 a = −1

δ µ(num.) µ(1st) µ(2nd) µ(num.) µ(1st) µ(2nd)

1E−03 −2.70393E−7 −2.703913E−7 −2.703916E−7 2.70392E−7 2.703913E−7 2.703910E−7
1E−02 −2.70421E−5 −2.703913E−5 −2.704212E−5 2.70364E−5 2.703913E−5 2.703642E−5
1E−01 −2.73441E−3 −2.703913E−3 −2.733801E−3 2.67717E−3 2.703913E−3 2.676803E−3
2E−01 −1.13361E−2 −1.081565E−2 −1.129386E−2 1.04046E−2 1.081565E−2 1.038189E−2
3E−01 −2.73186E−2 −2.433522E−2 −2.675616E−2 2.23815E−2 2.433522E−2 2.213932E−2

3. Numerical results

To validate the analytical approximations of the previous section we present some numerical results
obtained with AUTO [13] for system (2).

In Figs. 1(b)-1(c), for δ = 0.1 and a = 1, we show the bifurcation diagrams L2-Norm versus µ and Period
ersus µ, respectively, near the canard explosion. The sudden increase of amplitude and period occurs when
≈ −2.73441·10−3. To see the evolution of the limit cycles we draw several of them in Fig. 1(b). The smallest

ne (A) exists for µ = 0 and three of them (B-D) are present along the explosion. Although it is usually the
ost frequent [1], in this system there are no relaxation oscillations but the explosion ends with a homoclinic

rbit (E) which connects the equilibrium marked with a bullet, situated at (x, y) ≈ (9.99701, −0.99990) (the
eriod tends to infinity since a homoclinic orbit exists).

The temporal profiles of orbits A, C and E (see Figs. 1(d)-1(e), where the period is normalized to 1) show
hat slow–fast motions are present: the slow motion appears when the orbit is close to y = −1 (where the
nperturbed system (1) has a heteroclinic connection at infinity) and the fast motion in the semielliptical-like
art. Indeed, the explosion occurs when the orbits are close enough to y = −1 (note that orbit A is close,
ut still outside the explosion zone).

In Fig. 1(f), for a = 1, we compare the curve of homoclinic connections (solid line) in the (µ, δ)-parameter
lane with the analytical approximations for the canard explosion (circles; first-order in blue, second-order
n red) stated in Theorem 1. We observe that the agreement of the second-order approximation is very good
or δ values up to about 0.3.

Finally, in Table 1 for five values of δ, in the cases a = 1 and a = −1, we compare analytical predictions
nd numerical results. We observe that the first-order approximation only provides accurate results when δ

s small enough. As expected, when δ is relatively large, the second-order approximation clearly improves
he results.

Remark that, using scaling (3), all the numerical results can be easily translated to system (4). In this
ase, ϵ = 0.14/3 ≈ 0.0464.

In summary, we are dealing with periodic orbits which experience a rapid growth in amplitude and period
in an extremely narrow range of the parameter µ) and have a slow–fast behavior (for δ or ϵ small enough).
ue to its similarity with the situation that appears, for example, in the van der Pol system (see [11] and

eferences therein), we call it “canard explosion” (with a certain abuse of language, since the standard
onditions for a critical manifold with unstable and stable parts are not fulfilled in system (4), see [1]).

. Conclusions

The principal goal of this letter is to study a system, as simple as possible, exhibiting a canard explosion
elated to a degenerate center (with zero Jacobian matrix). As far as we know, it is the first time in the
iterature that an asymptotic expansion is found for this kind of problem. Specifically, we consider an
nperturbed system which has a heteroclinic connection at infinity. The perturbation of this curve allows
o find the corresponding asymptotic expansions, namely we are able to find the exact values of the first
6
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two terms of the critical value of the parameter µ. This analytical approximation agrees very well with the
umerical results, even if the parameter δ is relatively large. Finally, it is worth noting that the canard
xplosion of the studied system ends in a homoclinic connection. In this way, the approximation obtained
or the explosion is also valid for the corresponding curve of global connections.
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