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Abstract

Yet the Standard Model of particle physics is so far the most successful theory ever conceived in science,
with countless of achievements in the description of Nature; still a number of phenomena remains
to be properly understood. A paradigmatic example is confinement. Paving the road towards the
understanding of such essential feature requires a detailed knowledge of hadrons’ inside. The main
subject covered in this thesis is precisely the study of hadron structure. Nonetheless this is a really broad
field. We thus set sights on an exemplary case: The pions. As mesons, they are potentially simpler to
describe that other hadrons like the proton. At the same time, as the pseudo Nambu-Goldstone modes
associated to the dynamical breakdown of chiral symmetry, its description is of uttermost relevance for
the comprehension of the origin of mass in Nature. We thus address the problem of assessing pions’
structure, from first principles up to its observable manifestations.

This work is thus divided into two parts: First, the issue of a formal description of hadron’s structure
is addressed. Relying on the role played by Compton scattering as an essential window into hadrons’
inside, we review its formal treatment as understood in the generalized Bjorken limit, leading to the
introduction of generalized parton distributions (GPDs). Those parametrize the amplitudes for deeply
virtual Compton scattering (DVCS) on hadrons to take place, yielding a unique source of information
about the way hadrons are built up from elementary constituents. In the second chapter of this
dissertation we review the formal definition and primary properties of generalized parton distributions,
together with the main strategies allowing for their evaluation. We identify two essential attributes
to be fulfilled: Positivity and polynomiality; a task which, regardless, conventional approaches fail
to accomplish. In the third chapter of this thesis we face the problem of obtaining models for pion
GPDs which fulfill, by construction, these two features. Following an approach to the description of
bound-state systems in quantum field theory based on continuum Schwinger methods, we find the
hypothesis of decoupling between longitudinal and transverse degrees of freedom at the level of parton
dynamics to be associated with the dynamical breakdown of chiral symmetry. On that assumption, a
novel family of generalized parton distributions within the DGLAP region is derived and showed to
exhibit two striking characteristics: They satisfy the positivity constraints, and are built from the sole
knowledge of parton distribution functions. From that point on we exploit the covariant extension
strategy, allowing us to find the corresponding ERBL GPDs, such that polynomiality is also fulfilled by
construction.

Armed with models for pion GPDs that are complete, in the sense that they satisfy every necessary
property, the second part of this work thus exploits them in the derivation of their observable manifes-
tations, allowing for a practical assessment of pions’ structure as well their benchmarking. To this end,
the fourth chapter pursues the necessary evaluation of scale-evolution for GPDs through an effective
approach which encompasses some non-perturbative aspects of the procedure. The results hint the
crucial role played by gluons in building pions’ up, their associated distributions being commensurate
with those for quarks. We thus round-off this dissertation by exploiting the evolved models to deliver
predictions on event-rates and beam-spin asymmetries as they could be measured at forthcoming
electron-ion colliders. The results reveal that indeed DVCS on pions is expected to be measurable at
future facilities; and reveals that gluons dominate the response of pions subjected to DVCS, identifying
a sign inversion in the beam-spin asymmetries as clear signal for pinning-down the regime for gluon
dominance.
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Resumen

Pese a la ingente cantidad de resultados derivados del Modelo Estándar de la física de partículas aún
existe una gran cantidad de fenómenos que no llegamos a entender completamente. Un ejemplo es el
del confinamiento. Un paso esencial para su comprensión es la descripción de la estructura hadrónica.
Esta es precisamente la temática de esta tesis, donde se estudia la estructura de piones mediante el
formalismo de las distribuciones generalizadas de partones (GPDs, por sus siglas en inglés). Como
mesones, los piones deberían ser más sencillos de describir que otros hadrones como el protón. Más aún,
debido a su naturaleza dual como estados ligados pero también como bosones Goldstone asociados a la
rotura dinámica de simetría quiral, los piones son una pieza fundamental para comprender el origen de
la masa en sistemas físicos. Por todo esto esta tesis aborda la descripción de la estructura piónica a
primeros principios y evalúa sus manifestaciones en experimentos.

El trabajo está dividido en dos partes. Empezando por abordar el problema de la descripción
de la estructura hadrónica desde una perspectiva general, el primer capítulo revisa los procesos de
scattering Compton en este sentido. Así, la identificación del límite de dispersión profundamente virtual
permite la introducción de las GPDs como objectos fundamentales para la descripción de scattering
Compton profundamente virtual (DVCS, en inglés). El segundo capítulo se dedica entonces a un
análisis detallado de estas, empezando por su definición, propiedades y una discusión detallada sobre
toda la información que codifican sobre la estructura hadrónica. En este proceso se encuentra que las
llamadas propiedades de "polinomialidad" y "positividad" juegan un papel central en la construcción
de modelos de GPDs realistas, y es por tanto satisfacerlas en todo caso. En este sentido es importante
destacar que las estrategias convencionales para el cálculo de GPDs no consiguen este objetivo. Con
ello, el tercer capítulo de la tesis aborda el problema de construir modelos de GPDs para piones que
satisfagan, por construcción, ambas propiedades. Siguiendo una estrategia basada en el método de las
ecuaciones de Dyson-Schwinger para la descripción de estados ligados, se encuentra que la hipótesis
de desacoplo entre los grados de libertad longitudinales y transversales de la dinámica partónica está
íntimamente relacionada con la restauración de la simetría quiral. Explotando dicha hipótesis derivamos
una nueva familia de GPDs en la región DGLAP que satisfacen la condición de positividad y para
cuya construcción únicamente es necesario el conocimiento de las llamadas funciones de distribución
de partones. Partiendo de ese resultado, la estrategia de extensión covariante permite obtener la
correspondiente región ERBL, obteniendo por primera vez modelos de GPDs que satisfacen al mismo
tiempo y por construcción las condiciones de positividad y polinomialidad.

Con el fin de arrojar luz a nuestro entendimiento sobre la estructura de los piones, así como la
contrastación de este estudio, la segunda parte del trabajo parte de los mencionados modelos y evalúa
sus manifestaciones en los resultados obtenidos en futuros experimentos. Para ello, el capítulo cuatro se
encarga de describir la necesaria evolución de GPDs con la escala de renormalización; implementando
una estrategia efectiva capaz de abarcar efectos puramente no perturbativos de la interacción fuerte.
Los resultados ponen de manifiesto el importante papel del contenido gluónico en la construcción de
la estructura de piones. Finalmente, el quinto capítulo describe el cálculo de número de eventos y
asimetrías en futuros aceleradores electrón-ion, mostrando que efectivamente estas instalaciones deberían
ser capaces de medir DVCS en piones e identificando la inversión en las correspondientes asimetrías
como una clara señal experimental capaz de delimitar el régimen en el que los gluones constituyen la
parte dominante en la estructura piónica.
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Preface

If by the mid XIX century physics seemed to be a closed area of knowledge, everything was broken
again a few years later. Relativity and quantum mechanics turned every single idea we had about
Nature upside down. In particular, everything we knew about “small stuff” was essentially wrong. We
had to wait until the advent of the Standard Model of particle physics for the puzzle to start making
some sense again. Nowadays, the chaos triggered by the step forward taken during the first years of
the XX century is still far from being re-organized. Among the plethora of open problems in physics,
we still lack from an answer to such a simple question as where do the mass come from. Yet it is well
known that the Higgs mechanism provides quarks and leptons with mass, most of the visible matter in
the Universe do not fit that picture: Hadrons, though quark bound-states, are far more massive than
expected from their individual constituents. That is because hadrons inside is among the most complex
possible environments, where the strong interactions makes and dissolves at will.

This work is a very modest approach to the assessment of hadrons inside. So modest that it does
not even attempt at answering any question, but only explores a definite path towards the assessment
of a particular hadron inside. To be more precise: We study pions participating in the scattering with
photons, as parametrized by generalized parton distributions. Of course, the choice of that topic is not
thoughtless. Indeed, pions are not common hadrons but instead have a dual nature: On one hand, they
are often stated to be quark-antiquark bound-states. But they also show the peculiarity of remaining
massless unless chiral symmetry is explicitly broken. Strikingly, within the present paradigm of particle
physics there exist two mechanism for the break down of such symmetry. One is well known to be
provided by the Higgs boson. But also, it can occur dynamically. Moreover, that a dynamical break
down of chiral symmetry occurs in non-Abelian gauge theories is conjectured, but not proved. It is in
that sense that pions provide one of the clearest possible windows onto fundamental phenomena of
quantum field theory. And that is precisely why we find them fascinating.

In what concerns the study of pions, infinitely many approaches can be envisaged as for any other
hadron. For the sake of definiteness we choose one of them: i.e. the use Compton scattering. Very
loosely speaking, “microscopy” on pions. Despite its apparent simplicity, this is a complex subject:
Hadrons being the tiniest possible composite systems, accessing its internal structure is obviously far
from straightforward. This dissertation is an evaluation of one possibility: The use of generalized parton
distributions.

This document is thus split into to gross parts: The first one is devoted to the foundations of that
problem: The initial chapter starts discussing the possible windows on to the assessment of hadron
structure to reach the identification of generalized parton distributions as fundamental objects. The
properties and structure of the latter are then exposed in chapter two, paving the road to their assessment
in the case of pions as presented in the third chapter. The second part of this dissertation starts from
that point on: On top of the previous calculations, the implications at future collider-experiments are
worked out, exposing an unprecedented picture of pions structure.

I really enjoyed prosecuting this work and thinking about the topics exposed here. I hope the reader
may also enjoy it as much as I did during these years.
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1 | Compton scattering: A probe for hadron
structure

The first chapter of this dissertation is devoted to the study of Compton scattering in the kinematic
regime where deeply virtual photons act as probing line. Indeed, dispersion of a variety of probes by
physical systems has shown to be the most successful tool in revealing the structure of matter. As a
consequence, it is on the foundations of a range of techniques, from microscopy and its applications in
“low-scale” science, to astronomy. The tag-line Compton does nothing than choosing the projectile to
be a photon, i.e. restricting the probe to be the most abundant one in Nature. It thus seems natural to
analyze the scattering of photons on hadrons: The tiniest composite systems in the universe. To this
end we simply let the photon be off its mass shell, adding the label virtual ; and require it to be in a
kinematic configuration allowing to access hadrons’ inside, thus identifying the process as deeply virtual.

Through this chapter we are concerned with a detailed analysis of deeply virtual Compton scattering.
Being among the most unconstrained channels connecting hadron’s inside with observation, its interest
is self-justified. However, one may wonder whether that freedom is not a double-edged sword, spoiling
a clean interpretation of the process and preventing us from its practical application to the analysis of
hadron’s structure. It is precisely that fear which we now address: Starting from the discussion of the
kinematics characterizing DVCS, we identify the relevant contributions to the scattering amplitude. A
factorization theorem for DVCS is then posed, leading to the renowned handbag approximation. The
second part of the chapter is then devoted to the analysis of such approximation, the generalized parton
distributions arising as a natural parametrization for the long-range strong correlations involved in the
process.

1.1 Introduction

Consider the scattering of a hadron, h (carrying momentum p and polarization σ) with an off-shell
photon, γ∗ propagating1 with four-momentum q. After the collision, an identical hadron emerges in a
polarization state σ′ and carrying four-momentum p′; together with a real photon propagating with
momentum q′ (Fig. 1.1–Left panel):

γ∗ (q) + h (p, σ)→ γ
(
q′
)

+ h
(
p′, σ′

)
. (1.1)

This configuration characterizes virtual Compton scattering on a hadron target. As we shall find,
when the probing photon is required to go deeply off its mass shell2, the corresponding amplitude is
proved to receive its dominant contribution from non-local field-operators separated lightlike spacetime
intervals [1–7]. As a consequence, that amplitude factorizes, leading to the introduction of generalized
parton distributions (GPDs) [2, 3, 8]. In Ch. 2 we will reveal the variety of information about hadron’s
structure encoded into these objects: From their electromagnetic and gravitational form factors; to the
well known parton distributions functions, their angular momentum decomposition among the quantum
field theoretical constituents or the their spatial distribution within hadrons (see e.g. [9, 10] for detailed

1For clarity we are not labeling the photon polarization
2We will name that kinematic configuration as the generalized Bjorken limit (see Sec. 1.2.1).
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Chapter 1. Compton scattering: A probe for hadron structure

reviews). Pursuing a detailed analysis of the processes providing access to GPDs is therefore in order.
This is precisely the central topic of this chapter.

h (p) h (p′)

γ∗ (q) γ (q′)

t = (p′ − p)2 h (p) h (p′)

γ∗ (q) M (q′)

Figure 1.1: Diagrams representative of scattering processes grating access to generalized parton
distributions. — Left panel: Deeply virtual Compton scattering (DVCS), Right
panel: Deeply virtual meson production (DVMP). The shaded blob represents all
possible interactions, taking place at all orders in perturbation theory.

Deeply virtual Compton scattering (DVCS) is certainly the most renowned channel in what concerns
the study of generalized parton distributions. But other processes also allow to probe them. Among
them, the photoproduction of leptons (or timelike Compton scattering, TCS) [11, 12] ranks second. In
this case, a real photon hits a hadron target, emerging with timelike momentum and further splitting
into a pair lepton-antilepton. The parallelism with DVCS makes its interpretation in terms of GPDs
clear. Moreover, its “extended” final state introduces the most remarkable advantage of TCS: Tuning
of the angular distribution of scattered leptons provides direct access to the real part of the process’
amplitude even in unpolarized setups [11]. However, one may find this enhanced discriminating power,
triggered by an enlarged phase-space with respect to that of DVCS, to introduce additional challenges
for a clean experimental characterization of the process. Moreover, both TCS and DVCS are known
to interfere with the Bethe-Heitler (BH) process [13]. While kinematic windows providing access to
DVCS are known to exist [14–16], the cross-section for TCS is suppressed with respect to that of the
BH process by two orders of magnitude [11]. Despite its theoretical interest, these features join the
complications in preparing real-photon beams3 to make TCS a hard to handle process, with only the
first dedicated experimental measurements just starting to arise [17].

We have identified so far two windows to parton correlations withing hadrons: DVCS and TCS. In
reality, these two processes can be unified into a single picture: Double deeply virtual Compton scattering
(DDVCS) [18–20]. In this case, the two involved photons are allowed to be off their mass shells. In this
sense, its phase space is enlarged with respect to that of its “children” processes, and its discriminating
power is thus enhanced. In fact, it is acknowledged that DDVCS may allow a direct access to GPDs
(at least to lowest order in the strong interaction) [18–21], avoiding the complications introduced by
the deconvolution problem implied in DVCS and TCS [22–24]. Thus DDVCS is theoretically the most
enlightening tool one can realize in what hadron tomography concerns. However, the kinematic freedom
providing DDVCS with such judging power spoils a practical and reliable interpretation of the process:
First, the characterization of DDVCS kinematics is much more cluttered than that of TCS (and of
course DVCS) already at a theoretical level [20]; second, its cross-section is lowered with respect to
that of DVCS [18]; these challenges being a drawback hard to overcome [21].

There are other candidates to provide access to GPDs (see e.g. [9] for a comprehensive listing).
However, only one of them can be placed at a similar level as those discussed above: Deeply virtual
meson production (DVMP, Fig. 1.1–Right panel). In that case, a pseudoscalar- or vector-meson emerges
as a product of the scattering between a hadron and a deeply virtual photon. Its amplitude also
factorizes at all orders in perturbation theory to provide access to GPDs [4, 25]. However, this time
the meson’s distribution amplitude is required for a complete characterization of the final state. Such

3In practice, TCS is handled through quasi-real photon production, i.e. incoming photons whose virtuality is q2 << q′2,
that of the outgoing photon.

4



Virtual Compton scattering

h (p) h (p′)

γ (q′)
l± (k)

l± (k′)

q = k − k′

t = (p′ − p)2

Figure 1.2: Virtual Compton scattering on a hadron target realized as a leading order contri-
bution in the electromagnetic interaction to lepton-hadron scattering with fixed
final states. The probing photon is thus a virtual particle exchanged between the
lepton-probe and the target-hadron.

finding introduces additional experimental and theoretical challenges [26] which further promotes deeply
virtual Compton scattering as the golden channel to access GPDs.

In summary, deeply virtual Compton scattering can be placed at a privileged position among all
existing windows to hadron structure. Not for nothing a vast amount of work has been devoted to it,
both on the experimental an theoretical sides (see e.g. [27] and references therein for a comprehensive
review). Since the main purpose of this work is the study of GPDs and its experimental access at future
experimental facilities, from now on we will be involved with a detailed analysis of DVCS. We start
from its definition at the amplitude level and discuss the kinematics characterizing it. That discussion
will lead us to identify the generalized Bjorken kinematic region to be of greatest interest, triggering
the existence of a factorization theorem and thus the introduction of generalized parton distributions.

1.2 Virtual Compton scattering

As discussed before, virtual Compton scattering refers to nothing else than the scattering of an off-shell
photon with a target hadron that gives rise to a real photon and an identical hadron. Within that
physical picture, we are in a position to start phrasing the problem in a formal language. Only, a very
short break in the argument is convenient at this point: At first sight, one may wonder how do the
virtual photon in the initial state of the process Eq. (1.1) propagate until scattering off the target
hadron. That situation can be understood in terms of a photon mediating in the interaction between
the hadron and a charged probe. Thus, virtual Compton scattering is often viewed as a leading order
contribution in the electromagnetic coupling (αQED) to lepton-hadron scattering (Fig. 1.2),

l± (k, λ) + h (p, σ)→ l±
(
k′, λ′

)
+ γ

(
q′
)

+ h
(
p′, σ′

)
, (1.2)

where the probing virtual photon is exchanged between an incident charged-lepton beam (l±), say an
electron, and the target hadron. Four-momentum (polarization) of the interacting leptons are denoted
by k, k′ (λ, λ′).

Indeed, neglecting the lepton’s mass with respect to every other four-momentum scale in the process
of Fig. 1.2 (as it may occur to a specially good accuracy in the case of an electron probe),

q2 =
(
k − k′

)2
= −2k · k′ = −2

(
k0k′0 −

∣∣∣~k∣∣∣ ∣∣∣~k′∣∣∣ cos θl

)
= −4k0k′0 sin2 θl

2
≤ 0 , (1.3)

where θl is the lepton scattering angle, demonstrates the probing photon to be spacelike4 and hence the
tag “virtual” in the denomination of the process arising naturally from kinematic considerations.

4It can also be found to be lightlike in the limiting case where the two leptons are anticollinear: θl = nπ, with n odd.
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Chapter 1. Compton scattering: A probe for hadron structure

The above discussion makes apparent that a proper description of virtual Compton scattering may
be achieved through the process in Eq. (1.2). Hence, in a our road to the study of hadron GPDs we
shall be concerned with the determination of the amplitude for such transition to occur, i.e. to compute
the scattering amplitude:

Slh→lγh :=
〈
l±
(
k′, λ′

)
γ
(
q′
)
h
(
p′, σ′

) ∣∣ l± (k, λ)h (p, σ)
〉
. (1.4)

To this end, one can take advantage of the S-matrix formalism in quantum field theory and evaluate
the amplitude Eq. (1.4) to a given accuracy in αQED. We stick to the conventions of standard textbooks
in quantum field theory [28]. The transition matrix element for the process Eq. (1.2) the reads

iTlh→lγh =
(−i)3

3!

∫
d4zd4xd4y

〈
l±γh

∣∣T {jρl (z)Aρ (z) jµh (x)Aµ (x) jνh (y)Aν (y)
} ∣∣l±h〉 , (1.5)

where the scattering matrix, S, has been split into S = 1 + iT , and we dropped the identity term,
which corresponds to a transition between the initial and final states without lepton-hadron interaction.
For the sake of compactness, we have omitted momentum and polarization labels for the external
particles. The well known representation T {. . .} for the time-ordered product has been employed.
The operators jµi (x) represent lepton (i = l) and hadron (i = h) electromagnetic currents, defined
as jµi (x) =

∑
j Qj : ψ̄j (x) γµψj (x) :, with j labeling lepton or quark flavors, respectively; Qj are the

corresponding electric charges (in units of the electron’s one) and : . . . : denotes the normal-product.
It is not hard to realize that the above is, indeed the only possible field configuration allowing for the

scattering process at hand to take place. The presence of an electromagnetic current coupling leptons
to photons is plain and needs no further explanation. On the other hand, one may wonder about the
hadronic ones, which couples photons to quarks, not hadrons. In fact, it is well known that hadrons
do not arise as fundamental degrees of freedom in the full Lagrangian density of the Standard Model;
instead, the available building blocks are essentially leptons and quarks, with the later being confined
into hadrons. It should then be clear that a description of Compton scattering on hadron targets
at a fundamental level can only achieved only through coupling of electromagnetic probes with the
elementary building blocks of the theory, revealing Eq. (1.5) the fundamental object for the description
of virtual Compton scattering on hadrons.

One can now employ Wick’s theorem to develop the calculation of the transition matrix element in
Eq. (1.5). According to the conventions in [28], to leading order in the lepton-photon interaction but to
all orders in the hadronic part, it reads

iTlh→lγh = Qlūλ′
(
k′
)
γρuλDρµ (q) T µν

(
p, p′, q

)
ε∗ν
(
q′
)
, (1.6)

where Dρµ (q) is the photon propagator in momentum space, with q = k − k′ as required by four-
momentum conservation at the lepton-photon interaction vertex; ε∗ν (q′) is the polarization four-vector
of the photon in the final state, and ūλ′ (k′), uλ (k) are Dirac spinors associated to the initial and final
state leptons. The remaining piece, T µν (p, p′, q), is identified with

T µν
(
p, p′, q

)
= i

∫
d4xd4ye−iqx+iq′y〈h

(
p′, σ′

)
|T
{
jµh (x) jνh (y)

}
|h (p, σ)〉 , (1.7)

and is dubbed hadronic Compton tensor, as it represents all of the interactions between the probing
photon and the target hadron (viewed as a composite object made up from elementary quark-fields)
relevant for virtual Compton scattering. It is therefore an essentially non-perturbative object which
takes care of both: All-orders quark-photon interactions, and strong dynamics binding hadron’s
constituents together via gluon exchange. Moreover, when no four-momentum transfer between the
external hadron states exists, that object reduces to the well known forward Compton tensor that
arises in the description of deep inelastic scattering (DIS; see any standard textbook on the topic, e.g.
[28–30]). Forthcoming results are then easily elucidated through a parallelism with DIS, see e.g. [31]:
Virtual Compton scattering will turn out to be dominated by near-the-light-cone dynamics when a
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Virtual Compton scattering

large enough four-momentum scale is identified (Sec. 1.2.1). As a consequence, a factorization theorem
for the Compton tensor will be put forward, identifying two main pieces: (i) A hard-scattering kernel
accounting for the electromagnetic interaction of the probing photon with the hadron’s constituents;
and (ii) distributions functions encoding the non-perturbative strong dynamics effects inside hadrons
that are responsible for virtual Compton scattering.

Despite the discussion before, a careful reader could still not be confident about the transition
between hadron states represented by Eq. (1.7) to be driven by electromagnetic quark currents. The
Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [32] allows further elaboration on this point.
In a nutshell, the LSZ formalism connects scattering-matrix elements with correlation functions built on
the basis of arbitrary quantum field-theoretical operators O (x). Thus, provided that the latter develop
single-particle poles for the asymptotic-states of the scattering process, the corresponding amplitudes
can be computed [28, 29]. In this regard, the breakthrough in the argument is that an arbitrary
correlation functions develop a complex-plane structure accounting for the existence of elementary
excitations from fields entering its definition; but also for excited-, bound- and multiparticle-states which
exhibits non-zero overlap with the defining operator (see e.g. [33]). The LSZ reduction formula then
allows to calculate S-matrix elements not only for fundamental excitations of a quantum field theory,
but for any asymptotic state which may be built up from the elementary fields; e.g. bound-states. A
simple illustration of this feature is given by the study of scattering on a bound-state of a positron and
an electron bind through the exchange of photons: Positronium. Of course, positronium has not direct
representation at the level of the Lagrangian density of quantum electrodynamics. However, an operator
O (x) = ψ̄e (x)ψe (x) has non-zero overlap with positronium states, and thus can be proved to develop a
singularity structure capable of representing positronium as a bound-state of quantum electrodynamics.
Through the LSZ reduction formula, the S-matrix element of scattering on a positronium target [29]
can be computed. The case of Compton scattering on a hadron target goes straight in parallel to that.
Thus, it must be clear enough, both from a pictorial and an operational viewpoint, that the correlator
of quark electromagnetic currents is the suitable object to represent the transition between hadron
states triggered by elastic scattering of a photon probe.

The Compton tensor of Eq. (1.7) thus constitutes the starting point for the analysis of virtual
Compton scattering to be carried out through this chapter. We find convenient to slightly transform its
expression into something more handy. First, we take advantage of overall four-momentum conservation:
Contraction of the electromagnetic currents at each vertex together with a subsequent integration over
configuration space will result into a delta distribution there imposing four-momentum conservation.
Thus, it is conventional to decompose transition matrix elements (see any standard textbook on the
topic, e.g. [28–30]) as,

iTlh→lγh = i (2π)4 δ(4)
(
k − k′ − q

)
δ(4)

(
q + p− q′ − p′

)
Mlh→lγh , (1.8)

where the delta distribution ensuring overall four-momentum conservation has been written in a
separated form for later convenience. Then, in light of the structure exhibited by Eq. (1.6), it is possible
to wisely identify two pieces in the reduced matrix elementMlh→lγh: One describing the emission of a
spacelike photon by a lepton-beam; and a further purely hadronic piece:

δ(4)
(
k − k′ − q

)
Ml→lγ

µ (k, q) = Qlūλ′
(
k′
)
γρuλ (k)Dρµ (q) ,

(2π)4 δ(4)
(
p+ q − p′ − q′

)
Mµ

VCS
(
p, p′, q

)
ε∗ν
(
q′
)

= T µν (p, p′, q) ε∗ν (q′) ,
(1.9)

making apparent that the Compton tensor defined by Eq. (1.7) represents the probability amplitude
for virtual Compton scattering on a hadron target to occur in the sense of Eq. (1.1) and Fig. 1.1. If we
now focus on the Compton tensor as defined by Eq. (1.7) and take advantage of translation invariance,
it is possible to get rid of one integration and write [34]

T µν
(
p, p′, q

)
= i

∫
d4xe−i(z1q−z2q

′)x
〈
h
(
p′, σ′

)∣∣T {jµh (z1x) jνh (z2x)
}
|h (p, σ)〉 , (1.10)
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Chapter 1. Compton scattering: A probe for hadron structure

p′

p

x3

x0

x⊥

ñn

n⊥

P = (p+ p′) /2

Figure 1.3: Definition of the hadron frame where the kinematics of virtual Compton scattering
is analyzed: An observer realizes the dynamics of hadrons involved in the process
as its average four-momentum, P , were purely longitudinal along the x3 direction.

with z1, z2 ∈ R such that z1 − z2 = 1. Among the possible choices for z1 and z2, two of them are
widespread throughout the literature: One is to set z1 = 0, which readily eliminates any explicit
dependence on the outgoing photon’s four-momentum and is therefore of interest in the study of
virtual Compton scattering in the limit of forward kinematics. A different possibility is to choose
z1 = −z2 = 1/2, such as in e.g. [35], and write

T µν
(
p, p′, q

)
= i

∫
d4xei(q+q

′)x/2
〈
h
(
p′, σ′

)∣∣T {jµh (−x/2) jνh (x/2)
}
|h (p, σ)〉 , (1.11)

with the advantage of treating all relevant quantities in a manifestly symmetric manner.

1.2.1 Kinematics of virtual Compton scattering

The Compton tensor in Eq. (1.11) is thus pivotal for the description of virtual Compton scattering on
hadrons. In order to start disentangling the physics there encoded, let us analyze the kinematics of the
process.

A convenient parametrization of virtual Compton scattering can be achieved in symmetric variables5:

Q =
1

2

(
q + q′

)
, P =

1

2

(
p+ p′

)
, ∆ =

(
p′ − p

)
=
(
q − q′

)
, (1.12)

such that,
p = P −∆/2 , p′ = P + ∆/2 ,

q = Q+ ∆/2 , q′ = Q−∆/2 ,
(1.13)

and thus allows to recast the expression for the Compton tensor into

T µν
(
P,Q,∆

)
= i

∫
d4xeiQx

〈
h
(
P + ∆/2, σ′

)∣∣T {jµh (−x/2) jνh (x/2)
}
|h (P −∆/2, σ)〉 . (1.14)

We choose a description of the process’ dynamics from the viewpoint of a observer measuring the
hadron’s average momentum as being purely longitudinal along the x3 direction (Fig. 1.3):

P =
(
P 0,0, P 3

)
⇒ p = −p′ . (1.15)

5A comprehensive analysis of the kinematics of a general two-body scattering in different frames and using different
parametrizations for the particle’s momenta is presented in App. A. The content of this section is “cherry picking” from
that appendix.
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Virtual Compton scattering

Within such picture, introducing a basis of light-cone vectors (Fig. 1.3) on top of which express the
characteristic momenta of the virtual Compton scattering is enlightening. Following the prescriptions
of App. A we choose:

ñµ =
P+

√
2

(1, 0, 0, 1) , nµ =
1√

2P+
(1, 0, 0,−1) , nµ⊥ = (0, 1, 1, 0) ; (1.16)

with P± =
(
P 0 ± P 3

)
/
√

2, such that

Pµ = ñµ +
1

2

(
m2 +

t

4

)
nµ , (1.17)

where p2 = p′2 = m2, the hadron mass.
As described in App. A, all of the kinematics of the process can be unambiguously characterized in

terms of four Lorentz invariant quantities (App. A):

Q2 = −q2 , XB = − Q
2

2P ·Q
, t = ∆2 , ξ = − ∆ · n

2P · n
=
p+ − p′+

p+ + p′+
' − ∆ ·Q

2P ·Q
, (1.18)

i.e. the virtuality of the incident photon; a generalized Bjorken variable6, the conventional Mandelstam
variable t and the skewness [2]. The latter represents the amount of momentum transferred along the
longitudinal direction. Since the plus momenta of physical particles are positive definite quantities,
the skewness variable is restricted to ξ ∈ [−1, 1], an observation which can be readily inferred from its
interpretation as a momentum transfer.

A particular kinematic configuration is of interest: The forward limit. Characterized by ∆ = 0, the
generalized Bjorken variable readily reduces to the conventional definition from deep inelastic scattering,
while the skewness variable identically vanish

Forward limit : ∆ = 0⇒ XB = xB = −q2/2p · q , ξ = 0 .

Under those conditions, the Compton tensor in Eq. (1.11) reduces to the forward Compton tensor
parametrizing the cross-section of deep inelastic scattering. Such is known to factorize in the limit where
the photon’s virtuality becomes large (see e.g. [36]), leading to the introduction of the conventional
parton distribution functions. An analogy with that case then triggers the definition of a similar
kinematic configuration in the case of non-forward Compton scattering:

Generalized Bjorken limit : Q2 →∞ with XB fixed.

Strikingly, such condition can be slightly rephrased. The generalized Bjorken variable can be written

XB = − q2 + q′2 − t/2
2s− 2m2 + t− (q2 + q′2)

' − q2 + q′2

2s− (q2 + q′2)
, (1.19)

with s = (p+ q)2 =
(
P +Q

)2, and up to terms of the order t/s and m2/s. In that language, the
generalized Bjorken region can be characterized by:

q2 + q′2 →∞ with q2/s, q′2/s, t and m2 fixed. (1.20)

In fact, the label “generalized” for the kinematic limit defined above is accurate: In the forward limit
(ξ = 0), definition (1.20) readily turns into: q2 →∞ with q2/s fixed which as conventional definition
for the Bjorken limit where the amplitude of forward Compton scattering factorizes [30, 36]. Once
again that parallelism with DIS triggers our interest into the study of virtual Compton scattering in
the generalized Bjorken limit, defining

Deeply virtual Compton scattering: Q2 →∞ with t << Q2 ∼ 2p · q →∞ and q′2 = 0 .
6Note that different naming exist for XB throughout the literature. For instance, in [10] it is labeled ρ.
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Chapter 1. Compton scattering: A probe for hadron structure

1.2.2 Light-cone dominance7

In the case of inclusive Compton scattering on hadrons as realized in the Bjorken limit, the forward
Compton tensor can be shown to be driven by contributions from field-operators separated lightlike
distances (see e.g. [31]). In the case of virtual Compton scattering in the generalized Bjorken limit an
analogous result can be derived. Indeed, let us symbolically write the Compton tensor in Eq. (1.11) as

T µν
(
P,Q,∆

)
=
〈
h
(
P + ∆/2, σ′

)∣∣ tµν (Q,∆) |h (P −∆/2, σ)〉 , (1.21)

with
tµν
(
Q,∆

)
:= i

∫
d4xeiqxe−i∆x/2T

{
jµh (x/2) jνh (−x/2)

}
, (1.22)

and focus on the analysis of the behavior of this last quantity, which is nothing else than the Fourier
transform of the time-ordered product of two electromagnetic currents into momentum space.

Crucially, in the generalized Bjorken limit, it is the squared incoming-photon momentum which
is required to become large with respect to the squared momentum transfer. It is thus legitimate to
consider the behavior of that integral to be largely dominated by its dependence on the incoming
photon momentum. Without loss of generality, we can write

tµν
(
Q,∆

)
= i

∫
d4xeiqxfµν (x,∆) , (1.23)

with an identification for fµν (x,∆).
From Eq. (1.23), the “reduced” Compton tensor tµν

(
Q,∆

)
can be simply realized as the Fourier

transform of fµν (x,∆), enlightening the analysis of its behavior in the generalized Bjorken limit. In
this concern, a first crucial step can be taken on the basis of the Riemann-Lebesgue lemma [39, 40],
from which it is known that |q| → ∞ ⇒ tµν

(
Q,∆

)
→ 0. That situation is intimately related to

that described by the generalized Bjorken limit, so seemingly we are facing a “dead-end road”. An
intuitive picture can be given for this result: As |q| → ∞ the integrand develops a high-frequency
oscillatory behavior which, after “averaging” (integration), yields a vanishing result. Fortunately, it is
not exactly |q| which is required to tend to infinity in the kinematic region of interest, but Q2, opening
the possibility for the integral above to remain non-vanishing (notice the uttermost relevance of a non
Euclidean metric in this concern). Provided that the exponential factor entering the definition of the
integrated function fµν (x,∆) does not introduce any further complications, which seems reasonable in
the generalized Bjorken limit (t << Q2), the task at hand is then reduced to the identification of the
region in x-space over which fµν (x,∆) shows an enough hard behavior such that the integral is damped
and yields a non-vanishing result. Which region of spacetime yields q · x = finite in the generalized
Bjorken limit?.

Obviously, q · x is a Lorentz invariant quantity. Thus we may proceed with our analysis in any
convenient frame. In particular we may choose the target’s rest frame, on which the incoming photon’s
momentum can be written as (see App. A)

q =
Q

ε

(
1, 0, 0,

√
1 + ε2

)
, (1.24)

with ε ≡ 2mxB/Q. As a consequence, and without loss of generality, we may write the four-vector x as
x =

(
x0, 0, 0, x3

)
, thus splitting the argument of the exponential factor in Eq. (1.23) as:

q · x = q0x0 − q3x3 , (1.25)

Taking advantage of Eq. (1.24), straightforward manipulations yield,

q · x =
Q

ε

(
x0 − x3

√
1 + ε2

)
=
Q

ε

[
x0 − x3

(
1 +

ε

2
+O

(
ε2
))]

(1.26)

7The discussion presented in this section closely follows that from [37, 38], generalizing it to the case of non-forward
kinematics.
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Towards factorization in deeply virtual Compton scattering

where, for the last identity we employed a Taylor series expansion of the square root. For such step
to be meaningful, the condition ε→ 0 must be granted. In this regard notice that such is completely
equivalent to xB/Q → 0. Indeed, recalling the definition for the conventional Bjorken variable, the
above statement is identical to Q/2p · q → 0, a condition which remains compatible with the generalized
Bjorken limit, which requires Q2 ∼ 2p · q →∞.

In light of the decomposition above, for the product q · x to remain finite, one can require

∣∣x0 − x3
∣∣ ≤ C1

ε

Q
,

∣∣x3
∣∣ ≤ C2

1

Q
(1.27)

conditions from which we obtain,

x2 =
(
x0 − x3

) (
x0 + x3

)
≤ C1

ε

Q

(
x0 + x3

)
' C1

ε

Q
x3 ≤ C1C2

ε

Q2
→ 0 (1.28)

making evident that the amplitude for deeply virtual Compton scattering receives its dominant contri-
bution from the products of currents evaluated at light like distances, x2 → 0.

1.3 Towards factorization in deeply virtual Compton scattering

We have found so far the amplitude for deeply virtual Compton scattering on a hadron target to be
given by the Compton tensor

T µν
(
P,Q,∆

)
= i

∫
d4xeiQx

〈
h
(
P + ∆/2, σ′

)∣∣T {jµh (x/2) jνh (−x/2)
}
|h (P −∆/2, σ)〉 . (1.29)

which, relying on simple kinematic arguments, was found to vanish unless the time ordered product
of currents occurs on a region of spacetime characterized by x2 → 0: i.e. unless the electromagnetic
currents are defined onto the light cone. Said in a more common language: Deeply virtual Compton
scattering is a light-cone-dominated process. An idea then comes to mind: Would it be possible to
characterize the behavior of T

{
jµh (x/2) jνh (−x/2)

}
in the limit where x2 → 0?. If so, the expression for

the time ordered product of currents could be approximated by that in the limit of lightlike separations,
and then (wait for it to) lead the way to a quantitative assessment of deeply virtual Compton scattering.

In this regard the formalism of the operator product expansion [41, 42] and more precisely, its
formulation for the analysis of the light-cone limit of an operator product [43] constitutes the natural
approach. In a nutshell, the light-cone operator product expansion (LC-OPE) states that, at lightlike
distances, an operator product behaves as (see App. B):

A (x)B (0) −−−→
x2→0

∑
i

∞∑
j=0

C(i)
j,αβ (x)xµ1 · · ·xµjOj(i)µ1···µj (0) , (1.30)

where α and β label tensor and spinor indices associated to the operators A (x) and B (0), respectively;
C(i)
j,αβ (x) are c-number singular functions of the spacetime separation x2 and Oj(i)µ1···µj are rank-j

local tensor operators. In App. B we argued that, in the limit of lightlike separation, the strength of
the singular behavior exhibited by the coefficient functions is controlled by the operator’s twist [44],
τ ijO = dijO − j, with d

ij
O the operator’s mass dimension and j its spin; those of the minimum possible

twist yielding the leading contribution to the operator product expansion in Eq. (1.30). Moreover, they
are the symmetric and traceless operators which exhibit maximum spin and therefore minimum twist
(App. B). Accordingly, it is natural to choose a basis of symmetric and traceless operators to expand
an operator product near the light-front. In our case,

T µν
(
P,Q,∆

)
−−−→
x2→0

∑
τ

T µν(τ)

(
P,Q,∆

)
∼ T µνMin τ

(
P,Q,∆

)
, (1.31)

11



Chapter 1. Compton scattering: A probe for hadron structure

the leading-twist contribution being:

T µν(Min τ)

(
P,Q,∆

)
−−−→
x2→0

∑
i

∞∑
j=0

∫
d4xeiQxC(i),µν

j (x)xµ1 · · ·xµj 〈h
(
p′, σ′

)
|Ŝ Oj(i)µ1...µj

(0) |h (p, σ)〉 ,

(1.32)
where Ŝ denotes symmetrization and trace subtraction.

In that picture, one may already guess a factorization theorem for the scattering amplitude
parametrized by the Compton tensor in Eq. (1.32): The amplitude for deeply virtual Compton scattering
is parametrized by the convolution of coefficient functions calculable in perturbation theory, C(i)

j,µν (x); and
the expectation values of local, symmetric and traceless operators. Indeed, in quantum chromodynamics
the minimum possible twist is known to be τ = 2 [9], for which six towers of operators can be defined
[10, 45]: Three towers of twist-2 operators involving quark fields of flavor q,

Oµ1...µnµ
q = Ŝ ψ̄qi

↔
Dµ1 . . . i

↔
Dµnγµψq ,

Õµ1...µnµ
q = Ŝ ψ̄qi

↔
Dµ1 . . . i

↔
Dµnγµγ5ψ

q ,

Oµ1...µnµν
q,T = Ŝ ψ̄qi

↔
Dµ1 . . . i

↔
Dµniσµνψq ,

(1.33)

and three analogous operators involving gluon fields,

Oµµ1...µnν
g = ŜGµαi

↔
Dµ1 . . . i

↔
DµnGνα ,

Õµµ1...µnν
g = (−i) ŜGµαi

↔
Dµ1 . . . i

↔
DµnG̃µα ,

Oµ1...µnµν
g,T = ŜGµ1µ2i

↔
Dµ3 . . . i

↔
DµnGµν ,

(1.34)

with Dµ the covariant derivative defined as usual [28], and 2
↔
D =

→
D −

←
D. The dual gluon field strength

tensor is given by G̃µν = εµνρλGρλ/2, with εµνρλ the totally antisymmetric tensor defined such that
ε0123 = 1.

Accordingly, two contributions to the virtual Compton tensor at leading twist can be distinguished

T µν(τ=2)

(
P,Q,∆

)
=

Nf∑
q

T (q)µν
(τ=2) + T (g)µν

(τ=2) , (1.35)

which can be schematically represented through the handbag diagrams of Fig. 1.4. Those are renowned in
the field of generalized parton distributions but also in the general factorization of scattering amplitudes
(see e.g. [36, 46]). The handbag diagrams manifestly express the factorization of an amplitude into a
hard part calculable in perturbation theory: The coefficient functions in the corresponding operator
product expansion (to which photon legs are “attached”). And a soft part, which encodes all of the
relevant information about the struck hadron. Both parts are connected through quark or gluon
lines (arising from the corresponding operator in the list Eqs. (1.33)-(1.34)), representing the hadron’s
constituents participating of the interaction with the probing photon. An intuitive picture (which
will be formally clarified in Sec. 2.3.1) then follows: Deeply virtual Compton scattering on a hadron
occurs through the emission of either a quark or a gluon (non-perturbative hadron dynamics), which
perturbatively interacts with the probing photon before being reabsorbed by the parent hadron.

1.3.1 Invariant tensor decomposition: Compton form factors

Although with the expression Eq. (1.32) we have already gained some ground for an assessment of deeply
virtual Compton scattering, we are far from a quantitative analysis. If it is written in terms of coefficient
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h (p) h (p′)

γ∗ (q) γ (q′)

Soft

Hard

h (p) h (p′)

γ∗ (q) γ (q′)

Soft

Hard

Figure 1.4: Handbag diagram: Leading twist factorization of the amplitude for deeply virtual
Compton scattering on hadrons of arbitrary spin.

functions calculable in perturbation theory, it still involves an infinite series of operators. Moreover,
it exhibits a non-trivial Lorentz structure which may challenge the analysis of the amplitude. In this
regard it is useful to work out the invariant tensor decomposition for such Compton tensor. Fortunately,
the solution to that problem is well known since the seventies [47]: Owing to the invariance under
Lorentz-, gauge- and discrete-transformations, the most general decomposition of the Compton tensor
T µν

(
P,Q,∆

)
was found to be given in terms of 33 invariant quantities. Since then, particularization

to the case of virtual Compton scattering has been explored following different conventions and for
different types of targets, e.g. [9, 48, 49]. For simplicity, we shall restrict ourselves to the case of a
(pseudo-)scalar target. The reason is two-fold: First, the resulting structures are reduced to a single one
at leading twist8, allowing for clarification of fundamental ideas without dealing with the complexity
introduced by spin-1/2 targets. Second, the main purpose of this thesis is precisely the study of deeply
virtual Compton scattering on a pion target.

In the case of a spinless hadron, the Lorentz invariant decomposition for the Compton tensor at
twist two and in the Handbag approximation (Fig. 1.4) reads [51]:

T µν
(
P,Q,∆

)
= −gµν⊥ F

(
ξ, t,Q2

)
+O (τ ≥ 3) , (1.36)

where F
(
ξ, t;Q2

)
are the Compton form factors (CFF) and the “transverse metric tensor” is defined as:

gµν⊥ = gµν − Q
µ
P ν +Q

ν
Pµ + ξPµP ν

P ·Q
. (1.37)

Through contraction with external photon momenta, one may check that such expression respects
gauge-invariance only up to twist-three contributions [52]. Indeed explicit contraction with, e.g. q′,
shows the transversality condition to be broken by terms ∆ν − ξP ν , which correspond to twist-three
corrections [51]. An analysis of the transversality condition for the Compton tensor in off-forward
kinematics requires proceeding further to twist-three [7, 51, 53–58] and twist-four [34, 50, 59, 60]
accuracy. In this work, however, we are involved with a pure leading-twist approximation to deeply
virtual Compton scattering so, in the following, we shall stick to the decomposition Eq. (1.36) for
the Compton tensor and assume all higher-twist effects to be negligible with respect to the twist-two
contributions (see [10]).

1.3.2 Leading-twist approximation for Compton form factors

With a suitable invariant-tensor decomposition the difficulties introduced by a non-trivial Lorentz
structure are washed out. In light of Eq. (1.36), all of the dynamics of the process is now encoded into

8Explicitly restricting the analysis to leading-twist accuracy in the invariant tensor decomposition for T µν
(
P,Q,∆

)
breaks gauge invariance. As demonstrated elsewhere [34, 50], the transversality condition imposed by Ward-Takahashi
identities is restored by the sum of up to twist-four terms at the operator level.
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Chapter 1. Compton scattering: A probe for hadron structure

the Compton form factors. Thus, one shall combine the operator product expansion Eq. (1.32) with
such decomposition to write the Compton form factors parametrizing virtual Compton scattering as:

Fπ
(
ξ, t,Q2

)
=
∑
i

∞∑
j=0
even

∫
d4xeiQxC(i)

j (x)xµ1 · · ·xµj 〈π
(
p′
)
|Oj(i)µ1···µj (0) |π (p)〉 . (1.38)

At this point it is worth further developing the expression of the Compton form factors. Let us
illustrate the procedure with the quark contribution; i.e. taking into account the contribution from
the operators in Eqs (1.33). To this end, evaluation of the corresponding matrix elements is needed.
In particular, we may focus on the contribution from Oµ1···µnµ

q . The reason is two-fold: First, the
matrix elements between pion-states of operators Õµ1···µnµ

q identically vanish: One cannot construct any
parity-odd, completely symmetric Lorentz structure out from Pµ and ∆µ [7]. Second, while the matrix
elements of the operators Oµ1···µnµν

q,T are non-zero, their contribution to the DVCS scattering amplitude
does vanish when contracted with gµν⊥ . As a consequence we are left with one single contribution

〈π
(
p′
)
|Ojq,µ1···µj−1µ (0) |π (p)〉 =

j∑
k even

(
∆

2

)µ1

· · ·
(

∆

2

)µk
Pµk+1 · · ·Pµj 〈Oj,kq 〉 , (1.39)

where the restriction to even powers of the momentum transfer ∆ follows from the requirement of
even-parity. Symmetrization and trace subtraction is implicitly understood. Now, plugging the above
decomposition into Eq. (1.38), one may schematically write

F (q)
π

(
ξ, t,Q2

)
=

∞∑
j=2
even

j∑
k even

(−i)j 〈Oj,kq 〉
(

∆µ

2

∂

∂Q
µ

)k (
P ν

∂

∂Q
ν

)j−k ∫
d4xeiQxCj (x) =

=
∞∑
j=2
even

j∑
k even

〈Oj,kq 〉
(
∆ ·Q

)k (
2P ·Q

)j−k(−i ∂

∂Q
2

)j ∫
d4xeiQxCj (x) =

=
∞∑
j=2
even

j∑
k even

〈Oj,kq 〉
ξk

X−jB
C̃j
(
Q

2
)
,

(1.40)

with the identification

C̃j
(
Q

2
)

=

(
−iQ2 ∂

∂Q
2

)j ∫
d4xeiQxCj (x) . (1.41)

Importantly, the above series for the Compton form factors is convergent for XB → ∞, which
is outside the physical region for deeply virtual Compton scattering, characterized by XB-fixed.
Notwithstanding, tackling this situation is possible through dispersion relations. Indeed, one take
advantage of the dispersion relation the virtual Compton amplitude (or identically for the Compton
form factors) in XB-plane [7, 61, 62]

F (q)
π

(
ξ, t,Q2

)
= − 1

π

∫ 1

−1

dx

x−XB
ρ
(
x, ξ, t, Q2

)
(1.42)

which can be expanded in power series for XB →∞

F (q)
π

(
ξ, t,Q2

)
=

1

π

∞∑
j=2
even

1

Xj
B

∫ 1

−1
dxxj−1ρ

(
x, ξ, t, Q2

)
. (1.43)
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Comparing the above dispersion relation with Eq. (1.40) allows to identify

1

π

∫ 1

−1
dννj−1ρ

(
ν, ξ, t, Q2

)
=

j∑
k even

〈Oj,kq 〉ξkC̃j
(
Q

2
)

(1.44)

a relation that expresses the factorization of the Mellin moments of the spectral function describing
virtual Compton scattering (notice the parallelism with the, still unmentioned polynomiality property
of GPDs [10]). The above Mellin transform can be inverted to obtain the spectral function which,
plugged into Eq. (1.42) allows to write [7]

F (q)
π

(
ξ, t,Q2

)
=

∫ 1

−1

dx

ξ
C

(
x

ξ
,Q2

)
Fq/π (x, ξ, t) . (1.45)

where Fq/π is a function defined to satisfy:∫ 1

−1
dxxjFq/π (x, ξ, t) =

j∑
k=0
even

ξk〈Oj,kq 〉 , (1.46)

the generalized parton distributions.

1.4 Deeply virtual Compton scattering and Generalized parton dis-
tributions

The result we have just presented is the central piece and the starting point of this dissertation: The
amplitudes for virtual Compton scattering are given by convolutions of hard coefficient functions,
calculable in perturbation theory. And soft distributions, formally defined to generate the entire tower
of twist-two operators in QCD, and encoding all of the non-perturbative dynamics inside hadrons that is
relevant for the scattering of a deep virtual photon on a hadron. Although we illustrated the derivation
for the case of the quark contribution to DVCS, this result is completely general [3, 6, 63, 64], applying
to any target and both for quark and gluon contributions. Indeed, it is a general statement that the
hadronic part of the DVCS amplitude can be written as:

Mµν
DVCS

∣∣
Hadron = T µν

(
P,Q,∆

)
= Λµν

(
P,Q,∆

)
F
(
ξ, t,Q2

)
(1.47)

where ∆µν (P,Q,∆) are the relevant Lorentz structures, which can be found elsewhere [35, 48, 51, 65,
66]. The Compton form factors are written as9

F
(
ξ, t,Q2

)
=
∑
p

Fp/h
(
ξ, t,Q2

)
=
∑
p

∫ 1

−1

dx

ξ
Cp
(
x

ξ
,
Q2

µ2
, αs

(
µ2
))

F
(µ)
p/h (x, ξ, t) (1.48)

with a sum which extends over all kind of constituents: Quarks and gluons. The coefficient functions
are often dubbed hard scattering kernels and are calculable in perturbation theory to given orders in
the strong running coupling,

F
(
ξ, t,Q2

)
=
∞∑
n=0

(
αs
(
µ2
)

2π

)n∑
p

∫ 1

−1

dx

ξ
Cp(n)

(
x

ξ
,
Q2

µ2

)
F

(µ)
p/h (x, ξ, t) . (1.49)

This is indeed a major feature. Despite the existence of a large scale Q2 allowing for the factorization
of the full amplitude, the feasibility of any quantitative analysis would not be guaranteed without the

9Notice the refined notation with respect to Eq. (1.45). In this way we recover the conventional nomenclature found
throughout the bibliography and to which we stick along this dissertation. It is designed to make apparent the fact the
the coefficient functions depend on the scale through the strong coupling. At the same time, the GPDs show a dependence
on the same scale through renormalization of the relevant operators.
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Chapter 1. Compton scattering: A probe for hadron structure

series representation Eq. (1.49), which is a essential outcome of the operator product analysis underlying
factorization of light-cone-dominated scattering amplitudes. Importantly, it is not unexpected but
a direct consequence of the (possibly) main characteristic exhibited by quantum chromodynamics:
Asymptotic freedom. Indeed, the same large scale that triggers factorization, drives the relevant
photon-constituent scattering described by the coefficient function, Cp. Thus, provided that such scale
is large enough (as it is in the generalized Bjorken regime), the strong interaction becomes undoubtedly
perturbative, allowing for the calculation of the relevant hard scattering kernel with arbitrary precision.

The non-perturbative dynamics of the process is captured by the Generalized parton distributions
(GPDs). They were independently introduced during the late nineties by several authors [2, 3, 8].
Formally, as we found before, they are defined on the basis of the unitarity of the Mellin transform,
arising in the factorization of scattering amplitudes involving momentum transfer between hadron
states to generate the entire tower of QCD’s twist-two operators as Mellin moments. More commonly,
the leading-twist GPDs are defined as Fourier transforms of light-cone bilocal operators “sandwiched”
between hadronic states. Following the conventions in [10, 67], six leading-twist GPDs can be defined:

F
(µ)
q/h (x, ξ, t) =

1

2

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣ ψ̄q (−λn/2) γµψq (λn/2) |h (p, σ)〉nµ ,

F̃
(µ)
q/h (x, ξ, t) =

1

2

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣ ψ̄q (−λn/2) γµγ5ψ
q (λn/2) |h (p, σ)〉nµ ,

F
(µ)
T,q/h (x, ξ, t) =

1

2

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣ ψ̄q (−λn/2) iσµ⊥ψq (λn/2) |h (p, σ)〉nµ ,

(1.50)

for flavor-q quarks, which notice coincide with the conventions followed in Refs. [45, 68], and

F
(µ)
g/h (x, ξ, t) =

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣Gµα (−λn/2)Gνα (λn/2) |h (p, σ)〉nµnν ,

F̃
(µ)
g/h (x, ξ, t) =

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣Gµα (−λn/2) iG̃να (λn/2) |h (p, σ)〉nµnν ,

F
(µ)
T,g/h (x, ξ, t) =

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣ ŜGµ⊥ (−λn/2)G⊥ν (λn/2) |h (p, σ)〉nµnν ,

(1.51)

for gluon operators, differing from those in [45, 68] by a factor 2x. The different conventions in the
definition of GPDs, specially in the gluon sector, are remarkable. As an example, the gluon GPD defined
in [10] can be shown to be x-even (Sec. 2.2.3) and to reduce to xg (x;µ) with g (x) the conventional
gluon PDF times the [69] (Sec. 2.3.1). On the contrary, the definitions from [45, 68] can be shown to be
odd in the variable x and to reduce to one half the same gluon parton distribution function. Different
definitions for the GPDs using an alternative parametrization for the kinematic variables also exist [4,
70, 71]. Since we will not be involved with them at any point we do not review such conventions but
refer the reader to [71] for a discussion on the connection between the different parametrizations.

Strictly speaking, for the expressions above to yield a proper definition of a physical object like
generalized parton distributions, the relevant operators must reflect the gauge symmetry of quantum
chromodynamics. In this regard, the usual mechanism employed in QCD to render an arbitrary non-local
operator gauge-invariant is to introduce a Wilson line W [−λn/2;λn/2] defining the parallel transport
between the two involved spacetime points [72]. The above expressions are thus readily written in a
explicitly gauge-invariant form, e.g.

F
(µ)
q/h (x, ξ, t) =

1

2

∫
dλ

2π
eiλx

〈
h
(
p′, σ′

)∣∣ ψ̄q (−λn/2)W [−λn/2;λn/2] γµψq (λn/2) |h (p, σ)〉nµ . (1.52)

A similar possibility is also at hand: To take Eqs. (1.50)-(1.51) as being written in light cone
gauge (Aµ (x)nµ = 0, where Aµ (x) denotes the gluon field), when Wilson lines reduce to unity [9,
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h (p) h (p′)

γ∗ (q) γ (q′)

k − q k + q′

k

F
(µ)
q/h (x, ξ, t)

Figure 1.5: Leading order contribution to deeply virtual Compton scattering in the leading-twist
approximation: A quark is picked up from a hadron, interacting with the probing
photon and then going back to its parent hadron after the emission of a real photon.

10], automatically makes them explicitly gauge invariant. It is that convention for the definition of
generalized parton distributions to which we stick along this dissertation.

So far these objects simply arise in the factorization of the amplitude for deeply virtual Compton
scattering. However, as we shall reveal in Ch. 2, where we will dig into the structure of generalized
parton distributions, they encode a large amount of information about hadrons structure: From
electromagnetic and gravitational form factors to the spatial distribution of constituents within hadrons.
In a sense, the objects above generalize the conventional parton distribution functions (PDFs) arising
in the factorization of deep inelastic scattering to the case of exclusive processes, drawing a wider
window to the assessment of hadron structure. However, as essentially non-perturbative entities, their
construction is astonishingly difficult. Moreover, although a clear path towards to its experimental
access exists through DVCS, a direct assessment is precluded because of their convolution with the
hard kernels as in Eq. (1.48) [23, 24]. In this work we shall adopt a different approach to the study
of hadron GPDs: After an exhaustive analysis of the properties of GPDs (Ch. 2), we may build in
Ch. 3 a consistent strategy for its modeling. With focus on the pion, its exploitation will then give
rise to realistic models for pion GPDs that fulfill all the necessary properties. Finally, its evolution to
experimentally-relevant energy-scales, presented in Ch. 4, will place us in a position to further exploit
the results discussed through the present chapter to develop the first systematic assessment of the
pion’s generalized structure at future colliders (Ch. 5).

In this regard, one further result is needed: The actual expressions for the coefficient functions
parametrizing the amplitudes for deeply virtual Compton scattering through Eq. (1.48). To this task
we devote the following section, paving the road to the final aim of this work: An assessment of pion’s
structure through GPDs.

1.4.1 Compton form factors at Leading order and next-to-leading order

In the generalized Bjorken limit, the amplitude for virtual Compton scattering on a pion target is
written as:

Mµν
DVCS

∣∣
Hadron = −gµν⊥

∫ 1

−1

dx

ξ

∑
p

Cp
(
x

ξ
,
Q2

µ2
, αs

(
µ2
))

F
(µ)
p/h (x, ξ, t) , (1.53)

where the coefficient functions can be computed in perturbation theory. Distinguishing quark and gluon
contributions we may write:

Nf∑
q

Cq =

Nf∑
q

[
Cq(0) +

αs
(
µ2
)

2π
Cq(1)

]
+O

(
α2
s

)
, Cg =

αs
(
µ2
)

2π
Cg(1) +O

(
α2
s

)
. (1.54)

Strikingly, to lowest order in the strong coupling only the quark content within hadrons contribute
to the amplitude for deeply virtual Compton scattering, as it can be easily inferred from the neutral
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Figure 1.6: One loop coefficient functions for quark and and gluon GPDs in the amplitude for
virtual Compton scattering.

character of gluons with regard to the electromagnetic interaction. Thus, to zero order in the strong
interactions one finds one single type of diagrams contributing to the DVCS amplitude: Fig. 1.5. Such
contribution can be easily computed in perturbation theory, yielding [8],

Cq(0)

(
x

ξ
,
Q2

µ2

)
= e2

q

(
1

1− x
ξ − iε

− 1

1 + x
ξ − iε

)
(1.55)

which, combined with Eq. (1.53) provides a well known result for DVCS on a hadron target at leading
order [9, 10]

Mµν
DVCS

∣∣
Hadron = −gµν⊥

Nf∑
q

e2
q

∫ 1

−1
dx

(
1

ξ − x− iε
− 1

ξ + x− iε

)
F

(µ)
q/h (x, ξ, t) (1.56)

Interestingly, although the GPD itself may depend on a factorization-scale, µ, the coefficient
functions here found do not, just as it occurs with the structure functions of DIS in the parton model.
Moreover, the above expression makes apparent that the Compton form factors are complex functions
[10], the explicit expressions in the LO approximation being:

ReF (q)
LO
(
ξ, t,Q2

)
= P.V.

Nf∑
q

e2
q

∫ 1

−1

(
1

ξ − x
− 1

ξ + x

)
F

(µ)
q/h (x, ξ, t) ,

ImF (q)
LO
(
ξ, t,Q2

)
= π

Nf∑
q

e2
q

[
F

(µ)
q/h (ξ, ξ, t)− F (µ)

q/h (−ξ, ξ, t)
]
,

(1.57)

which are related through dispersion relation techniques [62, 73, 74]

ReF (q)
LO
(
ξ, t,Q2

)
= P.V.

Nf∑
q

e2
q

∫ 1

−1
dx

(
1

ξ − x
− 1

ξ + x

)
F

(µ)
q/h (x, x, t) +D(q)

LO
(
t, µ2

)
. (1.58)

meaning that, at leading order, deeply virtual Compton scattering probes only the cross-over between
the DGLAP and ERBL regions.
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A wider look at generalized parton distributions can be taken through deeply virtual Compton
scattering by extending the analysis to next-to-leading order. In this case, both quarks and gluons
contribute through the diagrams in Fig. 1.6, for which expressions can be found elsewhere [5, 63, 75–77].
In this dissertation we perform an analysis of deeply virtual Compton scattering at next-to-leading
order. Although such calculations might (potentially) receive non-negligible contributions from higher
order terms, by the time this work started those were the most advanced calculations available in
literature10. In addition, at NLO already all possible contributions (quark and gluons) to the scattering
kernels are already taken into account so, a qualitative assessment for DVCS might not be precluded by
such truncation.

10Very recently, the first calculations at next-to-next-to-leading order were made public [78]
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2 | Generalized parton distributions

The discussion presented in the preceding chapter draws a clear window to the study of correlations
within hadrons through deeply virtual Compton scattering. Indeed, the existence of a large scale,
identified with the incident photon’s squared four-momentum, leads to the factorization of the process’
amplitude. In short, that amplitude receives its dominant contribution from near-the-light-cone field
configurations. A simple picture thus emerges from the probing photon’s perspective: The constituents
are on their mass shells and travel collinear with the mother hadron. One then drops the interpretation
of the scattering process in terms of complicated photon-hadron interactions, and instead achieve a
reliable description where a single constituent is struck by the incident photon. The amplitude for
DVCS is thus entirely characterized by Compton form factors, which are convolutions of hard coefficient
functions and a soft piece: The generalized parton distribtuions.

We already developed a detailed study of the hard scattering kernel up to next-to-leading order in
the strong coupling (see sec. 1.4.1). On the contrary, little has been said about what actually are the
most relevant ingredients for the description of Compton scattering, the GPDs. This is precisely the
aim of the present chapter. Running the risk of becoming tediously repetitive, here we start recalling
the formal definition of GPDs, fixing the conventions that will be followed in subsequent chapters.
Then, we depict their most fundamental properties and show how they arise from the fundamental
principles underlying quantum chromodynamics. Keeping this in mind we draw an intuitive picture
about the physical content they code. We round off with a detailed presentation of existing approaches
to the calculation of GPDs, discussing it successes and failings; and thus triggering a smooth transition
to one of the main topics covered in this work: Modeling of generalized parton distributions.

2.1 Definition

Through the previous chapter we found the generalized parton distributions to arise as parametrizations
of the hadronic contribution to virtual Compton scattering as understood in the generalized Bjorken
limit [1–7]. In such context, GPDs must be defined to given twist accuracy (see Ch. 1), six twist
two GPDs being introduced with regard to each of the six families of twist two operators in QCD
Eqs. (1.33)-(1.34), to yield the leading twist contribution to the factorization of the Compton scattering
amplitude in off-forward kinematics.

The introduction generalized parton distributions is contemporary with the analysis of factorization
in hard exclusive processes. Formally, they were introduced by a series of authors as hadronic expectation
values of non-local quark- or gluon-field operators projected onto the light-front [2, 3, 8, 25, 70, 79].
Within that picture, isolated from any thought about hard scattering processes, GPDs are realized as
describing transitions between hadron states that involve momentum and/or helicity transfers. Indeed,
that is what follows from a naive interpretation of the relevant matrix elements. It is thus clear that
the distributions Eqs. (1.50)-(1.51) must encode a large amount of information about the nature of
these transitions, and consequently from hadron’s structure. Decoding it is the precise purpose of this
chapter. In this regard, it is always helpful to start “factorizing” the relevant tensor structures. For
definiteness, let us focus on the case of spin-1/2 hadrons1, say a nucleon (N). As an example, the chiral

1For a discussion in the case of more complex spin-1 systems see e.g. [80–82].
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odd quark GPD within a nucleon and its gluon counterpart can be decomposed as [9, 10],

F
(µ)
q/N (x, ξ, t) =

1

2

[
Hq (x, ξ, t;µ) ūσ′

(
p′
)
/nuσ (p) + Eq (x, ξ, t;µ) ūσ′

(
p′
) iσµνnµ∆ν

2m
uσ (p)

]
,

F
(µ)
g/N (x, ξ, t) =

1

2

[
Hg (x, ξ, t;µ) ūσ′

(
p′
)
/nuσ (p) + Eg (x, ξ, t;µ) ūσ′

(
p′
) iσµνnµ∆ν

2m
uσ (p)

]
,

(2.1)
The full zoology of generalized parton distributions arising for spin-1/2 hadrons is extremely

simplified when considering spin-0 entities. Certainly, a discussion in fully general terms could be
developed, however dealing with them all in a general manner constitutes a tedious task which, in
addition, can be found in detailed reviews on the topic, e.g. [9, 10]. Furthermore, the final aim of this
dissertation is to present the very first assessment of deeply virtual Compton scattering on pions. It is
then natural to avoid a complicated discussion about generalized parton distributions in its full glory
and restrict ourselves to the case of interest.

For pions, one is left with four distributions. Two for the case of quarks within pions2 [9, 10]:

F
(µ)
q/π (x, ξ, t) = Hq

π (x, ξ, t) /n , F
(µ)
q/π,T (x, ξ, t) = Hq

π,T (x, ξ, t) /n , (2.2)

and two extra distributions for gluons

F
(µ)
g/π (x, ξ, t) = Hg

π (x, ξ, t) /n , F
(µ)
g/π,T (x, ξ, t) = Hq

π,T (x, ξ, t) /n . (2.3)

Different naming exist for the quantities above: F (µ)
q/h is often referred to as the chiral even GPD.

The reason for that is plain: The operators there involved do not change parton’s chirality. To see why,
let us consider the operator ψ̄q (x) γµψq (y) and choose a parton with a definite chirality by introducing
chirality projectors Λ5

± = (1± γ5) /2 such that Λ5
±ψ

q
x ≡ Λ5

±ψ
q (x) = ψq± (x) [28]. One thus writes

ψ̄q (x) γµψq (y) ≡ ψ̄qxγ
µψqy = ψ̄qxγ

µ
(
Λ5
± + Λ5

∓
)
ψqx = ψ̄qxγ

µΛ5
±Λ5
±ψ

q
y + ψ̄qxγ

µΛ5
∓Λ5
∓ψ

q
y

= ψ̄qxΛ5
∓γ

µΛ5
±ψ

q
y + ψ̄qxΛ5

±γ
µΛ5
∓ψ

q
y = ψ̄q± (x) γµψq± (y) + ψ̄q∓ (x) γµψq∓ (y) ,

(2.4)

which makes manifest the fact that the relevant operators describe transitions which do not involve
changes of quark’s chirality. A similar calculation can be developed for the operator ψ̄q (x)σµνψq (y),
revealing its chirality-changing effect, and thus triggering the tag chiral-odd for the GPD F

(µ)
q/h,T .

Strikingly, chiral-odd quark GPDs (also named transversity GPDs) are known not to contribute to
the amplitude for deeply virtual Compton scattering, the reason being simple: We found the Lorentz
structure accompanying the leading twist contribution to the Compton tensor being proportional to
gµν⊥ (see Ch. 1), which is symmetric in the Lorentz indices. Transversity quark GPDs, for their part, are
defined from the Mellin moments of twist-two operators involving a completely antisymmetric Lorentz
structure: σµν . Thus, such contribution to the amplitude for deeply virtual Compton scattering can be
proved to vanish. For that reason we no longer consider them in our discussion. On the contrary, gluon
transversity GPDs do contribute to DVCS, even in the case of a pion target. At least, there is no reason
for it to vanish and indeed, evidence for its measurement in DVCS on protons was recently acquired
[15]. However, its quantitative assessment is far out of the scope of an exploratory study about the
phenomenology of DVCS on pions as the one we are developing. The reason is mainly that the expected
precision for pion DVCS is well below that for protons [83, 84], preventing from a clear access to gluon
transversity GPDs. Also, because they cannot be assessed through simple truncations in the Fock-space
expansion for hadron states [10]. Furthermore, since they decouple from the quark distributions under
renormalization-scale-evolution [68, 85] (as required by angular momentum conservation), one can still

2A remark on nomenclature: Given the connection between F and H in the case of pions, we will use both notations
interchangeably.
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develop an internally consistent analysis of DVCS on pions where gluon transversity GPDs are not
taken into account. For that reason, and from now on, we will restrict our discussion to quark and glue
GPDs in pions, as given by:

Hq
π (x, ξ, t;µ) =

1

2

∫
dλ

2π
eiλx 〈π (p)| ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ , (2.5)

for the quarks,

Hg
π (x, ξ, t;µ) =

∫
dλ

2π
eiλx 〈π (p)|Gµα (−λn/2)Gνα (λn/2) |π (p)〉nµnν , (2.6)

for the gluons.
These two objects will be the main focus of this thesis. They will be generically referred to as quark

and gluon generalized parton distributions. Although many of the results that we will derive along this
chapter are completely general, with little modifications when different target hadrons are considered,
we will stick to the study of GPDs in pions. The interested reader is pushed to check reviews on the
subject, e.g. [9, 10], for further discussion or extension of our results to different hadrons.

2.2 Properties

Provided that the objects of main interest for this dissertation are the two generalized parton distributions
given in Eqs. (2.5) and Eq. (2.6), analyzing their formal properties arises as the next task. Disentangling
the physics there hidden is a must if we are to gain insights into hadron’s structure. For this reason
we devote the present section to a detailed analysis of these two objects. We will go through their
analytic properties, allowing us to identify the support of both quark and gluon GPDs, and discuss
their transformation properties under Lorentz and discrete symmetries; results from which we shall
benefit in future studies.

2.2.1 Analiticity: support

Generalized parton distributions are defined from projections onto the light-front of the hadronic matrix
elements generated by a family of non-local quark and gluon operators. The different operators generate
the different GPDs. So far, the sole knowledge we have about these objects is that, in addition to
a parametric dependence on a renormalization-scale, µ, they depend on three kinematic variables:
Namely, the squared momentum transfer between hadron states t = (p′ − p)2; the skewness variable, ξ,
which we found to measure the amount of momentum transferred between the two hadron states along
the longitudinal direction (Sec. 1.2.1) and a further dimensionless quantity, x. With this information
there is no much we can say about them.

To start delving into the structure of GPDs it may be convenient to express the generalized parton
distributions in a different language. Let us take the quark GPD within a pion as a paradigmatic
example and rewrite it in the hadron frame (Sec. 1.2.1). Thus, introducing the set of light-cone
coordinates

z± =
1√
2

(
z0 ± z3

)
,

z⊥ =
(
z1, z2

)
,

(2.7)

the quark GPD within a pion reads

Hq
π (x, ξ, t;µ) =

1

2

∫
dz−

2π
eixP

+z−〈π
(
p′
)
|ψ̄q
(
−z−/2

)
γ+ψq

(
z−/2

)
|π (p)〉 =

=
1

2

∫
dz−

2π
eixP

+z− 〈π
(
p′
)
|ψ̄q (−z/2) γ+ψq (z/2) |π (p)〉

∣∣
z+=zi⊥=0

(2.8)
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h (p) h (p′)

q q

−k1 −k2

A (k)

ξ

x
1

1

−1

−1

DGLAP

ERBL

x = ξ

Figure 2.1: Left panel: Schematic representation of the hadron-parton scattering represented
by generalized parton distributions. Right panel: Diagram representing the
domain where generalized parton distributions have support. The two possible
kinematic regions are explicitly presented and identified.

where P+ represents the hadron’s average momentum along the light-cone, z− is a spacetime coordinate
chosen as λ/P+ and γ+ =

(
γ0 + γ3

)
/
√

2. This is also a widespread realization for GPDs (e.g. [10])
which has the drawback of being particularized to a given frame, but shows the advantage of making a
crucial feature about parton distributions apparent: They are defined from quark and gluon operators
evaluated at fixed light-cone time, say z+ = 0 [9, 10]. Moreover, Eq. (2.8) may be rewritten as:

Hq
π (x, ξ, t;µ) =

1

2

∫
dk−d2k⊥

(2π)4

[∫
d4zeikz〈π

(
p′
)
|ψ̄q (−z/2) γ+ψq (z/2) |π (p)〉

]
k+=xP+

, (2.9)

where now z is a four-vector with all its components non-vanishing and k is its Fourier conjugated
four-mometum. That relation can be further shown to be equivalent to [70, 86–88]:

Hq
π (x, ξ, t;µ) =

1

2

∫
dk−d2k⊥

(2π)4

[∫
d4zeikz〈π

(
p′
)
|T
{
ψ̄q (−z/2) γ+ψq (z/2)

}
|π (p)〉

]
k+=xP+

, (2.10)

which can be interpreted in terms of an amplitude, A (k), describing the scattering of an on-shell hadron,
a pion in the illustration above, and quarks (Fig. 2.1, left panel)

A (k) =

∫
d4zeikz〈π

(
p′
)
|T
{
ψ̄q (−z/2) γ+ψq (z/2)

}
|π (p)〉

∣∣∣∣
k+=xP+

, (2.11)

with k = (k1 + k2) /2 the average quark four-momentum.
In that realization an intuitive picture for generalized parton distributions as quark-hadron scattering

amplitudes can be drawn:
π (p) + p (−k1)→ π

(
p′
)

+ p (−k2) (2.12)

with k+ = xP+, from which an interpretation for the GPD variable x as the fraction of the average
hadron’s longitudinal momentum carried by the scattered partons naturally arises. Accordingly, the
domain where the generalized parton distributions have support can be identified as:

GPDs’ support: x ∈ [−1, 1] , ξ ∈ [−1, 1] . (2.13)

i.e. the scattered quarks (Fig. 2.1) cannot carry a longitudinal momentum-fraction larger than that
of the parent hadron: x ≤ 1. Similarly, if one thinks about negative momenta as corresponding to
antiparticles, the constraint x ≥ −1 naturally arises, driving the restriction of the GPDs’ domain as in
Eq. (2.13).
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The above exposition is far from rigorous. A careful derivation of such result would require showing
the equivalence between Eq. (2.9) and Eq. (2.10), which is out of the scope of this presentation.
Nonetheless, that step has been scrupulously analyzed in the literature: First in forward kinematics
[86, 87] and more recently in the case relevant for GPDs [88], both in the quark and gluon sectors3.
It is on that result that the interpretation of GPDs as parton-hadron scattering amplitudes finds its
foundations. Moreover, a careful analysis of the corresponding singularity structure [9, 70, 88, 89] leads
to the definition of the GPD domain as in Eq. (2.13) as well as the identification of two kinematic
regimes for GPDs: The DGLAP, corresponding to |x| ≥ |ξ|; and the ERBL region4, characterized by
|x| ≤ |ξ|.

2.2.2 Lorentz invariance: polynomiality

So far we have been able to give an intuitive picture of GPDs in terms of hadron-parton scattering
amplitudes. The analysis of the analytic structure shown by the latter allowed us to identify the
domain of generalized parton distributions. Well enough, but we can still do a better job and exploit
the symmetries of the QCD action to further unravel the properties of GPDs. Moreover, if we start
discussing about symmetries in quantum field theory, there is certainly one which deserves pride of
place: Lorentz invariance. Indeed, one of the main features of generalized parton distributions is the
so-called polynomiality property, which arises as its direct consequence. As we shall find, polynomiality
is an statement about the m-th order Mellin moments of GPDs, which behave as polynomials of a
given degree in the skewness variable [45, 90, 91].

As an illustration, consider the quark GPD in Eq. (2.5) and take Mellin moments:

Mm
q/π (ξ, t;µ) =

∫ 1

−1
dxxm

[∫
dλ

2π
eiλx〈π

(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)nµ

]
. (2.14)

One can swap integrals and identify xm → (−i)m dmeiλx/dλm to write

Mm
q/π (ξ, t;µ) = (−i)m

∫
dλ

2π

∫ 1

−1
dx

(
dmeiλx

dλm

)
〈π
(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ

= im
∫
dλ

2π

∫ 1

−1
dxeiλx

dm

dλm
[
〈π
(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ

]
= im

∫
dλδ (λ)

dm

dλm
[
〈π
(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ

]
= im〈π

(
p′
)
| d

m

dλm
ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉

∣∣∣∣
λ=0

nµ .

(2.15)

Finally employing Leibniz’s rule and introducing the shorthand notation ∂µλn ≡ ∂/∂ (λnµ)

Mm
q/π (ξ, t;µ) =

im

2m
〈π
(
p′
)
|ψ̄q (−λn/2) γµ

(
∂µ1

λn · · · ∂
µm
λn ψ

q (λn/2)
)
−

−
(
∂µ1

λn · · · ∂
µm
λn ψ̄

q (−λn/2)
)
γµψq (λn/2) |π (p)〉nµ1 · · ·nµmnµ

∣∣
λ=0

= 〈π
(
p′
)
|ψ̄q (−λn/2) γµi

↔
∂
µ1

λn · · · i
↔
∂
µm

λn ψ
q (λn/2) |π (p)〉nµ1 · · ·nµmnµ

∣∣∣∣
λ=0

.

(2.16)

The above reveals a crucial feature about GPDs: The m-th order Mellin moments of generalized
parton distributions are generated from the matrix elements of twist-two local operators in quantum

3Accordingly, one introduces the term parton as a marriage of both possible cases.
4The reason for these denominations will become apparent in Sec. 2.3.1, where a detailed analysis of the interpretation

of GPDs as scattering amplitudes is presented.
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chromodynamics. We have illustrated the derivation of this result with the chiral-even quark GPD in a
pion. However, similar results follow for all other two quark GPDs and also the three gluon distributions
[9, 10, 45, 89–92]. For instance, for the gluon GPD in Eq. (2.6)

Mm
g/π (ξ, t;µ) = 〈π

(
p′
)
|Gµα (−λn/2) i

↔
∂
µ1

λn · · · i
↔
∂
µm

λnG
ν
α (λn/2) |π (p)〉nµnβnµ1 · · ·nµm

∣∣∣∣
λ=0

(2.17)

Indeed, this finding was to be expected from the development of Ch. 1, where we achieved at a
formal definition of generalized parton distributions through the inverse Mellin transform of the (matrix
elements) of twist-two operators. In reality, for the above to represent twist-two operators in QCD,
two further yet non-apparent features must be met: First, the derivative operator should be replaced
by a covariant derivative, keeping the resulting operators gauge-invariant. Second, symmetrization
and trace subtraction over Dirac indices should be implicit. Fortunately, the fact that our expressions
Eqs. (2.16)-(2.17) do not (apparently) fulfill gauge invariance is an artifact generated by our starting
point: The definition of GPDs in light-cone gauge. In fact, one could easily verify that the previous
calculations could be analogously taken in an arbitrary gauge, where the inclusion of the corresponding
Wilson line must be accounted and thus turns the conventional derivative into a covariant one. The
second set of conditions is less apparent and takes place only as an effect of the projection onto the
light-front enforced by contraction with lightlike four vectors nµ1 · · ·nµm .

One can now evaluate the matrix elements in Eqs. (2.16). To this end, notice that there only exist
two momenta upon which they can be built: Pµ = (pµ + p′µ) /2 and ∆µ = (p′µ − pµ). Moreover, there
exist three Lorentz invariant quantities the coefficients can depend on: t = ∆2, P 2 and P ·∆. From
their definition it immediately follows that P ·∆ = 0 and P 2 = m2

π − t/4, so we are left with one single
invariant quantity, t. From this observation, the Mellin moments can be easily found to be

Mm
q/π (ξ, t;µ) =

m+1∑
k=0

Am,kq/π (t;µ)PµPµ1 · · ·Pµk
(
−∆µk+1

2

)
· · ·
(
−∆µm

2

)
nµnµ1 · · ·nµm . (2.18)

One can now simply take advantage of the definition for the skewness variable as ξ = −∆·n/2 (P · n),
to obtain:

Mm
q/π (ξ, t;µ) =

m+1∑
k=0

Am,kq/π (t;µ) ξk (2.19)

where we further recalled that P · n = 1. Finally, as required by time reversal invariance5 only even
powers of the the skewness variable can arise, simplifying the Mellin moments of GPDs to

Mm
q/π (ξ, t;µ) =

m+1∑
k=0
k even

Am,kq/π (t;µ) ξk (2.20)

or, in the more common notation:

Mm
q/π (ξ, t;µ) =

[m/2]∑
k=0

Am,2kq/π (t;µ) ξ2k + mod (m, 2)Cm,m+1
q/π (t;µ) ξm+1 , (2.21)

where [· · · ] represents the floor function, which gives the greatest integer less than or equal to its
argument; mod (m, 2) returns the reminder of the division m/2.

The result represented by Eq. (2.21) is the famous polynomiality property of GPDs as reading in the
case of quarks in pions. In simple words, it states that the m-th order Mellin moments of GPDs behaves
as even polynomials in the skewness variable of degree m+ 1 [5, 93]. The t-dependent coefficients in
Eq. (2.21) are dubbed generalized form factors, as for reasons that may become apparent in a while,

5See Sec. 2.2.5 for a more refined treatment of the effect time-reversal invariance has on generalized parton distributions.
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they reduce to the well known electromagnetic and gravitational form factors in particular limiting
cases. The relevance of this property is manifest from the present derivation: It is the invariance
under Lorentz transformations, as reflected in a consistent decomposition of the matrix elements in
Eqs. (2.16)-(2.17), which is encoded into the polynomiality property.

A similar result can be obtained for the gluon GPD in a pion. No further considerations are needed.
Just working out the corresponding decomposition as

Mm
g/π (ξ, t;µ) =

m∑
k=0

Am,kg/π (t;µ)PµPµ1 · · ·Pµk
(−∆µk+1

2

)
· · ·
(
−∆µm

2

)(
−∆ν

2

)
nµ · · ·nν , (2.22)

yields,

Mm
g/π (ξ, t;µ) =

[m/2]∑
k=0

Am,kg/π (t;µ) ξ2k + mod (m, 2)Cm,m+1
q/π (t;µ) ξm+1 , (2.23)

which expresses the polynomiality property of generalized parton distributions as realized in the case of
gluons.

The property we have exposed here is (probably) the most famous feature of GPDs. Indeed, if
there were one single symmetry to be preserved, it is certainly Lorentz invariance which would deserve
that honor. Thus, since we have proved polynomiality to arise as a direct consequence of the latter, it
follows that any attempt at the evaluation of GPDs must fulfill with it. In fact, it is on the basis of
different approaches to their study. Among them, the double distribution representation (Sec. 2.4.2) [2,
3, 25, 70, 91] has benefited from several efforts [94–99] due to its direct connection with polynomiality.
In particular, the approach exploited along with this thesis to develop GPDs which fulfill with all the
necessary properties, has two main central pieces; one of them is, precisely, the double distributions.

Electromagnetic and gravitational form factors

Two cases of particular interest can be read from the general polynomiality property of generalized
parton distributions: Those corresponding to m = 0 and m = 1. Restriction of the above presented
general expressions to m = 0 gives∫ 1

−1
Hq
π (x, ξ, t;µ) ≡M(0)

q/π (ξ, t;µ) = A0,0
q/π (t;µ) = 〈π

(
p′
)
|ψ̄q (0) γµψq (0) |π (p)〉nµ ≡ F qπ (t) , (2.24)

i.e. the zero order Mellin moment of GPDs represents the electromagnetic form factor of the hadron,
describing the spatial distribution of electric charge within it [100, 101].

Similarly, the first order Mellin moment of the chiral-even quark GPD within a pion yields∫ 1

−1
xHq

π (x, ξ, t;µ) dx ≡ M(1)
q/π (ξ, t;µ) = A1,0

q/π (t;µ) + ξ2C1,2
q/π (t;µ)

= 〈π
(
p′
)
|ψ̄q (0) γµi

↔
∂
ν

ψq (0) |π (p)〉nµ ,

(2.25)

the matrix element of the quark contribution to the energy momentum tensor in QCD. The coefficients
A1,0 and C1,2 are then the corresponding Lorentz invariant quantities arising in the decomposition of
the energy momentum tensor: The gravitational form factors6 (GFFs). The interpretation of those is
two fold: First, the GFFs can be found to represent the mass and pressure distributions within the
target hadron through Fourier transform to impact-parameter space [105, 106]. Second, they encode a
decomposition of the hadron’s angular momentum, spin- and orbital-contributions [79, 107].

6Notice that, for the case of a spinless hadron such as the pion, there exist three gravitational form factors [102–104].
Four-momentum conservation entails the third one to vanish [91] and is non-accessible through GPD Mellin moments.
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2.2.3 Charge conjugation

We have explored so far the consequences of analiticity in scattering amplitudes, Lorentz invariance
and (only implicitly) parity transformations at the level of generalized parton distributions. All of
them have revealed crucial features about GPDs, with constraints over their support and behavior
arising from simple formal considerations. It is therefore worth delving further into the transformation
properties of GPDs under different symmetries of QCD. In particular, the study of charge conjugation
is of interest here.

Charge conjugation is defined as a transformation on a Hilbert space that takes particles into
antiparticles, i.e. given a state |α〉 characterized by momentum p, polarization σ and a set of quantum
numbers {a}: |α〉 ≡ |p, σ; {a}〉, and a unitary operator U (C), the transformation

U (C) |p, σ; {a}〉 = |p, σ; {ā}〉 , (2.26)

where {ā} = {−a}, is said to define charge conjugation [28, 29, 33]. As an example, the pions behave
under charge conjugation as:

U (C} |π± (p)〉 = |π∓ (p)〉 ,

U (C} |π0 (p)〉 = |π0 (p)〉 .
(2.27)

From the definition Eq. (2.26), the transformation rule for Dirac fields under charge conjugation
can be obtained7

U (C)ψq (x)U−1 (C) = Cψ̄q,T (x) , U (C) ψ̄q (x)U−1 (C) = ψq,T (x) C , (2.28)

where C satisfies:
CT = C† = C−1 = −C , CγµC−1 = − (γµ)T . (2.29)

Thus, the quark bilinear ψ̄q (x) γµψq (y) can be shown to behave as

ψ̄q (x) γµψq (y) −→
C
U (C) ψ̄q (x) γµψq (y)U (C) = ψq,T (x) CγµCψ̄q,T (y) = −ψ̄q (y) γµψq (x) . (2.30)

where, for the last step, we employed Eq. (2.29) and took advantage of the anti-commutation relations
for Dirac fields8.

Quark GPDs

Let us exploit charge conjugation in the context of GPDs. Consider taking a look at chiral-even quark
GPDs within a pion; and more precisely, on the case of charged pions. Starting from its definition
Eq. (2.5), we can insert the identity operator in the form U−1 (C)U (C) = 1 and take advantage of the
relation given in Eq. (2.30) to write

Hq
π± (x, ξ, t;µ) = −1

2

∫
dλ

2π
eiλx〈π±

(
p′
)
|U−1 (C) ψ̄q (λn/2) γµψq (−λn/2)U (C) |π± (p)〉nµ

= −1

2

∫
dλ

2π
e−iλx〈π±

(
p′
)
|U−1 (C) ψ̄q (−λn/2) γµψq (λn/2)U (C) |π± (p)〉nµ

= −1

2

∫
dλ

2π
e−iλx〈π∓

(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π∓ (p)〉nµ

= −Hq
π∓ (−x, ξ, t;µ) .

(2.31)
7To be strictly rigorous, a phase ηC should be included into the definition of the charge conjugation operations in

Eq. (2.28). However, for the case of Dirac fermions (which are not their own antiparticles) it can always be taken as one
[33].

8A delta distribution δ(3) (~x− ~y) actually arises at the time of anti-commuting Dirac fields. However, since it will turn
out to play no role in our upcoming discussion we have simply omitted it.
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where, for the second identity, we changed the integration variable as λ→ −λ.
The above relation connects the quark GPDs within positively- and negatively-charged pions. Such

result is not unexpected since charge conjugation is defined precisely for that purpose: Drawing a
connection between the particle and antiparticle sectors. For practical purposes, the above relation
allows to focus on say, a positively charge pion, and extend the results to the antiparticle sector without
any further considerations.

Notwithstanding, we may also be interested in the neutral pion. Or, in more general terms, in
systems which are eigenstates of the charge conjugation operator. For that reason, let us reconsider the
calculation above and generically denote by h0 a hadron state such that

U (C) |h0 (p)〉 = Ch
0 |h0 (p)〉 , (2.32)

thus

Hq
h0 (x, ξ, t;µ) = −Ch0

p Ch
0

p′
1

2

∫
dλ

2π
e−iλx〈h0

(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |h0 (p)〉nµ =

= −CHq
h0 (−x, ξ, t;µ) ,

(2.33)

with C ≡ Ch0

p Ch
0

p′ . For the particular case of the neutral pion (C = 1) the above general relation gives:

Hq
π0 (x, ξ, t;µ) = −Hq

π0 (−x, ξ, t;µ) , (2.34)

which restricts the domain of interest in the case of neutral pions to the quark sector, x > 0.
Nevertheless, generic quark GPDs have been proved here to be neither odd nor even functions of

the momentum-fraction variable, x. The above identity, from its part, reveals that transitions with
definite C-parity do always exhibit a given symmetry under x↔ −x transformations. From Eq. (2.33)
it follows that C = 1 transitions are described by quark GPDs which are odd in the momentum-fraction
variable, while those of C = −1 are x-even. It does seem natural to define the linear combinations

Hq,(+) (x, ξ, t;µ) = Hq (x, ξ, t;µ)−Hq (−x, ξ, t;µ)

Hq,(−) (x, ξ, t;µ) = Hq (x, ξ, t;µ) +Hq (−x, ξ, t;µ)

(2.35)

which are odd (even) functions of x, respectively, and can indeed be probed to correspond to C = 1
(C = −1) transitions. These are often referred to as singlet (non-singlet) GPDs and, apart from
presenting well defined transformation properties under charge conjugation, play a central role in the
evolution of generalized parton distributions with the renormalization-scale (see Ch. 4).

Gluon GPDs

Once we have studied the behavior of quark GPDs under charge conjugation, it does seem natural to
work out a similar analysis for the case of gluons. Fortunately, since gluons are their own antiparticles,
its treatment is particularly simple. Just taking the change of variables λ→ −λ,

Hg
π (x, ξ, t;µ) =

∫
dλ

2π
e−iλx〈π

(
p′
)
|Gµα (λn/2)Gαν (−λn/2) |π (p)〉nµnν . (2.36)

If one now takes advantage of the fact that gluon fields defined onto the light-front (as it is the case
of GPDs) commute [44, 108–110], the above relation is readily recast in the form

Hg
π (x, ξ, t;µ) =

∫
dλ

2π
〈π
(
p′
)
|Gµα (λn/2)Gαν (−λn/2) |π (p)〉nµnν = Hg

π (−x, ξ, t;µ) , (2.37)

showing that gluon GPDs are even in the x variable [9, 10], no matter the hadron state involved.
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This finding contrasts with the one for quarks. If gluon GPDs are even functions of the momentum-
fraction variable, similar symmetry constraints could only be found for the case of quarks in certain
hadronic systems. Indeed, this feature about gluon GPDs will be of great interest in forthcoming
chapters, since it will allow us to work on the restricted domain 0 ≤ x ≤ 1 when evaluating the gluon
GPD, and extending it to its entire support by the symmetry relation Eq. (2.37). As a final remark
it is worth noticing that different conventions for the definition of GPDs exist through the literature,
modifying the symmetry properties exposed here. In particular, the conventions to which most of the
authors stick (see e.g. [9, 10, 111]) in what the gluon GPD concerns, agree with our finding. However,
a different (also widespread) convention is presented in Ref. [5], whose gluon GPD differs from ours by
a factor 2x, meaning that it is rather odd in the momentum-fraction variable.

2.2.4 Flavor symmetry

A further symmetry of the QCD action could be that generated by the invariance under SU (Nf ), where
Nf is the number of flavors. However, this would only be true if all quark flavors had the same masses,
which is definitely not true in Nature. Notwithstanding, the up and down quarks do have masses of a
few MeV [112]. Provided that the breakdown of the SU (Nf ) symmetry is modulated by differences in
quark masses, the lightness of the (u, d) doublet means that, to a first approximation, both masses can
be taken to be equal and therefore that SU (2) can be seen as an approximate symmetry of quantum
chromodynamics: This is the so called isospin symmetry, which has proved to be a really a good
approximation to reality (see standard textbooks on the topic, e.g. [113, 114]). It thus seems natural to
explore the effect of the invariance under isospin transformations on generalized parton distributions.

The case of gluons is trivial, since they do not carry flavor quantum numbers and therefore the
corresponding distributions will remain unchanged under the action of the corresponding transformations:
Gluon generalized parton distributions are isoscalar, and therefore [10, 115]

Hg
π+ (x, ξ, t;µ) = Hg

π− (x, ξ, t;µ) = Hg
π0 (x, ξ, t;µ) (2.38)

leaving one single “degree of freedom” which we will take as the gluon GPD within the positively charged
pion.

The quark case, on the contrary, is much more intricate. To explore the behavior of quark GPDs
it is convenient to introduce an isospin-rotated basis and define isospin GPDs on a basis of SU (2)
eigenstates. Let then |πa (p)〉 be a Cartesian basis of the adjoint representation of the Lie algebra
SU (2), one can introduce isoscalar and isovector quark GPDs as [91, 94, 116, 117]

δabHI=0 =
1

2

∫
dλ

2π
eiλx〈πa

(
p′
)
|ψ̄ (−λn/2) γµψ (λn/2) |πb (p)〉nµ ,

iεabcHI=1 =
1

2

∫
dλ

2π
eiλx〈πa

(
p′
)
|ψ̄ (−λn/2) τ cγµψ (λn/2) |πb (p)〉nµ ,

(2.39)

where εabc is the fully antisymmetric symbol, τ c are the Pauli matrices and ψ (x) is the SU (2) quark
doublet made from u and d Dirac fields. The transition between pion states of definite flavor quantum
numbers can be generically written as [91, 94, 116, 117]:

Hab
I (x, ξ, t;µ) = δabHI=0 (x, ξ, t;µ) + iεabcτ cHI=1 (x, ξ, t;µ) . (2.40)

From the definitions Eqs. (2.39) one finds

HI=0 (x, ξ, t;µ) = Hu
π+ (x, ξ, t;µ) +Hd

π+ (x, ξ, t;µ)

HI=0 (x, ξ, t;µ) = Hu
π− (x, ξ, t;µ) +Hd

π− (x, ξ, t;µ)

(2.41)
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in the isoscalar sector, and

HI=1 (x, ξ, t;µ) = Hu
π+ (x, ξ, t;µ)−Hd

π+ (x, ξ, t;µ) ,

HI=1 (x, ξ, t;µ) = Hd
π− (x, ξ, t;µ)−Hu

π− (x, ξ, t;µ) ,
(2.42)

in the isovector sector. Two last relations follow from Eqs. (2.39) when the neutral pion is considered,

HI=0 (x, ξ, t;µ) = Hu
π0 (x, ξ, t;µ) +Hd

π0 (x, ξ, t;µ) ,

0 = Hu
π0 (x, ξ, t;µ)−Hd

π0 (x, ξ, t;µ) .
(2.43)

Adding and subtracting Eqs. (2.41) and Eqs. (2.42), one obtains:

Hu
π+ (x, ξ, t;µ) = Hd

π− (x, ξ, t;µ) ,

Hd
π+ (x, ξ, t;µ) = Hu

π− (x, ξ, t;µ) ,
(2.44)

and for the neutral pion,

Hu
π0 (x, ξ, t;µ) = Hd

π0 (x, ξ, t;µ) =
1

2

(
Hu
π+ (x, ξ, t;µ) +Hd

π+ (x, ξ, t;µ)
)
. (2.45)

In combination with the symmetry relations generated from charge conjugation we can also show
that

Hu
π+ (x, ξ, t;µ) = −Hu

π− (−x, ξ, t;µ) ,

Hd
π+ (x, ξ, t;µ) = −Hd

π− (−x, ξ, t;µ) ,

Hu
π0 (x, ξ, t;µ) = −Hu

π0 (−x, ξ, t;µ) .

(2.46)

These impose constraints on the quark sector of pion GPDs. Indeed, in combination with charge
conjugation symmetries enormously simplify the analysis of pion’s structure to the evaluation of a single
distribution; say, that of the u-quark in a positively charge pion. For the remnant of this dissertation
we will always take advantage of this feature, restricting our analysis to such quantity which we will
denote by Hu

π (x, ξ, t;µ).

Soft-pion theorem

A particularly useful result related to the isovector and isoscalar combinations of GPDs follows from the
emission of soft-pions. Consider the crossed-channel of generalized parton distributions: i.e. when the
incoming hadron turns into an outgoing antihadron with four-momentum −p (Fig. 2.2). The soft-part
of that process is parametrized by the so-called generalized distribution amplitudes (GDAs) [94, 118,
119]

φqππ (x, ζ, s;µ) =

∫
dz−

2π
ei(2x−1)P+z−〈πa (p)πb

(
p′
)
|ψ̄
(
−z−/2

)
γ+ψq

(
z−/2

)
|Ω〉 , (2.47)

for the quark case (see e.g. [10] and references therein for a look to the gluon case).
GDAs are parametrized by the invariant-mass s = (p+ p′)2, the longitudinal momentum-fraction x

of the active quark with respect to the hadron’s average longitudinal momentum; and ζ = p+/2P+,
measuring the sharing of momenta between outgoing hadrons. From the expressions Eq. (2.47) and
Eq. (2.8) the connection between GPDs and GDAs becomes manifest:{

p, p′
}
GDA =

{
−p, p′

}
GPD , (2.48)
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γ h

γ∗ h

q

q′

p′

p

Figure 2.2: Diagram representative of the scattering process described by generalized distribu-
tion amplitudes

and thus
1− 2ζ ↔ 1

ξ
, 1− 2x↔ x

ξ
. (2.49)

Strikingly, up to corrections of the order of the pion’s mass [120], in the limit where the four-
momentum of one of the pions vanishes, e.g. p′ = 0, or equivalently ζ = 1 and s = 0 +O

(
m2
π

)
one can

find [94]
φq,I=1
ππ (x, ζ = 1, s = 0;µ) = ϕq/π (x;µ) ,

φq,I=0
ππ (x, ζ = 1, s = 0;µ) = 0 ,

(2.50)

with ϕq/π (x;µ) the pion’s distribution amplitude. Accordingly, by means of relations Eq. (2.49), the
emission of soft-pions in the GPD case impose similar constraints [94]

Hq,I=0
π (x, ξ = 1, t = 0;µ) = 0 ,

Hq,I=1
π (x, ξ = 1, t = 0;µ) =

1

2
ϕq/π

(
1 + x

2

)
.

(2.51)

These limiting relations we have simply sketched will turn out to be extremely useful in our
development of Ch. 3: Eqs. (2.51) will allow us to tame the ambiguities arising in the covariant
extension of GPD models from the DGLAP to the ERBL region (Sec. 3.2.1). Indeed, it is precisely this
pieces which guarantees that pion GPDs fulfilling all the relevant properties can be built through the
covariant extension. In the case of, e.g. a nucleon, similar limiting relations are lacking, leaving place
to D-term-like ambiguities (Sec. 2.4.2) to arbitrarily affect the corresponding result.

2.2.5 Time reversal invariance

Apart from the usual parity and charge conjugation, a third set of transformations deserve special
attention: time reversal. The reason is that, unlike the case of electroweak interactions, strong-mediated
processes are known to remain invariant under a transformation

(
x0, xi

)
→
(
−x0, xi

)
, therefore

triggering the question of how do GPDs (which arise as parametrization of hard exclusive processes)
transform under a time reversal operation. Indeed, it is not hard to realize that GPDs shall turn out
to remain invariant under time reversal transformations: The scattering amplitudes described by the
operators in Eq. (2.5) and Eq. (2.6) do not account for any initial or final state interactions, swapping
both of them should leave the transition amplitude unchanged. More precisely, owing to the definition
of the kinematic variables generalized parton distributions depend on, switching initial and final hadron
states would just be reflected by ξ ↔ −ξ, time reversal invariance then requiring [9, 10]:

Hq
π (x, ξ, t;µ) = Hq

π (x,−ξ, t;µ) (2.52)

To delve into this result it is worth recalling the implementation of time reversal operations in
quantum mechanics. It is well known that for an operator U (T ), acting on a Hilbert space, to represent
the time reversal operator it has to be anti-unitary [28, 29, 121].
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Let |α〉, |β〉 be states in a Hilbert space, then the transformation

|α〉 −→
T
|α̃〉 = U (T ) |α〉 , |β〉 −→

T
|β̃〉 = U (T ) |β〉 , (2.53)

is said to be anti-unitary if [121]:

〈β̃|α̃〉 = [〈β|α〉]∗ ,

Anti-linearity: U (T ) [a|α〉+ b|β〉] = a∗U (T ) |α〉+ b∗U (T ) |β〉 , with a, b ∈ C .
(2.54)

From the above definition it can be shown that, given a linear operator O [9]

〈β|O|α〉 =
[
〈β̃|T O|α〉

]∗
, (2.55)

with 〈β̃| the obvious notation for the dual of |β〉 → T |β〉. Then, particularization to the bilinear
operator O ≡ Oq (−λn/2, λn/2) = ψ̄q (−λn/2) γµψq (λn/2) defining the chiral even quark GPD yields

〈β|ψ̄q (−λn/2) γµψq (λn/2) |α〉 =
[
〈β̃|U−1 (T )U (T ) ψ̄q (−λn/2) γµψq (λn/2) |α〉

]∗
. (2.56)

One can now readily insert U−1 (T )U (T ) = 1 to get

〈β|Oq (−λn/2, λn/2) |α〉 =

=
[
〈β̃|U (T ) ψ̄q (−λn/2)U−1 (T )U (T ) γµψq (λn/2)U−1 (T )U (T ) |α〉

]∗
=

=
[
〈β̃|U (T ) ψ̄q (−λn/2)U−1 (T ) (γµ)∗ U (T )ψq (λn/2)U−1 (T ) |α̃〉

]∗
(2.57)

where, for the last step, we took advantage of the anti-linearity property of the time reversal operator.
The desired result Eq. (2.52) can be now derived from the the identity Eq. (2.57) by exploiting the

transformation properties of Dirac fields upon time reversal [28, 29]

U (T )ψq
(
x0, xi

)
U−1 (T ) = −ηTγ1γ3ψq

(
−x0, xi

)
, U (T ) ψ̄q

(
x0, xi

)
U−1 (T ) = η∗T ψ̄

q
(
−x0, xi

)
γ1γ3 ,
(2.58)

with ηT , η∗T overall phase factors satisfying |ηT |2 = 1 up to which a time reversal transformation is
defined. Thus,

〈β|Oq
(
−λn

2
,
λn

2

)
|α〉 = −

[
〈β̃|ψ̄q

[
λ

2

(
n0,−ni

)]
γ1γ3 (γµ)∗ γ1γ3ψq

[
λ

2

(
−n0, ni

])
|α̃〉
]∗

= −〈α̃|ψ̄q
[
λ

2

(
−n0, ni

)]
γ0γ3γ1 (γµ)T γ3γ1γ0ψq

[
λ

2

(
n0,−ni

)]
|β̃〉

= −〈α̃|ψ̄q
[
λ

2

(
−n0, ni

)]
γ5γ

µγ5ψ
q

[
λ

2

(
n0,−ni

)]
|β̃〉

= 〈α̃|ψ̄q
[
λ

2

(
−n0, ni

)]
γµψq

[
λ

2

(
n0,−ni

)]
|β̃〉

(2.59)

where for the third identity we employed the relation C (γµ)T C = −γµ; the usual definition of the Dirac
matrix γ5 = iγ0γ1γ2γ3 and finally, commutation relations {γ5, γ

µ} = 0. Now further taking advantage
of the properties of Dirac fields under parity transformations

U (P)ψq
(
x0, xi

)
U−1 (P) = ηPγ

0ψq
(
x0,−xi

)
, U (P) ψ̄q

(
x0, xi

)
U−1 (P) = η∗P ψ̄

q
(
x0,−xi

)
γ0 ,
(2.60)
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one may get,

〈β|Oq
(
−λn

2
,
λn

2

)
|α〉 = 〈α̃|ψ̄q

[
λ

2

(
−n0, ni

)]
γµψq

[
λ

2

(
n0,−ni

)]
|β̃〉

= 〈α̃|U−1 (P)U (P) ψ̄q
[
λ

2

(
−n0, ni

)]
U−1 (P)U (P) γµ×

× U−1 (P)U (P)ψq
[
λ

2

(
n0,−ni

)]
U−1 (P)U (P) |β̃〉

= 〈α̃|U−1 (P) ψ̄q
[
λ

2

(
−n0,−ni

)]
γ0U (P) γµU−1 (P) γ0×

× ψq
[
λ
2

(
−n0,−ni

)]
U (P) |β̃〉 =

= 〈α̃|U−1 (P) ψ̄q
(
−λn

2

)
γµψq

(
λn

2

)
U (P) |β̃〉 .

(2.61)

The above relations are valid for arbitrary external states |α〉, |β〉; in general representing physical
states of a given momentum and polarization. However, we are mostly interested in the case of pions. It
is then useful to particularize the relation Eq. (2.61) to that situation. To this end it is worth recalling
that the combined action of U (T ) and U (P) transformations on single-particle Hilbert-space states of
momentum p and polarization σ is described by [9]:

U (P)U (T ) |p, σ〉 = eφ(σ)|p,−σ〉 (2.62)

with the phase factor reading: φ (σ) = φ0 + π (σ + σz) and σ, σz representing the spin and spin
projection along the quantization axis, respectively. For the case of the pion, the combined action of
parity and time reversal transformations just introduce a constant phase factor which for the case of
the matrix element Eq. (2.61) will simply give:

〈π
(
p′
)
|Oq (−λn/2, λn/2) |π (p)〉 = 〈π (p) |Oq (−λn/2, λn/2) |π

(
p′
)
〉 ; (2.63)

which plugged into the definition Eq. (2.5) will immediately give:

Hq
π (x, ξ, t;µ) =

1

2

∫
dλ

2π
eiλx〈π

(
p′
)
|Oq (−λn/2, λn/2) |π (p)〉 =

=
1

2

∫
dλ

2π
eiλx〈π (p) |Oq (−λn/2, λn/2) |π

(
p′
)
〉 =

= Hq
π (x,−ξ, t;µ)

(2.64)

which follows from the definition of ξ and thus demonstrates the quark GPD in a pion to be even in
the skewness variable. An analogous result can be obtained for the gluon distribution [10], reflecting
the effect of one of the fundamental symmetries of the theory. Indeed, as argued at the very beginning
of this section, this result was expected from the equivalence between the initial and final states of the
scattering process encoded into the generalized parton distributions. In addition, this symmetry property
will be very useful in following chapters, allowing us to restrict the domain over which developing a
modeling strategy, simplifying the arguments and further optimizing involved calculations.

2.2.6 Hermiticty

We have explored so far the effect of almost every symmetry in the Lagrangian density of quantum
chromodynamics. It just remains to explore the effect of hermiticity. Although it is not a symmetry
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of the theory in the sense of Lorentz transformations, it is intimately related to the formal properties
of quantum field theory. Thus, let us round off our tour through the properties of generalized parton
distributions with this one. One can readily take the hermitian conjugate of the quark GPD to write

[Hq
π (x, ξ, t;µ)]† =

1

2

∫
dλ

2π
e−iλx 〈π (p)|ψq,† (λn/2) (γµ)†

(
γ0
)†
ψq (−λn/2)

∣∣π (p′)〉nµ =

=
1

2

∫
dλ

2π
e−iλx 〈π (p)| ψ̄q (λn/2) γ0 (γµ)† γ0ψq (−λn/2)

∣∣π (p′)〉nµ =

=
1

2

∫
dλ

2π
e−iλx 〈π (p)| ψ̄q (λn/2) γµψq (−λn/2)

∣∣π (p′)〉nµ ,
(2.65)

which, after changing variables as λ→ −λ yields

[Hq
π (x, ξ, t;µ)]† =

1

2

∫
dλ

2π
eiλx 〈π (p)| ψ̄q (−λn/2) γµψq (λn/2)

∣∣π (p′)〉nµ (2.66)

and finally changing p↔ p′, i.e. ξ → −ξ yields

[Hq (x,−ξ, t;µ)]† =
1

2

∫
dλ

2π
eiλx 〈π (p)| ψ̄q (−λn/2) γµψq (λn/2)

∣∣π (p′)〉nµ = H (x, ξ, t;µ) . (2.67)

If we finally combine this last result with the symmetry property found from the combined effect of
time reversal and parity transformations Eq. (2.64) one readily finds:

Hq
π (x, ξ, t;µ) = [Hq

π (x, ξ, t)]† (2.68)

meaning that generalized parton distributions are real valued functions, with an analogous result derived
for the gluon GPD in a similar manner [9].

2.3 Unraveling parton content with generalized parton distributions

We have introduced the generalized parton distributions of quarks and gluons in hadrons through
the factorization of scattering amplitudes. Along this chapter we exploited different symmetries and
properties of the QCD action to reveal the formal properties of GPDs. However, they are objects which
parametrize in a non-trivial way the transition between two hadron states so far. However, it is not
hard to realize that the properties of transitions between hadron states shall be modulated by their
internal structure, otherwise it would not even make any sense to distinguish between hadron targets;
all of them would show up exactly the same properties. It is thus manifest that generalized parton
distributions must encode a vast amount of information about hadron’s structure. Indeed, we have
also revealed that the first few Mellin moments contain crucial information about the distribution of
electric charge and mass within hadrons, and that they can be interpreted as parton-hadron scattering
amplitudes. It is thus natural to ask, in a more exhaustive way, what can we learn about hadron
structure from GPDs. This section is precisely devoted to this subject: First, we will elaborate a bit
further on its interpretation as scattering amplitudes. Later on, we will be able to draw a “probabilistic”
interpretation for GPDs.

2.3.1 Quark-hadron scattering

Along Sec. 2.2.1 we found GPDs to exhibit a crucial feature: They are defined from quark and gluon
operators evaluated at fixed light-cone time, say z+ = 0 [9, 10]. Trying to further delve into the
consequences of this realization it is worth recalling about the foundations of relativistic quantum
mechanics. In particular, one may take advantage of reparametrization invariance of the action, which
is the formal statement taking care of a well known fact: There exist an infinity of parametrizations for
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a single trajectory in spacetime. This ambiguity must be tackled, i.e. a particular parametrization has
to be chosen. In formal terms, this corresponds to the unambiguous definition of a particular foliation
of Minkowski spacetime into equal-time hypersurfaces [122]; in a more physical language, to the choice
of a particular time-parameter. Of course, there is no full freedom in that choice of that foliation,
and indeed it is known that only five inequivalent classes of hypersurfaces exist [122, 123]. The most
common one corresponds to hypersurfaces characterized by z0 = fixed, but another very popular option
is that of fixed-z+ hypersurfaces. It is on such basis that the framework of light-cone quantization is
elaborated [108, 110, 122, 124, 125]. Provided that parton distributions are built from operators defined
at fixed light-cone time, e.g. Eq. (2.8), it is thus apparent that the natural choice for its analysis is that
of light-cone quantization, where commutation relations for field operators must be imposed not at
equal time, but at equal light-cone time, say z+ = 0.

In light-cone quantization, one is driven to introduce light-cone projections for the usual equal-time
fields [110, 124]

Λ± =
1

2
γ∓γ± such that Λ±φ (x) = φ± (x) , φ (x) = φ+ (x) + φ− (x) ; (2.69)

where φ (x) are field operators of arbitrary spin. From that point on, equations of motion for the plus
and minus components of the fields can be worked out by projection of the corresponding equal-time
counterparts. For Dirac fields one obtains [110]

i∂+ψq− (x) ≡ i
∂ψq− (x)

∂x−
= −1

2
γ+
(
i /D⊥ −m

)
ψq+ (x) . (2.70)

This relation have profound implications: First, they are the plus components of quark-fields which
play a dynamical role in field theories quantized on the light-cone; the minus components being always
eliminated from any relation by means of the constraint Eq. (2.70). The natural choice is then to
quantize a theory by imposing commutation relations on the plus components of the fields [124]:{

ψq+ (z) , ψq
′,†

+

(
z′
)}∣∣∣

z+=0
=

Λ+√
2
δ
(
z− − z′−

)
δ(2)

(
z⊥ − z′⊥

)
δqq′ , (2.71)

and expand them in a basis of creation and annihilation operators

ψq+ (z)
∣∣
z+=0

=

∫
d2k⊥dk

+

16π3k+
θ (k+)

∑
σ

[
bqσ (ω)u+,σ (ω) e−ikz + dq,†σ (ω) v+,σ (ω) eikz

]
z+=0

, (2.72)

σ denoting quark helicities, ω being a shorthand notation for (k+,k⊥) and k · z ≡ k+z− − k⊥ · z⊥.
The notation u±,σ (ω) and v±,σ (ω) is built in analogy with Eq. (2.69): Λ±uσ (ω) = u±,σ (ω) and
Λ±vσ (ω) = v±,σ (ω). Finally, b†σ (ω) (dq,†σ (ω)), bσ (ω) (dqσ (ω)) represent plus-quark (antiquark) creation
and annihilation operators, respectively; and satisfy commutation which can be derived from Eq. (2.71){

bσ (ω) , b†σ′
(
ω′
)}

=
{
dσ (ω) , d†σ′

(
ω′
)}

= 2k+δ
(
k+ − k′+

)
δ(2)

(
k⊥ − k′⊥

)
δσσ′ . (2.73)

From Eq. (2.71) and Eq. (2.72) one readily extracts a crucial implication: At fixed light-cone time,
the plus components of the quark fields behave as freely propagating entities. Since parton distributions
are defined from field operators evaluated at fixed light-cone time z+ = 0, one take take advantage
of light-cone quantization to express them on a basis of non-interacting fields and thus describe the
system at hand. This is precisely the idea underlying Feynman’s parton model [126]: A “fast-moving”
hadron scattered by a highly off-shell probe can be characterized by a set of free entities among which
the hadron’s longitudinal momentum is shared. But one can also proceed further and on that basis
of free entities treat the interaction as a perturbation of the free theory. In that picture, the probing
particle (perturbatively) interacts with a single constituent (the active parton), which propagates as a
non-interacting entity, and recombines with the remnant (spectator) partons afterwards to characterize
the final state hadron.
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To proceed further in disentangling the physics encoded into GPDs let us go ahead with its
formulation in light-cone quantization and project the operator in Eq. (2.8) onto a light-cone basis
Eq. (2.69):

ψ̄q
(
−z−/2

)
γ+ψq

(
z−/2

)
=
√

2ψq,†+

(
−z−/2

)
ψq+
(
z−/2

)
(2.74)

and thus rewrite the corresponding generalized parton distribution as

Hq
π (x, ξ, t;µ) =

1√
2

∫
dz−

2π
eixP

+z− 〈π
(
p′
)
|ψq,†+ (−z/2)ψq+ (z/2) |π (p)〉

∣∣∣
z+=zi⊥=0

. (2.75)

One can now plug the decomposition Eq. (2.72) into the above expression for the GPDs, finding
[45, 71, 87, 127]:

Hq
π (x, ξ, t;µ) =

√
2
∑
σ′,σ

∫
dz−

2π

dk′+d2k′⊥
(2π)3 2k′+

dk+d2k⊥

(2π)3 2k′+
θ
(
k′+
)
θ
(
k+
)
×

×
[
〈π
(
p′
)
|b†σ′

(
ω′
)
bσ (ω)u†σ′

(
ω′
)
uσ (ω) ei(2xP+−k′+−k+)z−ei(k

′
⊥+k⊥)z⊥/2|π (p)〉+

+ 〈π
(
p′
)
|b†σ′

(
ω′
)
d†σ (ω)u†σ′

(
ω′
)
vσ (ω) ei(2xP+−k′+−k+)z−ei(k

′
⊥−k⊥)z⊥/2|π (p)〉+

+ 〈π
(
p′
)
|dσ′

(
ω′
)
bσ (ω) v†σ′

(
ω′
)
uσ (ω) ei(2xP+−k′+−k+)z−ei(k⊥−k

′
⊥)z⊥/2|π (p)〉+

+ 〈π
(
p′
)
|dσ′

(
ω′
)
d†σ (ω) v†σ′

(
ω′
)
vσ (ω) ei(2xP+−k′+−k+)z−ei(k

′
⊥+k⊥)z⊥/2|π (p)〉

]
z+=zi⊥=0

(2.76)
We can now take the integrals over z− and k′+ to find constraints on the relation between partons’

plus momenta k+, k′+; further take advantage of momentum conservation as exposed in Sec. 1.2.1:
2ξP+ = k+ − k′+ and eliminate plus (anti-)partons spinors [110]. After all these steps one gets [45]

Hq
π (x, ξ, t;µ) =

1

2P+V

∑
σ

∫
d2k⊥

16π3
√
|x2 − ξ2|

×

×
[
θ (x− ξ) 〈π

(
p′
)
|b†σ
[
(x− ξ)P+,k⊥ + ∆⊥

]
bσ
[
(x+ ξ)P+,k⊥

]
|π (p)〉+

+ θ (−x+ |ξ|) 〈π
(
p′
)
|dσ
[
(−x+ ξ)P+,−k⊥ −∆⊥

]
b−σ

[
(x+ ξ)P+,k⊥

]
|π (p)〉−

− θ (−x+ ξ) 〈π
(
p′
)
|d†σ
[
(−x− ξ)P+,k⊥ + ∆⊥

]
dσ
[
(−x+ ξ)P+,k⊥

]
|π (p)〉

]
,

(2.77)
with V a numerical factor generated from the normalization of each integral taken, and where, during
the analysis of each contribution we have assumed (by means of time-reversal invariance) ξ ≥ 0. An
interpretation for GPDs in terms of partonic degrees of freedom can be now developed. One just needs
to take advantage of the meaning of b†σ (d†σ) and bσ (dσ) as quark (antiquark) annihilation operators,
respectively [45, 71, 87, 127]. The decomposition Eq. (2.77) triggers the identification of three different
regions kinematic regions for GPDs, each of them benefiting from a different interpretation (Fig. 2.3):

Region x ≥ ξ: The target hadron emits a quark with momentum (x+ ξ)P+ but absorbs a
further quark, this time with momentum (x− ξ)P+.

Region −ξ < x < ξ: A quark carrying light-cone momentum (x+ ξ)P+ is emitted together
with an antiquark with longitudinal momentum (ξ − x)P+.

Region x ≤ −ξ: The initial state hadron emits an antiquark with light-cone momentum
(ξ − x)P+ which, after its interaction “outside” the parent hadron is “reabsorbed”, plugging-in a
longitudinal momentum − (x+ ξ)P+.
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h (p) h (p′)

q̄ q̄

(ξ − x)P+

− (x+ ξ)P+

x ≤ −ξ

h (p) h (p′)

q q̄

(x+ ξ)P+

(ξ − x)P+

|x| ≤ ξ

h (p) h (p′)

q q

(x+ ξ)P+

(x− ξ)P+

x ≥ ξ

Figure 2.3: Parton interpretation for quark generalized parton distributions as dictated by light-
cone quantization. — Left panel: DGLAP antiquark GPD, Central panel:
ERBL region and Right panel: DGLAP quark GPD. Black arrows indicate the
momentum flow.

The above analysis provides an intuitive realization for GPDs in simple terms: The emission and
absorption of partons. Indeed, that picture was obtained solely from the properties of its defining
operators, as understood in the framework of light-cone quantization. The latter is a completely general
formulation of quantum field theory, making easy to guess that a similar analysis could be developed
not only for GPDs, but for any distribution function built on the basis of operators evaluated at fixed
light-cone time. Of particular interest are the usual parton distribution functions, to which GPDs
reduce in the forward limit, i.e. ξ = 0 (Ch. 1). It is quite easy to take that particular kinematic limit
in the decomposition Eq. (2.77), finding

Hq
π (x, 0, 0;µ) =

1

2
√
x2P+V

∑
σ

∫
d2k⊥
16π3

[
θ (x) 〈π (p) |b†σ

(
xP+,k⊥

)
bσ
(
xP+,k⊥

)
|π (p)〉 +

− θ (−x) 〈π (p) |d†σ
(
−xP+,k⊥

)
dσ
(
−xP+,k⊥

)
|π (p)〉

]
,
(2.78)

which is the common interpretation for the parton distribution functions in terms of quark and
antiquarks, thus making the connection between generalized and conventional parton distributions
apparent

Hq
π (x, 0, 0;µ) = θ (x) qπ (x)− θ (−x) q̄π (−x) , (2.79)

The parallelism between between Eqs. (2.77)-(2.78) is manifest, triggering the choice of a common
and intuitive language for the study of GPDs: First, the regions characterized by |x| ≥ |ξ| are often
dubbed as DGLAP regions. Why?, because GPDs within that region reduce to parton distributions
functions, whose renormalization-scale-evolution is driven by the DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) equations [128–130]. This is simply a matter of naming. Second, when restricted to
negative values of the momentum-fraction variable, x, quark GPDs are often interpreted as antiquark
distributions, just as it occurs in the case of the PDFs, as it becomes apparent from the above relation but
also from Eq. (2.77), where it was clear that the object at hand encodes information about antiquarks
in the target hadron. On the other hand, the region |x| ≤ |ξ| is often dubbed after the equations driving
scale-evolution for distribution amplitudes [100]: ERBL (Efremov-Radyushkin-Brodsky-Lepage) [100,
131–134]. The reason is again manifest from the interpretation of GPDs as a hadron-parton scattering:
Within that region the picture drawn by generalized parton distributions approaches that of distribution
amplitudes.

As final remark we shall draw the reader’s attention to the gluon case. A similar procedure can be
followed for such case, starting from the corresponding operator and projecting it onto the light-cone.
In that case, a similar treatment would reveal the transverse components of the gluon fields to represent
the relevant degrees of freedom. One would then find the gluon generalized parton distribution to be
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decomposed, again for positive skewness and longitudinal momentum-fraction, as [5]:

Hg
π (x, ξ, t;µ) =

x

2P+V

∑
σ

∫
d2k⊥

16π3
√
|x2 − ξ2|

×

×
[
θ (x− ξ) 〈π

(
p′
)
|a†σ
[
(x− ξ)P+,k⊥ + ∆⊥

]
aσ
[
(x+ ξ)P+,k⊥

]
|π (p)〉 +

+ θ (ξ − x) 〈π
(
p′
)
|aσ
(
(ξ − x)P+,−k⊥ −∆⊥

]
a−σ

[
(x+ ξ)P+,k⊥

]
|π (p)〉

]
,
(2.80)

where creation and annihilation operators for transverse gluons are now denoted by a†σ and aσ.
In analogy to the quark case, an interpretation in terms of the emission of partons can be given

for the gluon GPDs. The DGLAP region (x ≥ ξ) describes the emission of a gluon with momentum
(x+ ξ)P+ from the target pion and a “later” absorption of a gluon which plugs-in momentum (x− ξ)P+.
On the other hand, the ERBL region for the gluon GPD (which we here restricted to 0 ≤ x ≤ ξ by
means of charge conjugation symmetry) describes the emission of a gluon pair with momentum 2ξP+.
Furthermore, if one takes the limit of the zero skewness in the above decomposition, one would readily
recover

Hg
π (x, 0, 0;µ) =

1

2P+V

∑
σ

∫
d2k⊥
16π3

θ (x) 〈π (p) |a†σ
(
xP+,k⊥

)
aσ
(
xP+,k⊥

)
|π (p)〉 , (2.81)

which, according to the conventional definition for the gluon PDF [69], yields a forward limit for the
gluon GPD

Hg
π (x, 0, 0;µ) = xgπ (x) . (2.82)

As a final remark notice, again, that different conventions for the definition of gluon GPDs exist in
the literature9. In particular, another widespread convention [9, 10] yields a gluon GPD which, in the
forward limit, reduces to xg (x). This “ambiguity” must be carefully accounted for prior to any analysis
of results concerning the distribution of glue within pions.

Positivity

In addition to drawing a nice picture, the realization of generalized parton distributions as parton-
hadron scattering amplitudes is really helpful in different contexts. In particular, it follows from the
representation Eq. (2.77) that generalized parton distributions represent (within the DGLAP region)
non-diagonal matrix element of the “number operator”. Schematically,

H (x, ξ, t;µ) ∼ 〈p′|c†
[
(x− ξ)P+

]
c
[
(x+ ξ)P+

]
|p〉 , for x ≥ ξ , (2.83)

where c† (k+), c (k+) denote creation and annihilation operators for arbitrary parton-type carrying
longitudinal momentum k+. For simplicity in the notation, we omit any reference to polarization and
transverse momentum.

It is specially enlightening to consider the skewless limit, i.e. the parton distribution functions. In
that case one would write

q (x;µ) = H (x, 0, 0;µ) ∼ 〈p|c†
(
xP+

)
c
(
xP+

)
|p〉 , for x ≥ 0 . (2.84)

This can be seen as the norm of a Hilbert-space state c (k) |p〉, which by means of the corresponding
positivity constraint satisfies,

q (x;µ) ∼ 〈p|c†
(
xP+

)
c
(
xP+

)
|p〉 = |c (k) |p〉|2 ≥ 0 , for x ≥ 0 . (2.85)

9A collection can be found in [10]
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This is the positivity constraint well known for parton distributions which is on the basis of their
interpretation as probability densities for finding partons carrying certain momentum-fractions of the
parent-hadron’s momentum [36].

The case of generalized parton distributions is more intricate but goes right in parallel. They cannot
be seen as the norm a Hilbert-space state, yet they can be realized as representing the overlap of two of
these states: Say c (k) |p〉 and c (k′) |p′〉, for which Cauchy-Schwarz inequality requires,

H (x, ξ, t;µ)|x≥ξ ∼ 〈p
′|c†
(
k′
)
c (k) |p〉 ≤ 〈p′|c†

(
k′
)
c
(
k′
)
|p′〉〈p|c† (k) c (k) |p〉 ∼

√
q (x′;µ) q (x;µ) ,

(2.86)
defining positivity(-like) bounds on the generalized parton distributions which implement the positivity
of Hilbert-space’s norm in the off-diagonal sector. In fact, if one develops the calculation of Eq. (2.86) for
the quark GPDs in pions, an upper bound defined by the corresponding parton distributions functions
is found

|Hq
π (x, ξ, t;µ)|x≥ξ ≤

√
qπ

(
x+ ξ

1 + ξ
;µ

)
qπ

(
x− ξ
1− ξ

;µ

)
. (2.87)

The first observation for the existence of these kind of bounds for GPDs was made in the late
nineties [135]. Since then, a variety of relations have been derived for pions, but also for spin-1/2
hadrons [127, 136–139]. Indeed, Eq. (2.87) was first presented in [137], after a refinement of a softer
bound found in [136]. Similar relations have been derived also for the case of polarized and transversity
GPDs [127, 138–140], in impact-parameter space [101, 141–143] and for the gluon sector [137–139].
Two more words are worth saying about the positivity constraints such as Eq. (2.87). In first place,
they have been shown to remain stable under leading order renormalization-scale-evolution [144], what
provides a good check for evolution routines. Second, they arise from the deep foundations of the
theory: The positivity of Hilbert-space norm. In that way, any attempt at the calculation or modeling
of generalized parton distributions must fulfill with the corresponding positivity bounds.

2.3.2 Transverse-plane picture: hadron tomography

So far the interpretation we gave for the generalized parton distributions was built in momentum space.
However, striking features of GPDs as well as an insightful look at hadron structure can be gained
by turning to coordinate space [101, 141, 145, 146]. To this end let us introduce hadron states with
definite plus-momentum and position in transverse plane [10]:

|h
(
p+, b⊥

)
〉 =

∫
d2p⊥
16π3

eip⊥·b⊥Φ⊥ (p⊥) |h
(
p+,p⊥

)
〉 , (2.88)

where we have omitted polarization labels and b⊥, for the time being, is the Fourier-conjugate variable of
the hadron’s transverse momentum. Of course, a hadron is an extended object, therefore a clarification
of the notion of a hadron localized in transverse plane is necessary. Indeed, one can show [141, 147] the
states defined in Eq. (2.88) to be eigenstates of the plus momentum, p̂+, and the transverse-position
operator10 with eigenvalues p+ and b⊥, respectively. The transverse-position operator can be found to
be [9, 141, 145],

R̂ ≡ −B̂⊥
p+

=
1

p+

∫
dx−d2x⊥x⊥θ

++
(
x+ = 0,x⊥, x

−) , (2.89)

with B̂⊥ the generators of the transverse boosts, and θµν (x) the energy-momentum tensor. One may
then express it in terms of light-cone creation and annihilation operators, as in the preceding section,
finding [145]:

R̂⊥ =
∑
i

xir̂i,⊥ ⇒ b⊥ =
∑
i

xiri,⊥ , (2.90)

10For clarity, the operators are labeled within that sub-section by a “hat”.
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x+ ξ x− ξ
h (p)

h (p′)

{
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− ξ
1+ξb⊥
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1−ξb⊥

Figure 2.4: Interpretation of generalized parton distributions in transverse b⊥-plane within the
DGLAP region. Figure inspired by those in Ref. [10].

with xi the longitudinal momentum-fraction carried by the ith-constituent and ri,⊥ its transverse
position. Accordingly, an interpretation for b⊥ as the hadrons’ transverse-center-of-momentum follows
[141, 147, 148].

With this picture in mind one can then build generalized parton distribution in transverse plane11.
For the case of the quark GPD within pions it reads (see [10, 145] for details on the calculation):

Hq
π (x, ξ, b⊥) =

∫
d2∆⊥

(2π)2 e
i∆⊥·b⊥Hq

π (x, ξ, t) =

= N (ξ)
1

2

∫
dz−

2π
eixP

+z−
〈
π

(
p′+,− ξb⊥

1− ξ

)∣∣∣∣ ψ̄q (0,−z
−

2
, b⊥

)
γµψq

(
0,
z−

2
, b⊥

) ∣∣∣∣π(p+,
ξb⊥
1 + ξ

)〉
.

(2.91)
In light of this expression, a very intuitive picture for GPDs in transverse plane b⊥ can be drawn:

Generalized parton distributions describe the emission/absorption of constituents carrying certain
fractions of the hadron’s longitudinal momentum, at given positions in transverse plane. A particular
example follows in the DGLAP region (Fig. 2.4) where a quark is emitted at b⊥ removing a fraction
x+ ξ from the hadron’s longitudinal momentum. It is then reabsorbed after its interaction with the
probing photon at the same position in transverse plane, plugging a fraction of longitudinal momentum
x− ξ. A similar interpretation for quark GPDs within the ERBL region or even gluon GPDs [10].

A corollary of this interpretation is also manifest in Eq. (2.91): The initial- and final-state hadron are
shifted in transverse plane with respect to each other. Indeed, as illustrated in Fig. 2.4, the interaction
of the active partons induces a momentum transfer between the initial and final state, changing the
location of the hadrons’ center-of-transverse-momentum.

The case ξ = 0 is particularly illustrative. Taking the forward limit in Eq. (2.91):

Hq
π (x, 0, b⊥) = N (0)

1

2

∫
dz−

2π
eixP

+z−〈π
(
p+, 0

)
|ψ̄q
(

0,−z
−

2
, b⊥

)
γ+ψq

(
0,
z−

2
, b⊥

)
|π
(
p+, 0

)
〉 ,

(2.92)
which is diagonal in transverse-space and thus triggers an interpretation in terms of probability densities
for finding partons carrying a momentum-fraction x of the hadron’s longitudinal momentum and at
given positions b⊥ in transverse plane [101].

2.4 Approaches to GPD modeling

The presentation given along this chapter is enlightening in two main ways. On the one hand, the
GPDs were shown to provide us with a large amount of information about the structure of hadrons.
Two of them have been highlighted: First, they benefit from an interpretation in impact-parameter
space which resembles that of parton distribution functions and allows to gain insights into the spatial
distribution of partons within hadrons. This is sometimes cast into a simple and fancy statement:

11Different conventions exist, as it occurs all along the area of generalized parton distributions. In particular, we are
here sticking to those of Ref. [10, 145] but some authors prefer following [9] or even that from the original works for
zero-skewness GPDs [101, 141, 149].
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Generalized parton distributions draw “three-dimensional” pictures of hadron’s structure, with access
to the spatial distributions of mass, pressure, electric charge and angular momentum. Second, they can
be seen as parton-hadron scattering amplitudes, directly connecting with Feynman’s parton model and
allowing for a practical and intuitive interpretation of their role parametrizing scattering amplitudes.

On the other hand, directly following from analiticity, causality and the symmetries of quantum
chromodynamics, a series of properties was derived. Special emphasis can be put on the symmetry
relations found along with charge conjugation, time reversal, isospin or parity transformations; leading
to constraints on GPDs which, for the case of the pion promotes the, say, u-quark GPD in a positively
charged pion to the front-line of any analysis. Two fundamental properties of GPDs were highlighted:
Polynomiality, inherited from the invariance of the QCD action under Lorentz transformations; and the
positivity property, which this time arises as a consequence of the positivity of the Hilbert-space norm.

So far so good, a crucial point is that these two later properties are grounded on very first principles
of quantum field theory and therefore, any model or calculation for parton distributions aiming at
the description of Nature must fulfill with both of them at a time. If there exist phenomenologically
successful models [97, 150–153], none of them are built on a formalism granting a priori the necessary
constraints to be fulfilled. Similar issues arise in various approaches based on non-perturbative methods
[154, 155]. Given the relevance of developing models for generalized parton distributions that meet
these two fundamental properties, it is worth rounding off this chapter with a short review of the
two most common approaches to the evaluation of GPDs: The overlap and the double distribution
representations, highlighting its outcomes and drawbacks.

2.4.1 Overlap representation

The idea of the overlap representation for generalized parton distributions follows from a further analysis
of their treatment in light-cone quantization. As a result, GPDs are found to be written as the overlap
of light-front wave-functions [127] which encode all of the relevant physics about a composite object
(hadron) in terms of its constituents [110, 127]. Let us start from the very beginning: The bound-state
problem in quantum field theory.

An intuitive approach to the description of composite systems in quantum field is provided by the
framework of light-cone quantization. In that picture, the solution of the eigenvalue problem [110, 122,
156]

ĤLC|Ψh〉 =
m2 + p̂2

⊥
2p+

|Ψh〉 , (2.93)

where ĤLC is the light-cone Hamiltonian and |Ψh〉 ≡ |Ψh;m, p, {β}〉 is a generalization of the quantum
mechanical notion of wave-function up to intrinsically relativistic systems ({β} denotes a set of quantum
numbers identifying the hadron state) allows (at least formally) for a complete characterization of
hadrons.

Indeed, the light-cone formulation of the bound-state problem is advantageous. Strikingly: For
massive particles, the longitudinal momenta (p+) are positive definite quantities [124]. This opposes
to the situation encountered in the usual equal-time quantization, where the three momentum of a
particle is characterized by all three components p ≡

(
p1, p2, p3

)
which can, of course, be either positive

or negative. As a consequence, there exist Fock-space states with an arbitrary number of particles
carrying zero momentum (eigenvalues of the momentum operator p̂), overlapping with zero-particle
Fock states and thus making the definition of a Fock-space vacuum ambiguous. This is not the case
in light-cone quantization where a Fock state having zero momentum must show arbitrarily small
longitudinal momentum, p+. Thus, the definition of a vacuum state for the Fock-space12, |Ω〉, as
p+|Ω〉 = p⊥|Ω〉 = 0 is possible and a Fock state basis can be built from the action of creation and

12There exist subtleties arising in an actual interacting field theory as quantum chromodynamics. For example, there
could appear color singlet states made up from massless gluons which could then be eigenstates of the operator p+ with
zero eigenvalue [157]. Nevertheless, a Fock state vacuum can still be built without precluding us from keeping on with the
present development [110, 127]
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annihilation operators, e.g.,
|qq̄; p1, p2;σ, σ′〉 ≡ b†σ (p1) d†σ′ (p2) |Ω〉 . (2.94)

One can then expand a given hadron state |Ψh; p, σ〉 in a Fock-space basis with states of fixed
number of particles [110, 156]

|Ψh; p, σ〉 =
∑
n,{β}

∫
[dx]n

[
d2k⊥

]
n

Ψσ
n/h (k1, · · · , kn) |n, {β} ; k1, · · · , kn〉 , (2.95)

where

ki =

[
xip

+,
k2
i,⊥

2xip+
,k⊥,i

]
, (2.96)

and

[dx]n
[
d2k⊥

]
n

=
n∏
i=1

dxiδ

(
1−

n∑
i=1

xi

)
1

(16π3)n−1

n∏
i=1

d2ki,⊥δ
(2)

(
n∑
i=1

ki,⊥ − p⊥

)
. (2.97)

The coefficients in the expansion Eq. (2.95) are called light-front wave-functions (LFWFs). In a
strict sense they represent probability amplitudes for finding a state made up from n constituents
carrying momenta (k1, · · · , kn) and characterized by a set of quantum numbers {β} inside a hadron
h. Thus they encode all of the non-perturbative information that there is to know about hadron’s
structure, since from their knowledge, the entire hadron state can be recovered.

From the expansion above for the hadron states we can rewrite the expression for generalized parton
distributions in -Eq. (2.77). Indeed, if one plugs in Eq. (2.95), the GPD in the DGLAP region reads
[127]

Hq
π (x, ξ, t;µ) =

∑
n,{β}

(√
1− ξ2

)2−n∑
qj

δqjq

∫
[dx]n

[
d2k⊥

]
n
δ (x− xi)×

× Ψσ,∗
n/π

(
x′1,k

′
1,⊥, · · · , x′j ,k′j,⊥, · · · , x′n,k′n,⊥

)
Ψσ
n/π

(
x̃1, k̃1,⊥, · · · , x̃j , k̃j,⊥, · · · , x̃n, k̃n,⊥

)
,

(2.98)

where k = (k + k′) /2 and x = k
+
/P+.

The kinematic state of the partons is characterized by [127]

x′i =
xi

1− ξ
k′i,⊥ = ki,⊥ −

xi
1− ξ

∆⊥
2

,

x̃i =
xi

1 + ξ
k̃i,⊥ = ki,⊥ +

xi
1 + ξ

∆⊥
2

,

(2.99)

for the spectator partons; and

x′j =
xj − ξ
1− ξ

k′j,⊥ = kj,⊥ +
1− xj
1− ξ

∆⊥
2

,

x̃j =
xj + ξ

1 + ξ
k̃j,⊥ = kk,⊥ −

1− xj
1 + ξ

∆⊥
2

,

(2.100)

for the active partons.
The reason for the naming overlap representation is now manifest: GPDs can be represented as

the overlap of LFWFs for fixed number of partons. Moreover, a direct interpretation for the Eq. (2.98)
can be drawn in comparison with the diagrams shown in Fig. 2.3: If inside a hadron we can find an
arbitrary number of partons, n, the DGLAP quark GPD encodes the probability for the target hadron
to emit one of those partons taking off a fraction x+ ξ of the hadron’s longitudinal momentum and
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Chapter 2. Generalized parton distributions

afterwards reabsorb a parton which plugs a fraction x− ξ of the hadron’s average momentum along the
light-cone, P+. Analogous expressions can be obtained for the antiquark DGLAP GPD and also for the
gluon GPD within the same kinematic region. The ERBL region can be also represented through the
overlap of LFWFs. The main difference follows from the decomposition Eq. (2.77): The overlap occurs
between LFWFs with n and n+ 2 particles, as required by the emission of pairs parton-antiparton [127].
This last feature is precisely the most remarkable drawback of the overlap representation for generalized
parton distributions. Indeed, the full basis for Fock-space cannot be handled, since the knowledge
of states with arbitrary large number of particles should be known. In this context, any practical
calculation requires the truncation of the expansion Eq. (2.95). It is thus clear that no consistent
truncation for the Fock-space expansion of a hadron state could allow to evaluate the corresponding
generalized parton distribution within the DGLAP and ERBL regions at a time. As a consequence, the
overlap representation hardly provide access to both the DGLAP and ERBL regions, the polynomiality
property of GPDs remaining to be fulfilled.

Positivity

In contrast, the most important advantage of the overlap representation is the direct implementation
of the positivity property of GPDs. Indeed, from Eq. (2.98) one may readily find the corresponding
distribution to be explicitly written in the form of a scalar product,

Hq
q/π (x, ξ, t;µ) ≡ 〈Ψσ

n/h (−ξ,∆⊥) |Ψσ
n/h (ξ,−∆⊥)〉 , (2.101)

so that a direct application of Cauchy-Schwarz inequality yields

Hq
q/π (x, ξ, t;µ) ≤

√
〈Ψσ

n/h (−ξ,∆⊥) |Ψσ
n/h (−ξ,∆⊥)〉〈Ψσ

n/h (ξ,−∆⊥) |Ψσ
n/h (ξ,−∆⊥)〉 , (2.102)

which yields the positivity constraint Eq. (2.87) [10].

Two-body problem

We argued that, for any practical calculation, truncations for the Fock-space expansion Eq. (2.95) are
needed. A particular interesting choice is that of restricting the analysis to lowest possible number of
constituents: The valence sector. In particular, for the case of pions, two particles: i.e. a pair ud̄ (for
the positively charged pion). In that case, the corresponding GPD reads [10, 89, 92]:

Hu
π (x, ξ, t;µ) =

∫
d2k⊥
16π3

Ψ∗ud̄/π

(
x− ξ
1− ξ

,k⊥ +
1− x
1− ξ

∆⊥
2

)
Ψud̄/π

(
x+ ξ

1 + ξ
,k⊥ −

1− x
1 + ξ

∆⊥
2

)
, (2.103)

which, notice, depend on a single momentum by means of the integration measure in Eq. (2.97) and we
have thus changed from average variables x, k to individual parton momenta.

If one considers all possible quark-helicity combinations [158]

Hu
π (x, ξ, t;µ) =

∫
d2k⊥
16π3

[
Ψ↑↓,∗
ud̄/π

(
x− ξ
1− ξ

,kout⊥

)
Ψ↑↓
ud̄/π

(
x+ ξ

1 + ξ
,kin⊥

)
+

+ kout⊥ · kin⊥ Ψ↑↑,∗
ud̄/π

(
x− ξ
1− ξ

,kout⊥

)
Ψ↑↑
ud̄/π

(
x+ ξ

1 + ξ
,kin⊥

)]
.

(2.104)

where
kin⊥ = k⊥ +

1− x
1− ξ

∆⊥
2

,

kout⊥ = k⊥ −
1− x
1 + ξ

∆⊥
2

.

(2.105)
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This result is completely general. There is one single assumption behind it: A truncation for an
expansion of the Fock-space expansion for pion-states at the level of the valence sector is capable of
capturing all of the relevant physics responsible for the phenomenology associated. This dissertation
can, indeed, be seen as a test of this crucial assumption. In the following chapter we will start from
the expression Eq. (2.104). From that point on we will rely on a completely general approach to GPD
modeling, extending it to the ERBL domain. Chapters 4 and 5 will then elaborate on the consequences,
developing predictions about pions structure that shall be tested at future colliders.

2.4.2 Double distribution representation

Double distributions where introduced in parallel with generalized parton distributions as an alternative
parametrization for the same matrix element we have found to define GPDs [2, 3, 25, 70]. In that sense
they encode the exact same physical content as generalized parton distributions13 but conveys them
through a completely different language which, in turn, is more transparent to some of the features
exposed along the previous sections. In particular, we will find double distributions (DDs) to manifestly
represent the polynomiality property, a fact that will play a crucial role in our studies.

As usual, let us consider the case of a quark GPD in a scalar target as a paradigmatic example. In
that case, the relevant operator is

〈π
(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ . (2.106)

Through a reasoning which goes right in parallel to that of Sec. 2.2.2, one may find two four vectors
on the basis of which its Lorentz structure can be expressed: Pµ and ∆µ; and three invariant quantities
on which the coefficient functions of the decomposition can depend on: P · n, ∆ · n and ∆2 ≡ t. Thus,
the most general decomposition for the matrix element above can be written as

〈π
(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ =

= (P · n) f̃ qπ

(
P · n,−∆ · n

2
, t;µ

)
− (∆ · n) g̃qπ

(
P · n,−∆ · n

2
, t;µ

)
,

(2.107)

where, for later convenience, we have defined n ≡ λn.
In addition one can employ a double Fourier transform representation for f̃ q and g̃q,

〈π
(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ =

= 2 (P · n)

∫
Ω
dβdαe

−i(P ·n)
[
β−α ∆·n

2P ·n

] [
f qπ (β, α, t;µ)− ∆ · n

2P · n
gqπ (β, α, t;µ)

]
=

= 2

∫
Ω
dβdαe−iλ(β+αξ) [f qπ (β, α, t;µ) + ξgqπ (β, α, t;µ)] .

(2.108)
where, for the last step we introduced ξ ≡ −∆ · n/ (P · n) after the conventional skewness variable, and
took P · n = 1 (Sec. 1.2.1). For the time being, the double distribution variables (β, α) are nothing else
than Fourier conjugates of P · n and ∆ · n. Finally operating on left hand side of the above relation to
recover the quark generalized parton distribution as defined in Eq. (2.5),

Hq
π (x, ξ, t;µ) =

1

2

∫
dλ

2π
eiλx〈π

(
p′
)
|ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉nµ =

=

∫
dλ

2π

∫
Ω
dβdαeiλ(x−β−αξ) [f (β, α, t;µ) + ξg (β, α, t;µ)] =

=

∫
Ω
dβdαδ (x− β − αξ) [f (β, α, t;µ) + ξg (β, α, t;µ)] ,

(2.109)

13In reality, double distributions encode more information than GPDs since they encode both GPDs and GDAs into a
single object. Notice that the Radon transform, Eq. (2.109), does not vanish for |ξ| > 1.
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which is the double distribution representation for the quark GPD in a pion [70, 89–92, 159, 160].
Both f q and gq are dubbed double distributions, whose linear combination hq (β, α, t;µ) ≡

(f q (β, α, t;µ) + ξgq (β, α, t;µ)) is connected with the generalized parton distributions through an
integral operator

R [hq (β, α, t;µ)] =

∫
Ω
dβdαδ (x− β − αξ)h (β, α, t;µ) ; (2.110)

the Radon transform [161, 162]. Let us remark that an inversion of the above operator is feasible [89,
92, 159, 163–165] and thus not only allows to connect the double distribution domain with that of
GPDs, but also the other way around.

From the Radon transform representation for generalized parton distributions Eq. (2.109) it becomes
apparent that there exist a crucial difference in the definition of both GPDs and DDs. If generalized
parton distributions represent the operator Eq. (2.106) through a one dimensional Fourier transform,
the double distributions achieve the same goal through a two-dimensional integral transformation.
The key observation at this point is that DDs treat P+ and ∆+ as independent variables, while the
derivation of GPDs readily assumed a correlation between them through the skewness variable. Recall
the derivation of Ch. 1, where we introduced the constraint ξ = −∆+/2P+ already at the level of
the matrix elements for twist-two operators, and thus derived an object which implicitly takes such
constraint into account. On the contrary, double distributions do not implement it at the low level
of a decomposition for the relevant operators, and thus it only becomes manifest through the Radon
transform operator which imposes it by means of the delta distribution present in Eq. (2.110).

Moreover, although all properties of double distributions can be derived through a procedure which
mimics that presented for GPDs, from the representation Eq. (2.109) we shall be able to recover them
in connection with those for GPDs. In first place, the actual GPD domain (Eq. (2.13)) can be recovered
from a domain Ω over which DDs have support described by (Fig. 2.5)

Ω =
{

(β, α) ∈ R2 : |β|+ |α| ≤ 1
}
, (2.111)

the distinction between both the DGLAP and the ERBL regions becoming apparent not at the level
of the double distribution domain, but through the relation between x and ξ as implemented by the
Radon transform operator. From a geometrical perspective14, one can think about the right hand side
of Eq. (2.109) as a line integral over double distributions, i.e. the GPDs are recovered from DDs by
sampling Ω with lines defined by the equation α = β/ξ − x/ξ. Thus, for points within the DGLAP
region (|x| ≥ |ξ|) one would be sampling the DD domain with lines whose α-intersect (α0 = x/ξ) is
such that |α0| ≥ 1. On the contrary, GPDs “living” on the ERBL sub-domain will be related to double
distributions through sampling with lines characterized by |α0| ≤ 1.

In contrast to generalized parton distributions, double distributions do not benefit from a clear
interpretation in terms quark-hadron scattering [10]. This is a consequence of the treatment for P+

and ∆+ as independent variables. Under these conditions, double distributions represent an scattering
process with fixed momentum transfer P and ∆. But it is not until the constraint imposed by ξ is
introduced that external hadron momenta can be fixed, thus spoiling direct interpretations as those
in Secs. 2.3.1-2.4.1. As a consequence, no positivity-like constraints (like those derived for GPDs
in Sec. 2.3.1) can be obtained for DDs, this one being the most remarkable drawback of the double
distribution picture: A priori no guarantee for the fulfillment of the positivity property exists in a double
distribution approach to Compton scattering.

Notwithstanding, some insights into the interpretation of DDs can still be gained in particular
kinematic limits. Exempli gratia, taking the limit of zero momentum transfer between hadron states in
Eq. (2.108),

〈π (p) |ψ̄q (−λn/2) γµψq (λn/2) |π (p)〉 = 2

∫
Ω
dβdαe−i(P ·n)βf qπ (β, α, 0) , (2.112)

14The picture we just start sketching at this point plays a central role in the development of this dissertation. Its
detailed discussion is left for Ch. 3.
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Figure 2.5: Graphical representation of the domain Ω over which double distributions have
support.

i.e. the double distribution f q yields the conventional parton distribution functions [9]

qπ (x;µ) =

∫
Ω
dβdαδ (β − x) f qπ (β, α, 0;µ) . (2.113)

Furthermore, exploiting the symmetries found for GPDs, it is also possible to find symmetry
constraints for the double distributions. Namely, the ξ ↔ −ξ symmetry of GPDs readily requires the
DD to have definite symmetry properties on the α variable

f q (β, α, t;µ) = f q (β,−α, t;µ) ,

gq (β, α, t;µ) = −gq (β,−α, t;µ) .
(2.114)

Polynomiality

If the lack of positivity constraints on double distributions spoils an easy implementation of one of
the most crucial features we shall be looking for in a consistent approach to the analysis of Compton
scattering, the way polynomiality is realized in the DD framework is one of its main advantages. In
fact, by means of Eq. (2.109), one can readily take Mellin moments to obtain

Mm
q/π (ξ, t;µ) =

∫ 1

−1
dxxmHq

π (x, ξ, t;µ) =

∫ 1

−1
dxR [f qπ (β, α, t;µ) + ξgqπ (β, α, t;µ)] =

=

∫
Ω

(β + αξ)m [f qπ (β, α, t;µ) + gqπ (β, α, t;µ)] =

=

m∑
k=0

(
m

k

)
ξk
∫

Ω
dβdαβm−kαk [f qπ (β, α, t;µ) + ξgqπ (β, α, t;µ)] =

=
m∑
k=0

(
m

k

)[
ξkf q,(m,k)

π (t;µ) + ξk+1gq,(m,k)
π (t;µ)

]
,

(2.115)

with an obvious identifications for the coefficients f q,(m,j) and gq,(m,j).
The above relation makes explicit the claim about the consequences of Lorentz invariance we derived

in Sec. 2.2.2: The m-th order Mellin moments of GPDs behave as polynomials of degree m+ 1 in the
skewness variable. In fact, comparing Eq. (2.21) and Eq. (2.115) a relation between both families of
form factors can be derived

Am,2kq/π (t;µ) =
m!

(2k)! (m− 2k + 1)!

[
(m− 2k + 1) f q,(m,2k)

π (t;µ) + (2k) gq,(m,2k−1)
π (t;µ)

]
, (2.116)
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making apparent that the generalized form factors arising in parametrizing the Mellin moments for
GPDs can be recovered from those appearing when the double distribution approach is employed. The
opposite, however, is no longer true. Only two exceptions to this rule exist

Am,0q/π (t;µ) = f q,(m,0)
π (t;µ) ,

Cm,m+1
q/π (t;µ) = gq,(m,m+1)

π (t;µ) .
(2.117)

In general, one may verify that the same generalized form factors can be obtained for GPDs by
modifying those of DDs as [160]

f q,(m,k) → f q,(m,k) − jχq,(m,k−1) , gq,(m,k) → gq,(m,k) +mχq,(m−1,k) , (2.118)

which means that the parametrization Eq. (2.108) is not unique.

Double distribution ambiguities

Indeed, one can define a transformation

f q (β, α, t;µ) → f q (β, α, t;µ) +
∂χ

∂α
(β, α, t, µ) ,

gq (β, α, t;µ) → gq (β, α, t;µ)− ∂χ

∂β
(β, α, t, µ) ,

(2.119)

with χ (β, α, t;µ) an α-odd function whose Mellin moments appear in Eq. (2.118) under the same
definition as those for f q,(m,k) and gq,(m,k); such that the resulting generalized parton distribution is left
unchanged [91, 159, 160, 166]. As a consequence, for an unambiguous parametrization of the relevant
operators, e.g. Eq. (2.106), a choice for the function χ (β, α, t;µ) must be made. In other words: An
specific representation for the double distributions must be chosen. From that point on, one gets an
unambiguous fixing for the coefficients of the Mellin moments of both, GPDs and DDs and thus achieves
a complete description of the physics underlying both representations.

Many different choices for double distributions schemes exist in literature [65, 91, 166–169], all of
them with advantages and drawbacks. It is not the aim of this note to review all of them in detail, so
we choose to present only the so-called Polyakov-Weiss (PW) [91] and Pobylitsa (P) [168, 169] schemes,
from which we will benefit along this dissertation. The reason is two-fold: First both of them reduce the
two double distributions to a single one, hPW/P (β, α, t;µ). Second, on the one hand the PW scheme
is designed to minimize the information encoded into the double distribution gq, being helpful in a
first approach to the formalism of double distributions. And on the other hand, the P scheme was the
result of efforts to provide frameworks where both polynomiality and positivity are fulfilled, which is of
special interest to our purposes.

PW scheme: f qPW (β, α, t;µ) = hqPW (β, α, t;µ) + δ (β)Dq,+
PW (α, t;µ) ,

gqPW (β, α, t;µ) = δ (β)Dq,−
PW (α, t;µ) .

P scheme: f qP (β, α, t;µ) = (1− β)hqP (β, α, t;µ) + δ (β)Dq,+
P (α, t;µ)

gqP (β, α, t;µ) = −αhqP (β, α, t;µ) + δ (β)Dq,−
P (α, t;µ) .

(2.120)

If one takes advantage of the Polyakov-Weiss scheme, then the GPDs read:

Hq
π (x, ξ, t;µ) =

∫
Ω
dβdαδ (x− β − αξ)hqPW (β, α, t;µ) +

+

[
1

|ξ|
Dq,+

PW

(
x

ξ
, t;µ

)
+ sign (ξ)Dq,−

PW

(
x

ξ
, t;µ

)]
θ (|ξ| − |x|) .

(2.121)
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The function Dq,−
PW (x/ξ, t;µ) is called D-term, has support on the region |x| ≤ |ξ|, i.e. the ERBL

region and, from Eqs. (2.120) one finds it to be defined as

Dq,−
PW (α, t;µ) =

∫ 1−|α|

−1+|α|
dβgqPW (β, α, t;µ) , (2.122)

to generate the coefficients of the terms ξm+1 in the Mellin moments of the GPDs. Indeed, taking the
Mellin transform of the above relation yields,

Mm
q/π (ξ, t;µ) =

m∑
j=0

(
m

j

)
ξjh

q,(m,j)
PW + sign (ξ)

∫ 1

−1
dzzm

[
ξmDq,+

PW (z, t;µ) + ξm+1Dq,−
PW (z, t;µ)

]
,

(2.123)
which makes apparent that all of the information about a generalized parton distribution but the
order-m + 1 coefficients is encoded into the double distribution f qPW (β, α, t;µ). As advertised, the
D-term generates the “extra” term. Notice that a D-term-like contribution, Dq,+

PW also exists for the
m-order terms.

On the other hand, if one chooses to work with double distributions in a Pobylitsa representation,
the resulting GPDs read

Hq
π (x, ξ, t;µ) = (1− x)

∫
Ω
dβdαδ (x− β − αξ)hqP (β, α, t;µ) +

+

[
1

|ξ|
Dq,+

P

(
x

ξ
, t;µ

)
+ sign (ξ)Dq,−

P

(
x

ξ
, t;µ

)]
θ (|ξ| − |x|) ,

(2.124)

where Dq,±
P (x/ξ, t;µ) are, again, functions that contribute only to the ERBL region and to which, by

abuse of terminology, we also refer to as D-terms.
If one would again evaluate the Mellin moments of the GPD at hand, the result found would read

Mm
q/π (ξ, t;µ) =

m+1∑
j=0

(
m+ 1

j

)
ξjh

q,(m+1,j)
P +sign (ξ)

∫ 1

−1
dzzm

[
ξmDq,+

P (z, t;µ) + ξm+1 (ξ)Dq,−
P (z, t;µ)

]
,

(2.125)
revealing that the information about the coefficient corresponding to the term of order m+ 1 in the
Mellin moments to have migrated from a pure D-term contribution, in Polyakov-Weiss scheme; to both
the “reduced” double distribution hqP and D-term contributions, in the Pobylitsa scheme. It is in that
sense that the PW scheme encodes the information of the D-term in a minimal way, and why it becomes
specially useful in a first approach to the double distribution representation of GPDs. The P-scheme,
from its part, is friendlier for practical purposes, since it develops a DD behavior in the large-x region
which makes it more appropriate for numerical calculations. In fact, it is often stated that perturbative
QCD entails the pion GPD to behave as [170]

Hq
π (x, ξ, t;µ) −−−→

x→1

(1− x)2

1− ξ2
. (2.126)

Accordingly, (1− x)Hq
π (x, ξ, t;µ), which enters the Radon transform representation of GPDs when

Pobylitsa scheme is employed for the representation of double distributions, can be found to be integrable.
We will find this feature to be on the ground of our approach to GPD modeling. As advertised before,
we will start from GPDs defined within the DGLAP region. Then we will work out the inversion of the
Radon transform operator to find the corresponding double distribution, and further take advantage of
the latter to extend the input GPD to the ERBL region. But this is a different story, which up to now
does not seems apparent. Let us jump to the next chapter, and clarify this discussion latter.
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3 | Modeling generalized parton distribu-
tions

So far we have learned that a plethora of exclusive processes is parametrized by generalized parton
distributions. We focused on deeply virtual Compton scattering and found its amplitudes to be
parametrized through GPD. A detailed analysis of generalized parton distributions allowed us to reveal
the vast amount of information there encoded. In particular we found them to show an “interpolating”
character, agglutinating features of parton distribution functions and amplitudes. It is precisely this
hybrid nature which challenges a consistent approach to them. We already dug into this subject,
identifying the two main hurdles to deal with: Polynomiality and positivity.

Any candidate model for generalized parton distributions has to fulfill with these two attributes,
yet no simple approach is able to do so. E.g. the powerful overlap representation implements in a
natural way the positivity constraints imposed by the underlying Hilbert-space’s norm, but spoils a
practical management of polynomiality. In contrast, the double distribution approach promotes Lorentz
invariance to the forefront, becoming the natural framework for its implementation; but, at the price
of hiding positivity to the point of precluding any beforehand assessment of this essential feature.
Thus, within these frameworks one is left with no guarantee for the accomplishment of the necessary
prerequisites and hence spoils the predictive power of the resulting models.

A contemporary approach, the covariant extension, aims at solving this issue [92, 159, 171]. In that
framework the blessings of the two former approaches to modeling skewed parton distributions are
combined in an intuitive manner, building models for GPDs that fulfill by construction with the two
essential properties: Positivity and polynomiality. In a nutshell,

1. Build positive DGLAP GPDs: Through the overlap of light-front wave-functions, models
satisfying the positivity bounds naturally arise.

2. Find the underlying DD: Exploring the connection between the GPD and DD domains, as
provided by the Radon transform, one can obtain the double distribution giving rise to the input
distribution.

3. Implement polynomiality with the ERBL GPD: Once a choice for a double distribution is made,
the double distribution representation for GPDs can be exploited to build the corresponding GPD
within the ERBL sub-domain. Polynomiality is thus implemented by construction.

The recipe of the covariant extension thus takes advantage of the outcomes of the overlap and
double distribution approaches to GPD modeling, and surrounds their drawbacks by exploring a
suitable connection between both representations to grant that the resulting distribution meets with
the sought-after properties. In that sense, a sensible approach to the description of hadron structure
might be feasible on the basis of the covariant extension. We thus stick to it, applying the idea to
the description of pions. Due to its double role of being both a pseudo-Goldstone mode associated
to the dynamical breakdown of chiral symmetry in quantum chromodynamics, and a nearly massless
bound-state hadron, its interest is apparent. In fact, recent phenomenological sketches and theoretical
studies [172–182] have shown the properties of pions to reflect in the clearest possible manner one of
the most intriguing features of QCD: The emergence of massive systems (hadrons) from nearly massless
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constituents (quarks and gluons). Accordingly, choosing pions as the physical system where working
flat out to obtain realistic generalized parton distributions stands to reason.

Through the present chapter we are be devoted to this subject. Starting by recalling the foundations
of a covariant approach to the study of bound-state systems in quantum field theory we shall find
the light-front wave-function to play a central role in the description of hadron structure. We will
then present an enlightening approach to LFWFs which, through the overlap representation, gives
rise to a brand new family of generalized parton distributions for the pion. The covariant extension
approach is then presented, discussed and exploited; with special emphasis on the evaluation of the
inverse Radon transform operator. We finally present the ERBL-extended models, demonstrating that
all the necessary properties are fulfilled and that the first few predictions for observables, indeed, agree
with available data.

3.1 DGLAP domain: overlap representation

In the covariant extension approach, the first ingredient needed for a consistent analysis of hadron
structure is the generalized parton distribution within the |x| ≥ |ξ| region. Without loss of generality,
and as a consequence of time-reversal invariance, one shall find helpful to restrict the analysis by
ξ ≥ 0. Moreover, the kinematic domain corresponding to x ≥ 0 (x ≤ 0) is known to account for
quark (antiquark) correlations within hadrons [10]. Therefore, a natural choice is to restrict oneself to
the kinematic kinematic domain x ≥ ξ, where the quark distribution is accounted for. In fact, for a
positively charged pion, one shall focus on the u-quark contribution, i.e.

Hq
π (x, ξ, t;µ)|x≥ξ , (3.1)

and generate the remaining pieces by symmetry considerations (see Ch. 2).
The overlap representation becomes outstandingly useful in this regard because it expresses general-

ized parton distributions, like Eq. (3.1), as the overlap of LFWFs for a given number of constituents, n
(Sec. 2.4.1):

Hq
π (x, ξ, t;µ)|x≥ξ =

∑
n

(√
1− ξ2

)2−n
Hq,(n)
π (x, ξ;µ)

∣∣∣
x≥ξ

, (3.2)

with n the number of particles and (Eq. (2.98))

Hq,(n)
π (x, ξ, t;µ)

∣∣∣
x≥ξ

=
∑
{β}

∑
qj

δqjq

∫
[dx]n

[
d2k⊥

]
n
δ (x− xj) Ψσ′,∗

n/π,{β}
(
r′n;µ

)
Ψσ
n/π,{β} (r̃n;µ) . (3.3)

The crossover in the derivation of an overlap representation for generalized parton distributions
is the realization that, in the framework of light-cone quantization, it is possible to define a vacuum
state on top of which the action of creation and annihilation operators allows to build the spectrum
of an interacting theory such as quantum chromodynamics [124]. Thus, a given hadron state can be
decomposed accordingly on a basis of Fock-states with a given number of constituents (Eq. (2.95)),
which for the case of a pion schematically reads:

|π (p)〉 ∝
∑
{β}

Ψqq̄/π,{β} (r;µ) |qq̄, {β} ; kq, kq̄〉+
∑
{β′}

Ψqq̄q′q̄′/π,{β′} (r;µ) |qq̄q′q̄′,
{
β′
}

; kqkq̄kq′kq̄′〉+ · · · ,

(3.4)
the central object therein being the light-front wave-function; whose knowledge for an arbitrary number
of constituents allows to reconstruct any hadron state on a basis of Fock-space.

Notwithstanding, a decomposition like the one above involves an infinite number of terms. This is
indeed a drawback challenging its application in practical calculations. Developing truncations for the
Fock-space expansion in Eq. (3.4) is therefore a crucial task. Such must be developed on a basis of well
defined assumptions allowing to capture the physics relevant for hadron’s structure: i.e. the infrared
facets of quantum chromodynamics. Within that domain, color interactions enter a non-perturbative
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DGLAP domain: overlap representation

regime. As a consequence, one expects the inside of hadrons to be highly involved, with an intense
“activity” of the strong interactions filling-in the region of spacetime associated to hadron’s. One may
then realize a hadron as a astonishingly complicated entity made up from a plethora of constituents,
including virtual quarks and gluons, interrelated through gluon exchange. In a very loose sense, one
could find an analogy in a much more common context: A table is well known to be made up from well
defined constituents occupying definite positions. However, our everyday experience tells us that it is a
continuum entity. Our current understanding is that such continuum appearance is nothing else than
pure interaction among constituents. Accordingly, when attempting at the description of phenomena
inside matter, all these interactions must be accounted for. Consider an electron propagating through a
semiconductor. Its motion is disturbed by interaction with electrons and atomic nuclei. An enlightening
approach to that kind of phenomena is widespread in the field of condensed matter physics [183]: The
definition of quasiparticles which effectively account for the relevant phenomena inside the solid. In
the example above, a quasi-electron propagating as it had an effective mass. A similar approach can
be prosecuted in our problem [184–186]. Indeed, recent results on the dressed quark mass obtained
from Dyson-Schwinger and Lattice QCD approaches [187–190] show that at low scales, quarks acquire
a significant mass. Such can be understood as a constituent quark mass effectively accounting for the
infrared aspects of the strong interactions typical from hadron’s inside. Thus, one is driven to define a
quasiparticle basis, on top of which build hadrons. In analogy to the analogous approach in condensed
matter physics, those may account for all the relevant features inside hadrons in an effective manner.
Thus, as the scale increases (and the intensity of the interaction decreases), the quasiparticles undress
generating the “cascade” of distributions observed inside hadrons at experimentally relevant energy
scales. Consider the case of a pion. A minimal choice for that basis is to be made up from a pair
quasi-quark–quasi-antiquark: Valence approximation. Those are dressed entities whose properties are
defined to effectively account for the non-perturbative character of the strong interactions governing
the structure of hadrons. As the scale increases (and the intensity of the interaction decreases), those
smoothly undress radiating quarks and gluons to approach the properties of real particles.

Within that picture, a Fock-space expansion in a pseudo-particle basis just like that in Eq. (3.4)
can be developed. However, a further remark is in order. The definition of the quasiparticle basis,
introduced to effectively account for the strong interactions inside hadrons, must be taken at a given
scale. As an illustration, the intensity of the interaction depend on the scale µ, thus the effects that
must be taken into account may differ. An illustration follows from available data on the pion’s parton
distribution function at µ = 5.2 GeV [191, 192], which are not compatible with a description in terms
of pair quasi-quark–quasi-antiquark at that scale. Special care must then be put on the choice of such
point, µRef. at which the quasiparticle basis is defined.

The quasiparticle approach thus reveals useful in finding truncations for a Fock-space expansion of a
hadron state. Moreover, a particularly interesting choice is that of the valence approximation described.
Indeed, it truncates an expansion of the form Eq. (3.4) to the simplest possible state, simplifying any
practical application of the formalism. In this regard, a sensible assumption can be made: There exists
an scale µRef. mesons’ properties can be well approximated using a pair quasi-quark–quasi-antiquark :

|π (p, σ)〉 ∝
∑
{β}

Ψσ
qq̄/π,{β} (r;µRef.) |qq̄, {β} ; kq, kq̄〉 , (3.5)

Following that approach, the definition of a pion state is closed and one shall apply it to the
description of any quantity built on top of it. In particular to the generalized parton distribution, which
in the valence approximation read (Sec. 2.4.1):

Hu
π (x, ξ, t;µRef) =

∫
d2k⊥
16π3

[
Ψ↑↓,∗
ud̄/π

(
x− ξ
1− ξ

,kout⊥ ;µRef

)
Ψ↑↓
ud̄/π

(
x+ ξ

1 + ξ
,kin⊥ ;µRef

)
+

+ kout⊥ · kin⊥ Ψ↑↑,∗
ud̄/π

(
x− ξ
1− ξ

,kout⊥ ;µRef

)
Ψ↑↑
ud̄/π

(
x+ ξ

1 + ξ
,kin⊥ ;µRef

)]
.

(3.6)
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Chapter 3. Modeling generalized parton distributions

In virtue of that approach, the knowledge of the pion’s DGLAP GPD is reduced to the evaluation
of the two-body light-front wave-function. Among all possible approaches to that problem (e.g. [110,
193]) we will exploit that based on a continuum formulation of the bound-state problem through the
Bethe-Salpeter equation. Through its solution access to the Bethe-Salpeter wave-function (BSWF)
and the LFWF can be gained. Nonetheless, such is a hard problem by itself, thus taking closer look
at the formulation of the bound-state problem in quantum field theory deserving some attention. In
the following we shall present a very brief introduction to that topic, explore the effect of sensible
approximations and ground off with the introduction of a novel family of two-body light-front wave-
functions. In the following we shall be dropping µ-labels everywhere they may simply obscure the
notation.

3.1.1 Bound-states in quantum field theory

The relativistic n-body problem is among the most challenging puzzles in physics. When those are
bounded the situation is even worst. And when the driving force is the strong interaction, it may
become astonishingly hard. In that case, different features plot against a complete understanding of
hadrons. Just to give a flavor: The fundamental degrees of freedom on top of which the QCD action is
built (quark and gluons) cannot be observed as freely propagating entities due to color confinement.
Moreover the properties of such, when confined inside hadrons (e.g. their mass) may differ from the
current ones appearing in the renormalized QCD action. The reason for that is well known but far
from understood: Dynamical chiral symmetry breaking. But the situation is even worst: At the length
scales characteristic of hadrons, the theory of strong interactions enters a non-perturbative regime; thus
the need of developing novel intrinsically non-perturbative approaches (see e.g. [194] and references
therein for a comprehensive review.).

Tackling the problem of bound-states in quantum chromodynamics therefore needs for a different
perspective. Lets go back to the foundations; down to idea of physical particles and how can we get a
grasp about them in quantum field theory. In this regard, the realization of particles as corresponding to
the elements of an irreducible unitary representation of the Poincaré group [195] is particularly helpful.
Let us consider an arbitrary n-points Green’s function in momentum space:

G(n) (p1, · · · , pn) =

∫
d4x1 · · · d4xne

i(x1p1+···+xnpn)〈Ω|T {φ (x1) · · ·φ (xn)} |Ω〉 , (3.7)

where φ (xi) denotes Heisenberg-picture field-operators of arbitrary type. It is always possible to
introduce a complete set of states among which pick-up that corresponding to a single particle state,
i.e. one belonging to an irreducible unitary representation of the Poincaré group, |χ〉. From that point
on, conventional manipulations can be found elsewhere [33] to lead to:

G(n) (p1, · · · , pn) ∼ δ(n) (p1 + · · ·+ pn)
χ (p1, · · · , pr−1; p) χ̄ (pr+2, · · · , pn; p)

p2 −m2 + iε
+ (· · · ) , (3.8)

where · · · denote other possible singular structures and different time orderings of the fields.
Despite its simplicity, the above relation reveals one of the most important features of quantum

field theory: The production of an on shell particle with mass m is reflected by the development of
poles in correlation functions1. In fact, we simply chose an state on a Hilbert-space representing a
particle à la Wigner (with no reference to whether it is elementary or composite) and explored the
consequences on the structure of the theory’s correlation functions. The result is the proliferation of

1This is indeed on the basis of the renowned LSZ [32] reduction formula from which we already took advantage in
Ch. 1.
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χ̄χ
p2 = m2

Figure 3.1: Illustration of the proliferation of bound-state poles in n-points Green’s functions
and as the on-shellness conditions is met. The bound-state wave-function, χ, arises
as a parametrization for the amplitude of that state to occur.

poles at p2 = m2 (Fig. 3.1), whose residue is given by

χ (p1, · · · , pr−1; p) =

∫
d4z1 · · · d4zr−1e

i(p1z1+···+pr−1zr−1)〈Ω|T {φ (z1) · · ·φ (zr−1)φ (0)} |χ〉 ,

χ̄ (pr+2, · · · , pn; p) =

∫
d4zr+2 · · · d4zne

−i(pr+2zr+2+···+pnzn)〈χ|T {φ (0)φ (zr+2) · · ·φ (zn)} |Ω〉 ,
(3.9)

the bound-state wave-functions. Notice that the spacetime coordinates zi now denote relative coordinates
with respect to the “active”-fields φ (xr) (φ (xr+1)) for i ≥ r (for i ≤ r), and that p labels the |χ〉-state’s
four-momentum. An example is that of the four-points function, the simplest possible structure from
which two-particle bound-states can arise. In that case, the bound-state wave-function reads:

χ (p1 = q, p2 = p− q) =

∫
d4zeiqz〈Ω|T {φ (z)φ (0)} |χ〉 . (3.10)

This is the renowned Bethe-Salpeter wave-function2 [196, 198–201], which modulates the transition
of a pair of φ-fields into a composite χ-state.

A similar, perhaps more intuitive look at the same phenomenon can be gained if one thinks in terms
of scattering amplitudes. Indeed, a Dyson equation may be built for a correlation function G(n), [194]:

G(n) = G
(n)
0 +G

(n)
0 K(n)G(n) ; (3.11)

with G(n)
0 (p1, · · · , pn) the product of n dressed φ-propagators and K(n) the amputated, connected part

of the correlation functions (Fig. 3.2). Then, Eq. (3.8) entails

K(n) ∼ Γ (p1, · · · , pr−1; p) Γ̄ (pr+2, · · · , pn; p)

p2 −m2 + iε
, (3.12)

i.e. the occurrence of single particle poles in the n-body scattering kernels as the realization for the
emergence of real particles in a scattering process. In contrast to Eq. (3.8) the residues for such poles
are not given by the bound-sate wave-functions, but their amputated counterparts, Γ The bound-state
amplitudes [194, 202]:

χ (p1, · · · , pn; p) = G
(n)
0 (p1, · · · , pn) iΓ (p1, · · · , pn) . (3.13)

In that language the emergence of the present singular structures can be intuitively understood:
A transition between two states may take place through an intermediate entity on its mass-shell. In
fact, a similar feature is commonly found in perturbation theory, e.g. electron-positron scattering can

2Different naming exist along the literature. Very often, an n-body bound-state wave-function is referred to as
Bethe-Salpeter wave-function. The naming is introduced right after the pioneering work by Hans A. Bethe and Edwin B.
Salpeter on the bound-state problem in quantum field theory [196], despite they greatly focused on two-body systems.
Sometimes, in the specific case of the three-body bound-state problem, the same object is dubbed Faddeev wave-function
[194], right after the work of Ludvig. D. Faddeev [197].
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... χ = ...... K(n) χ

G
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Single-particle pole

p2 = m2

Figure 3.2: Upper panel: Pictorial representation of the Dyson equations satisfied by n-
point Green’s function, Eq. (3.11). Lower panel: Illustration of the bound-state
equation obtained by plugging-in the pole condition p2 = m2 into Eq. (3.11) as
reading for the bound-state wave-function, χ: Eq. (3.14).

occur as mediated by a photon, which can potentially turn on-shell. Yet the relation above goes well
beyond that and expresses this feature in its full glory, with no reference to any theory nor nature of
the particle being produced. The above relation is intrinsically non-perturbative, and thus allows for
the occurrence of all kinds of single-particle poles: Including hadron states [203]. Eq. (3.12) reveals
something else: It is not only that real particles can be produced in scattering amplitudes, but that
they are certainly produced if its quantum numbers are compatible with those of the operators in the
theory. Exempli gratia, it can be a real photon which is produced in electron-positron scattering, but
also a positronium bound-state. Only, the “likeliness” of given state to be produced is modulated by
the residue of the scattering-matrix’s pole: The bound-state amplitude.

Crucial insights into bound-states are then obtained from the knowledge of the corresponding
amplitudes. “Only” a proper choice for the set of operators φ (xi) such that |χ〉 can develop as a possible
intermediate state needs to be made. One may then wonder how can this be achieved, and in fact
realize that there is no clear way one can directly evaluate the amplitudes in Eqs. (3.9)-(3.13); specially
when hadron states are targeted. Thus, to build bound-state equations that yield Γ (or χ) as a solution
postulates itself as pivotal in any assessment of composite field-theoretical objects. Inserting the pole
conditions Eqs. (3.8)-(3.12) into Eq. (3.11) and identifying singular terms on both sides leads to the
sought-after bound-state equation [194, 202, 203]:

χ = G
(n)
0 K(n)χ , Γ = K(n)G

(n)
0 Γ . (3.14)

which is valid at the pole p2 = m2.
The bound-state equations Eqs. (3.14) are intrinsically-relativistic linear homogeneous equations for

the bound-state amplitudes (or wave functions). Its solution provides full knowledge about composite
objects, in particular hadrons, and thus is the central piece for an assessment of hadron structure.
Nonetheless, the task of solving this kind of equations is far from straightforward [194, 202, 204–206].
Although only two ingredients are needed: The dressed propagator and the n-body scattering kernel.
And despite the fact that both can in principle be built on the basis of the corresponding Dyson-
Schwinger equations (DSEs), present calculations are still restricted up to the two- and three-points
functions “accuracy” [194, 203]. The reason is the intrinsic complexity of the tower of Dyson-Schwinger
equations, requiring the development of truncation schemes that allow to consistently close the infinite
set of equations. In that context, most of the existing work is done in a rainbow-ladder truncation
scheme [207–211], specially in the meson sector; yet efforts to go beyond rainbow-ladder are starting to
arise [212–214].

Nevertheless, the difficulties for a proper solution of covariant bound-state equations do not prevent
from insightful studies of bound-state’s properties [186, 194]. In particular, the study of meson structure
is often based on a projection of the corresponding bound-state wave-functions onto the light-front.
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p q1

q2

χπαβ (k; p)

ψα (−z/2)

ψ̄β (z/2)

Figure 3.3: Schematic representation of the formalism necessary for a fully-covariant description
of two body-systems as applied to the study of pions – Pion’s Bethe-Salpeter
wave-function Eq. (3.16)

Thus, one obtains the valence LFWFs [110, 122] and draws a window to hadron properties through
form factors or parton distribution functions. Challenges in this approach exist [110, 122, 215], mainly
because bound-state and Dyson-Schwinger equations are usually solved in Euclidean space [190, 194,
216–219] requiring analytical continuation to physical spacetime. Yet works towards the solution of
bound-state equations in Minkowski spacetime exist [220–228], they are still a step backwards3 the
wider approach in Euclidean spacetime. Here we shall stick to the latter and, through the conjecture of
reliable Ansätze for bound-state amplitudes, achieve at an assessment of the hadron properties [186,
230–233].

3.1.2 The two-body problem: valence content within pions

We reviewed the general formalism for the assessment of relativistic bound-states. In practical terms,
here we are interested in mesons. Actually, in the study of pions. We thus need to consider correlations
functions showing overlap with say, a positively charged pion. In this regard, it is worth emphasizing an
implicit feature of the above formalism: An n-body composite object may arise not only from 2n-point
functions, but also from higher order ones. The case of a meson shall serve as an illustration: As
quark-antiquark bound-states, meson poles will arise from 4-point correlation functions in QCD like

G(4) (x1, x2, x3, x4) = 〈Ω|T
{
ψ (x1) ψ̄ (x2)ψ (x3) ψ̄ (x4)

}
|Ω〉 , (3.15)

but also from six-, eight-points functions and so on. In all those cases, the physical meson being
described is exactly the same. Therefore, employing the simplest possible Green function (i.e. a four
points one) for its description is in order. For that reason, one conventionally states that mesons arise as
poles in the four-point correlation functions and thus defines the (pion’s) Bethe-Salpeter wave-function
as [234]:

χαβqq̄/π (k; p) ≡
∫
d4zeikz〈Ω|T

{
ψα (−z/2) ψ̄β (z/2)

}
|π (p)〉 , (3.16)

where Greek letters label the set of spinor, flavor and color indices. Also, by means of translation
invariance we chose symmetric coordinates (Fig. 3.3),

k =
q1 − q2

2
,


q1 = k + p/2 ,

q2 = −k + p/2 ,
(3.17)

and the hadron’s momentum satisfies p = (p1 + p2), as required by four-momentum conservation.
Projection onto the light-front then yields the two-body LFWF [235],

Ψαβ
qq̄/π (k; p) =

∫
d4eikzδ (z · n)χαβqq̄/π (z; p) = Np+

∫ ∞
−∞

dl−

2π
χαβqq̄/π (l; p)

∣∣∣
l+=k+, l⊥=k⊥

. (3.18)

3A novel approach to this problem was very recently introduced in Ref. [229]
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where N is some normalization constant and p+ is the hadron’s momentum along the quantization axis
as defined by the light-cone four vector n (see App. A)4.

The Bethe-Salpeter wave-function thus gives us access to the sought-after two-body light-front
wave-function, from which we shall take advantage to build the pion’s generalized parton distribution
through Eq. (3.6). In this regard, obtaining the BSWF becomes pivotal in our development and so it is
solving the corresponding bound-state equation. Particularization of Eq. (3.14) to the two-body case at
hand yields

Γαβqq̄/π (k; p) =

∫
d4q

(2π)4

[
K

(2)
qq̄ (k, q, p)

]αβα′β′ [
S (q + p/2) Γqq̄/π (q; p)S (q − p/2)

]α′β′ , (3.19)

the Bethe-Salpeter equation (BSE).
Above, K(2)

qq̄ (k, q, p) is the two-body scattering kernel, which contains all possible interactions
between the quark and the antiquark, e.g. the exchange of a gluon; and S (q + p/2) and S (q − p/2)
denote quark and antiquark propagators, respectively [194].

A solution of the above equation has been achieved in different approximations (see e.g. [194] and
references therein) but those suffer from outcomes that challenge a direct practical application for the
determination of the accompanying valence light-front wave-function (Sec. 3.1.1): Namely, the lack of
knowledge about its singular structure. We have already commented on a possible workaround: To rely
on a Nakanishi integral representation5 for the BSWF [215, 237, 238]

χqq̄/π (k, p) = N ′Ylm (p)

∫ 1

−1
dz

∫ ∞
0

dω
ρ

(n)
l (z, ω)

[m̃2 + ω − k2 − (p · k) z − iε]n+2 . (3.20)

where l and m denote the orbital angular momentum of the constituents and its projection, respectively.
m̃2 = m2

q − p2/4 is a “reduced” constituent-quark mass (mq). The coefficients Ylm (p) = |p|l Ylm (θ, φ)

are the solid-harmonics; and ρ(n)
l (z, ω), the Nakanishi-weight, is a real function satisfying,

lim
ω→∞

ρ(n) (z, ω)

ωn
= 0 , (3.21)

designed to account for non-perturbative dynamics inside hadrons.

Models for pions’ Bethe-Salpeter wave-functions

The challenge when employing a Nakanishi integral representation is to find such Nakanishi weight.
There exist attempts at finding equations for it (e.g. [224]), but the resulting relations can be even harder
to deal with than the original bound-state equation. For that reason, the proliferation of algebraic

4Conventional light-front wave-function variables (x,k′⊥) can be recovered by shifting the relative quark momentum as
[229]:

k′ = k − 2x− 1

2
p , with x ∈ [0, 1] and k′+ = 0 ,


q1 = k′ + xp ,

q2 = −k′ + (1− x) p .

such that
q+
1 = xp+ , q2 = (1− x) p+ ,

which means that x represents the conventional longitudinal momentum-fraction variable (App. A), and the two-body
light-front wave-function Eq. (3.18) is expressed as

Ψαβ
qq̄/π

(
x,k′⊥

)
= Np+

∫
dl−

2π
χαβqq̄/π (l; p)

∣∣∣
l+=xp+,l⊥=k′

⊥

.

5Actually, the Nakanishi representation Eq. (3.20) was developed for scalar field theories. However, more recent works
conjecture that its extension to fermion bound-states is possible [226, 236]. In particular, a Bethe-Salpeter wave function
can always be decomposed as χ =

∑
i Γiχi, where Γi is a suitable Dirac structure and χi is a Lorentz invariant quantity.

Then, the Nakanishi integral representation must be applied to each “reduced” wave-function.
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models inspired by the Nakanishi representation above have postulated as a accurate alternative
procedure. At the time they yield considerable simplifications in the calculations, they have proved to
yield valuable insights into the structure of mesons [186, 239–242]. Among them, that first presented in
[243] has received a lot of attention [171, 244–248]

S (p) =
−iγ · p+M

p2 +M
,

Γqq̄/π (k, p) = iγ5NM3

∫ 1

−1
dz

ρ (z)(
k − 1−z

2 p
)2

+M2
,

(3.22)

The form of the fermion propagator is justified in analogy to the expected all-orders expressions
in conventional perturbation theory: Radiative corrections modify the current-quark mass in the
bare fermion propagator, triggering the introduction of the mass parameter, M , which mimics this
feature by setting it to an effective constituent-quark mass. From its part, the parametrization for the
Bethe-Salpeter amplitude relays on a rough assumption: Among the four possible Dirac structures in
the pion’s Bethe-Salpeter amplitude [249]

Γπ (k; p) = γ5

[
Eπ + /pFπ + (k · p) /kGπ + σµνk

µpνHπ

]
, (3.23)

the purely pseudo-scalar term is assumed to give the most relevant contribution, as hinted by different
approaches to the present problem, e.g. [250, 251].

3.1.3 Valence light-front wave-functions for pions

Armed with this knowledge we are now in a position to delve further into the problem of the pion’s
light-front wave-function. Just sticking to the two-body approximation Eq. (3.5) we write for a
positive-charged pion:

|π (p, σ)〉 =
Valence

∑
{β}

∫
dxd2k⊥

16π3
Ψσ
ud̄/π,{β} (x,k⊥) |u (k1) d̄ (k2) ; {β}〉 , (3.24)

where {β} now covers helicity and color quantum numbers, and

k1 =

[
xp+,k⊥ +

p⊥
2
,
k⊥ + p⊥/2

2xp+

]
,

k2 =

[
(1− x) p+,−k⊥ +

p⊥
2
,− k⊥ − p⊥/2

2 (1− x) p+

]
.

(3.25)

It is often convenient to classify this kind of states according to the constituents’ light-cone helicity.
In our case, each can have light-cone helicity ±1/2. Two pieces can then be identified for the valence
LFWF: one corresponding to angular momentum projection zero, and a further piece corresponding to
angular momentum projection ±1 [154, 158, 252]

Ψ↑↓
ud̄/π

(x,k⊥) = 〈u↑ (k1) d̄↓ (k2) |π (p, σ)〉 − 〈u↓ (k1) d̄↑ (k2) |π (p, σ)〉 ,

Ψ↑↑
ud̄/π

(x,k ⊥) = 〈u↑ (k1) d̄↑ (k2) |π (p, σ)〉+ 〈u↓ (k1) d̄↓ (k2) |π (p, σ)〉 ,
(3.26)

where now a sum over color degrees of freedom is implicitly understood.
A proper characterization of the pion’s valence state on the light-front then requires knowledge

of the two pieces in Eqs. (3.26). To this end, proceeding in analogy to Eq. (2.4) one may notice that

59



Chapter 3. Modeling generalized parton distributions

an operator of the form d̄γ+γ5u yields a helicity-0 pair6. Similarly, an operator d̄σ+⊥γ5u produces a
helicity-1 pair [252]. Thus, defining [154, 252]

2p+Ψ↑↓
ud̄/π

(x,k⊥) =

∫
dz−d2z⊥e

i(z−k+−z⊥·k⊥)〈Ω|d̄ (−z/2) γ+γ5u (z/2) |π (p)〉 ,

ik⊥p
+Ψ↑↑

ud̄/π
(x,k⊥) =

∫
dz−d2z⊥e

i(z−k+−z⊥·k⊥)〈Ω|d̄ (−z/2)σ+⊥γ5u (z/2) |π (p)〉 ,

(3.27)

and using Eq. (3.18) to express the two pieces of the valence light-front wave-functions from projections
of the two-body Bethe-Salpeter wave functions we would write [154, 253]:

2p+Ψ↑↓
ud̄/π

(
k+,k⊥

)
=

∫
dk−

2π
Tr
[
γ+γ5χud̄/π (k, p)

]
,

ik⊥p
+Ψ↑↑

ud̄/π

(
k+,k⊥

)
=

∫
dk−

2π
Tr
[
σi⊥γ5χud̄/π (k, p)

]
.

(3.28)

From these representations for LFWFs, one can employ the Ansatz discussed in Sec. 3.1.2. As
described in [154], proceeding through reconstruction from Mellin space yields:

Ψ↑↓
ud̄/π

(x,k⊥) =
4π
√

15

3

M3(
k2
⊥ +M2

)2ϕud̄/π (x) ,

Ψ↑↑
ud̄/π

(x,k⊥) =
4π
√

15

3

iM2(
k2
⊥ +M2

)2ϕud̄/π (x) .

(3.29)

where ϕud̄/π (x) denotes the pion’s parton distribution amplitude.

Factorized Ansätze for pion LFWFs

Analytic expressions for the pion’s light-front wave-function are thus obtained. As it was discussed,
these objects encode all there is to know about the structure of the hadron at hand, and therefore allows
for the evaluation of all the desired quantities. Before going further and employing these expressions
for the evaluation of the sough-after generalized parton distributions it is worth emphasizing a striking
feature implicit in Eqs. (3.29). Without any efforts one could notice that both expressions can be
combined in a row:

Ψλ1λ2

ud̄/π
(x,k⊥) = ϕud̄/π (x) gλ1λ2

ud̄/π
(k⊥) , (3.30)

with

gλ1λ2

ud̄/π
(k⊥) = N

(
i

M

)λ M3(
k2
⊥ +M2

)2 , λ = λ1 + λ2 , (3.31)

thus making (even more) apparent the essential feature of our Ansätze for LFWFs: Longitudinal and
transverse parton degrees of freedom decouple. From Eq. (3.30) the parton distribution amplitude can
be read to describe the dynamics of partons along the longitudinal direction. The transverse part, is
given by a function which depends on the partons helicity.

The way it has been presented here, starting from a given model for the pion’s bound-state amplitude,
the factorized Ansatz Eq. (3.30) may looks like a particular result with no further implications. However,
several studies [171, 243, 247, 248, 254] show its success in the description of the properties of (specially)
scalar and pseudo-scalar hadrons. Moreover, recent studies [255, 256] hint the foundations of such
decoupling to go well beyond a particular algebraic model, and indeed find it related to the dynamical

6Actually, a chirality-0 pair. But assuming the fields to represent massless entities the argument can be easily extended
to the idea of helicity.
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breakdown of chiral symmetry. In fact, it can be shown [257] that under the assumption of vanishing
current quark masses already at the level of a Nakanishi integral representation for the pion’s Bethe-
Salpeter amplitude, the resulting LFWFs can factorize into a longitudinal part given by the parton
distribution amplitude and a transverse part. Moreover, within the framework of light-cone quantization,
the decoupling of transverse and longitudinal degrees of freedom can be seen as natural, since their
canonical generators commute with the light-front Hamiltonian [258].

As a final remark one can further rewrite the considered Ansatz. Indeed, the parton distribution
functions can be obtained from the valence light-front wave-functions as [259]:

qπ (x) =
∑
q1,q2
λ1,λ2

δqq1

∫
d2k⊥
16π3

∣∣∣Ψλ1λ2

q1q̄2/π
(x,k⊥)

∣∣∣2 =
∣∣ϕqq̄/π (x)

∣∣2 , (3.32)

where the condition ∑
q1,q2
λ1,λ2

∫
d2k⊥
16π3

∣∣∣gλ1λ2

q1q̄2/π
(k⊥)

∣∣∣2 = 1 (3.33)

follows from canonical normalization of the light-front wave-function [247, 248, 259].
Thus, a simple identification for the PDA as the square root of the PDF is in order

ϕqq̄/π (x) =
√
qπ (x) , (3.34)

allowing to express our factorize Ansätze for the LFWFs as:

Ψλ1λ2

qq̄/π (x,k⊥) =
√
qπ (x)gλ1λ2

qq̄/π (k⊥) . (3.35)

3.1.4 A new family of models for pion’s generalized parton distributions

With a reliable model for the pion’s valence light-front wave-function, we are finally in a position to
evaluate the quark generalized parton distribution. If we focus on the u-quark GPD, and employ
Eq. (3.6) together with Eq. (3.30) it readily follows that

Hq
π (x, ξ, t) =

√
qπ

(
x− ξ
1− ξ

)
qπ

(
x+ ξ

1 + ξ

)
Φq
π (x, ξ, t) , (3.36)

with

Φq
π (x, ξ, t) =

∫
d2k⊥
16π3

[
g↑↓,∗ (k⊥) g↑↓ (k⊥ − s⊥) + k⊥ · (k⊥ − s⊥) g↑↑,∗ (k⊥) g↑↑ (k⊥ − s⊥)

]
, (3.37)

where we have simply shifted the integration variable as k⊥ → k′⊥ = k⊥ + 1−x
1−ξ

∆⊥
2 and finally defined:

s⊥ = 1−x
1−ξ2 ∆⊥.

In reality, the transverse part of the GPD can be further worked out. Indeed, one can always change
to polar coordinates and then realize that the resulting function depends only on |s⊥|, which by means
of the results shown in Eq. (A.32) can be written as

ζ ≡ |s⊥|2 = −(1− x)2

1− ξ2

t

4M2
, (3.38)

showing that the GPD models obtained within this approach do exhibit an explicit dependence on the
momentum transfer variable, t, but coupled to the longitudinal momentum-fractions (x, ξ) through
the ratio ζ. Notice that the momentum transfer dependence thus expressed involves one-single mass
parameter, M2, identified with the constituent-quark mass. At this moment, such is free and therefore
needs to be fixed afterwards. In our case, we will find such to be achieved in a natural way through
fitting to the pion’s electromagnetic form factor (see Sec. 3.3.1).
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Chapter 3. Modeling generalized parton distributions

One can then particularize the more general expressions Eqs. (3.36)-(3.37) to the model Eq. (3.31),
finding the momentum transfer dependence of the quark GPD in a pion to be given by [171, 259]

Φq
π (x, ξ, t) =

1

4

1

1 + ζ2

3 +
1− 2ζ

1 + ζ

arctanh
(√

ζ
1+ζ

)
√

ζ
1+ζ

 . (3.39)

A further virtue of the present family of models follow from the parallelism between our general
expression and the positivity constraint Eq. (2.87). In fact, if one takes the limit of zero momentum
transfer t = 0, Eq. (3.36) collapses into

Hq
π (x, ξ, 0) =

√
qπ

(
x− ξ
1− ξ

)
qπ

(
x+ ξ

1 + ξ

)
, (3.40)

showing that the decoupling of longitudinal and transverse variables result in the saturation of the
positivity property of GPDs. But moreover, the function Φq (x, ξ, t) can be shown to satisfy:

|Φq
π (x, ξ, t)|x≥ξ ≤ 1 (3.41)

meaning that the positivity property of GPDs, as realized in Eq. (2.87), is explicitly fulfilled by our
family of GPD models; as expected from the use of the overlap representation.

The expression Eq. (3.36) supplemented with the explicit form of the momentum transfer dependence
given above is the central piece of our modeling strategy. That is the starting point of our study
about the pion’s GPD. Crucially, relying on well established assumptions (mainly, chiral symmetry
and the existence of a scale µRef. upon which pions’ inside is accurately described by means of a
pair pseudo-quark-antiquark), the problem of accessing GPDs is reduced to the knowledge of parton
distribution functions. It is then worth relying on state of the art evaluation of quark PDFs within
pions to construct the corresponding GPD and evaluate its consequences. In fact, apart from shedding
light on the problem of hadron structure, this modeling strategy opens a new window on to revealing
the agreement or discrepancy of different studies of PDFs. It is precisely from that point from which we
take advantage in Sec. 3.3, showing different models built on Eq. 3.36 and exploring its implications.

3.2 ERBL domain: covariant extension

The overlap representation allowed us to develop models for generalized parton distributions within the
DGLAP region. In short, the key formal point for such success is the realization about DGLAP GPDs
as connecting Fock-states containing the same number of partons, say n. As a consequence, a given
truncation for the Fock-space expansion of the pion’s state was exploited, and the DGLAP GPD built
consistently. In stark contrast, a similar procedure cannot yield access to the ERBL domain. Again,
the interpretation of GPDs as scattering amplitudes is behind this statement: Since the ERBL domain
relates Fock-states with n and n+ 2 partons, no consistent truncation for the Fock-space expansion of
hadron states allows to access both, the DGLAP and ERBL regions through the overlap representation.
In that way, a modeling approach to GPDs solely based on the overlap representation explicitly breaks
the polynomiality property; simply because part of the GPD’s domain remains unknown.

It seems therefore that we are facing a dead-end road. We are seeking for generalized parton
distributions fulfilling both essential properties: Positivity and polynomiality. We have already ful-
filled the former, but explicitly broken Lorentz invariance. In this latter regard the DD distribution
representation of GPDs can prove very helpful. In fact, in Sec. 2.4.2 we showed it to be the natural
framework for the assessment of GPD’s polynomiality property. If we already know how to develop
GPD models preserving the positivity of Hilbert-space norm; would it be possible to employ these
models to drive a choice of a double distribution?. If so, models for DD reproducing the input positive
DGLAP GPD could be made, and afterwards, exploited for the evaluation of GPDs within the ERBL
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Figure 3.4: Diagram describing the work flow of the covariant extension strategy as applied
to our modeling approach, based on factorized Ansätze for LFWFs. Starting from
state of the art parametrizations for the PDFs, the overlap representation allows
to build DGLAP GPDs which are strictly positive. Then, relying on the inverse
Radon transform, such model can be extended to the ERBL domain such that
polynomiality is also satisfied.

domain. That is intuitive, but is it possible?. Indeed, the answer is positive and the procedure is well
known [92, 159]: The covariant extension. In a nutshell, the blessings of both strategies (overlap and
double distribution representation) can be combined: Starting from positive7 DGLAP GPDs one can
explore the connection with the domain of double distributions drawn by the Radon transform operator
and obtain the corresponding double distribution. That guarantees positivity and in addition, allows to
implement polynomiality by accordingly building the ERBL domain through the double distribution
representation.

3.2.1 Covariant extension: Foundations

The denomination “covariant extension” is indeed accurate. As sketched, the intuitive idea is to start
from the knowledge of a GPD which is restricted to the DGLAP region. Then, it is dragged out to
the ERBL sub-domain, triggering the tag extension. Moreover, such is not arbitrary but it is carefully
performed to account for the polynomiality property, i.e. for Lorentz invariance. Thus the attribute
covariant. The underlying idea is quite simple (Fig. 3.4):

1. Start from a DGLAP GPD and exploit its representation as the Radon transform of a double
distribution

H (x, ξ)||x|≥|ξ| = R [h (β, α)] ≡
∫

Ω
dβdαδ (x− β − αξ)h (β, α)

∣∣∣∣
|x|≥|ξ|

. (3.42)

2. Then, explore the inversion of the Radon transform operator in Eq. (3.42) to obtain the
corresponding double distribution as:

h (β, α) = R−1
[
H (x, ξ)||x|≥|ξ|

]
. (3.43)

3. Finally employ the double distribution representation to compute the GPD within the ERBL
region:

H (x, ξ)||x|≤|ξ| = R [h (β, α)] ≡
∫

Ω
dβdαδ (x− β − αξ)h (β, α)

∣∣∣∣
|x|≤|ξ|

. (3.44)

The representation of the generalized parton distribution as the Radon transform of a given DD
guarantees that polynomiality is fulfilled.

7Actually, it is not necessary that the input GPD model is built through the overlap representation. Neither it is
required to be positive. Instead, the strategy would identically work. However, for the sake of the predictive power of the
resulting model, it is highly recommended to start for GPDs which satisfy the corresponding positivity bounds.
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The above described strategy and its potential in solving a major problem in the field of hadron
physics is thus manifest: Provided that one starts from a DGLAP GPD which fulfills the corresponding
positivity bounds, there exists a well defined procedure to determine its companion ERBL GPD;
fulfilling also the polynomiality property. The central piece in that procedure is the inversion of the
Radon transform operator. At this point wondering about the feasibility of such inversion is order.
Fortunately that problem has been faced previously in the literature, showing that indeed, the inversion
of the Radon transform operator is feasible [159, 260, 261]. Accordingly, given a GPD which is known
over its entire kinematic domain, the double distribution to which it is related can be unambiguously
computed. However, the problem at hand is more involved: First, because a closed-form solution for the
inverse Radon transform is lacking8, forcing the solution to involve a numerical inversion of the Radon
transform, see Sec. 3.2.2. And second, because in our case only a partial knowledge of the transformed
distribution (the GPD) is granted.

Wondering about the existence and uniqueness of the solution to the partial problem is in order.
Fortunately, this issue was already assessed in Ref. [159]. There, it was demonstrated that a restricted
knowledge of the GPD to the DGLAP domain allows for the characterization of the related double
distribution up to D-term-like ambiguities, i.e. contributions to the DDs along the β = 0 region. In
the following, we shall give an intuitive picture for the Radon transform which will be on the basis of
our numerical procedure to solve the inverse Radon transform problem. But further, it allows for a
pictorial presentation of these ambiguities. We will then formally show the the covariant extension is
indeed feasible and that, even more, the ambiguities can be tamed. Finally we will describe a numerical
approach to the solution of this problem, showing how the covariant extension can be implemented for
the practical purposes of modeling GPDs fulfilling all the necessary properties.

An intuitive picture

The structure of the Radon transform operator is well known (Sec. 2):

H (x, ξ) =

∫
Ω
dβdαδ (x− β − αξ)h (β, α) , (3.45)

with Ω =
{

(β, α) ∈ R2 : |β|+ |α| ≤ 1
}
. For compactness in the notation we have dropped the GPDs

and DD’s t- and µ-dependence as well as any flavor or hadron indices.
The Radon transform can be realized as a line integral along a curve specified by:

x− β − αξ = 0 (3.46)

Let a pair (x0, ξ0) be a point chosen within the GPD domain, either in the ERBL or DGLAP
sub-regions. Without loss of generality we take both numbers to be positive. From the definition of
both sub-domains it follows that:

DGLAP: x0 − β − αξ0 = 0⇒ α0 = x0/ξ0 ≥ 1 ,

ERBL: x0 − β − αξ0 = 0⇒ α0 = x0/ξ0 ≤ 1 ,
(3.47)

with α0 denoting the α-intersect of the sampling line Eq. (3.46).
Within this picture, one can easily realize the Radon transform as sampling the double distribution

domain through two kinds of lines, say DGLAP- and ERBL-lines, characterized by their intersection
with the α-axis. The problem of reproducing a given DGLAP region from some double distribution
through a Radon transform is thus viewed as the examination of the double distribution domain
through lines which cross the α-axis outside the double distribution domain (Fig. 3.5). Moreover, in
this realization the existence of ambiguities in the determination of a DD from the knowledge of a GPD

8An attempt on the basis of the Laplace transform has provided some insights into the inversion of the Radon transform
[262] as applied to GPDs, but relies on strong assumptions about the analytic structure of the underlying distribution
which cannot be granted in general, and therefore prevents from its straight application to real-world problems.
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Figure 3.5: Illustration of the interpretation for the Radon transform operator as a line integral
– Left panel: Example of a point (x, ξ) within the DGLAP region and Right
panel: its manifestation over the double distribution domain.

solely within the DGLAP region is manifest: Since DGLAP sampling lines do never touch the β = 0
region, any modification of a double distribution within ΩD = {β = 0} leaves the the DGLAP GPD
unchanged. On the contrary, a sampling line specified by a point within the ERBL sub-domain samples
all of the DD domain, and thus the access to the DD without any ambiguities might be granted by the
knowledge of the ERBL GPD.

This pictorial representation of the Radon transform has revealed a possible drawback of the
covariant extension strategy: It is not possible to unambiguously determine a double distribution from
the sole knowledge of a generalized parton distribution within the DGLAP sub-domain. In a given
calculation, it is expected that contributions of the form9 δ (β)D (α) can always arise and will remain
out of control. The question is therefore: Are those the only possible ambiguities?. And also, is there
any workaround allowing to constraint them?.

Shedding light on these questions then requires rephrasing the problem in a more formal language.
We are looking for contributions to double distributions leaving the resulting DGLAP GPD unchanged.
To simplify this situation let us consider two GPDs coinciding within the DGLAP region, but not
necessarily with the ERBL domain, i.e.

H1 (x, ξ) , H2 (x, ξ) such that H (x, ξ)||x|≥|ξ| = H1 (x, ξ)−H2 (x, ξ)||x|≥|ξ| = 0 , (3.48)

and therefore
H (x, ξ)||x|≥|ξ| =

∫
Ω
dβdαδ (x− β − αξ)h (β, α)

∣∣∣∣
|x|≥|ξ|

= 0 . (3.49)

Our problem is thus reduced to the search of contributions to h (β, α) such that, when Radon-
transformed to the DGLAP region, vanish. In this regard, Boman and Todd Quinto theorem [260]
guarantees that [92, 159], given H (x, ξ) = Rh (β, α) = 0 ∀ (x, ξ) ∈ [−1, 1] ⊗ [−1, 1] : |x| ≥ |ξ|, then
h (β, α) = 0 ∀ (β 6= 0, α) ∈ Ω. As a consequence, distributions defined along the β = 0 region can
always modify a given double distribution without affecting the resulting DGLAP GPD. In other words,
a double distribution is uniquely determined from the DGLAP GPD up to D-term-like contributions

h (β, α)→ h (β, α) + δ (β)D (α) , (3.50)

as it was expected from the pictorial representation drawn before for the Radon transform operator.
Moreover, we already advanced this feature when we introduced the different double distribution schemes
in Sec. 2.4.2. There, we already presented the possible D-term-like contributions to the different DDs.

9Actually, derivatives of the delta distribution can also arise in this context. In the following, we stick to Ref. [159]
and do not take them into account
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In particular in Pobylitsa scheme, on which we rely for actual calculations, we found two “D-terms”:
One associated to the fP DD, and therefore even in the α variable; and a further D-term associated to
gP, this time α-odd. The corresponding GPD was thus written as (Eq. (2.124)):

H (x, ξ, t;µ) = Hq
P (x, ξ, t;µ) +

1

|ξ|
Dq,+

P

(
x

ξ
, t;µ

)
+ sign (ξ)Dq,−

P

(
x

ξ
, t, µ

)
, (3.51)

with a short-hand notation for the “Pobylitsa-gauged” GPD

Hq
P (x, ξ, t;µ) = (1− x)

∫
Ω
dβdαδ (x− β − αξ)h (β, α, t;µ) . (3.52)

Taming ambiguities with the soft-pion theorem

As a consequence, when inverting the Radon transform operator to determine the underlying double
distribution, there will be two terms that, in principle, remain free. Fortunately, for the case of the
pions, there exist strategies that allows us to constraint them and thus to implement the covariant
extension strategy in order to build theoretically complete models in the sense that they fulfill with all
the necessary properties for generalized parton distributions. Indeed, we can now take advantage of
the “low-energy” limit drawn when discussing isospin symmetry and its manifestations on generalized
parton distributions (Sec. 2.2.4). Explicitly, we found the isoscalar and isovector combinations of GPDs
to satisfy (Eq. (2.51)):

Hq
π (x, 1, 0;µ)−Hq

π (−x, 1, 0;µ) = 0 ,

Hq
π (x, 1, 0;µ) +Hq

π (−x, 1, 0;µ) = ϕqq̄/π

(
1 + x

2
;µ

)
.

(3.53)

Exploiting these relations to tame the D-term ambiguities is straightforward. Employing the
expression Eq. (3.51)

Dq,−
P (x, 0;µ) =

1

2

[
Hq

P (−x, 1, 0;µ)−Hq
P (x, 1, 0;µ)

]
,

Dq,+
P (x, 0;µ) =

1

2

[
ϕqq̄/π

(
1 + x

2
;µ

)
−Hq

P (−x, 1, 0;µ)−Hq
P (x, 1, 0;µ)

]
,

(3.54)

with similar relations following for gluon GPDs [159, 259].
In this way, when dealing with the description of pions, the soft-pion theorem allows to constraint

the contribution of D-term-like pieces and therefore to exploit the covariant extension strategy to
develop models of pion’s GPDs that, once extended to their entire kinematic domain, satisfy the two
essential features of GPDs: Positivity and polynomiality. Only, a possible drawback remains to be
handled: The soft-pion theorem allows to tame D-term-like ambiguities at vanishing momentum transfer.
In principle, there is no clear way one can tackle this situation. For that reason we adopt a somewhat
phenomenological approach: Relying on pQCD predictions, which state that at large −t, the moments
of the pion’s GPD behave like 1/|t| (up to logarithmic corrections) [263], we chose a monopole-like
description for the D-term’s t-dependence:

D
q/g
P (x, t;µ) = D

q/g
P (x, 0;µ)

1

1− t
M2

(3.55)

with M being the mass scale introduced in Eq. (3.38).
Anyway, in this particular work we shall not be pretty much concerned about this issue. Remember,

the final aim of this dissertation is to develop predictions about pion’s structure that can be assessed
at future colliders. The facilities that will potentially explore this problem cover a kinematic domain
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restricted to a low momentum transfer between hadron states [264, 265]. Thus the kinematic domain
which we will be interested in for practical purposes is that of low-|t| and therefore taming D-term-like
ambiguities at vanishing momentum transfer will not be a major drawback for us. Provided that the
resulting D-term-like t-dependence yield verifiable predictions for observables within the low-|t| region,
the Ansatz above can be assumed to give an accurate description of pions’ structure in the kinematic
region of interest, and thus will not spoil the reliability of our results.

3.2.2 Covariant extension: Numerical implementation

The covariant extension is thus something else than a statement about how could we combine the
virtues of the overlap and double distribution representations to obtain generalized parton distributions
that exhibit all the necessary features. It guarantees that the cross-over step of going from the DGLAP
domain of GPDs to the Ω domain of double distributions is indeed possible, quantifies the existing
ambiguities and tells us how to tame them. In this regard, the covariant extension provides us with a
ready-to-use algorithm allowing to fulfill with our purposes. It just remains to be implemented and
exploited.

To this end, analyzing and understanding the essence of the inverse Radon transform problem
is crucial. Unfortunately, as soon as one gets involved with that task, what will be found is that a
direct evaluation is highly non-trivial. Three main issues may be highlighted. First, the inverse Radon
transform is a non-continuous operator [163], thus turning the evaluation of double distributions from
input GPDs into an ill-posed problem, in the sense of Hadamard [266–268]. Moreover, although the
inverse Radon transform is known to exist [159, 260, 261], there is no closed-form solution. Third, the
actual problem we are involved with is an incomplete-data problem: The determination of DDs from a
limited knowledge of GPDs: i.e. from the DGLAP region. As a consequence, the effect of noise may
spoil the reliability of a direct solution [92].

In summary, there exist challenges that arise both from the precise mathematical formulation of the
inverse Radon transform and from the particular structure of the problem at hand. A solution must
be found. And, of course, one cannot rely on the wish that actual physical systems are described by
distributions allowing for an analytic solution of the inverse Radon transform problem. Mostly because
that situation is unlikely [171], but also because our aim is to describe a general procedure. Fortunately,
all these problems are well known from the the field of computerized tomography, where the inversion
of the Radon transform as applied to incomplete-data problems is routine work [268]. The way to go
is also well-publicized: Numerically invert the Radon transform operator while keeping noise under
control [171, 268].

Our approach relies on a FEM-like (finite element method) strategy to approximate a DD within a
discretized domain, thus turning the continuous problem

Hq
π (x, ξ, t;µ)||x|≥|ξ| = R [h (β, α, t;µ)] (3.56)

into a discretized version where the Radon transform is realized in a matrix form, R:bi
 =

 Rij

dj
 (3.57)

where dj is the unknown value of the DD (represented by a vector D) and bi are the values of the input
DGLAP GPD. The double distribution is thus found from the solution of the equivalent system of
algebraic equations [259].

Within this section we sketch the necessary steps and validate the algorithm through comparison
with available models. In particular, we take advantage from the example developed in Ref. [171],
where an exact solution to the inverse Radon transform problem as applied to the case of the covariant
extension of factorized GPD models is given.
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Figure 3.6: Left panel: Constrained Delaunay triangulation of the upper-right triangle of the
DD support, Ω+, with a example “DGLAP line” hitting some of the cells. Right
panel: Illustration of the P1 Lagrange polynomials employed as basis functions
for the interpolation of the double distributions in the numerical algorithm for the
inversion of the Radon transform operator.

Discretization and sampling

Discretization of the support domain Ω is the first step to carry out. This task can be facilitated by
taking symmetries into account. First of all, one may notice that β ≥ 0 (β ≤ 0) probe quark (antiquark)
DGLAP GPDs [10]: i.e. x ≥ |ξ| (x ≤ |ξ|). Let us then assume the input GPD to be that of quarks and
therefore reduce our problem to the β ≥ 0 sub-domain. Already half of the problem. Moreover, double
distributions are known to exhibit well-defined symmetry properties with respect to the α variable
(Sec. 2.4.2). In particular, in the case of Pobylitsa scheme, hP (β, α, t;µ) = hP (β,−α, t;µ). It is then
possible to workout discretization for the α ≥ 0 region and then extend it to the lower sub-domain by
means of DDs’ α-symmetry. Without loss of generality, one is thus left with the inversion of the Radon
transform operator within the sub-domain (Fig. 3.6)

Ω+ ≡ Ω ∩ {β ≥ 0} ∩ {α ≥ 0} . (3.58)

We discretize the Ω+ domain through triangulation. More precisely, we build a Delaunay trian-
gulation [269–271]. The reason for this choice is two-fold: Primarily, triangulations are widely used
in FEM because they provide an optimum apparatus to cover regions of arbitrary geometry. In our
particular case it is even better, since a triangulation could share the symmetry of the parent Ω+ domain.
But more importantly, among all possible triangulations we choose that of Delaunay type. The main
reason is that it is known to prevent the proliferation of sliver triangles but also because algorithms
for its design have been well optimized: Indeed, an n points Delaunay triangulation can be built on a
O (n log n) time-scale [271]. In practical terms we build a constrained Delaunay triangulation over the
reduced DD domain by means of the triangle discretization library [272]. For further accuracy we
impose a constraint over the maximal area of each element (set through this work as 0.001), generating
a mesh with n = 427 vertices and 780 elements (Fig. 3.6–Left panel).

After discretization of the problem’s domain, a basis of approximating functions for the double
distribution must be set (see App. C for details on its construction). In this work we rely on two-
dimensional Lagrange interpolating polynomials of degree one with restricted domain: P1-polynomials.
Those showed a enhanced accuracy with respect to zero-degree interpolating Lagrange polynomials; but
at the same time, higher stability than second order interpolating functions10. In addition, its practical

10In a nutshell, given the geometry of the DD’s domain, (for an homogeneous mesh) most of the interpolation nodes
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implementation is specially accurate for triangulated regions because they are shown to be generated
directly from a system of barycentric coordinates ([273], App. C). Each node is then allocated with
one of such basis-functions, vj (β, α) so that three conditions are met (Fig. 3.6–Right panel): (i) the
basis-function evaluates to one at the corresponding node but vanishes at all others; (ii) its support is
restricted to the elements adjacent to such node and (iii) vanishes on the boundaries of each element.
In this way, each interpolating basis-function is unambiguously defined and the double distribution is
approximated as

h (β, α) =
n∑
j=1

vj (β, α) dj , (3.59)

where dj are the values of the actual double distribution at the node j; the unknowns of our problem
Eq. (3.57). For compactness in the notation we dropped again labels for momentum transfer, t, and
renormalization-scale, µ.

Once the domain of the problem is discretized, we find ourselves in a position to turn our continuous
integral problem into a discrete matrix version Eq. (3.57). The crucial step here is to realize, as discussed
in Sec. 3.2.1, that the Radon transform operator can be understood as an integral over lines satisfying
x− β − αξ = 0. Then choose a pair (xi, ξi) within the DGLAP region:

bi ≡ H (xi, ξi) =

∫
Ω+

dβdαδ (xi − β − αξi)h (β, α) ≡ Ri [h (β, α)] . (3.60)

After discretization, the double distribution no longer lives on a continuous region. Instead, it
is given by functions whose support is restricted to certain elements of the mesh. This means that,
when the double distribution domain is sampled by a given DGLAP line, not every single element
(or node) will contribute to the Radon transform11. On the contrary, only those elements hit by the
sampling line would give a non vanishing contribution to the integral (see Fig. 3.6). In fact, plugging
the approximation Eq. (3.59) into the above we readily get

bi ≡ H (xi, ξi) =

n∑
j=1

∫
Ω+

dβdαδ (xi − β − αξi) vj (β, α) dj =

=

n∑
j=1

[∫
Ω+
e ⊃nj

dβdαδ (xi − β − αξi) vj (β, α)

]
dj = Rijdj .

(3.61)

where Ω+
e ⊃ nj denotes the elements of the mesh covering Ω+ that contain the node nj . The Radon

transform of the basis functions vj (β, α) can now be computed in closed form (App. C), an algebraic
equation relating the value of the GPD within the DGLAP region with that of the double distribution at
the interpolation nodes being thus built. Notably, because the basis functions employed are polynomials,
their Radon transform can be precomputed in closed form, optimizing the behavior of the algorithm
in what concerns building the Radon transform matrix. Iterating the process over a set of m pairs
(xi, ξi) one finally turns the integral problem Eq. (3.56) into a system of algebraic equations in the form
Eq. (3.57), where the unknowns are the values of the double distribution at the interpolation nodes
and the system’s matrix Rij is sparse12. The actual DD is reconstructed after its solution by means of

are located within the low-β region. As we shall discuss later in this section, this implies sampling Ω with a number of
lines characterized by a large slope, ending up with a set of sampling lines with are nearly parallel. This situation is
worsen when one turns to the use of higher order interpolating polynomials, e.g. P2, which requires the definition of extra
nodes (e.g. with respect to P1 interpolation). Ensuring the stability of a solution found through smooth polynomials thus
requires a careful definition of the mesh’s nodes, tackling possible issues arising from redundant information about the
low-β domain.

11An illustration of this situation is given in App. C, where the algorithm for the numerical inversion o the Radon
transform is carefully presented.

12This feature of the matrix representation of the Radon transform is indeed crucial for the system’s solution (see
Sec. 3.2.2–Normal equations). A grasp about it can be obtained directly from the paradigmatic example shown in the left
panel of Fig. 3.6: For a given sampling line, most of the nodes making up the mesh are not touched, thus most of the
elements in the matrix must be identically zero.
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the approximation Eq. (3.59), and the ERBL sub-domain of GPDs accessed through a direct Radon
transform of the former solution.

Unfortunately, obtaining the double distribution from the discrete Radon transform problem is not
as straightforward as inverting the Radon transform matrix Rij . The reason for that being, again, the
ill-posedness character of the problem. To further delve into this subject and the way it affects the
following steps let us take a closer look at the structure of the matrix.

An accurate sampling of Ω+ is crucial. On it depends the structure of the resulting matrix.
An straight possibility would then be that of choosing a number of sampling lines equal to that of
interpolation nodes: m = n. Thus we end up with an squared matrix R ∈ Mm×n. However, the
geometry of the DD’s domain would prevent from the inversion of the system’s matrix. Lets gain a
simple picture: A regular discretization have most of its nodes located near the small-β region (Fig. 3.6).
The reason is that the area of that region is larger than that of the large-β domain. Accordingly,
choosing a naive sampling strategy with the minimum possible of randomly distributed lines results in
an under constrained system of equations, simply because “touching” every single node is very unlikely.
As a result Rank (R) < n and the system of equations is said to be non-compatible.

An alternative is to choose the sampling lines in a smart way, i.e. such that every node on the mesh
is probed by (at least) a given line, and therefore Rank (R) = n. A unique solution to the problem may
then exist, but it is again obscured by a drawback originated on the geometry of the DD’s domain.
In a nutshell, probing the low-β region requires sampling lines with growing slope. Because most of
the interpolation nodes are located within that area, the present sampling strategy ends up as being
generated by a set of nearly parallel lines grouped within a rather small region. As a result, redundant
information is caught by the resulting Radon transform matrix (the coefficients resulting from two nearly
parallel lines will be very close to each other), and the solution to the resulting system is numerically
compatible with infinitely-many solutions. In a more formal language, common in numerical analysis,
the system’s matrix is said to be badly conditioned13.

These two simple illustrations reveal two crucial features about the discrete version of the inverse
Radon transform problem: Neither the existence nor the uniqueness of a solution is granted. It seems
that we have not improved the conditions given by the continuous version of the problem, and instead
we have worsen it. In the sense of Hadamard, a problem is said to be ill-posed if it shows at least one of
these three conditions: Non-existence, non-uniqueness or non-stability of the solution. If the continuous
problem is simply defined by a non-continuous operator and therefore violates the stability property of
well-posed problems, the discretized version meets all these three conditions at a time! Nevertheless,
Lorentz invariance guarantees that physical GPDs are the Radon transform of DDs (see Sec. 2.4.2),
and therefore a solution to the inverse problem must exist. This is exactly the same situation encounter
in the field of computerized tomography: An image of the problem-object must exist, simply because it
was actually inside the photographic-chamber. Therefore, working out the issue of sampling reveals
crucial to bypass the inconsistency of the problem at hand.

Let us take a closer look at the structure of the Radon transform matrix as generated from different
sampling strategies. For the system of equations Eq. (3.57) to have a unique solution the condition for
maximal rank of the Radon transform matrix must be met: Rank (R) = n. Obviously, choosing m < n
sampling lines does not solve our issues. We already argued that m = n sampling lines lead to an
inconsistent problem. Under those conditions a full-rank Radon transform matrix can be obtained but
it is numerical instability which obscures the solution of the resulting system of equations. A different
possibility would be to sample the Ω+ domain with m > n DGLAP lines. Provided that every node is
sampled at least once (which is very likely to occur if the number of lines employed is large enough), the
resulting matrix will still be full-rank but now rectangular. That strategy has the potential to solve our
issues. As an illustration consider a system of two equations. The case where the number of sampling
lines equals that of nodes resembles that of system of two equations defined from a matrix made up
from two linearly dependent rows. That system lacks from a unique solution. If a further identity can

13The condition number of a matrix, A ∈Mm×n, is defined as κ (A) := σ+ (A) /σ− (A), with σ± (A) the largest and
smallest singular values of the matrix A respectively. A matrix is said to be bad conditioned if κ (A) is “large”.
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be found, it is then possible to add an extra row to the matrix (which is different from the former two)
and thus diagonalization solves the problem. The case here is analogous: Using a large-enough number
of sampling lines will very likely produce a full-ranked matrix, where many of its rows will be (nearly)
linearly-dependent. However, the rows producing a matrix with the smallest possible singular values
can be “chosen” afterwards. This procedure can be developed until the resulting matrix has a small
enough condition number for stability of the solution to be observed.

For a large-enough number of sampling lines, m > n, existence of the solution within the numerical
precision can be achieved by improving matrix’s conditioning. Furthermore, for the sake of flexibility
(avoiding mesh-specific sampling algorithms) the whole set of sampling lines can be randomly distributed.
In this way, m ≥ 2n is empirically found to yield a matrix R such that Rank (R) = n whose condition
number is small enough for the system’s solution to be found, allowing to overcome the difficulties
introduced by the ill-posedness of the inverse Radon transform problem, determine the underlying
double distribution and take the covariant extension of an input DGLAP GPD to its ERBL domain.

Normal equations

As discussed before, stability of the solution is achieved by building an overconstrained problem. In
practical terms, this is realized by a rectangular matrix. Consequently a direct inversion of the system’s
matrix cannot be achieved. In this context, an efficient strategy ensuring the existence of the solution
is to look for it through a least-squares formulation of the problem. In loose terms, in lack of an exact
solution to an over-constrained problem, an accurate approach is to look for the solution which deviates
less from the actual one. Formally, to look for the solution D that minimizes

χ2 =
1

σ2
DGLAP

∑
i

(bi −Rijdj)2 , (3.62)

where we have included a constant uncertainty σDGLAP over the values of the DGLAP region GPD,
bi; which, being constant, does not impact on the minimization. Notice, such can be understood as a
measure of the “distance” between the actual solution in the continuum problem, and that obtained in
a discrete space.

In this way we look for the values of the DD at the interpolation nodes, dj , such that the residual
χ2 is minimized. The combination of an over-constrained system of equations, which guarantees the
existence of a solution (Rank (R) = n); and a least-squares approach, granting the best possible solution
(in the sense of Eq. (3.62)) to be found, allows us to circumvent the challenges associated to the ill-posed
character of the inverse Radon transform problem. Furthermore, since Lorentz invariance entails for the
existence of on single DD for each GPD, the solution found from the optimization problem Eq. (3.62)
must be viewed as the actual (best possible) double distribution in the FEM space considered.

The only point that remains to be addressed concerns the practical solution to the least-squares
problem Eq. (3.62). In former studies of the covariant extension [92, 159], the solution to that problem
was found by an iterative least-squares algorithm optimized for sparse matrices: the LSMR algorithm
[274]. In such context, the residual χ2 is recursively minimized up to a given tolerance, and thus the
solution dj is obtained to a given accuracy. Here we rely on a completely different approach which,
in turn, consists in an exact solution of the same optimization problem. Indeed, minimization of the
residual with respect to dk proves the solution to such problem to be given by [259]:

RTRD = RTB (3.63)

corresponding to the so-called normal equations of the linear system (3.57), whose solution provides us
with a DD such that χ2 in Eq. (3.62) is minimized. Strikingly, the system of equations thus obtained
is identical to the original one but, multiplied by the transposed Radon transform matrix, RT . As a
result, the matrix of the system, RTR ∈Mn×n, is now squared. For such system to have a solution,
the new matrix must be full-rank, a condition which is indeed met provided that the Radon transform
matrix is full-ranked (see App. D) [259]. Since the sampling strategy was designed to fulfill this latter
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condition, the existence of
(
RTR

)−1 is proved, and thus the DD which solves the least-squares problem
in Eq. (3.62) is obtained as:

D =
(
RTR

)−1RTB (3.64)

The inverse Radon transform problem can be always solved, the DD being found through Eq.(3.64).
The key idea behind it is the over-constrained character of the system of equations. In fact, adding
extra equations to improve the matrix’s conditioning (see Sec. 3.2.2) can be now seen more intuitively:
Once the rank of R-matrix is maximal, adding more lines does not modify the system’s size (RTR,
Eq. (3.63)) but produce larger diagonal elements and hence smaller uncertainties as the covariance
matrix is proportional to (RTR)−1 (see Sec. 3.2.2). For this reason, the present method proved to yield
more accurate results than the previously used LSMR algorithm. Furthermore, since matrix-inversion
routines are, generally speaking, carefully optimized, the normal equations strategy also showed to be
much more efficient. Therefore, it was adopted for the covariant extension developed within this work.

Uncertainty assessment

As discussed, once the double distribution has been determined from the inverse Radon transform, the
ERBL GPD can be determined by solving the direct problem. The strategy goes right in parallel as
before but this time choosing pairs (xi, ξi) within the ERBL region. This time the unknown is the GPD
(the vector in the left-hand side of Eq. (3.57)). Thus one defines a sampling line by the values of xi and
ξi where the GPD wants to be obtained (BERBL). The double distribution domain is then sampled
by such line: Identifying the elements hit and building the corresponding row of the Radon transform
matrix (RERBL). Finally, a direct product of such matrix with the DD vector determined before gives
the resulting ERBL GPD:

BERBL = RERBLD . (3.65)

But we can still do a better job and assess the uncertainties generated by discretization and
interpolation. Indeed, when solving the least-squares problem Eq. (3.62), the covariance (C) matrix of
the system is given by

C = σ2
DGLAP

(
RTR

)−1 , (3.66)

which can be built from the inversion of
(
RTR

)
needed for the evaluation of the inverse Radon transform.

Thus, the uncertainty of the results of the GPD’s covariant extension to the ERBL region can be
obtained by standard uncertainty propagation [275]:

(
σ2
ERBL

)
i

=
∑
jk

∂bERBLi

∂dj

∂bERBLi

∂dk
Cjk =

= σ2
DGLAP

(
RERBL (RTR)−1RERBL,T

)
ii

(3.67)

Therefore, the only ingredient that remains to be estimated is the uncertainty σDGLAP associated
to the DGLAP GPD yielded by our numerically computed DD. Here we adopt a conservative approach
and estimate it as the maximum separation between the input and numerical DGLAP GPDs

σ2
DGLAP = max

i

bi −∑
j

Rijdj

2

, (3.68)

providing us with a rough estimate of the error associated to the predictions obtained from our numerical
approach. Moreover, it is implicit in the derivation of Eq. (3.67) that correlations are neglected. As a
consequence, the resulting estimation for the uncertainties is expected to be overestimated. In lack of a
better approach, the resulting uncertainty band will be wider than the actual ones, thus guaranteeing
the agreement or discrepancy observed between our predictions and (potentially) existing data to
remain meaningful.
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Figure 3.7: Benchmarking the algorithm for a numerical inversion of the Radon transform with
the GPD model from Ref. [171] at ξ = 1/2 and t = 0. Comparison between the exact,
analytical result (dashed black line) and the numerical result – Left panel: Results
obtained using different sampling strategies to fill in the R matrix: 3120 (blue)
and 9360 (orange) sampling lines. Right panel: Results obtained with different
meshes: Constraint over the maximum area of the elements 0.001 a.u. (blue) and
0.005 a.u. (orange). The corresponding uncertainty bands of one standard-deviation
are shown in every case.

Validation

Once the general idea behind the covariant extension strategy has been presented and before its use in
any real-world study, we can exploit it for the assessment of simple situations. In that way we shall
gain further insights into the idea of the covariant extension strategy and the numerical inversion of the
Radon transform, at the time we validate the implementation.

For definiteness let us consider the pion GPD model presented in Ref. [171] as a benchmark:

Hq
π (x, ξ, 0)|x≥ξ = 30

(1− x)2 (x2 − ξ2
)

(1− ξ2)2 , hqP (β, α, 0) =
15

2

[
1− 3

(
α2 − β2

)
− 2β

]
. (3.69)

That model is built on the basis of a covariant approach to the two-body problem in quantum
field theory. A Nakanishi representation for the pion’s Bethe-Salpeter amplitude is employed with a
simple choice for the Nakanishi weight as ρ (ω, z) = δ (ω)

(
1− z2

)
. The resulting BSA is projected onto

the light-front [154] to obtain the valence LFWF for the pion. Finally, the overlap representation for
the pion GPD in a two-body truncation for the Fock-space expansion of meson states, Eq. (2.104), is
used to build the corresponding DGLAP GPD (Eqs. (3.69)). The associated double distribution is
found through the inversion of the Radon transform, which in this case can be taken analytically. The
choice of the model in Eq. (3.7) in benchmarking our algorithm is also accurate. Indeed, notice that
the double distribution above is outside the space covered by our interpolating functions: It is a second
degree polynomials, while we are working on the basis of linear ones. Thus, the model being explored
may be also useful in an uncertainty assessment.
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Figure 3.8: Double distribution underlying the quark GPD in a pion developed in model
Eq. (3.69) —Left panel: Contour plot of analytical solution to the inversion of
the Radon transform. Right panel: Numerical solution to the same problem
(P1-approximation).

For practical purposes, the algorithm for the inversion of the Radon transform was implemented
in the PARTONS framework [276], a C++ library dedicated to the phenomenology of hadron structure.
It constitutes an ideal ground for the application of this approach, allowing for a easy exploitation
with several GPD models (not only for pions) as well as an outstanding interface to the evaluation of
observables [277] and scale-evolution routines [278–281].

Fig. 3.7 shows the results obtained through different configurations of the Radon transform routine.
The left panel shows a calculation developed over a triangulation built with a constraint on the maximum
area of the elements of 0.001 a.u. using two different sampling strategies: m = 3120 and m = 9360
DGLAP lines (four and twelve times the number of mesh cells). The right-hand figure shows a similar
calculation, this time developed using the same sampling strategy (twelve times the number of nodes)
but using different meshes: 0.001 a.u. and 0.005 a.u..

As expected, the resulting Radon transform matrices were shown to have maximal rank in all
cases. The systems of equations were then solved by means of the normal equations strategy. Then the
resulting double distributions were employed to compute the GPD at14 ξ = 1/2 and t = 0. A quick
look at Fig. 3.7 reveals that the numerical approach described herein yields satisfactory results, the
numerical solutions being essentially indistinguishable from the analytic calculations. It is only in the
inner ERBL region where deviations from the actual result can be observed, but still (at large) lying
within the estimated uncertainties bands. The agreement shown by the results presented in Fig. 3.7 is
not a peculiarity of the chosen configurations, but instead was found to remain true using different
numbers of sampling lines, mesh sizes and kinematic points.

The results shown on the right-hand side of Fig. 3.7 express a first feature: A finer mesh yields
more accurate results. Indeed this finding was to be expected. In loose words: The finer the mesh, the
closer to the actual continuum problem. However, triangulations cannot be refined ad-infinitum mainly
because of a lack of computational resources but also because finer meshes may facilitate the proliferation
of sliver triangles which may spoil the stability of the numerical solution. A phenomenological study
revealed the usage of a mesh characterized by a constraint 0.001 on the elements’ maximal area to
provide accurate results.

14Notice that the covariant extension strategy does not depend on the momentum transfer variable, t.
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Nonetheless, within a given mesh different sampling strategies can be explored. The two configu-
rations discussed in Fig. 3.7–Left panel) illustrate a feature of the algorithm: If both choices for the
sampling strategy prove to yield nearly identical results, uncertainty bands are appreciably narrower
when a large number of sampling lines is chosen. This is expected from the arguments given before:
Increasing the number of sampling lines allows to build “better conditioned” system’s matrices, thus
favoring a better performance of the inversion routine for RTR. In contrast, fewer lines improves
performance of the code, reducing execution time. An exhaustive analysis confirmed this observation
and showed the configuration with 12ne randomly-distributed sampling lines, which we employ for the
rest of this work, to present a well-suited compromise between accuracy and performance.

A further remark is in order. From a statistical perspective we would have expected the analytic
results to be sometimes out of the error band. As it is not the case, we deduce that our choice for
σDGLAP is, as discussed before, too conservative, generating uncertainty bands which are too large. We
nevertheless stick to that choice in the following to assess an order of magnitude of the uncertainties
generated by the numerical inversion.

One may also wonder what happens at the level of the double distribution. The corresponding
results are illustrated in Fig. 3.8. There, an excellent agreement between the analytic result (left panel)
and the P1-approximated solution is apparent. Only, a remarkable difference can be shown around
the barycenter of the Ω+ domain. Indeed, such can be understood from a proper understanding of
the interpolation routine and the behavior being approximated: Within that region the actual DD
exhibits high curvature, a shape which is hardly approximated by linear polynomials. Nevertheless,
this is an artifact of the interpolation which can be overcome by either improving the design of the
mesh, or upgrading the interpolating basis functions to higher degree polynomials. Also, as shown in
Fig. 3.7, such discrepancy is not apparent at the level of generalized parton distributions. This is a
further virtue of the numerical approach to the covariant extension strategy: There exist an arbitrary
number of cells contributing to a single value of the GPD, the result is obtained by summing over all of
them (Eq. (3.59)). Thus, an “average” over several values of the DD occurs, and the discrepancies are
then washed out by integration as drawn by the Radon transform operator.

One last word can be said from the analysis of the relative difference between the analytic and
numerical solution given by our routine for the double distribution: Fig. 3.9. With that representation,
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the agreement between the actual analytic solution and the numerically computed version becomes,
again, manifest. Indeed, the main source of deviations there shown has already been discussed, and this
new look at the same region does nothing than confirming our arguments. Nonetheless, a further region
where significant deviations are shown is encountered (blue area). However, this time the apparent
discrepancy is simply an artifact of the visualization chosen (as confirmed by comparison with the
direct representation of Fig. 3.8): It is around that region where the benchmarking DD vanishes and
therefore the relative difference being plotted is meaningless.

3.3 Pion Generalized parton distributions

In summary, the covariant extension works and we know how to exploit it. A careful numerical
implementation allows to start from an arbitrary generalized parton distribution restricted to the x ≥ ξ
domain and covariantly extend it to the inner domain: −ξ ≤ x ≤ ξ. Moreover, we have presented a
novel family of DGLAP GPDs built on the basis of known parametrizations for the parton distribution
function:

Hq
π (x, ξ, t;µRef.)||x|≥ξ =

√
qπ

(
x+ ξ

1 + ξ
;µRef.

)
qπ

(
x− ξ
1− ξ

;µRef.

)
Φq
π (x, ξ, t;µRef.) , (3.70)

where qπ (x;µ) is the quark parton distribution function and Φq
π (x, ξ, t;µ) is given by Eq. (3.39) to

describe the momentum transfer dependence of GPDs.
We find this expression advantageous. First, because it is flexible enough to account for a plethora

of approaches to the study of pions’ structure: Different choices for the PDF yield different models of
DGLAP GPDs. Second, because positivity is naturally and simply realized in it, thus allowing for an
straightforward a priori assessment of such property. And last, but not least, because its derivation is
based on a set of well defined assumptions that can be easily traced in a bottom-top approach, hence
guaranteeing a reliable interpretation of its consequences.

We thus choose here to rely on the following approach to the description of pions inside (Fig. 3.4):

1. Choose reliable Ansätze for the pion’s parton distribution function.

2. Relying on the set of assumptions described in Sec. 3.1 to accordingly build DGLAP GPDs
through Eq. (3.70); satisfying the positivity bounds imposed by the positive definiteness of the
underlying Hilbert-space’s norm.

3. Apply the covariant extension strategy to extend it to the ERBL sub-region; thus guaranteeing
also the polynomiality property.

3.3.1 Theoretically complete models for pion GPDs

Our approach to the study of pion’s structure through generalized parton distributions thus starts
from the choice of a parton distribution function. There are plenty through the literature: Some follow
from global fits to experimental data [282–285] or rely on Lattice QCD calculations [174, 286–288], but
we also find attempts at the evaluation of the pion’s parton distribution function within continuum
methods (DSEs and BSEs) [231, 239, 242, 289–291], to which we stick in the following. The reason is
mainly two-fold. On the one hand, we have taken an approach to the study of the bound-state problem
in quantum field theory based on the Bethe-Salpeter equation. It is from that procedure that our
family of generalized parton distributions Eq. (3.70) follows. Thus, internal consistency of our approach
pushes the choice of the “plugged-in” PDF to be obtained within the same framework. On the other
hand, the final aim of the present study is to generate predictions on the three-dimensional structure of
pions as for future colliders (Ch. 5). In that regard, we find an approach based on continuum methods
to be well-suited for keeping the underlying assumptions under control, thus allowing for a direct
interpretation and validation (or not) of the forthcoming results on the basis of our hypotheses. It is
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Figure 3.10: Plot of the PDF parametrizations Eqs. (3.71) – Blue: Scale-free PDF. Orange:
Outcome of a solution for the DSE-BSE system in rainbow ladder truncation. As
a manifestation of dynamical chiral symmetry breaking, the realistic PDF exhibits
a marked broadening in the intermediate-x region.

for all this that we choose two Ansätze for the pion’s parton distribution function based on continuum
approaches to the bound-state problem (Fig. 3.10):

qAlg.π (x;µRef.) = 30x2 (1− x)2 ,

qNum.
π (x;µRef.) = Nx2 (1− x)2

[
1 + ρ

√
x (1− x) + γx (1− x)

]
,

(3.71)

where γ = 2.2911, ρ = −2.9342 and N is a normalization constant.
The first parametrization corresponds to the so-called “scale-free” PDF [171, 244], which in the valence

approximation is directly connected with the asymptotic parton distribution amplitude ϕAsymp. (x) =
6x (1− x) arising in the conformal limit of quantum chromodynamics [100, 134, 292]. The second model
follows from a rainbow ladder truncation of the DSE-BSE system [239] together with the assumption for
the diagonal term in the pion’s bound-state amplitude to be dominant. Notice that the rainbow-ladder
truncation is known to preserve the axial-vector Ward-Takahashi identity and hence, the resulting
parton distribution expresses the phenomenon of dynamical chiral symmetry breaking [239, 242, 243].
Both models exhibit a x→ 1 behavior compatible with pQCD prediction [293, 294]. Also, because of
the two-body approximation (together with isospin-symmetric limit) both PDFs satisfy,

qπ (x;µRef.) = qπ (1− x;µRef.) , (3.72)

and therefore a similar behavior is observed in the x→ 0 limit.
On the basis of Eqs. (3.71) the DGLAP GPDs are built following Eq. (3.70). The results are shown

on the left panel of Fig. 3.11 for three different values of the skewness variable and zero momentum
transfer. Strikingly, the shape of the input PDFs is somehow translated to that of the generalized parton
distributions within the DGLAP region, meaning that hardening of GPDs within the DGLAP domain
can be associated, in the sense of Ref. [243], to the dynamical breakdown of chiral symmetry.. Moreover,
as expected, the resulting GPDs are manifestly positive and thus the first benchmark of our modeling
strategy is checked. The parameter M in Eq. (3.39) has been fitted to available data on the pion’s
electromagnetic form factor (Fig. 3.12) to a value M = (318± 4) MeV in both models, a number which
remains compatible with existing estimations for the constituent-quark mass [190]. Finally notice that
both models vanish at x = ξ. This is a consequence of the factorized Ansatz for LFWFs. Intuitively,
the border line x = ξ provides access to a very peculiar kinematic region: Where one of the active
partons (either belonging to the initial or final state) carries zero longitudinal momentum-fraction. This
is analogous to the region probed by the end points of the parton distribution amplitude. Since in the
two-body approximation the LFWF yields the PDA after integration over k⊥, and the PDA vanishes at
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Figure 3.11: Algebraic (blue line) and numerical model (brown) evaluated at vanishing mo-
mentum transfer for ξ = 1/2 after fixing the D-term ambiguity with the soft-pion
theorem.

the end-points, the LFWF must also tend to zero in the limit x→ ξ and therefore the resulting GPD
vanishes at the frontier between the DGLAP and ERBL regions [10].

Armed with the covariant extension, we apply it for the kinematic completion of our two GPD
models. The one following from the scale-free PDF, to which we shall refer as algebraic model has been
continued to the ERBL region following the approach of Ref. [171], i.e. exactly solving the inverse
Radon transform problem. On the other hand, the DGLAP GPD model built from a “realistic” PDF
(from now on, numerical model) is extended by means of the numerical procedure developed above. As
an illustration, the right hand side of Fig. 3.11 shows the resulting GPDs at vanishing t and ξ = 1/2.

From the obtained results two main conclusions can be drawn: The numerical model exhibits an
oscillating behavior within the ERBL region which is more marked than that of the algebraic one.
Indeed, from our conservative assessment of the uncertainties, such oscillations can be seen as having a
physical origin (and not being due to numerical artifacts). The reason is simple: The uncertainties are
maximal at the apexes, while nearly vanish at the crossing points. Beyond the oscillating behavior, one
shall stress the continuity of both models at the crossover lines |x| = |ξ|. As highlighted in Ch. 1 (see
also Ref. [6]), this is a really noticeable outcome of the present modeling approach. Even more since it
has not been imposed at any stage and the inverse Radon transform is a non-continuous operator. In
contrast, it has naturally emerged from an internally consistent treatment of all fundamental features
underlying GPDs. Furthermore, their first derivative at that cross-over point is non-continuous; just as
it occurs in other types of models based on DDs (see e.g. [167, 295]). This “singularity” is inherited from
the behavior of the DDs on the corners of their domain [166], and is consistent with the LO evolution
kernel [281]. Indeed, this a key feature for any phenomenological assessment of pion’s structure through
exclusive processes, in particular deeply virtual Compton scattering, whose factorization theorem
requires the underlying GPD to remain continuous (although not necessarily differentiable) at the cross-
over lines |x| = |ξ| for the amplitudes to remain finite (otherwise they exhibit logarithmic divergences)
[6]. Hence, apart from fulfilling with positivity and polynomiality, the pion GPD models developed here
are suitable for phenomenological applications, guaranteeing the calculation of Compton from factors
to yield finite results (see Ch. 5).

Electromagnetic and gravitational form factors

One we have generalized parton distributions which fulfill with all the necessary properties, the first
calculation of measurable quantities can be carried out. In particular, one shall go back to the
polynomiality property and evaluate the electromagnetic and gravitational for factors, Sec. 2.2.2.
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Figure 3.12: Calculation of pion’s electromagnetic form factor within the two models discussed
through this text. Blue line: Algebraic model; Orange line: numerical model.
Points: Available experimental data extracted from [296–307].

The pion’s electromagnetic form factor (EFF) can be computed for each quark flavor as, Eq. (2.24):

F qπ (t) =

∫ 1

−1
Hq
π (x, ξ, t;µRef.) , (3.73)

which, notice, by means of the polynomiality property does not depend on the skewness variable and
thus can be obtained from a direct integration of the GPD as defined in the forward limit. This property
allows for a cross-check of the result obtained for the EFFs, which can be found in that approach
but also exploiting the covariantly extended version of the same models. Moreover, by means of the
symmetry relations collected in Sec. 2.2.4, one can prove the electromagnetic form factor of the pion to
be given by:

Fπ (t) = euF
u
π (t) + edF

d
π (t) = F uπ (t) (3.74)

thus allowing for a direct evaluation of the pion’s electromagnetic form factor and its further comparison
with available experimental data (Fig. 3.12).

The results obtained exhibit an appreciably good agreement with available data. Specially in the
low-|t| domain (|t| ≤ 1 GeV2). Strikingly, the satisfactory results are obtained with one single free
parameter: The mass scale M arising in the factorized LFWFs of Sec. 3.1.3 and corresponding to a
measurement of the constituent-quark mass. Even more, this value was not directly fitted to data
points for the EFF, but rather on the world’s average for the pion’s electromagnetic charge radius:
rπ = 0.672± 0.008 fm [308] through:

r2
π = −6

Fπ (−t)
d (−t)

∣∣∣∣
t=0

⇒ Fπ (−t) ' 1− r2
π

6
(−t) (3.75)

yielding a value of M = (318± 4) MeV for both models.
Actually, deviations from available data are observed for both models at large momentum transfers.

Indeed, this is easily understood from the observation that our two models behave as 1/t2 in the
asymptotic limit. This contrasts with the expected result for the EFF, which is a monopole-like
behavior [100, 131]. In understanding this discrepancy our modeling approach again shows very
enlightening. A careful analysis allows to trace this discrepancy back directly to the light-front wave-
function, which in all cases behaves as |k⊥|−2 and thus triggers this behavior through (Eq. (A.32)). This
could be easily fixed if further components, e.g. pseudovector, of the pion’s Bethe-Salpeter amplitude
were taken into account [256]. In any case, the unwanted double-pole-like behavior obtained here does
not preclude a sensible analysis of the properties of pion’s structure in collider-experiments since it is
precisely the low-|t| region which is expected to be probed at future colliders.
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Figure 3.13: Left panel: Unit-normalized results for the gravitational form factor Aq2,0 (−t)
computed through the algebraic (blue line) and numerical models (brown line) –
Right panel: Logarithmic-scale plot of the unit-normalized gravitational form
factor Cq2 (−t) computed through the algebraic (blue line) and numerical models
(brown line). Dashed grey line represents the latest extractions from γ∗γ → π0π0

experimental data [309].

Besides the electromagnetic form factor, it is also possible to get a step forward and compute
higher-order Mellin moments. To this end, we recall that we can evaluate the gravitational form factors
arising in the decomposition of the energy-momentum tensor, Eq. (2.25)∫ 1

−1
dxxHq (x, ξ, t;µRef.) = A1,0

q/π (t;µRef.) + ξ2C1,2
q/π (t;µRef.) . (3.76)

Again, the form factor A1,0
q/π can be obtained from the forward limit GPD and therefore presents

no special difficulty. The result is shown in the left panel of Fig. 3.13 together with its most recent
experimental extraction [309]. For both models we observe a faster decay with the squared momentum
transfer. As we argued in the case of the electromagnetic form factor this issue arises as a consequence
of being dropping other contributions to pion’s Bethe-Salpeter amplitude than the purely pseudoscalar
one. However, in this case the situation becomes apparent even at intermediate values of the momentum
transfer variable.

From its part, the pressure distribution, C1,2
q/π, is purely generated from D-term-like contributions.

In fact, proceeding with the evaluation in, e.g. Polyakov-Weiss scheme, one readily obtains:∫ 1

−1
dxxHq (x, ξ, t;µRef.) =

=

∫ 1

−1
dxx

∫
Ω
dβdαδ (x− β − αξ)

[
hqPW (β, α, t;µRef.) + ξδ (β)Dq,−

PW (α, t;µRef.)
]

=

=

∫
Ω
dβdαβhqPW (β, α, t;µRef.) + ξ2

∫ 1

−1
dαDq,−

PW (α, t;µRef.) .

(3.77)
Unfortunately, our modeling strategy does not provide access to the entire D-term contributions.

Indeed, the soft-pion theorem allows us to unambiguously fix the D-term-like contributions in any DD
scheme but only at vanishing momentum transfer. Their t-dependence is, nonetheless, modeled. In our
case through a phenomenology-driven monopole-like Ansatz (Eq. 3.55) where the scale-parameter M is
already fixed to the electromagnetic charge radius. While the choice of a monopole-like parametrization
is based on observation of the large-|t| behavior of the pion’s electromagnetic form factor, the existence
of one single mass scale does not rely on first-principles arguments. However, this simple approach
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reveals in Fig. 3.13 (right panel) a low-|t| behavior (below 0.5− 0.6GeV2) consistent between our two
GPD models on the one hand, and between them and existing extractions for such GFFs [309], on the
other hand. This is indeed a crucial requirement for these GPD models which, apart from fulfilling all
the requirements imposed by QCD, are intended to be exploited in the assessment of DVCS (see Ch. 5).
Notwithstanding, we have already argued the low-|t| region to be of stark interest to us. Therefore
the GPDs behavior within that region deserves special attention. In this respect, the “pressure-radius”
allows for a fair quantification of our accuracy at small momentum transfers. In fact, rθ1π can be defined
analogously to Eq. (3.75) [247, 248], yielding for our two models:

rθ1π
rπ

∣∣∣∣
Alg.

= 1.17
rθ1π
rπ

∣∣∣∣
Num.

= 1.07 (3.78)

These results are in agreement with those extracted from γ∗γ → π0π0 [309]. Despite the existing
model dependence and the simple choice for the D-term’s momentum transfer dependence, Eq. (3.55),
the slope at |t| → 0 of the pressure distribution matches expectation, even when fixed through an
independent quantity (rπ) and thus supports again the choice of a monopole-like Ansatz for the D-term’s
t-dependence.

3.3.2 Phenomenological Ansätze

We have shown that there exist a well defined procedure allowing to start from a first principles
evaluation of the pion’s bound-state amplitude and reach GPDs. In that context we exploited state
of the art evaluations of the parton distribution functions to build models for pion GPDs that are
good candidates for the description of actual pions. Indeed, the first few observables that can be
extracted from them agree within the expected accuracy with available data. We are thus a in position
to further exploit these models to produce predictions that can be measured at future experimental
facilities. This is indeed the purpose of the following chapters. However, for the sake of completeness
and benchmarking we find useful to consider more conventional approaches to modeling generalized
parton distributions.

A widespread strategy [151, 167, 310–312] to assess generalized parton distributions relays on the
famous Radyuskin’s double distribution Ansatz (RDDA) [167]:

h (β, α;N,µ) =
Γ (2N + 2)

22N+1Γ2 (N + 1)

[
(1− |β|)2 − α2

]N
(1− |β|)2N+1

, (3.79)

with N = 2 for the case of pions. Convolution with existing parametrizations for the parton distribution
functions then allows to model generalized parton distribution functions as:

Hq
π (x, ξ, t;µ) =

∫
Ω
dβdαδ (x− β − αξ) qπ (β;µ)hπ (β, α;µ) rq (β, t;µ) +

ξ

|ξ|
Dq

(
x

ξ
, t;µ

)
, (3.80)

Hg
π (x, ξ, t;µ) =

∫
Ω
dβdαδ (x− β − αξ)βgπ (β;µ)hπ (β, α) rg (β, t;µ) + |ξ|Dg

(
x

ξ
, t;µ

)
, (3.81)

where hπ (β, α, µ) ≡ h (β, α;N = 2, µ) and the momentum transfer dependence is given by a function
rp (β, t) inspired by Regge phenomenology [83, 313]:

r (β, t;µ) = exp [tf (|β| ;µ)] , with

f (β;µ) = (1− β)3

[
κ log

(
1

β

)
+B

]
+Aβ (1− β)2 ,

(3.82)

where κ = 0.9 GeV−2 [83]. The parameters A and B can then be fitted to existing measurements on
the pion’s electromagnetic form factor. In the absence of gluon-sensitive data they are taken to be the
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Figure 3.14: Left panel: Phenomenological quark GPD model taken at ξ = 1/2 and t = 0.
Right panel: Phenomenological gluon GPD evaluated at ξ = 1/2 and t = 0.
Both shown at the original scale of µ2 = 1.9 GeV2.

same both for quarks and gluons. The D-terms are fixed at t = 0 through the soft-pion theorem:

Dq (x, 0;µ) =
Hq (−x, 1, 0;µ)−Hq (x, 1, 0;µ)

2
,

Dg (x, 0;µ) = −Hg (x, 1, 0;µ) ,

(3.83)

while their t-dependence (both for quark and gluon contributions) is again modeled through a monopole-
like Ansatz fitted to the gravitational form factors [309] to fix their intrinsic scale, Λ:

Dq/g (z, t;µ) =
Dq/g (z, 0;µ)

1− t
Λ2

. (3.84)

Following this idea one can then accommodate a number of models for generalized parton dis-
tributions. Simply, a choice for the parton distribution function needs to be made. With the aim
of benchmarking our modeling strategy we choose three different parametrizations: Two based on
available global fit analyses of the pion’s parton distribution function, and a further parametrization
built on continuum Schwinger approaches to the structure of pions. For definiteness, we consider the
parametrizations reported by the xFitter collaboration [285] and the Dortmund group [314] on the
phenomenological side. And, once again, state of the art DSE-BSE calculations for the pion’s PDF
[239] but this time generating the model through the RDDA approach.

In general, the global fit collaborations suggest Ansätze of the form [285, 314]

qv (x;µ) =
1

2
Nvxαv (1− x)βv

(
1 + ρv

√
x+ γvx

)
,

qs (x;µ) =
1

6
Nsxαs (1− x)βv

(
1 + ρs

√
x+ γsx

)
,

g (x;µ) = Ngxαg (1− x)βg
(
1 + ρg

√
x+ γgx

)
,

(3.85)

so that the individual parton-species distributions can be reconstructed as:

uπ (x;µ) = −θ (−x) qs (|x|) + θ (x) (qv (x) + qs (x)) ,

dπ (x;µ) = −θ (−x) (qv (|x|) + qs (|x|)) + θ (x) qs (x) ,

sπ (x;µ) = −θ (−x) qs (|x|) + θ (x) qs (x) .

(3.86)
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N α β

Valence 2.60 −1.75 0.95
Sea 6.66 −1.50 8.00

Gluon 0.92 – 3.00

N α β ρ γ

Valence 1.13 −0.50 0.35 0.15 –
Sea 3.13 −0.84 5.20 −3.24 5.21

Gluon 7.33 0.43 1.33 −1.92 1.52

Table 3.1: Tables collecting the values reported by different collaborations for the pion’s parton
distribution function parametrized through the Ansätze in Eq. (3.85): Left panel:
xFitter collaboration [285], Right panel: Dortmund group [314].

These expressions are fitted at a given scale to determine the set of parameters that best reproduces
the target set of data. In general, the strategies employed to this end are very refined and we do
attempt at their review here. We simply collect the results reported by [285, 314] in Tab. 3.1 and refer
the reader to the original works for further details.

xFitter parametrization

Recent analyses by the xFitter collaboration suggest a suitable parametrization for the pion’s parton
distribution function to be feasible at a factorization-scale of µxFitter = 1.9 GeV. Their parametrizations
can be reproduced from the Ansätze above and the corresponding parameters in Tab. 3.1 [285]. From
that point on, fitting on available data on the electromagnetic and gravitational form factors fixed
the parameters in Eqs. (3.82) and (3.84) to: AxFitter = 1.48 GeV−2, BxFitter = 1.14 GeV−2 and
ΛxFitter = 0.53 GeV2. As a result, the corresponding generalized parton distribution can be built
according to the strategy presented before, whose shape is depicted in Fig. 3.14 at ξ = 1/2 and t = 0

Notably, the xFitter-model includes a non-vanishing gluon distribution, as it is defined at an
intermediate scale. Also, the u-quark distribution is appreciably smoother than the ones discussed
previously through this chapter, but still its “averaged” behavior remains compatible with ours. The
continuous, albeit non differentiable property of the GPDs at |x| = |ξ| is again manifest on the plot for
quarks, and harder to see but present for gluons.

GRS parametrization

A similar strategy is followed in [314]. In contrast to the xFitter collaboration, just as we did, this work
assumes the existence of an scale at which the entire content of the pion can be described in terms of
valence degrees of freedom. In particular they assume a parametrization for the valence contribution
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Figure 3.15: Left panel: Phenomenological quark GPD model taken at ξ = 1/2 and t = 0.
Right panel: Phenomenological gluon GPD evaluated at ξ = 1/2 and t = 0.
Both shown at the original scale of µ2 = 1.9 GeV2.
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Figure 3.16: Left panel: Phenomenological quark GPD model taken at ξ = 1/2 and t = 0.
Right panel: Phenomenological gluon GPD evaluated at ξ = 1/2 and t = 0.
Both shown at the original scale of µ2 = 1.9 GeV2.

of the form above to hold. After fitting to available πN Drell-Yan data, the obtained distribution is
evolved to set their parametrization for valence, gluon and sea contents at an scale µGRS = 0.51 GeV.

The reported set of parameters is again collected (without uncertainties) in Tab. 3.1. Again, we
produce a model for the generalized parton distribution of the pion. That is fitted to EFF and GFF
data following the same strategy as in Sec. 3.3.1, obtaining: AGRS = 3.37 GeV−2, BGRS = 0.19 GeV−2

and ΛGRS = 0.51GeV2 to model their t-dependence.
An illustration of the resulting model is given in Fig. 3.15 at ξ = 1/2 and t = 0. This time,

the obtained shapes are quite “fancy”. However, there is no reason to think that such forms shall
prohibited. In fact, the positivity constraints can be verified afterwards to be fulfilled. As well, the
polynomiality property is implemented by construction. Moreover, the resulting model is continuous
but non-differentiable x = ξ, as required by factorization theorems for hard exclusive processes (Ch. 1).

Continuum parametrization

Finally, we build a pion GPD model using the RDDA Ansatz but feeding it with state-of-the-art
evaluations on the pion’s PDF using continuum Schwinger methods. In particular we take advantage
of the pion PDF reported by [239]: The same as we employed to develop our modeling approach.
However, we now take advantage of that model and evolve it to a scale15 µDSE = 1 GeV. To this end we
implement the strategy implemented by the same authors in Ref. [239] and first presented in [315]. The
gluon and sea contents are thus generated accordingly. Specifically, the parametrizations are given by:

qvπ
(
x;µDSE) = Nvxαv (1− x)βv

[
1 + ρvx

αv/4 (1− x)βv/4 + γxαv/2 (1− x)βv/2
]
,

qsπ
(
x;µDSE) = Nsxαs (1− x)βs ,

gsπ
(
x;µDSE) = Ngxαg (1− x)βg ,

(3.87)

15This model is defined at a low scale µRef. = 0.331 GeV. Evolution is performed from such scale using the effective
approach employed by the same authors [239].

N α β ρ γ

Valence 11.98 −0.21 2.23 −1.28 0.44
Sea 0.10 −1.41 4.38 – –

Gluon 0.50 −1.45 3.21 – –

Table 3.2: Table collecting the values defining the model described by Eqs. (3.87).

84



Pion Generalized parton distributions

with the set of parameters collected in Tab. 3.2 and the values ADSE = GeV−2, BDSE = GeV−2 and
ΛDSE = 0.51 GeV2 out-came from fitting to the electromagnetic and gravitational form factors to fix
the momentum transfer dependence of the resulting GPD model. They yield the shapes depicted in
Fig. 3.16 for ξ = 1/2 and t = 0.

Strikingly, the obtained quark distribution is again commensurate with all the models previously
presented. Moreover, the shape is similar to that for the xFitter-model. In contrast, the gluon GPD
obtained is larger that corresponding one from [285]. Unlike the the xFitter collaboration, which
systematically excludes the domain x < 10−3 in their fittings, the DSE-BSE approach is not involved
with this kind of issues and therefore, by construction, takes into account the entire domain of parton
distributions functions. Gluons are expected to proliferate in the low-x region, it is therefore intuitive
to think that the resulting gluon distributions must be larger than those in Fig. 3.14. In fact, in the
following chapter, where we will explore in detail the scale-evolution procedure, we will find the gluon
contribution to be larger whenever the small-x region is taken into account. Of course, gluon saturation
effects shall arise within that region [316–320]. However, as long as we do not attempt at extracting
any observable conclusion within that region, the approach remains internally consistent
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4 | QCD evolution for generalized parton
distributions

Having reached the second half of this dissertation it is worthwhile summarizing the main achievements
of the previous chapters. The first passage served as opening, presenting virtual Compton scattering
as a unique window into hadron structure. Driven by an analogy with the paradigmatic case of
deep inelastic scattering, we introduced the generalized Bjorken limit. A detailed analysis of virtual
Compton scattering on hadrons, as understood in the such kinematic domain, lead to the introduction
of generalized parton distributions as a source of exhaustive information about hadron’s inside. That
chapter was then rounded off by setting up the main goal of this work: To assess pion’s structure
through DVCS. Two tasks then arose as objectives:

• To build up a consistent approach to generalized parton distributions, capable of producing
models capturing the essence of pions’ inside.

• To exploit these models in a practical assessment of pions’ structure, generating predictions that
could be tested in actual experiments.

We thus started the journey with a rather introductory (but also unavoidable) chapter elaborating
further on the notion of generalized parton distributions: Their behavior, properties, interpretation
and possible modeling approaches. Capitalizing on that exposition we found ourselves in a position
to tackle the first aim of this dissertation: To build realistic models for pion GPDs. Chapter three
hence presented in its full-glory our approach to that problem; discussing its curses and blessings and
showing it to be, for the time being, the only existing path capable of producing GPDs fulfilling by
construction with every necessary property of GPDs. Thereupon, a novel family of models for pion
GPDs was presented.

Once came to this point, we had managed to develop models for generalized parton distributions
capturing the essence of pions’ inside, putting the finishing touch to a long effort developed during the
last decade [117, 154, 159, 171, 245, 259]. The next natural task was then given to as: Exploiting these
models in developing predictions for pion’s structure that could be tested at experimental facilities.
This is the second goal of this dissertation. In that way, comparison with foreseen experimental data
interpreted on the basis of our modeling hypotheses shall reveal useful in shedding light on the way
pions are made up from elementary building blocks.

There is, however, an intermediate step between the production of reliable models for pions’ structure
and the development of predictions at the experiment level: Scale-evolution. In a nutshell, we found
the generalized parton distributions to arise in the collinear factorization of deeply virtual Compton
scattering processes. Loosely speaking, that procedure consists in separating the high-energy partons’
dynamics as seen by the electromagnetic probe, and collective low-energy phenomena inside hadrons.
Accordingly, the amplitude is factorized into a coefficient function, Cp, accounting for high-energy
photon-parton interactions; and soft distributions: The GPDs. Both, convoluted, build up the Compton
form factors which parametrize the amplitudes for DVCS:

Hpπ
(
ξ, t,Q2

)
=

∫ 1

−1

dx

ξ
Cp
(
x

ξ
,
Q2

µ2
, αs

(
µ2
))

Hp
π (x, ξ, t;µ) . (4.1)
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Intuitively, the separation between high- and low-momentum interactions leading to the factorization
of hard exclusive processes takes place at a given scale, µ, which can be identified with the characteristic
scale of those scattering processes: The probing photon’s virtuality: Q2. As a consequence, the GPDs
are intrinsically defined at fixed scale, that scale at which the analysis of the scattering amplitude
was taken. Therefore, employing a given extraction of generalized parton distributions to evaluate its
consequences at a different energy-scale, say µExp. requires its “translation” from the definition “point” to
the experimentally relevant one. This is scale-evolution and plays a central role in any phenomenological
assessment of hadron structure.

The present chapter is devoted to a detailed analysis of scale-evolution of generalized parton
distributions: Starting by a brief review of the foundations, we present the equations driving the GPDs’
µ-dependence. Thereupon we discuss our approach to GPD evolution and apply it to the models
presented in the preceding chapter; paving the road down to an assessment of pions’ structure at future
colliders in the final episode of this dissertation.

4.1 Elements of scale-evolution for GPDs

In understanding the dependence of the generalized parton distributions on the scale µ, it is useful to
take advantage of their operator definition. One generically defines parton distributions as a matrix
elements of non-local quark and gluon operators projected onto the light-front. In the case of generalized
parton distributions, the “sandwiching” states correspond to different kinematic configurations. Among
the many consequences of this definition is the occurrence of ultraviolet (UV) divergences, as it is well
known from elementary quantum field theory. Taming this singular behavior requires the renormalization
of field operators in the definition of GPDs. Proceeding in the MS renormalization-scheme in 4− 2ε
dimensions (with ε > 0), the bare GPDs Ĥp

π are renormalized as [281]

Hp
π (x, ξ, t;µR) =

∑
p′

∫ 1

−1

dy

|y|
Zpp′

(
x

y
,
ξ

x
, αs

(
µ2
R
)
, ε

)
Ĥp′
π (x, ξ, t; ε) , (4.2)

where Zpp′ are the corresponding renormalization constants, ε is the regulator in dimensional regular-
ization and µR is an unphysical renormalization-scale.

Within this picture, working out the µR-dependence of generalized parton distributions can be
achieved by renormalization-group-equation techniques. Indeed, exploiting the independence of the
bare distributions in Eq. (4.2) on that scale one finds [281]:

dHp
π (x, ξ, t;µR)

d logµ2
R

=
∑
p′

∫ 1

−1

dz

|z|
Pp/p′

(
x

z
,
ξ

x
;αs

(
µ2
R
))

Hp′
π (x, ξ, t;µR) , (4.3)

with

Pp/p′

(
x

z
,
ξ

x
;αs

(
µ2
R
))

= lim
ε→0

∑
p′′

∫ 1

−1

dy

|y|
dZpp′′

(
x/y, ξ/y;αs

(
µ2
R
)
, ε
)

d logµ2
R

Z−1
p′′p′

(
y

z
,
ξ

y
;αs

(
µ2
R
)
, ε

)
. (4.4)

Moreover, the renormalization constants can be expanded in a power series of the strong coupling
constant [36]

Zpp′

(
x

y
,
ξ

x
;αs

(
µ2
R
)
, ε

)
= δpp′δ

(
1− x

y

)
+

∞∑
n=1

(
αs
(
µ2
R
)

4π

)n n∑
k=1

1

εk
Z

(n,k)
pp′

(
x

y
,
ξ

x

)
, (4.5)

arranged according to the degree, k, of singularity in the regularization parameter ε.
Accordingly, also the splitting functions can be computed in perturbation theory

Pp/p′
(
x

z
,
ξ

x
, αs

(
µ2
R
))

=

∞∑
n=0

(
αs
(
µ2
R
)

4π

)n+1

P(n)
p/p′

(
x

z
,
ξ

x

)
, (4.6)
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which plugged into the renormalization-scale behavior of the generalized parton distributions yield:

dHp
π (x, ξ, t;µR)

d logµ2
R

=

∞∑
n=0

(
αs
(
µ2
R
)

4π

)n+1 ∫ 1

−1

dz

|z|
∑
p′

P(n)
p/p′

(
x

z
,
ξ

x

)
Hp′
π (x, ξ, t;µR) . (4.7)

These are the scale-evolution-equations for the generalized parton distributions. They constitute
the extension to off-forward kinematics of the well known DGLAP [128–130] and ERBL [100, 131]
evolution-equations and were first derived in [316, 321]. Detailed investigations on their leading-order
(LO) truncation accompanied the development of GPDs themselves [2, 8, 70, 136, 322–327] and have
been reviewed very recently [281]. Their structure at next-to-leading-order (NLO) is also known [328–
332] and even the next-to-next-to-leading-order (NNLO) non-singlet evolution kernels were recently
computed [333]. As we will find, these equations show intimately connected with their analogous for
parton distribution functions and amplitudes (Sec. 4.1.1). As a matter of fact, the DGLAP and ERBL
equations are recovered as particular kinematic limits of those for GPDs [281], one again manifesting
the agglutinating character of GPDs, combining features of distribution functions and amplitudes.

Solving the above set of equations is a non-straightforward matter. In particular, despite the one-line
structure of Eq. (4.7), it represents a tower of 2Nf + 1 coupled integro-differential equations: One
corresponding to each quark and antiquark flavors and a further equation for the gluon distribution.
Finding a basis which maximally diagonalizes the evolution kernels thus develops as a highly desirable
step to simplify their solution, for which purpose, one finds advantageous to rescue the singlet (+) and
non-singlet (−) combinations of GPDs introduced in Sec. 2.2.3:

H(±)
π (x, ξ, t;µR) =

∑
q

Hq,(±)
π (x, ξ, t;µR) =

∑
q

[Hq
π (x, ξ, t;µR)∓Hq

π (−x, ξ, t, µR)] . (4.8)

The denomination as singlet and non-singlet distributions is indeed accurate: The combination H(−)
π

can be shown to transform as an element of the adjoint representation of the flavor group SU (Nf ); while
H

(+)
π remains invariant. Moreover the non-singlet combination is also often dubbed valence distributions,

as each flavor-q piece in its definition represents the net content of that flavor. Intuitively, because
strong interactions are flavor conserving, the distribution of flavor q-partons minus q-antipartons is an
intrinsic property of a hadron; e.g. gluon splitting gives rise to particle-antiparticle pairs. The singlet
distribution, for its part, accounts for the “brute” content of a given flavor: In the same example for
gluon splitting, it accounts for the pairs thus created, the sea distributions. Moreover, in Sec. 2.2.3 we
showed the singlet (non-singlet) combination of quark GPDs to be even (odd) under charge conjugation.
Similarly, the gluon GPD was found to be C-even. Accordingly, non-singlet combination of quark
GPDs decouple from gluon and singlet GPDs through evolution. Furthermore, the same transformation
properties under charge conjugation reveals the gluon GPD to be x-even while the singlet and non-singlet
quark distributions already show well defined transformation properties under x↔ −x. Time-reversal
invariance (Sec. 2.2.5) requires the GPDs to remain unchanged under transformations ξ ↔ −ξ. Thus,
without loss of generality, one can restrict the analysis of scale-evolution of non-singlet–singlet–gluon
distributions to x > and ξ > 0, reorganizing the evolution-equations as [281]:

dH(−) (x, ξ, t;µR)

d logµ2
R

=

∞∑
n=0

(
αs
(
µ2
R
)

4π

)n+1 ∫ ∞
x

dy

y
P(n)
NS

(
y, κ =

ξ

x

)
H(−)
π

(
x

y
, ξ, t;µR

)
,

dH
(+)
π (x, ξ, t;µR)

d logµ2
R

=

∞∑
n=0

(
αs
(
µ2
R
)

4π

)n+1 ∫ ∞
x

dy

y
P(n)
S

(
y, κ =

ξ

x

)
H(+)
π

(
x

y
, ξ, t;µR

)
,

(4.9)

with
H(+)
π (x, ξ, t;µR) =

(
H(+)
π (x, ξ, t;µR) , Hg

π (x, ξ, t;µR)
)T

, (4.10)
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and

P(n)
NS (y, κ) ≡ P (n)

NS,q/q (y, κ) , P(n)
S (y, κ) =

 P
(n)
S,q/q (y, κ) P(n)

S,q/g (y, κ)

P(n)
S,g/q (y, κ) P(n)

S,g/g (y, κ)

 . (4.11)

The set of equations Eqs. (4.9) explicitly exhibit the decoupling between non-singlet and singlet-
gluon sectors hinted a priori from simple transformation properties under charge conjugation for GPDs.
Notice that no approximation is involved in such reformulation of the evolution-equations. On the
contrary, they still involve a perturbative series for the splitting functions. A practical assessment of
those thus requires the evaluation of the evolution kernels at the relevant order in perturbation theory
and, it is well known, that the complexity of these computations rapidly increases with the power of
αs. In the following, we shall focus on the leading-order approximation, which we will argue later on
(Sec. 4.2) to provide a reliable approach to the evolution of GPDs as applied in the analysis pion’s
structure.

4.1.1 LO evolution-equations

We are thus involved with the assessment of the LO evolution-equations for GPDs. In this regard, and
simply for a shorter-writing, let us recover the expression for the evolution-equations in a flavor basis,
Eq. (4.7), and restrict it to the leading order in perturbation theory:

dHp
π (x, ξ, t, µR)

d logµ2
R

=
αs
(
µ2
R
)

4π

∫ 1

−1

dz

|z|
∑
p′

P(0)
p/p′

(
x

z
,
ξ

x

)
Hp′
π (x, ξ, t;µR) +O

(
α2
s

)
. (4.12)

The above equations are unambiguously determined once the splitting functions are evaluated. Or
equivalently, by means of Eq. (4.4), the evaluation of the renormalization constants Zpp′ . In particular,
provided that renormalization constants depend on the scale µ only through the strong running coupling,
the renormalization group equation for αs can be invoked to write:

Zpp′
(
x/y, ξ/x;αs

(
µ2
R
)
, ε
)

d logµ2
R

=

[
−ε
αs
(
µ2
R
)

4π
+ β

(
αs
(
µ2
R
)

4π

)] ∞∑
n=1

n

(
αs
(
µ2
R
)

4π

)n−1 n∑
k=0

1

εk
Z

(n,k)
pp′

(
x

y
,
ξ

x

)
,

(4.13)
and given that β

(
αs
(
µ2
R
)
/4π

)
= O

(
α2
s

(
µ2
R
))

one finds

P(0)
p/p′

(
x

z
,
ξ

x

)
= −Z(1,1)

pp′

(
x

z
,
ξ

x

)
. (4.14)

The calculation of the one-loop anomalous dimension P(0)
p/p′ of the GPDs thus boils down to

computing the coefficient of the divergence of the one-loop renormalization constant of the bare GPD.
Such calculation can be achieved owing to universality of the factorization theorems, which apply to
any target. Hence, one can extract the anomalous dimensions related to UV singularities using any
external states. In particular, choosing partonic on-shell targets is specially accurate, since it enables a
perturbative calculation [31, 281]. Following that prescription, and after a proper rearrangement to
express the result in the basis of Eqs. (4.9), one writes [281]:

P(0)
NS (z, κ) = θ (1− z)P(0)

NS,1 (z, κ) + θ (κ− 1)P(0)
NS (z, κ) , (4.15)

where1

P(0)
NS,1 (y, κ) = 2CF

{(
2

1− y

)
+

− 1 + y

1− κ2y2
+ δ (1− y)

[
3

2
− log

(∣∣1− κ2
∣∣)]} ,

P(0)
NS,2 (y, κ) = 2CF

[
1 + (1 + κ) y +

(
1 + κ− κ2

)
y2

(1 + y) (1− κ2y2)
−
(

1

1− y

)
++

]
,

(4.18)

1The plus prescription is introduced as to regulate spurious divergences arising from the structure of the gluon
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with CF =
(
N2
c − 1

)
/2Nc, TR = 1/2 and CA = Nc (Nc being the number colors). Similar expressions

can be found in the gluon–singlet sector [281, 335].

Properties of the evolution kernels

The expressions for the splitting functions we have presented, as well as their counterparts in the
singlet sector, have been carefully organized to facilitate their implementation in numerical algorithms
designed for the solution of the corresponding equations such as the Apfel++ library [279–281]. Among
them, the absence of singularities at y = 1 is a prominent feature that facilitates their numerical
integration. In addition, the way they are written draws a clear connection with conventional DGLAP
evolution-equations, thus enabling the “recycling” of algorithms optimized for that purpose. A further
remarkable feature is the decomposition in Eq. (4.15), an its homologous version in the singlet sector. In
its view, the P2 coefficients functions, being proportional to θ (κ− 1), plays a role when κ > 1 i.e. when
x < ξ: Within the ERBL region. In a similar way, the P1 terms being weighted by θ (1− y) readily
turns the evolution-equations Eq. (4.9) into DGLAP-like ones. In fact, plugging in the decomposition
Eq. (4.15) yields

dH
(−)
π (x, ξ, t;µR)

d logµ2
R

=
αs
(
µ2
R
)

4π

∫ 1

x

dy

y
P(0)
NS,1 (y, κ)H(−)

π

(
x

y
, ξ, t;µR

)
+ (· · · ) (4.19)

where the ellipsis denote pure ERBL contributions.

– DGLAP and ERBL limits
From the expression above one can take the forward limit of the evolution-equations for GPDs:

ξ = 0⇒ κ = 0 and θ (κ− 1) = 0 so,

dHp
π (x, 0, t;µR)

d logµ2
R

=
αs
(
µ2
R
)

4π

∫ 1

x

dy

y
P(0)
NS (y, 0)H(−)

π

(
x

y
, 0, t;µR

)
. (4.20)

The forward limit can then be taken explicitly on the splitting functions P(0)
NS,1 yielding:

lim
κ→0
P(0)
NS,1 (y, κ) = 2CF

[(
2

1− y

)
+

+
3

2
δ (1− y)

]
, (4.21)

which is the well known splitting function for the scale-evolution of parton distributions functions in
the valence sector [128–130] and therefore consistently represents the fact that GPDs reduce to PDFs
in the forward limit.

Similarly, if generalized parton distributions reduce to parton distribution amplitudes in the ξ = 1
limit, their evolution-equations must reproduce the popular ERBL equations [100, 131] governing the
scale-dependence of PDAs. In this case, the calculation is more intricate than in the forward limit but
it can still be developed to show the GPD evolution-equations to reduce to ERBL ones in the limit
ξ → 1 [281]:

dH
(−)
π (x, 1, t;µR)

d logµ2
R

=
αs
(
µ2
R
)

4π

∫ 1

−1
dyVNS

(
1 + x

2
,
1 + y

2

)
H(−)
π

(
1 + y

2
, 1, t;µR

)
(4.22)

propagator in the light-cone gauge [334] as∫ 1

x

dz

(
1

1− z

)
+

f (z) =

∫ 1

x

dz
f (z)− f (1)

1− z + f (1) log (1− x) . (4.16)

Similarly, for a numerically amenable implementation of Cauchy principal value, the ++-distribution is introduced [281]∫ 1

x

dz

(
1

1− z

)
++

f (z) =

∫ ∞
x

dz

1− z

[
f (z)− f (1)

(
1 + θ (z − 1)

1− z
z

)]
+ f (1) log (1− x) . (4.17)
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with

VNS (u,w) = CF

[
θ (w − u)

(
u− 1

w
+

1

w − u

)
− θ (w − u)

(
u

1− w

)
+

1

w − u

]
+

. (4.23)

– Continuity at x = ξ
The expressions for the evolution kernels presented herein, and also their singlet counterparts,

exhibit non-integrable singularities at y = κ−1, which appear in the region κ > 1. Fortunately, it is
within this region where both P1,2 contribute. The coefficients of these singularities, as occurring in
both contributions, turn out to be equal in absolute value but opposite in sign, thus mutually canceling
and keeping the integrals finite. In particular, in the non-singlet sector one can verify

lim
y→κ−1

(
1− κ2y2

)
P(0)
NS,1 (y, κ) = − lim

y→κ−1

(
1− κ2y2

)
P(0)
NS,2 (y, κ) = −2CF

1 + κ

κ
, (4.24)

and similarly for P(0)
S (z, κ) splitting functions [281]. Importantly, all coefficients of such spurious

singularities are finite at the crossover lines κ = 1 ⇒ x = ξ, which is a prerequisite for the evolved
distributions to remain continuous at the frontier between the DGLAP and ERBL regions, as demanded
by factorization theorems for the DVCS amplitudes to remain finite [1, 4–7].

– Sum rules
Arising from the intrinsic properties of GPDs, a series of features of the evolution kernels can be

highlighted. In particular, the polynomiality property requires∫ 1

0
dxHq,(−)

π (x, ξ, t) = A1,0
q/π (t) (4.25)

which is the quark-q contribution to the electromagnetic form factor. Such is related to the charge
distribution inside hadrons and, as an observable, cannot depend on the scale, µR. At the level of the
evolution-equations this implies that∫ 1

0
dyP(0)

NS,1

(
y,

ξ

yz

)
+

∫ ξ/z

0
dyP(0)

NS,2

(
y,

ξ

yz

)
= 0 , (4.26)

which can indeed be verified by plugging-in the explicit expressions for the splitting functions.
Strikingly, in the forward limit the condition above reduces to:∫ 1

0
dyP(0)

NS,1 (y, 0) = 0 , (4.27)

which is the requirement for the DGLAP evolution kernels to preserve momentum sum rules:∫ 1

0
dxx

[∑
q

(qπ (x;µR) + q̄π (x;µR)) + gπ (x;µR)

]
= 1 . (4.28)

4.1.2 An intuitive picture for scale-evolution

We have thus managed at giving a quick overview of the general formalism of scale-evolution as applied to
the case of generalized parton distributions. After discussing the origin of this phenomenon, we carefully
presented the structure of the corresponding equations, with special emphasis on the leading-order
approximation. We finally collected a few prominent features of theses equations.

This presentation was, however, rather formal and in some sense obscures an intuitive understanding
of the underlying physics. How can we picture the running of generalized parton distributions?. Trying
to shed light on that question it is worth thinking about the setting of the renormalization-scale itself.
In the MS scheme, where computations are often carried out, the interpretation of such µR is involved.
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q
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Figure 4.1: Pictorial representation of the radiative process described by evolution-equations for
GPDs in the forward limit. The intuitive interpretation of scale-evolution for GPDs
is the off-forward analogue of the classical picture for the DGLAP equations [130].
The main difference being that, in addition to the average momentum-fraction,
we can assess the momentum transfer between radiated partons and thus draw a
picture in transverse plane for the radiate process.

However, in other renormalization-schemes, it can be readily interpreted to act as a momentum cut-off
which excludes the ultraviolet region from the integrals, thus keeping them finite. In the case of
the non-local operators defining parton distributions, the relevant divergences are those occurring in
transverse momentum space [9], triggering the understanding of µR as a momentum cut-off excluding
the large-|k⊥| modes from the relevant operator definitions.

Keeping this in mind, the renormalization program can be carefully connected with the factorization
of the underlying physical process. As discussed elsewhere [36], the factorization process can be
understood as a separation between the large- and small-momentum regimes involved in an interaction.
Intuitively, this occurs at an scale µ: The factorization-scale. As a result, the relevant amplitude is
constructed as a convolution, Eq. (4.1), of a hard part, Cp, in charge of describing the high-energy
interactions between partons and the probing photon; and a soft-distribution, Hp, accounting for the
low-energy features of the same process. By definition, the factorization-scale acts as a low-momentum
cut-off2 in the case of the coefficient functions, regularizing its mass-singularities; but defines an
ultraviolet cut-off for the definition of generalized parton distributions. Accordingly, one may naturally
choose the renormalization-scale to coincide with the factorization-scale, µR ≡ µ. Moreover, the
virtuality of the probing photon defines a characteristic scale for the factorized process, Q2. The natural
way of proceeding is thus to analyze the scattering amplitude at, precisely, µ2 = µ2

R = Q2.
Within this picture one can realize the evolution process, i.e. the change in the renormalization-scale,

in connection with the photon’s virtuality. In loose words, as a change in the resolution to which
the hadron’s structure is analyzed. Equivalently, one can consider not the energy spectrum, but the
characteristic wave-length of the probe λ ∼ 1/Q. Thus, one may think about the renormalization-scale
bounding the minimum possible length, |b⊥|, assessed by the GPDs

λ ∼ 1/Q ∼ 1/ |k⊥| ∼ |b⊥| . (4.29)

In that language, a intuitive picture for the scale-dependence of GPDs can be drawn: As the
renormalization-scale increases, the characteristic wave-length sampling a hadron’s structure decreases.
Accordingly, if the generalized parton distributions encode information about the transverse structure
of hadrons (Sec. 2.3.2) then, the larger the renormalization-scale, the smaller the region in transverse
plane that can be resolved; or, said differently, the larger the degree of detail encoded into GPDs.

2A caveat : Indeed an interpretation of the renormalization-scale as a momentum cut-off may be problematic; e.g.
explicitly breaks Lorentz symmetry [28]. Nevertheless it might provide a intuitive picture for the renormalization in
quantum field theory (in fact, it is often employed as illustration in textbooks [28, 29, 33]. In this sub-section we shall
employ in this regard: The discussion here presented does not imply a cut-off renormalization, but it is simply intended
to intuitively picture the scale-evolution process.)
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Indeed, this can be stated in more formal terms: The evolution-equations for GPDs do not depend on
the momentum transfer variable, t. Thus, one can reformulate them in transverse-plane by Fourier
transforming the distributions, just as we did in Sec. 2.3.2. In that way, the character as an ultraviolet
cut-off in transverse-momentum space of the renormalization-scale readily turns into a infrared cut-off
in transverse-position space [145].

Keeping that interpretation in mind let us now consider a GPD in the, say, DGLAP region. Within
that domain the GPDs can be understood as describing the longitudinal momentum and transverse-
position of a constituent. At a low resolution-scale, one gets a “fuzzy” picture of the hadron in transverse
plane. However, if one starts increasing the renormalization-scale, the definition of the image drawn by
the GPDs in transverse plane starts improving and, intuitively, one may be able to distinguish the initial
“dressed” constituent together with another one, say a gluon; or a gluon and a pair quark-antiquark.

The picture is very intuitive and, in fact,can be related with our assumption on the existence of a
hadron scale (Sec. 4.2). At low scales, the resolution can be “bad”-enough to think of a pion as made
up from a minimal set of partons. When we run upwards in Q2, however, we start resolving the actual
structure of these constituents [145, 336], finding new gluons, quarks or antiquarks; which in addition
can also be dressed. In that way, viewing this process as a radiative cascade is in order: At low scales,
the hadrons are made up from dressed constituents which, as Q2 increases shall radiate further entities.
The possible channels for parton radiation are determined by the strong-interactions: e.g. the QCD
action allows a quark to emit a further quark and a gluon. The gluon, in addition, can radiate a pair
quark-antiquark or even two or three more gluons (Fig. 4.1). They are all these possible processes
of undressing a nucleal parton which are accounted by the evolution kernels. Their denomination as
splitting functions then becomes plain.

4.2 Effective approach to evolution

The discussion presented in the preceding section is rather general. In fact, it is an common feature of
evolution-equations in quantum field theory that the logarithmic scale-dependence of a given quantity
is driven by perturbatively calculable kernels. The nature of these equations then introduces a practical
difficulty: In the best case-scenario, the leading-order splitting functions give a reliable result. However,
as the intensity of the interaction increases, higher order contributions start becoming relevant, the
corresponding calculations being highly challenging. And eventually, when the theory enters an
essentially non-perturbative regime, perturbation theory breaks down and hence the evolution-equations
in their current form turn inaccurate.

The latter is precisely the situation we may encounter when studying the structure of hadrons,
which are low-energy bound-states of the strong-interaction, and therefore its description requires from
an essentially non-perturbative treatment. Then, how does one handle scale-evolution for, say, GPDs or
PDFs?. Once again it is instructive to think about them as defined from a scattering process. The
definition of parton distribution functions requires the factorization of an scattering process which
is explored at a given scale µ ≡ µRef., marked by the resolution of the probe. As an illustration,
consider the measurement of the cross-section for deep inelastic scattering on certain hadron. The
corresponding data are obtained in a collider experiment where a probe scatters on a hadron target
through electromagnetic interaction. The knowledge of the beam energy is user-defined and allows to
obtain the photon’s virtuality Q2 ≡ Q2

0. Using the factorized form of the relevant cross-section, the
analysis of the reported data set allows for the definition of a parton distribution function which is
made at a fixed scale: µRef. = Q2

0. Potentially, the set of measurements is collected at Q2
0 within the

perturbative domain of QCD and therefore, the resulting PDF can be translated to a different scale by
means of conventional DGLAP equations.

A similar idea follows for any other approaches, the only difference is how the factorization-scale is
set. In our case, the initial scale, µRef., is set according to a sensible assumption (Sec. 3.1):

Proposition 1: There exists some scale at which a pair if dressed qq̄′ quarks
provides an accurate description of pions. (4.30)
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From that point on, the picture described in Sec. 4.1.2 gives all that is needed: As the virtuality
of the probe grows, the resolution increases and, just as it occurs with a conventional microscope,
the original particles starts being viewed as the “composite” object they are: e.g. as a pair of a
dressed particle and a gluon. In other words: The pair qq̄′ undresses, revealing the complexity of the
parent-hadron’s structure.

Indeed, this view of hadron structure is not contemporary. An outstanding question in QCD is the
relation between its elementary degrees of freedom and their observable manifestations: Hadrons (see
e.g. [308] and references therein for a review). In this regard, the idea that at poor resolution the inside
of hadrons can be effectively described in terms of valence degrees of freedom which further radiate
quarks and gluons as the resolution-scale increases was put forward a long time ago [337–339]. This line
was pursued for some time, but abandoned after some works developed in the nineties [340–342] showed
apparent inconsistencies at least in the case of the nucleon. Those relied on parametrizations for the
valence PDFs at a low scale (∼ 0.50 GeV) and exploited perturbative scale-evolution at LO and NLO
to radiatively generate the glue and sea contents of the hadron. More recently, a different approach was
pursued to the same problem [343]. In that work the authors attempt at assessing the compatibility of
available global fit analyses on nucleon’s parton distribution functions with the existence of a hadron
scale. To that end they exploit downwards evolution in search for a scale where both gluons and sea
distributions vanish simultaneously [343]. As in an earlier study of the same nature [344], the results
were found to conflict because of positivity violations in the back-evolved distributions. This was argued
to contradict the initial hypothesis of pure valence-content within hadrons.

Notwithstanding, works showing apparent contradiction with the minimal Fock-space hypothesis all
rely on the very same idea: Perturbative evolution holds at the low-enough scale at which hadron’s
Fock-structure is minimal. This is questionable, and indeed is already acknowledged by the authors of
the same works as a possible caveat of their analyses. Moreover, evolution kernels are available in the
MS renormalization-scheme. In this regard, it is worth emphasizing that the possibility for MS-PDFs
to turn negative at low enough scales has already been reported [345]. In a nutshell, this is associated
to the existence of a perturbative calculable hard-scattering kernel in the definition of the factorized
cross-section, which at low-enough scale already requires the inclusion of higher-order contributions and
thus makes the separation between hard- and soft-physics regimes diffuse. In addition, recent studies
on the structure of pseudoscalar mesons suggest the accuracy of the proposition (4.30) in benchmarking
available data and independent analyses, e.g. [294, 346–349].

Whether accurate or not, what it is clear from the above discussion is that insisting on the idea that
a hadron can be described at some scale by a minimal set of dressed valence constituents requires for
further studies and, probably, a different approach to the problem of scale-evolution. Irrespective of the
accuracy of such picture, the implementation of conventional perturbative evolution is inconsistent with
that idea and therefore its assessment requires further work out to allow for the study of non-perturbative
effects in the scale-evolution of parton distributions. To this end, the resummation of the evolution
kernels to all-orders in the strong-coupling would be a desirable step forward. However, being far
from known, these computations can become astonishingly hard. Similarly, one could then consider
a different perspective for the exact same idea. Namely, the absorption of somewhat higher-order
perturbative effects into a redefinition of the coupling such that:

P
(
y, κ;αs

(
µ2
))

=

∞∑
n=0

(
αs
(
µ2
)

4π

)n+1

P(n) (y, κ) −−−−−−−−→
Proposition 2

P
(
y, κ;αs

(
µ2
))

=
αEff.s

(
µ2
)

4π
P(0) (y, κ) ,

or, in words:

Proposition 2: There exists a process-(in)dependent effective charge αEff.s

(
µ2
)
such that,

the leading-order evolution-equations are “all-orders exact”. (4.31)

The consideration for existence of such charges is, again, not contemporary, and indeed it has been
lengthily discussed in the literature [350–352]. In general, there is no need for this effective charge to
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Figure 4.2: Effective coupling defined in Refs. [240, 315, 355] in comparison with the conventional
one-loop strong running coupling computed in the MS renormalization-scheme.
Importantly, the effective coupling here employed ceases to develop a Landau pole
and instead saturates in the infrared domain. The band surrounding the effective
coupling represents the uncertainties associated to the defining coefficients (Tab. 4.1).

be unique nor process-independent. Instead, in being defined from an observable, it must [353] (i) be
consistent with the renormalization group, (ii) renormalization-scheme independent, (iii) finite, (iv)
analytic and (v) provide an infrared completion of any standard running coupling. On that basis, any
charge fulfilling with these requirements can serve as a candidate. Ideally, finding a process-independent
charge would be sought-after, just as it occurs in quantum electrodynamics [354]. However, the case of
quantum chromodynamics is intrinsically different and a priori challenges that achievement. Moreover,
even if they exist, that kind of effective charges can be extremely elusive. In consequence, herein
we pursue a different approach: In the following section we shall present a candidate expression for
an effective coupling in quantum chromodynamics. From that point on, we explore its implications
when assumed to “re-sum” all of the non-perturbative dynamics relevant for scale-evolution in parton
distributions. Comparison with available data in the cases that are accessible, will then serve as a
benchmark, validating its use in further assessing the evolution of our GPD models.

Notice that, in the following, our claim is not that the effective charge we employ is the actual
infrared completion of that implementing an “all-orders” evolution for parton distributions. Instead, we
just assume that such charge exists and suggest a candidate yielding reliable results. In that way we
achieve at modeling scale-evolution by supplementing the conventional one-loop splitting functions with
an effective coupling which, encompassing some non-perturbative features of QCD evolution, improves
conventional leading-order perturbative evolution. Importantly, the aim of this methodology is not
that of shedding light on the infrared completion of quantum chromodynamics, but simply that of
developing an internally consistent approach to the study of hadron structure. To put it simply: If our
model is defined at a scale low-enough to assume the validity of the valence truncation, the evolution
strategy allowing to explore its consequences at experimentally relevant energy scales must grant that
evolution can start at such µRef.. Ultimately, it must be the comparison between our predictions and
foreseen measurements that must judge the accuracy of our assumptions.

4.2.1 Effective running coupling constant and hadron scale

We want to raise a candidate for an effective charge in QCD allowing us to explore scale-evolution
as in proposition (4.31). There exist several attempts at building effective couplings for the strong
interactions. A prominent example is that of Bjorken’s sum-rule effective-charge [356, 357]. Other
renowned approaches rely on the potential describing the interaction between heavy quarks [358–
360], extend the notion of Gell-Man–Low effective charge [361, 362] or apply dispersion relations on
photoproduction cross-sections to extract it [363, 364]. The problem of developing effective charges
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being out the scope of this work, we rely on contemporary constructions. In particular, we stick to the
results of Refs. [240, 315, 355] and, more precisely, to a paddé-approximant of such [241]. That allows
to build an effective coupling for QCD which, in the infrared domain, behaves as that presented in [240,
315, 355]; but in the perturbative region, reproduces the conventional one-loop MS running coupling.

In those works the authors employed a combination of the pinch technique [365–370] and the
background-field method [371, 372] to extract a QCD effective coupling from the gluon’s two-point
function which readily generalizes the QED Gell-Mann–Low effective charge [354] to non-Abelian gauge
theories. Specifically, the expression for the QCD effective coupling we are using reads [240, 241, 315,
355]:

αEff.s

(
µ2
)

=
4π

β0 log

(
K2(µ2)
Λ2

QCD

) , K2
(
µ2
)

=
a2

0 + a1µ
2 + µ4

b0 + µ2
, (4.32)

where 4β0 = 11CA − 4TRNf/3. As usual, ΛQCD = 234 MeV and the values of the relevant parameters
are collected in Tab. 4.1.

The resulting coupling is, in a sense, process-independent; simply because it is derived not with
reference to a given process, but with regard to the infrared facets of the gauge-sector in QCD. Strikingly,
it shows all the features collected before, thus being a suitable candidate for an effective strong charge
[353]. Moreover, it is found to accurately reproduce the world’s data for the process dependent Bjorken’s
sum-rule effective charge (see Ref. [355]). The fact that αEff.s in Eq. (4.32) is designed to reproduce the
one-loop strong running coupling as computed in the MS for scales in the perturbative domain of QCD
allows for a direct comparison with available results using the modified minimal subtraction scheme.

The most prominent feature of the effective coupling in Eq. (4.32) is that of not-presenting a Landau
pole at any point, and instead remaining everywhere analytic and finite (Fig. 4.2). Instead, in the deep
infrared domain, it saturates to a constant value, that can be interpreted as a unique manifestation of
the dynamical generation of a gluon-mass scale in quantum chromodynamics [373, 374]. In view of this
behavior, an interesting observation can be made: It is the screening of the strong interactions which
prevents the coupling to blow up at a low-enough scale. In that view it seems appropriate to identify
a scale where long-rage modes start dominating over short-range interactions as that marked by the
“former” position of the Landau pole, i.e.

µRef. ≡ K2
(
µ2 = Λ2

QCD
)

= 0.331 (2) GeV , (4.33)

representing a natural transition from the expected “perturbative” behavior and an intrinsically non-
perturbative domain where modes with momentum k2 ≤ µ2

Ref. are screened out from the interactions.
From that point on, the coupling nearly freezes out and the theory enters a conformal domain [375,
376]. The fact that the strong coupling looses its scale-dependence in the deep infrared domain has
been long sought-after [353] and general arguments have been given for it [377, 378]: Color confinement
implies that long-wavelength modes are cut off, thus there must exists a maximum wavelength related
to a typical hadron size, where quantum effects disappear and the coupling remains constant from the
typical hadron scale on.

The scale defined in Eq. (4.33) defines a natural transition between hard- and soft-physics regimes
and thus its identification with the hadron scale discussed previously is in order. If it is from that
scale on where the strong interactions are screened, then at that scale (and below) no dynamics inside
hadrons can exist, thus always allowing for a redefinition of the constituents to account for every

a0 a1 b0

0.104 (1) 0.0975 0.121 (1)

Table 4.1: Parameters defining the effective charge presented in Eq. (4.32) and derived in
Refs. [240, 315, 355]. All values are expressed in GeV2.
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possible effect into a minimal basis; i.e. by dressed valence degrees of freedom. Our GPD models must
then be understood as defined at such scale µRef. = 0.331 (2) GeV and its implications analyzed with
regard to the evolution strategy presented before as implemented by the effective coupling in Eq. (4.32).

4.2.2 Benchmarking effective evolution

With a suitable definition for the hadron scale and a reliable candidate for an effective charge in quantum
chromodynamics we find ourselves in a position to exploit the effect of scale-evolution in our models.
Nonetheless, despite the foundations of the previous presentation, no specific arguments have been
developed in what concerns the proposition (4.31). An assessment of its reliability is therefore needed,
the natural procedure being to produce results that can be compared with available measurements.
Unfortunately, no handy data exists for pion GPDs, so little can be said in this regard. Instead, we
find useful to rely on existing studies of the pion’s parton distribution function. Indeed, our models are
defined with regard to given parametrization of the PDFs; and the DGLAP evolution-equations can be
seen as a “subset” of the equations presented in Sec. 4.1. In this sense, assessing the validity of the
effective evolution approach in the case of PDFs can serve as a first approximation to that for the case
of GPDs. In lack of a better possibility, we take the evolution of PDFs, as implemented by the running
charge of Eq. (4.32) and produce results that can be compared with independent approaches to the
same problem. Comparison must thus judge the sensibility of our methodology.

Lets then take3 the realistic parton distribution function Eq. (3.71):

qNum.
π (x;µRef.) = Nx2 (1− x)2

[
1 + ρ

√
x (1− x) + γx (1− x)

]
, (4.34)

which is built on the basis of the hypothesis for the existence of a hadron scale. Its shape was already
presented in Fig. 3.10. We consider its evolution up to two-scales: µLatt. = 2 GeV, the typical scale
at which Lattice computations are performed [284, 314, 379] and µ5 = 5.2 GeV, that of the E-615
experiment [191, 192, 380]. The corresponding models for both the PDF and the effective coupling
being implemented within the PARTONS framework [276] we take LO DGLAP evolution as implemented
in the Apfel++ library [279–281].

Fig. 4.3 displays the results obtained from the effective leading-order evolution of the PDF in
Eq. (4.34) from µRef. = 0.331 GeV up to µ5 = 5.2 GeV. The contribution from the u-quark to the
valence distribution is shown in the left-panel of that figure. As it is clearly acknowledged by that
plot, the obtained distribution exhibits appreciable agreement with available measurements from the
E615 experiment at Fermilab [381], hinting the sensibility of our procedure. Nonetheless, a reliable
interpretation of this finding requires two essential aspects to be clarified. On the one hand, the
valence distributions (non-singlet) evolve independently of the gluon an sea contents of a hadron. As a
consequence, the accuracy of the results obtained in that sector do not actually constitute an assessment
of the hadron scale hypothesis: Gluon and sea distributions could still be non-vanishing at the initial
scale and the non-singlet distribution could show the right behavior under scale-evolution. Instead, what
the agreement in Fig. 4.3 (left panel) does assess is the accuracy of the effective evolution approach.

In second place, and despite the outstanding marriage shown in Fig. 4.3, it is worth emphasizing
that some debate exists on the post-analysis of the measurements from the E615 experiment [347, 382].
The results we are showing for comparison correspond to the latest available survey, which includes
gluon-threshold resummation [192]. These exhibit a large-x behavior characterized by an exponent
β > 2, as predicted from QCD’s parton model, greatly agreeing with our results. In contrast, the early
analysis of the same experimental measurements [191] better fitted a large-x exponent β ∼ 1. Whether
the actual behavior of the pion’s non-singlet distribution should resemble a quadratic or linear decay is
indeed a long-standing debate, with respect to which several studies are proliferating [173, 284, 294,
347, 382–384] (just to quote some of them). In any case, the agreement of our results with the set of

3Considering other parametrizations like that from the xFitter collaboration [285] would not be enlightening with
regard to the effective evolution approach because that model is defined at an intermediate scale µxFitter = 1.9 GeV and
by that point the effective charge of Eq. (4.32) already coincides with the conventional one-loop MS running coupling.
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Figure 4.3: Parton distribution function Eq. (4.34) evolved with the Apfel++ library to an scale
of µ = 5.2 GeV from µRef. = 0.331 GeV following the effective evolution approach
described in Sec. 4.2 as implemented through the effective coupling of Refs. [240,
241, 315, 355] – Right panel: Flavor-u quark valence parton distribution function
together with available experimental measurements from the E615 experiment
analyzed with threshold resummation [192] Right panel: Total sea and gluon
parton distribution functions. The curves are accompanied by uncertainty-bands
generated through a 10% shift in the setting of the hadron scale.

measurements in [192] again constitutes a clear manifestation of the insightful character of the effective
evolution strategy.

The gluon and sea distributions acknowledged in the right-hand side of Fig. 4.3 are also enlightening.
In lack of experimental measurements for these quantities, comparison with available global fit analyses
shall provide valuable insights into the obtained distributions. To this end lets compute the average
longitudinal momentum-fraction carried by the different parton species

〈x〉µ=5.2 GeV
u/Val. = 0.21 , 〈x〉µ=5.2 GeV

Sea = 0.13 , 〈x〉µ=5.2 GeV
g = 0.46 , (4.35)

and compare them with the values reported by collaborations analyzing pion’s structure through global
fits to available data: The JAM [284, 382] and xFitter [285] collaborations; and the Dortmund group
[314] (Tab. 4.2). Strikingly, the agreement is specially good in the valence sector, all independent
analyses coinciding to the percentage level. In the singlet-gluon sector, however, some discrepancies
exist. The momentum-fractions reported by the xFitter collaboration and the GRS parametrization are
systematically below our finding. This discrepancy can be attributed to the exclusion of the x < 10−3

region by the xFitter fitting [285], where gluons and sea quarks are expected to largely proliferate; and
the fact that the Dortmund group employ perturbative evolution as applied to distribution functions
defined at a low scale (µGRS

Ref. = 0.51 GeV).
Comparison with available experimental data and global fit analyses thus reveals, again, that a

sensible analysis of scale-evolution of parton distribution functions can be performed on the basis of the

〈x〉u/Val. 〈x〉Sea 〈x〉g
JAM 0.20 (1) – –
xFitter 0.21 (4) 0.25 (10) 0.32 (10)
GRS 0.17 0.31 0.37

Table 4.2: Results reported by various global fit analyses on the parton distributions functions
of the pion for the average longitudinal momentum-fraction carried by parton species
at the typical scale of the E615 experiment: µ5 = 5.2 GeV. JAM [284], xFitter [285],
GRS [314].
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effective evolution. But we can still go further and take advantage of Lattice-QCD calculations to test
our methodology. Recent advances do allow for a direct computation of parton distributions in the
lattice [385, 386], but more conventional approaches rely on the evaluation of a few low-order Mellin
moments and reconstruction of the distribution’s shape from sensible Ansätze [387]. Although most of
the work concerns the evaluation of the Mellin moments for the valence distribution (Tab. 4.3), still
some insights can be obtained on the gluon content.

Notably, our results for the average longitudinal momentum-fraction carried by valence and sea
quarks and gluons

〈x〉µ=2 GeV
u/Val. = 0.24 , 〈x〉µ=2 GeV

Sea = 0.09 , 〈x〉µ=2 GeV
g = 0.43 , (4.36)

show appreciable agreement with world’s data on the momentum-fractions carried by partons inside
pions, as reported from Lattice-QCD calculations (Tab. 4.3). In particular, the most recent results
reported by Lattice-QCD calculations for the average longitudinal momentum-fraction carried by gluons,
〈x〉Latt.g = 0.492 [388], agrees with our finding in predicting a rough value of a 40%. Moreover, this
quantity has been long overlooked in practical calculations. Accordingly, only two more estimations are
available: 0.37 [389] and 0.61 [390]; which nonetheless as well agree (in average) with our expectation.

Lattice-QCD calculations also allow for a better assessment of our findings in the valence sector.
Indeed, world’s data on the average momentum-fraction carried by valence-u quarks in pions agree with
our prediction. If those results already point towards the reliability of our approach to evolution, we
can still dig deeper and assess its quality through comparison of higher order Mellin moments with
calculations on the lattice. Indeed, our results for the second to sixth order Mellin moments of the
u-quark contribution to the valence distribution are:

〈x2〉µ=2 GeV
u/Val. = 0.10 , 〈x3〉µ=2 GeV

u/Val. = 0.05 , 〈x4〉µ=2 GeV
u/Val. = 0.03 ,

〈x5〉µ=2 GeV
u/=Val. = 0.02 , 〈x6〉µ=2 GeV

u/=Val. = 0.001 .
(4.37)

which, again, agree with all available evaluations on the lattice (Tab. 4.3).

A remark on uncertainties

So far we have made manifest that, according to publicly available independent studies on the pion’s
parton distribution function, the effective evolution approach provides valuable insights into the structure
of pions. We have illustrated that with state-of-the-art parametrization for the pion PDF. Nonetheless,
a reliable assessment of the forthcoming results requires the possible uncertainties to be kept under
control. In this regard we may take advantage of the strategy followed in conventional studies of

[391] [392] [393] [394] [395] [174] [396] [397] [398] [399] [400] [401] [287]

〈x〉 – 0.301 0.261 0.216 0.281 0.254 0.208 0.214 0.271 0.24 0.229 0.0230 0.18
〈x2〉 0.110 – 0.082 0.101 0.142 0.094 0.163 – 0.128 0.09 0.087 0.087 0.064
〈x3〉 – – – 0.060 0.086 0.057 – – 0.074 0.043 0.042 0.041 0.030
〈x4〉 0.039 – – 0.041 – 0.015 – – – – 0.023 0.023 –
〈x5〉 – – – – – – – – – – 0.014 0.014 –
〈x6〉 0.012 – – – – – – – – – 0.009 0.009 –

Table 4.3: Collection of Lattice-QCD calculations of the first few Mellin moments of the non-
singlet u-quark PDF: 〈xm〉u/Val.. Uncertainties not listed. Refs. [174, 391–399] yield
results at µ = 2 GeV while Refs. [287, 400, 401] do so at µ = 5.2 GeV. The reader
is encouraged to check the corresponding references for further insights into these
values.
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perturbative scale-evolution: Shifting of the reference-scale allows for a quantitative assessment of the
effect of truncations to different orders in the corresponding perturbative expansion. Here we are not
pursuing such kind of analyses of scale-evolution. Instead we are using a pure LO expression for the
splitting functions and an effective coupling which fixes the scale at which our models are defined. From
that point above, scale-evolution is taken. Therefore, once the effective evolution approach is adopted,
it is natural to think about the setting of that starting point to be the main source of uncertainties
affecting the calculation.

In fact, the setting of the hadron scale is intimately related to the fine details of the effective charge
employed herein. In a sense, it can be argued to be a fine-tuned quantity. Moreover, in addition to its
successes in building the phenomenology associated to the pion’s parton distribution function, we are
not raising any first-principles arguments about that charge. Considering the value of the hadron scale
to be subjected to uncertainties is therefore in order. We must then let the value of the hadron scale to
be changed and thus achieve an (at least rough) estimate of the uncertainties associated to the effective
evolution process.

By how much shall we allow µRef. to be shifted?. In this regard we perform a simple estimation:
We require our parametrization to reproduce the results reported by different lattice calculations for
several Mellin moments within their reported accuracy. In this way we find a 7.5% shift in the initial
scale to reproduce Lattice-QCD calculations on the first and second order Mellin moments within the
reported error bands. In this regard we argue that, for a rough estimate, allowing the reference-scale to
be shifted by:

µRef. → (1.0± 0.1)µRef. , (4.38)

should provide a conservative estimate. For that reason, and from now on, every single calculation
involving the evolution of a distribution function following the effective evolution approach will be
accompanied by an uncertainty band corresponding to this freedom in the setting of the reference-scale.

4.2.3 Striking implications of the effective evolution approach

The effective evolution approach therefore remains compatible with world data on the pion’s parton
distribution function. In addition, it is internally consistent with the hadron scale hypothesis. In
benchmarking this procedure, however, we have not taken any “imaginative” approach but we have
simply evaluated quantities for which there exist independent assessments and elaborated on their
comparison. An complementary strategy could also exploit other implications of the effective evolution
framework to finally assess its compatibility with the present knowledge about pion’s structure. In
this section pursue this idea showing, again, that the indirect implications of the effective evolution
approach remain compatible with existing Lattice-QCD analysis.

Let us reconsider the idea of a hadron scale, µRef.. Such is defined by a single specification: It is at
that scale that the entire content of a hadron is described by, solely, valence degrees of freedom. In the
language of PDF’s Mellin moments, that statement is completely equivalent to:

〈x〉µRef.
Val. = 1 . (4.39)

In the particular case of the pion, this defining relation can still be worked out. At µRef., a pion (say,
a positively charged one), can be described by a pair ud̄ of constituents. If isospin symmetry holds, then
the resulting parton distribution must be symmetric with respect to the transformation x↔ (1− x):

qπ (x;µRef.) = qπ (1− x;µRef.) . (4.40)

Lets now consider a function f (x) with support on the interval x ∈ [0, 1] satisfying the symmetry
constraint f (x) = f (1− x). It can then be shown [294, 347] that:

f (x) = f (1− x)⇔ 〈x2m+1〉f =
1

2m+ 2

2m∑
j=0

(
2m+ 2

j

)
(−1)j 〈xj〉f . (4.41)
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Figure 4.4: Available Lattice-QCD results for the Mellin moments of pion’s PDF evolved back
to the hadron scale through Eq. (4.48) (blue line) together with the Mellin moments
yielded by the PDF [239]. The results shown in this plot reveal that, up to now,
present Lattice-QCD calculations remain compatible with the existence of a hadron
scale for the pion (Visualization inspired by Fig.2 in Ref. [347]).

The above recurrence relation allows to obtain all odd-order Mellin moments of f (x) from the
knowledge of the previous ones. Given that, at the hadron scale, the valence PDF in a pion must be
symmetric around x = 1/2, this relation is an inevitable consequence for qπ (x;µRef.) and one shall
take advantage of it to assess its Mellin moments. In particular, the first-order one (i.e. the average
longitudinal momentum-fraction) is unambiguously fixed by the hadron scale hypothesis:

〈x〉µRef.
u/Val. = 〈x〉µRef.

d̄/Val. = 1/2 . (4.42)

where 〈x〉u/Val. represents the average longitudinal momentum-fraction carried flavor-u quasi-quarks in
the non-singlet sector.

The above result can be intuitively understood: If at the hadron scale the pion is built on the basis of
two components with equal mass, the sharing of momentum between them must be completely symmetric.
Furthermore, given that the pion’s parton distribution function is unimodal [186], two limiting cases
can be considered: (i) qπ (x;µRef.) = δ (2x− 1), representing the realization of a pion as made up from
to infinitely-massive valence constituents; and its antithesis (ii) qπ (x;µRef.) = θ (2x) θ (2− 2x), as in
the case of a contact interaction [402]. The combination of both cases together with the recurrence
relation Eq. (4.41) yield bounds on the pion’s valence distribution in Mellin space:

1

2m
≤ 〈xm〉µu/Val. ≤

1

1 +m
. (4.43)

This inequality is an inescapable consequence of the hadron scale hypothesis. We have just assumed
its existence and worked out the shape of the corresponding parton distribution function. Therefore,
benchmarking it must be extremely helpful in assessing the hadron scale hypothesis. To this end lets
go back to the effective evolution approach, take the Mellin transform of the corresponding equations.
We find the evolution of the PDF’s Mellin moments to be driven by:

d〈xm〉µNS
d logµ2

=
αEff.s

(
µ2
)

4π
γ

(m)
NS 〈x

m〉µNS , (4.44)

d

d logµ2

 〈xm〉µS
〈xm〉µg

 =
αEff.s

(
µ2
)

4π

 γ
(m)
NS γ(m)

qg

γ(m)
gq γ(m)

gg


 〈xm〉µS
〈xm〉µg

 , (4.45)
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with
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[
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(m+ 1) (m+ 2) (m+ 3)

]
,

γ(m)
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[
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m (m+ 1) (m+ 2)

]
,

γ(m)
gg =

11CA − 4NfTR
3

− 4CA

 11 + 9m+ 2m2

(m+ 1) (m+ 2) (m+ 3)
−
m−1∑
j=1

1

j

 .

(4.46)

The above expressions mimic a textbook result for leading-order DGLAP evolution in Mellin space
(see e.g. [335]). Notice, however, that we have developed it on the basis of an approach to scale-evolution
encompassing some of its non-perturbative features. One can then focus on the first order Mellin
moment of the valence distribution. Through Eq. (4.42), the initial condition necessary for its solution
is set, and thus we obtain the average momentum-fraction of the u-quark contribution to the valence
sector to evolve through

2〈x〉µu/Val. = exp

{
− 8

9π

∫ log µ2

log µ2
Ref.

αEff.s

(
µ2
)
d logµ2

}
, (4.47)

which means that the only knowledge of the average momentum-fraction carried by valence quarks can
be used to evolve any other Mellin moment as:

〈xm〉µu/Val.
〈xm〉µRef.

u/Val.
=
(

2〈x〉µu/Val.
)γ(m)

NS /γ
(1)
NS , (4.48)

and similar relations in the single-gluon sector.
In particular, this relation can be exploited for the evolution of the m-th order Mellin moments

reported by Lattice-QCD calculations down to the hadron scale. The only ingredient needed is the
average momentum-fraction; with no reference to an specific value of µRef.. What we find, Fig. 4.4, is
a striking consequence of the presently available Lattice-QCD calculations: According to Eq. (4.43),
all of the Lattice QCD calculations on the pion’s PDF Mellin moments remain compatible with the
existence of a hadron scale [294, 347].

4.3 Evolution of pion GPDs: Quark and gluon content

The effective evolution approach has thus proved insightful in assessing the scale-dependence of parton
distributions functions of pions. However, the problem we are actually interested in is that of the
generalized parton distributions. An analysis similar to the former is, unfortunately not possible in the
case of GPDs, where the very first Lattice-QCD calculations are just starting to arise [286, 403, 404].
Nevertheless, the connection between our modeling approach with the forward distributions, added to
the intimate relation between the evolution kernels in the off-forward case with those for PDFs drives
the promotion of the effective evolution approach to describe that of GPDs.

Here we take advantage of LO GPD evolution as implemented in the Apfel++ library [279–281]
supplemented with the effective coupling of Eq. (4.32), implemented within the PARTONS [276] framework.
We set the reference-scale accordingly to µRef. = 0.331 GeV, but in light of the discussion developed
before (see Sec. 4.2.2), we allow it to be shifted by a 10%. As an illustration, Fig. 4.5a shows the results
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(a) Illustration of the evolved distributions at ξ = 1/2 and t = 0.
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(b) Illustration of the evolved distributions at ξ = 1 and t = 0.

Figure 4.5: Generalized parton distributions built on from the covariant extension of factorized
Ansätze for the pion’s LFWF as described in Ch. 3 and evolved through the Apfel++
software up to µ = 2 GeV using the effective approach to scale-evolution – Left
panel: Flavor-u quark GPD; Right panel: Gluon GPD, together with uncertainty
bands generated by a 10% freedom in the setting a hadron scale. – Legend: Blue
line, algebraic model. Orange line: numerical model. The numerical model is also
accompanied by the uncertainty band generated by the numerical inversion of the
Radon transform (darker orange band) as propagated through the replica method.

obtained for the two models introduced in Sec. 3.3.1 at a scale µ = 2 GeV and at a kinematic point
given by ξ = 1/2 and t = 0.

In light of the results shown in Fig. 4.5 several conclusions can be drawn. As expected from the
structure of the equations in the singlet-gluon sector, a non-vanishing gluon distribution is generated.
The resulting gluon GPD acquires, in both cases, a magnitude similar to that of the initially-non-
vanishing quark distribution already at the intermediate scale of µ = 2 GeV. In addition, both models
develop gluon GPDs which are compatible within the uncertainties induced by evolution. As we
shall find in the final chapter of this dissertation, this observation is a first hint of the dominant role
played by scale-evolution in the assessment of observables involving a gluon contribution (like, e.g. the
cross-section for deeply virtual Compton scattering). Indeed, as it is shown in Fig. 4.5a–Right panel,
two models built on the basis of a functional approach to the bound-state problem, but designed to
capture different physical phenomena yield compatible gluon distributions; i.e. gluon bremsstrahlung is
modulated by the quark content but essentially driven by pure QCD dynamics, as implemented in the
evolution-equations.

The obtained quark distributions are also interesting (Fig. 4.5–Left panel). In particular, the
oscillating behavior exhibited, specially, by the numerical model (see Fig. 3.11, Right panel) is smeared
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out as an effect of scale-evolution. The replica method is enlightening in this regard: Starting from a
given DGLAP GPD, the covariant extension strategy allows to obtain the underlying double distribution,
which is exploited afterwards to generate the companion ERBL GPD. Both, the double distribution
and the resulting ERBL GPD are affected by uncertainties (see Secs. 3.2.2–3.2.2). To assess their
propagation through evolution, that procedure is iterated, generating a set of 250 replicas for the quark
GPD at the reference-scale. All of them are evolved, providing an estimation of the uncertainties
generated by the numerical inversion of the Radon transform and their propagation by evolution (darker
orange band). As shown for the evolved quark distribution, the uncertainty band induced by the
numerical implementation of the covariant extension is narrowed as an effect of evolution. Moreover,
such band remains slimmer than that induced by the shifting in the hadron scale, an effect which turns
more apparent as evolution proceeds higher in the scale. Accordingly, we will find the evolution-induced
uncertainties to play the relevant role in the assessment of observables, the effect of the interpolation
procedure underlying our model remaining negligible in this regard.

Notably, the quark and gluon distributions obtained by evolution reveal to be continuous at the
cross-over point between the DGLAP and ERBL regions. This was, indeed, expected from the structure
of the evolution kernels, Sec. 4.1.1, but it is now confirmed by actual calculations. Although continuous,
all obtained distributions show a discontinuous first-order x-derivative at |x| = ξ, as exposed by
factorization theorems for deeply virtual Compton scattering discussed elsewhere [6].

Moreover, looking at a different region of the kinematic domain of GPDs might be insightful. In
particular, results in the ξ = 1 limit are shown in Fig. 4.5b. In agreement with the soft-pion theorem, the
resulting quark contributions represent the parton distribution amplitudes (the asymptotic one for the
case of the algebraic model, and that from Ref. [239] in the case of the numerical model). Importantly,
the gluon distributions obtained in that limit are identically zero in both models. Again, this is a
consequence of chiral symmetry as implemented through the soft-pion theorem: If quark GPDs reduce
to the corresponding distribution amplitudes and therefore are x-even, then the singlet combination of
quark GPDs vanish by symmetry considerations. As a consequence, the gluon distribution to which it
is coupled through evolution must also be identically zero in the ξ = 1 limit, as it is confirmed by the
outcomes of Apfel++.

The conclusions drawn from our covariantly extended models can be tested through comparison
with more traditional modeling strategies. In particular, we can take a look at the effect of evolution
on models built through the conventional Radyuskin’s double distribution Ansatz [167]. To this end
we consider the effective scale-evolution to µ = 2 GeV of the phenomenological models presented in
Sec. 3.3.2. Comparison with the xFitter [285] and GRS [314] models allows to benchmark our results in
comparison with global-fit analyses of the pion’s PDF. On the other hand, comparison with the RDDA-
DSE model built at the very end of Ch. 3 allows to assess the effect of the effective-GPD-evolution.
The results are shown in Fig. 4.6.

In general, all models exhibit an smoothed oscillating pattern in the quark sector. The three models
built on the RDDA Ansatz remain continuous, although non-differentiable, along the x = ξ line, being
consistent with factorization theorems for hard exclusive processes parametrized by GPDs. In average,
all quark distributions have similar magnitudes: For phenomenological and covariantly extended models.
In contrast, the gluon sector develops more eye-catching discrepancies. If the GRS and RDDA-DSE
models are completely similar to our results (Fig. 4.5) obtained from continuum Schwinger methods
supplemented with the covariant extension, the one obtained from the xFitter parametrization for the
pion’s PDF yields and appreciably softer gluon contribution: Roughly speaking, the gluon GPD reported
in [285] is half that from all other approaches. This can be understood: The xFitter collaboration
excludes the region x < 10−3 region from their fit fixing the exponent driving the low-x behavior of the
gluon distributions to −1. As a consequence, the xFitter gluon-PDF underestimates the gluon content
within pions (since it is precisely within that region where gluons are expected to proliferate), the input
distribution for the evolution being smaller than it should and thus explaining the deficit exposed by
the green line in the right panel of Fig. 4.6. In any case, the magnitude of all models is commensurate,
again hinting the accuracy of the effective evolution approach and its applicability to the study of
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Figure 4.6: Comparison of the distributions yielded by the three models for pion GPDs pre-
sented in Sec. 3.3.2: On the basis of Radyuskin’s Anstaz for double distributions,
the corresponding GPDs are constructed using the parton distribution functions
provided by: Green line: xFitter collaboration [285]; Orange line: Dortmund group
[314] and Pink line: Continuum Schwinger-Dyson modeling approaches [239]. –
Left panel: u-quark contribution, Right panel: gluon, both at µ = 2 GeV,
ξ = 1/2 and t = 0. )

generalized parton distributions. Notice, nonetheless, that for the xFitter and RDDA-DSE models this
is completely equivalent to the conventional perturbative evolution when taken at leading-order, since
those are defined at a high-enough scale for that to apply.

The effective approach to evolution thus shows insightful in the assessment of scale-evolution in
the case of generalized parton distributions. Tamed this essential phenomena we find ourselves in a
position to exploit the modeling strategy developed in Ch. 3 in producing verifiable predictions about
pion’s generalized structure. In the following we shall focus on the realistic model of Sec. 3.3.1, which
implements the essential features of strong interactions; and the GRS phenomenological model, dropping
the xFitter approach owing to its systematic dropping of the low-x domain. Putting together all the
elements developed through the preceding chapters we will round off a complete path towards the
phenomenology of pions. Chapter 5 will thus complete this work, producing unprecedented verifiable
predictions about pion’s inside.
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We have finally arrived to the last chapter of this dissertation, where we might be involved with the
benchmarking of our construction with experience. We will now put together all the pieces afore-
presented to evaluate the amplitude for deeply virtual Compton scattering on pions to take place.
There upon, we compute the cross-section for DVCS on pions and compare with actual measurements.
The accuracy of that comparison might then judge the sensibility of our hypotheses and thus, shed
light in our knowledge about pions. In this chapter we present the best candidate-process we have
for a practical evaluation of DVCS on pions in actual experiments: The Sullivan process [405]. We
will find it to receive two contributions: The Bethe-Heitler process, related to the electromagnetic
form factor; and a DVCS contribution, parametrized by Compton form factors. We will thus exploit
our models for GPDs to evaluate the CFFs and thus compute the amplitude for DVCS. Finally we
evaluate the cross-section and beam-spin-asymmetries, observables that shall be measured at future
collider-experiments, unraveling crucial features about the way pions are made up from elementary
building blocks: Quark and gluons.

5.1 Pion GPDs at electron-ion colliders: The Sullivan process

We are seeking for an experimental assessment of our models for pion GPDs. In this regard, the pathway
to the practical extraction of GPDs was already drawn in Ch. 1: Deeply virtual Compton scattering.
We devoted an entire chapter to the analysis of its foundations. However, by that time we were not
involved with its practical assessment which introduces some difficulties. Although very briefly, the first
one was already mentioned in Sec. 1.2: What are the sources for off-shell photons?. In this context, the
natural picture for deeply virtual Compton scattering is to be embedded into the interaction between a
charged probe which, through the exchange of a virtual photon, scatters off the hadron target. Thus,
for a practical assessment of DVCS on hadrons one must choose a charged probe; the simplest possible
choice being an electron. Thus, in the case at hand, where we are interested into pions, we may consider
the scattering process

e− (k, λ) + π+ (p, σ)→ e
(
k′, λ′

)
+ π+

(
p′, σ′

)
+ γ

(
q′
)
, (5.1)

where, for definiteness, we have set the pion to be a positively charged one.
A further issue then arises, this time being specific of our choice for the hadron target: Preparing

pion targets is a really challenging task. Indeed, a conventional approach is to use inverse kinematics:
i.e. using pion beams. However, the Q2 range accessible through that method is restricted to small
values, precluding the assessment of pion’s properties in a wide kinematic range [298]. Accordingly,
indirect approaches need to be explored in order to probe pion’s structure. The classical notion that a
nucleon possesses a meson cloud [406] proves very helpful at this stage. It follows from the idea that, in
absence of electromagnetic interaction, a proton and a neutron are practically identical and thus can be
considered as two manifestation of the (approximately) same entity: A nucleon. Supplemented with
the observation that a neutron can transform into a proton by the emission of a negatively charged
pion, one may consider a generalized situation where, a nucleon emits a pion while de-excitating itself.
A nice picture for that transition then follows by realizing a nucleon as “surrounded” by a meson cloud,
which eventually relaxes by dropping one of these mesons.
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Within this picture, a nice indirect channel allowing to probe pions can be drawn by considering the
scattering of say, an electron, with a nucleon target. e.g. a proton. Accordingly, such reaction might
occur through the emission of a pion by the nucleon target, the electromagnetic scattering taking place
not through interaction of the electron with the nucleon itself, but with the emitted pion (Fig. 5.1):

e− (k, λ) + p+ (p, σ) → e−
(
k′, λ′

)
+ γ∗ (q) + π+ (pπ) + n

(
p′, σ′

)
→ e−

(
k′, λ′

)
+ n

(
p′, σ′

)
+X .

(5.2)

If preparing meson targets is hardly achievable, dealing with protons is a well-known matter and
thus the above channel allows for a practical assessment of Compton scattering on pions. Indeed, it has
been so widely exploited for the study of pion’s properties [304–307, 407–410], that it has received a
particular denomination: The Sullivan process.

The family of processes in Eq. (5.2) were named after J.D. Sullivan who, in a seminal paper
[405], showed that indeed the cross-section for exclusive electron-proton scattering receives sizable
contributions from the one-pion-exchange channel illustrated in Fig. 5.1. However, it is not generally
true that such process allows for a reliable evaluation of pion’s structure. To this end, one must
guarantee the intermediate state hadron to actually be a pion; i.e. to require:

p2
π = m2

π −−−−−−−→Chiral limit
0 . (5.3)

Notwithstanding, simple kinematic considerations show the momentum transfer between nucleon
states to satisfy:

p2
π = t =

(
p′ − p

)2
= 2m

(
m− Ep′

)
≤ 0 , (5.4)

where m is the nucleon mass and Ep′ represents the energy of the outgoing nucleon; meaning that, in
general, the momentum transfer between nucleon states is spacelike and therefore the emitted pion is off
its mass-shell. A new issue then arises: If the concept of virtual particles is well understood in the case of
elementary fields, a unique definition of an off-shell bound-state in quantum field theory is problematic.
By extension, if the Sullivan process is to provide a tool for the assessment of pion properties, kinematic
constraints must be imposed to grant a proper interpretation of the results. Namely, the momentum
transfer between incoming and outgoing nucleons must stay close to the threshold for pion’s production
[83, 405, 411]. However, “close” is a quite ambiguous statement. Do the properties of a virtual pion
appreciably differ from those of a real one?. If so, how much can we deviate from that point while still
achieving a quantitative assessment of real-pions properties?. Unfortunately this question lacks from a
clear answer. Mainly because there is no unique definition for the off-shellness of hadrons. However, a
recent analysis tackled this problem from an ingenious perspective [411]. There the authors relied on a

e− (k)

e− (k′)

p+ (p)

n (p′)

pπ = p− p′

X

Figure 5.1: Diagram representative for electron-proton scattering in the one-pion-exchange
approximation.
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continuum formulation of the bound-state problem in QCD and let the squared four-momentum of the
hadron to linearly deviate from the on-shellness condition. Parametrically tracing the virtuality of the
hadron, they obtained the corresponding Bethe-Salpeter amplitude showing that, for the case of a pion,
the condition

|t| . 0.6 GeV2 , (5.5)

guarantees a reliable interpretation of the emitted pion as a valid real-pion target. Namely, on that
domain the properties of an off-shell entity are simply related to those of the on-shell one. Moreover,
this result refines earlier surveys [405], which estimated the accuracy of a description of real pions
through the Sullivan process to be given by |t| . 0.87 GeV2. Therefore, as long as one sticks to the
bound in Eq. (5.5), a reliable assessment of pion properties is feasible through the Sullivan process. In
particular, one may exploit it for evaluation of generalized parton distributions. To this end, we just
need to pick-up a particular final state among those allowed in Eq. (5.2): Namely, a real photon and a
real pion:

e− (k, λ) + p+ (p, σ) → e−
(
k′, λ′

)
+ γ∗ (q) + π+ (pπ) + n

(
p′, σ′

)
→ e−

(
k′, λ′

)
+ π+

(
p′π
)

+ γ
(
q′
)

+ n
(
p′, σ′

)
.

(5.6)

Two mechanisms contribute to the above process: Virtual Compton scattering (Fig. 5.2–Left panel),
and the Bethe-Heitler process (Fig. 5.2–Right panel). In the case of virtual Compton scattering, the
outgoing photon-pion pair arises from the scattering of the probing photon on the initial-state pion.
While, in the Bethe-Heitler contribution, the outgoing photon is emitted by either, the initial- or
final-state electron. This latter contribution is well known and, indeed, it has already been exploited
for the extraction of the electromagnetic form factor of the pion [296, 298–307].

Here, we shall focus on the former, which provides access to generalized parton distributions. We will
develop the very first exploratory study on the possibility of accessing pion GPDs through experiment.
In reality, this contribution is well known an in fact, attempts at its experimental assessment already
exist [412, 413]. However, the kinematic region accessible so far in collider-experiments has been found
to be dominated by the Bethe-Heitler contribution, precluding a reliable evaluation of pion GPDs.
Nonetheless, plans for the construction of new facilities devoted to the study of hadron structure exist:
The Electron-Ion Collider in the US [264], and the Chinese Electron-Ion Collider (EicC) [265]. Both
are expected to deliver enough beam-energy and luminosity (Tab.5.1) to allow for the exploration of
hadron structure to an unprecedented level of detail. In particular, to probe pion GPDs through the
Sullivan process [264, 414].

5.1.1 Limitations of the one-pion-exchange approximation

Before continuing with the prosecution of an experimental assessment of our models for pion GPDs it
is worth giving a caveat about the one-pion-exchange approximation, on which our phenomenological
study is based. Indeed, we argued that for a reliable interpretation of the results, the amount of
momentum transferred between nucleon states must be bounded by |t| . 0.6 GeV2. In this way, off-shell
effects on the structure of the probed pion can be accurately tackled. However, still other sources of
contamination for the results can arise.

Start considering the Bethe-Heitler contribution to the Sullivan process. By means of angular
momentum conservation, the process γ∗π → π can only proceed through longitudinally polarized
photons. However, existing measurements on the pion’s electromagnetic form factor through the
Sullivan process (see e.g. [305, 306]) indicate a non-vanishing contribution to the cross-section for
transversely polarized photons. The ρ meson being a good candidate to mediate in that process. There
are model calculations in this regard, e.g. [415], whose results approach but underestimate existing
measurements. This discrepancy can be associated to the occurrence of nucleon resonances [305] in the
πN channel. That observation triggers the introduction of kinematic cuts on the invariant mass of that
system, W 2 = (pπ + p)2 > 4 GeV2 probing to be an optimal threshold in this regard [83].
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e− (k)

e− (k′)

p+ (p)

n (p′)

γ (q′)

π+ (p′π)

q = k − k′

pπ = p− p′

e− (k)

e− (k′)

π+ (p′π)

p+ (p)

n (p′)

γ (q′)

Figure 5.2: Diagrams representative of ep→ enπγ scattering the processes grating access to
generalized parton distributions through the Sullivan process. — Left panel:
Virtual Compton scattering, Right panel: Bethe-Heitler contribution. Note, a
crossed-channel diagram exists for the Bethe-Heitler contribution where, instead,
the photon in the final state is emitted by the incoming electron.

Conventional σL/σT separation would seem useful in disentangling the effect of ρ mesons. At least in
the Bethe-Heitler contribution. However, in the DVCS contribution, both γ∗π → γπ and γ∗ρ→ γπ can
occur through transverse photon polarization. Whereas restriction to low-tπ enhances the contribution
of γ∗π channel, still the ρ meson can be seen to contribute, an assessment of ρ→ π transition for factor
being a priori needed. In lack of reliable assessments of this quantity we neglect its contribution in this
study.

5.2 Cross-section of the Sullivan process

Given that the Sullivan process provides a unique place where to probe pion’s structure, and that
the conditions for its practical assessment are expected to be met at the future electron-ion colliders,
carefully considering its analysis is in order. More precisely, what might be accessed in experiment is
the cross-section for the Sullivan process, so let us discuss it in detail.

In general, the differential cross-section can be written as:

dσSullivan =
1

Fep
|MSullivan|2 dΠ4 , (5.7)

where Fep is the electron-proton flux factor, which we conventionally define as [28]:

Fep = 2
√
λ (s,m2,m2

e = 0) = 2
(
s−m2

)
, (5.8)

and dΠ4 represents the Lorentz-invariant four-body phase-space (see App. E for its definition). From its
part, in the amplitude for the Sullivan process, two pieces can be distinguished: (i) One corresponding
to the emission of pions by the nucleons; and (ii) the interaction between the electron with that pion.
In this realization, one may employ Feynman rules to write it down as:

MSullivan = i
√

2gπNN ūσ
(
p′
)
γ5uσ (p)

i

t−m2
π

F (t; Λ)Meπ→eγπ , (5.9)

where gπNN = 13.05 is the pion-nucleon coupling [416] and F (t; Λ = 800 MeV) =
(
Λ2 −m2

π

)
/
(
Λ2 − t

)
is a phenomenological factor softening that vertex when the pion’s virtuality becomes large with respect
to m2

π [83, 417]. The matrix elementMeπ→eγπ encode everything about electron-pion interaction, in
particular, the two contributions to the Sullivan process: DVCS and BH.
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Squaring Eq. (5.9) and explicitly evaluating the invariant phase-space of four bodies allows to write
the cross-section for the Sullivan process as [83, 418] (see App. E for the detailed calculation):

d8σSullivan (λ,±e)
dydQ2dtπdψdψedtdxπdψn

= xπ
g2
πNN

16π3
F 2 (t; Λ)

−t
(t−m2

π)2

∣∣J (Q2, y;xπB, yπ
)∣∣ d5σeπ→eγπ (λ,±e)
dyπdxπBdtπdψdψe

(5.10)
with |J | the Jacobian of the transformation from Q2, y coordinates to xπB, yπ; and

d5σeπ→eγπ (λ,±e)
dyπdxπBdtπdψdψe

=
α3
QEDx

π
Byπ

16π2Q2
√

1 + ε2
|Meπ→eγπ|2

e6
, (5.11)

the five-fold differential cross-section for the underlying exclusive Compton scattering on pions (Fig. 5.2),
which accounts for DVCS and BH contributions. ε2 = 4m2

π (xπB)2 /Q2. The cross-sections are
parametrized in terms of eight Lorentz-invariant quantities1: Q2 and t, which are already well known;
xπB = Q2/ (pπ · q) and tπ = (p′π − pπ)2 which are the ordinary GPD variables now labeled with a
subscript π to make explicit its reference to the underlying photon-pion scattering process. And
yπ = (pπ · q) / (pπ · k), measuring the electron’s energy loss in benefit of the pion2. In addition, three
angles are necessary for the characterization: ψe/n, the azimuthal angle of the scattered electron/neutron;
and ψ, the angle between the leptonic and hadronic planes defined according to the Trento convention
[419].

All of the dynamics of the process is encoded into the invariant matrix elementMeπ→eγπ, from
which three contributions to the cross-section can be identified:

|Meπ→eγπ|2 = |MDVCS|2 + |MBH|2 ∓ I (λ) , (5.12)

where the sign ∓ is given by the lepton-beam charge (electron/positron respectively) and the interference
term being given by:

I (λ) =M∗DVCSMBH +MDVCSM∗BH , (5.13)

where λ represents the lepton-beam polarization.
All of them may play an important role in the description of the Sullivan process. A proper

interpretation of the sought-after results therefore requires depicting the structure of all these terms.

5.2.1 Bethe-Heitler

Lets start with the Bethe-Heitler contribution. To the lowest order in the electromagnetic coupling, the
invariant matrix element for the BH contribution to the Sullivan process reads:

MBH = − e
3

Q2
ū
(
k′
) [
γρ

/k − /q
(k − q)2γ

µ + γµ
/k − /q′

(k − q′)2γ
ρ

]
u (k) gµνP

ν
πFπ (tπ) ε∗ρ

(
q′
)
, (5.14)

where Feynman gauge has been employed in representing the photon propagator and having dropped
the iε prescription in the propagators. Note that the invariant tensor decomposition of the hadronic
contribution to that amplitude

〈p′π|Jν (0) |pπ〉 =
(
pπ + p′π

)
Fπ (tπ) ≡ PπFπ (tπ) . (5.15)

has been exploited, explicitly encoding the relation between the Bethe-Heitler process and the hadron’s
electromagnetic form factor, which is on the basis of most of the experimental measurements for Fπ.

1The definition of all these quantities is conventional in the analysis of leptoproduction processes, see e.g. [48].
Nonetheless, in App. E we present an exhaustive analysis of the kinematics characterizing the Sullivan process and
carefully define all of them. For further details we refer the reader to it.

2With regard to the proton, one similarly defines y = (p · q) / (p · k)
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If one now squares and averages over lepton-beam polarization, as well as sums over those of the
final state particles, the Bethe-Heitler contribution to the Sullivan process’ amplitude reads [65]:

∑
Pol.
|MBH|2 =

8F 2
π (tπ)

tπ

[
4m2

π − tπ
2tπ

(
1− Q4 + t2π

2Q4P1P2

)
− (q + q′ − 2k) · Pπ + 2 (k · Pπ)

2Q4P1P2

]
(5.16)

where the representation

Q2P1 ≡
(
k − q′

)2
= Q2 + 2k ·∆ , Q2P2 ≡ (k − q)2 = tπ − 2k ·∆ , (5.17)

for the fermion propagators, with q = (p′π − pπ) ≡ ∆ ≡
√
tπ, has been introduced for the sake of

compactness in the notation.
From the expression in Eq. (5.16) one can notice that all of the dependence of the Bethe-Heitler

signal on the azimuthal angle ψ is encoded into the products k ·∆. In particular, the numerator in the
last term on the right-hand side can be worked out, revealing a dependence on that azimuthal angle
given by cosm ψ with m = 0, 1, 2. This observation triggers an expansion in “Fourier harmonics” for the
squared Bethe-Heitler contribution which, after some rearrangement, yields [48, 65]

∑
Pol.
|MBH|2 = − F 2 (tπ)(

xπByπ (1 + ε2)
)2
tπP1 (ψ)P2 (ψ)

2∑
m=0

CmBH cos (mψ) , (5.18)

where, notice, we have written Pi (ψ) to emphasize that still some dependence on the angle between
the lepton and hadron planes exists.

The coefficients in that expansion CmBH can be found elsewhere [48, 65], we are not worried about
their expressions at this stage. Instead, what we do find advantageous at this point is to explore the
Q2-dependence of Eq. (5.18). Indeed, all of it is encoded into two pieces: The fermion propagators and
the expansion coefficients. According to Eqs. (5.17), the product of propagators contribute a factor
Q4 to the behavior of the squared BH amplitude. However, in the large-Q2 limit, such is shown to be
compensated by that of the Fourier harmonics [65], the squared Bethe-Heitler contribution scaling as
Q0 for large photon virtuality.

5.2.2 DVCS

A similar analysis can be developed for the squared DVCS amplitude. Fortunately, we have already
developed most of the work through Ch. 1. It is now matter of putting things together and highlighting
the features that may be relevant for the interpretation of forthcoming results.

In Eq. (1.9) we wrote the DVCS amplitude as:

MDVCS =
e

Q2
ū
(
k′
)
γρu (k) gρµT µν

(
pπ, p

′
π, q
)
ε∗ν
(
q′
)
, (5.19)

where the hadronic part of the amplitude, i.e. the virtual Compton tensor, is parametrized by
convolutions of generalized parton distributions with hard kernels: The Compton form factors,

T µν (P,Q,∆) = −gµν⊥ Hπ
(
ξ, t,Q2

)
, (5.20)

to leading-twist accuracy.
On the basis of such expression, we can proceed in analogy to the Bethe-Heitler case. Squaring and

summing over polarizations we find the DVCS contribution to the Sullivan process’ cross-section to be
given by [48, 51, 65]:

∑
Pol.
|MDVCS|2 =

e6

y2
πQ

2

[
C0
DVCS

∣∣Hπ (ξ, t,Q2
)∣∣2 +

2∑
m=1

[CmDVCS cos (mψ) + SmDVCS sin (mψ)]

]
,

(5.21)
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where the CmDVCS and SmDVCS coefficients can, again, be found in the literature [48, 51, 65]. Strikingly,
those corresponding to m = 1, 2 receive contributions from effective twist-three and transversity GPDs,
which we are not considering in this study. Thus, to leading-twist accuracy one would write:

∑
Pol.
|MDVCS|2

∣∣∣∣
τ=2

=
e6

y2
πQ

2
2
(
2− 2yπ + y2

π

) ∣∣Hπ (ξ, t,Q2
)∣∣2 , (5.22)

where, this time, we have explicitly written the corresponding coefficient.
As expected, the DVCS contribution to the Sullivan process reveals proportional to the squared

Compton form factors, these being the quantities effectively parametrizing the behavior of hadrons
subjected to deeply virtual Compton scattering. Moreover, the leading-twist contribution to the squared
DVCS amplitude scales with the photon virtuality as Q−2. As a consequence, and in contrast with the
result found for the pure Bethe-Heitler contribution, the squared DVCS term is suppressed at large-Q2.
This simple finding is behind the difficulties found in early measurements on the Sullivan process on
pions when attempting at the extraction of GPDs from Compton form factors.

5.2.3 Interference

Finally an interference term contributes to the Sullivan process’ cross-section. It represents the overlap
between pure Bethe-Heitler and DVCS contributions. Readily proceeding through Eqs. (5.14) and
(5.19) and following the prescriptions of [51] on finds:

I (λ) =
e6

xπBy
3
πtπP1 (ψ)P2 (ψ)

[
C0
Int. +

3∑
m=1

[CmInt. cos (mψ) + SmInt. sin (mψ)]

]
. (5.23)

All CInt. coefficients are proportional to the real part of the Compton form factors, while SInt.
modulate the dependence on the imaginary part. Moreover, the C0,1

Int. and S1
Int. receive contributions

from twist-two Compton form factors. The rest are related either with gluon transversity GPDs or higher
twist contributions [51]. As a consequence, and similarly to the case of the pure DVCS contribution,
one would write:

I (λ)|τ=2 =
±e6Fπ (tπ)

xπBy
3
πtπP1 (ψ)P2 (ψ)

[
c0
Int.ReHπ + c1

Int.ReHπ cosψ + λs1
Int.ImHπ sinψ

]
. (5.24)

The reduced coefficients cInt and sInt. all vanish as 1/Q in the large photon-virtuality limit, thus
driving the Q2 dependence of the interference term. Moreover, Eq. (5.24) manifest an essential feature
of the interference between DVCS and BH signals: It is linear in the Compton form factors3. This
is indeed a very remarkable property of the interference term which constitutes the main source of
information about Compton form factors.

5.2.4 Leading twist cross-section and beam-spin-asymmetries

One can now combine the results of the preceding sections to express the squared eπ → eγπ amplitude.
Indeed, combining Eqs. (5.18), (5.22) and (5.24) one writes:

|Meπ→eγπ|2 = CBH (ψ)F 2
π (tπ)± 1

Q
(CInt. (ψ)ReHπ + λSInt (ψ) ImHπ)Fπ (tπ) +

1

Q2
CDVCS |Hπ|2 ,

(5.25)
with the corresponding identifications for the coefficients above.

With this expression, combined with Eq. (5.11), the cross-section for the Sullivan process (Eq. (5.10))
can be written in a very useful form, where its Q2-dependence is explicitly presented. Moreover, taking

3Despite our exposition, the linearity of the interference term in cross-section for the Sullivan process is not exclusive
for the leading twist approximation and, indeed, holds (at least) up to twist four accuracy [51]
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Figure 5.3: Deeply virtual Compton form factors – Left panel: Real part. Right panel:
Imaginary part. – Legend: Orange: Realistic model developed within throughout
Ch. 3 on the basis of the parton distribution function given in Ref. [239]. Red :
Phenomenological model built through the conventional strategy of Sec. 3.3.2 on
the basis of the PDF [314]. Both evolved through the effective evolution strategy
described in Ch. 4.

advantage of the induced dependence on the lepton-beam polarization, a very useful magnitude can be
defined: The lepton-beam spin-asymmetry [9]

A (ψ) =
σ↑ − σ↓

σ↑ + σ↓
(5.26)

which by means of Eq. (5.25) can be written as:

A (ψ) = ±λ
s1
Int.ImHπ

CBH (ψ)F 2
π (tπ)± 1

QCInt. (ψ)ReHπFπ (tπ) + 1
Q2CDVCS |Hπ|2

sinψ . (5.27)

Such is indeed measurable and provides direct access to the imaginary and real parts of the Compton
form factors through tuning of the azimuthal angle ψ.

5.3 Compton form factors

In light of the findings above, the only remaining ingredients for a practical assessment of pion’s
structure, i.e. for the evaluation of the Sullivan process’ cross-section, are the Compton form factors.
But we already know how to evaluate them. As a matter of fact, we devoted an entire chapter (Ch. 1) to
the detailed analysis of the hadronic part of deeply virtual Compton scattering, showing that Compton
form factors are obtained as convolutions of a hard kernels computed in perturbation theory and GPDs:
Sec. 1.3.2. Thus, armed with the GPD models developed in Ch. 3, and the formulae of Sec. 1.4.1, we
can explicitly compute the CFFs describing DVCS on a pion target. In practice we take advantage
of PARTONS’ implementation of our GPD models and the expressions for Compton form factors up to
next-to-leading order in the strong coupling constant. Through the interface between PARTONS and
Apfel++, we evaluate the scale-evolution of our GPD models up to experimentally relevant energy
scales following the strategy described in Ch. 4. Finally, we evaluate the corresponding convolution to
obtain the Compton form factors at resolution-scales typical for EIC and EicC.

As an illustration, Fig. 5.3 shows the Compton form factors parametrizing deeply virtual Compton
scattering at zero momentum transfer (now, in the context of the Sullivan process, labeled tπ) and at
an intermediate factorization-scale of Q2 = 2 GeV2. The orange lines show the results produced by our
model for the pion’s GPDs. Namely, supplementing the Ansatz Eq. (3.70) for DGLAP GPDs with the
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Figure 5.4: Deeply virtual Compton form factors on the valence region: ξ ∈ [0.1, 0.5]– Left
panel: Real part. Right panel: Imaginary part. – Legend: Orange: Realistic
model developed within throughout Ch. 3 on the basis of the parton distribution
function given in Ref. [239]. Red : Phenomenological model built through the
conventional strategy of Sec. 3.3.2 on the basis of the PDF [314]. Both evolved
through the effective evolution strategy described in Ch. 4.

PDF obtained in state of the art continuum analyses of pion’s structure (Eq. (3.71), Ref. [239]) and
exploiting its covariant extension to the ERBL region.

Importantly, three different evaluations of the same quantity are shown in that figure. The dotted
line corresponds to the Compton form factor obtained through convolution with hard scattering kernels
computed at leading-order in perturbation theory (Sec. 1.4.1). Under those conditions, the obtained
CFF shows a smooth, positive definite, monotonically decreasing function of the skewness variable,
both for its real and imaginary parts. Recall that, as discussed in the first chapter of this dissertation,
at that order only quark GPDs contribute. It is therefore interesting to turn to the next-to-leading
order calculation of CFFs (Sec. 1.4.1), where gluons do contribute. Trying to enlighten the discussion
we took two different NLO computations: (i) Next-to-leading order CFF without taking gluons into
account, i.e. the quark GPD contribution to the NLO CFF (dashed-line in Fig. 5.3). And (ii) the full
next-to-leading order calculation (continuous line). Strikingly, the dashed line shows a behavior similar
to the LO one. Only an slightly smaller magnitude being observed for both, ReHπ and ImHπ. In
stark contrast, when we turn gluons on, the behavior of the Compton form factor dramatically changes,
even turning negative in the low- and intermediate-ξ region; say ξ . 10−2. Meaning that, already at
intermediate scales like Q2 = 2 GeV2, gluons dominate the behavior of the Compton form factors. Even
when they were assumed to be zero at the reference-scale, generated only as an effect of evolution and;
even so, remain vanishing in part of the kinematic domain of GPDs, Fig. 4.5b.

Comparison with the GRS model confirms these observations, as the two models show the same
trends for each evaluation and in the case of both, the real and imaginary parts of the Compton form
factor. The observation of a CFF-behavior which remains compatible between the two classes of models
at hand is, in fact, in agreement with recent findings on the GPD-deconvolution problem [23] where,
loosely speaking, it is highlighted that differences between different GPD models might be washed-out
through evolution kernels, first, and convolution with hard scattering kernels. In addition, this explains
why oscillating GPDs, such as ours (see Fig. 3.11), finally yield an smooth Compton form factor.

Notwithstanding, some discrepancies between both models can be observed in the low-ξ region,
reaching deviations of about a factor two for ξ ∼ 10−3. However, the results yielded by both models
agree within the expected uncertainty bands, at least for the real part of the CFFs; and, in fact,can
be attributed to the differences in the small xπB behavior of the two type of models. Indeed, the ratio
between both models behaves as 1/ (xπB)1/3 explaining, at least in terms of orders of magnitude, the
highlighted differences. Furthermore, in general words, the behavior of the (NLO) Compton form factors
can be fitted to 1/ξb with b ' 1.4 within the low-ξ region, a result which remains compatible with
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DVCS dispersion relations with one subtracted constant [62]. As argued above, this trend is mostly a
consequence of the contribution from the gluon content within pions. However, we highlight that our
study is a pure NLO one with no small-ξ resummation being taken into account, which may indeed
have an important impact smoothing the very low-ξ behavior of the CFFs.

The observation that gluon content within pions dominates the response of pions to deeply virtual
Compton scattering deserves being stressed. Indeed, we found a manifestation of gluon dominance in
the observation that Compton form factors change sign with respect to pure quark ones at given ξ0.
This feature becomes more apparent as one investigates the domain of lower ξ. Moreover, the position
of the zero crossing runs with Q2. As an illustration, at an intermediate scale Q2 = 4 GeV2 one finds
for our numerical model:

Numerical : ξ0|ReHπ
(
ξ = ξ0, 0;Q2 = 4 GeV2

)
' 0.54 ,

ξ0|ImHπ
(
ξ = ξ0, 0;Q2 = 4 GeV2

)
' 0.09 .

(5.28)

However, as scale-evolution is further taken into account, that zero-crossing shifts towards smaller
values of ξ, disappearing at high-enough Q2. For instance, at Q2 = 8 GeV2

Numerical : ξ0|ReHπ
(
ξ = ξ0, 0;Q2 = 8 GeV2

)
' 0.40 ,

ξ0|ImHπ
(
ξ = ξ0, 0;Q2 = 8 GeV2

)
' 5 · 10−4 .

(5.29)

Our numerical model turns positive definite in its real (imaginary) part at Q2 & 28 GeV2 (Q2 &
11 GeV2). This Q2 dependence can be understood: As Q2 increases, the impact of higher order
corrections progressively decrease, approaching the leading-order result. Thus, if at some scale Q2

1 and
at some skewness ξ1 the CFF is dominated by gluons (i.e. it is negative), increasing the scale should
reduce the impact of NLO corrections. Accordingly, one expects that at some sufficiently high scale Q2

2

the CFF evaluated at ξ1 turns positive. Moreover, since gluons proliferate specially in low-ξ region as a
result of parton splitting, the zero crossing is expected to be shifted towards lower values of ξ as the
resolution-scale increases. This is precisely what we observe.

On the other hand, if gluons are expected to be the relevant degrees of freedom in the region
of low-ξ, quarks might be the dominant ones within the valence region. Namely the kinematic
domain of large-ξ. Let us take a closer look at the behavior within that region. Fig. 5.4 zooms into
ξ ∈ [0.1, 0.5], again for vanishing momentum transfer and Q2 = 2 GeV2. Notably, as expected, all
computed Compton form factors tend to zero in the limit ξ → 1. However, both show a different
type of decay at large-ξ. Indeed, our numerical model fulfills with pQCD expectation [293, 294]
while the GRS one does not, being reasonable to think about this issue as being on the basis of the

Figure 5.5: Phase space considered in the present study: facilities and configurations (electron
× proton beam energies in GeV) contributing the most to the statistics in the
colored areas are specified.
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aforementioned discrepancy. Nonetheless, the large-ξ behavior is strongly imbricated with scale-evolution
[281], precluding a quantitative assessment of this observation.

Remarkably, the behavior of the real part of the Compton form factors within the valence region
remains similar to that shown in the intermediate and low-ξ domains discussed above. Again, we
observe a gluon-induced change of sign, hinting the key role of gluon GPDs even within the valence
region. Nonetheless, in line with arguments above, the magnitude of ReHπ evaluated at NLO and in
the large-ξ region is smaller than outside it, in agreement with the expectation for quarks to proliferate
herein. In addition, the imaginary part of the Compton form factor remains positive within the valence
region, illustrating the relevance of quark degrees of freedom within that regions. However, when gluons
are turned on (solid lines), the magnitude of ImHπ is appreciably reduced, indicating the “destructive
interference” between quarks and gluons within the valence region.

5.4 Evaluation of observables

With the calculation of Compton form factors being accomplished, we can now put together all the
pieces developed during this thesis and evaluate the cross-section for the Sullivan process as it shall
be observed at the future electron-ion colliders. In fact, both EIC and EicC facilities will deliver
highly polarized lepton and hadron beams [264, 265] which, combined with their high luminosity
and beam-energy (Tab. 5.1) will allow to cover a wide rage of kinematic domains (Fig. 5.5) [418].
Regarding the EIC’s design [264], a central barrel detector with two end-caps, sitting in a 3 T solenoidal
magnetic field will be in charge of spotting the scattered lepton, the photon and the recoil pion with
pseudo-rapidity between −4 to 4. A far-forward spectrometer will detect the recoil pion with polar
angle between 6 and 20 mrad. A Zero-Degree calorimeter will detect the neutron with polar angles from
0 to 5.5 mrad. EicC is analogously designed, with central and forward detectors [265]. However, as it is
still at a conceptual stage, key parameters for our study are not provided, such as the acceptance for
the neutron. Hence, we assume ideal geometry for the EicC spectator neutron tagger. To guarantee
the exclusivity, a reliable detection/identification of the outgoing-electron, -photon and -neutron is
assumed. Momentum conservation will be required and therefore pion identification is not considered
as mandatory.

The number of events is then estimated by Monte-Carlo simulation. From Eq. (5.10), five kinematic
variables and three angles are necessary to fully determine the final state. They are all uniformly
generated. After cuts guaranteeing the validity of the Sullivan process [83], the number of expected
events N is obtained by:

N = L
∑
i∈Π

d8σi(λ,±e)
dydQ2dtπdψdψedtdxπdψn

× ∆Πi

Ngen
, (5.30)

where Π is the phase-space of events passing kinematic cuts with all final-state particles detected, ∆Πi

the hypervolume in which the kinematic variables have been generated for event i, Ngen the number of
generated events, and L the integrated luminosity over a year.

EIC EicC

Lepton beam energy (GeV) 5/10/18 3.5
Hadron beam energy (GeV) 41/100/275 20
Lepton polarization 70% 80%
Hadron polarization 70% 70%
Integrated luminosity

(
fb−1/year

)
10 50

Table 5.1: Main characteristics of both electron-ion colliders obtained from Ref. [264] (EIC)
and Ref. [265] (EicC).
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Figure 5.6: Number of DVCS events as a function of Q2 for xπB ∈
[
10−3, 10−2

]
. Black squares

represent the full NLO calculation with the covariantly extended model being
discussed while empty squares show the NLO evaluation without taking the gluon
contribution into account. Red circles display NLO results from the GRS model,
and blue crosses denote the BH event rate. The shaded gray area shows the
evolution-induced uncertainty.

5.4.1 Event-rates

Following this strategy we compute the expected number of events. We focus on the kinematic range
xπB ∈

[
10−3, 10−2

]
which is expected to be clearly probed at EIC (Fig. 5.5). The corresponding results

are shown in Fig. 5.6. There, the available Q2-range is covered, from 1 to 100 GeV2, using four bins.
The result for the expected number of Sullivan events is shown. Three different results are presented:
Black squares, corresponding to the result yield by our numerical model when the evaluation of the
Compton form factors is taken at next-to-leading order. Empty squares, corresponding also to our
model but, this time, computing the Compton form factors at NLO but without taken the gluon
contribution into account. And finally, red dots, the full NLO result obtained on the basis of the GRS
model. In addition, blue crosses represent the corresponding pure Bethe-Heitler signal.

The analysis of that figure allows to extract striking conclusions from our calculations. Focus on the
two full next-to-leading order calculations. The numerical and phenomenological models yield results
which remain compatible within the expected uncertainty band, both suggesting thousand of events a
year and an important increase of the event-rate at low Q2. Strikingly, both models predict event-rates
clearly not compatible with solely a Bethe-Heitler signal (blue crosses), highlighting the possibility of
accessing DVCS on a pion target at future colliders.

As expected from Eq. (5.25), all calculations tend to the pure Bethe-Heitler result as the resolution-
scale increases. On the contrary, as Q2 decreases, pure DVCS and interference contributions start
becoming relevant. In particular, in the lowest-Q2 bin, the strength of the signal is maximized. It is
precisely within that region that the two explored models differ the most. However, that difference
is much larger than the expected experimental uncertainties, highlighting the major discriminating
power of the DVCS cross-section measurements. Note again that the two models’ predictions can be
reconciled if one considers a ±10 % uncertainty in the starting evolution-scale, stressing the sensibility
on the model at very low Q2 which, nonetheless decreases quickly as Q2 rises.

We can understand this behavior. To this end, focus on the calculations on our numerical model
and benchmark the full NLO result with that excluding the contribution of gluons (empty squares). In
the lowest-Q2 bin, the pure NLO result is manifestly above that without gluons. However, when one
slightly increases the resolution-scale to the second bin, both become compatible, the overall event-rate
being reduced. What is the source of this behavior?. Notice that, within that region, the relevant
contribution appears to be that of squared DVCS, as one may infer from the behavior in the azimuthal
angle which resembles that of pure Bethe-Heitler contributions. Thus, the observed event-rate must be
controlled by:

NQ2.4 GeV2 ∼ |Hπ|2 = Re2
(
Hq,LOπ +Hq,NLOπ +Hgπ

)
+ Im2

(
Hq,LOπ +Hq,NLOπ +Hgπ

)
. (5.31)

In Sec. 5.3 we found that at low scales, next-to-leading order corrections to quarks are small.
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Moreover we observed that, at very low Q2 values, typically Q2 . 2 GeV2, gluons dominate the behavior
of the CFFs. Indeed, at 2 GeV2 the gluon contribution was shown to be essentially twice that of quarks,
with opposite sign. In light of this observation the event-rate behavior can be seen to behave as

NQ2.2 GeV2 ∼ Re2
(∣∣Hq,LOπ

∣∣− |Hgπ|)+Im2
(∣∣Hq,LOπ

∣∣− |Hgπ|) ∼ Re2 (|Hgπ|)+Im2 (|Hgπ|) ∼ |Hgπ|
2 . (5.32)

However, it is expected from perturbation theory that higher order contributions (like the gluon’s
one, which enters the calculation from NLO and on) become less relevant as one goes upwards in Q2.
Indeed, we found a manifestation of this effect in the shifting of the zero-crossing of the NLO CFFs
towards smaller values of ξ as the photon’s virtuality increases. Thus, one might expect the quark
and gluon contributions to smoothly acquire similar magnitudes as one progresses upwards in Q2, the
number of events being written as:

N2.Q2.4 GeV2 ∼ Re2
(∣∣Hq,LOπ

∣∣− |Hgπ|)+ Im2
(∣∣Hq,LOπ

∣∣− |Hgπ|) < NQ2.2 GeV2 , (5.33)

showing that a destructive interference between quarks and gluons within pions occurs, modulating the
expected number of events. At low Q2, the strong coupling is large enough for the gluon contribution
to dominate the process, strongly increasing the counting rate. Indeed, the larger uncertainty band
observed in the first Q2-bin can be traced down to that induced by scale-evolution for the gluon GPDs,
which showed much larger than the quark one (Fig. 4.5a). When Q2 increases, both gluon and quark
contributions acquire comparable magnitudes with opposite sign, interfering against the count-rates.
Progressing further yields the LO result, which is shown in the third bin to be obscured by pure the
Bethe-Heitler signal, a finding in agreement with earlier attempts to extract hadron GPDs using the
Sullivan process [412, 413]. Finally, in the large Q2 region, the behavior of the cross-section is dominated
by the BH contribution, all calculations collapsing to it.

As a final remark, notice that this picture explains the discrepancy between our predictions and
those from the GRS model: In that case, gluon contributions are still stronger than quark ones within
the low Q2 region (as it can be seen in Fig. 5.3). However, that is comparatively weaker than in
our model, explaining why the behavior of the GRS-expected result behave qualitatively as ours, but
yielding a softer signal. Notice that gluons are expected to proliferate in the low-ξ region, thus the
above depicted behavior of our model being expected to be shifted towards smaller values of Bjorken-xπB
for such other models.

In summary, from the analysis of Fig.5.6 two general features can be highlighted: (i) Gluon content
plays a major role driving the response of pion’s subjected to deeply virtual Compton scattering; (ii)
gluon and quark distributions “interfere” modulating the expected count rates. These two observations
are strong predictions from our study, potentially, manifestations of pion’s structure. Indeed, on the
basis of these two arguments, differences between models can be accurately explained, being associated
to the magnitude of the gluon content at each scale. A natural though then arises: Is there a way to
pin-down the regime for gluon dominance?.

5.4.2 Beam-spin-asymmetries

To assess the latter question let us now turn to the beam-spin-asymmetries, which EIC and EicC have
the ability to measure. The obtained results are shown in Fig. 5.7 using the same code as for the
number of events.

As we argued before, A (ψ) is generated from the presence of the interference between DVCS and
BH signals. That being a ratio, its sensitivity to different models is precluded, explaining why the
predictions from our model and the GRS one perfectly agree. And this occurs for the benefit of a larger
precision, as we may notice from the smaller uncertainty bands. Furthermore, a sinusoidal shape is
obtained, as expected from Eq. (5.27). However, in the low Q2 region, that being inverted. Let us dig
on that feature.

Beam-spin-asymmetries are proportional to the imaginary part of the Compton form factors.
Following the same idea as for Eqs. (5.31)-(5.33), we may schematically write:

A (ψ) ∼ ImHπ sinψ = Im
(∣∣Hq,LO∣∣− |Hgπ|) sinψ . (5.34)
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Figure 5.7: Beams-pin asymmetries as a function of Q2 for xπB ∈
[
10−3, 10−2

]
. Black squares

represent the full NLO calculation with the covariantly extended model being
discussed while empty squares show the NLO evaluation without taking the gluon
contribution into account. Red circles display NLO results from the GRS model,
and blue crosses denote the BH event rate. The shaded gray area shows the
evolution-induced uncertainty.

For Q2 < 2 GeV2, the quark contribution to the Compton for factors is negligible with respect to
the gluon one. Thus, obtaining

A (ψ)|Q2.2 GeV2 ∼ −ImHgπ sinψ , (5.35)

and explaining the inverted sinusoidal shape obtained at low resolution-scales for the full NLO result.
Moreover, when gluons do not enter the same evaluation, the contribution to the imaginary part of
the Compton form factor is that of quarks. Thus explaining the behavior of the empty squares in the
first bin of Fig. 5.7. Again, as one increases the resolution-scale, quark and gluons acquire similar sizes,
interfering to reduce the magnitude of the imaginary part of the Compton form factors, eventually
vanishing and removing the beam-spin asymmetry. Progressing further in Q2 makes higher order
contributions to decrease, smoothly approaching the LO result and thus the sinusoidal shape, as it
occurs in Fig. 5.7.

Remarkably, through the discussion of Sec. 5.3 we found the gluon contribution to remain sizable in
the valence region accessible through EicC (see Fig. 5.5). Thus, an experimental assessment is also in
order. In this regard we computed beam-spin-asymmetries at EicC kinematics, Fig. 5.8. A comparison
between the full NLO result and that without gluons is presented, showing that although the effect of
gluons is present, its manifestations are mild. The sign inversion no longer occurs, but only a reduction
of about a factor of 2 in the overall magnitude of the beam-spin asymmetry is induced by quark-gluon
interference. This finding on the important role of gluons, even for EicC kinematics close to the valence
region, is indeed in agreement with earlier theoretical (see [76]) and experimental studies on the nucleon
[15] close to or within the valence region.

The sign inversion of the beam-spin asymmetry is thus a clear manifestation of gluon dominance.
Indeed, our approach predicts this behavior at EIC kinematics, drawing a window onto the assessment
of our modeling hypotheses. Furthermore, pinning down the regime where gluons dominate can be
achieved by looking for the sign inversion of A (ψ), allowing to identify for fixed xπB , the resolution-scale
at which gluons start controlling the response of pions to deeply virtual Compton scattering.

Through the present analysis it is shown that even if gluons were overestimated by their generation
through the splitting of dressed valence quarks, optimism about accessing the pion’s 3D structure
at forthcoming electron-ion colliders may be raised in the low-ξ region, a prediction which remains
compatible with phenomenological analyses. In addition, the expected statistics should be high enough
to also study the t dependence of the DVCS amplitude. We also highlighted a signal for gluon dominance
of the DVCS cross-section: Namely, that the beam-spin asymmetry undergoes a sign inversion induced
by the gluon contribution to the DVCS amplitude. Remarkably, this behavior has been verified to
show up through different modeling approaches and within the expected evolution-induced uncertainty.
The wide kinematic coverage coupled with the high luminosity of EIC and EicC should allow us to
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Evaluation of observables
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Figure 5.8: Expected beam-spin-asymmetries as functions of ψ from EicC for xπB ∈ [0.1, 0.5]
— Top panel: Full NLO calculation. Bottom panel: NLO calculation without
gluon contribution. Legend: Black circles, Q2 ∈ [1, 2] GeV2; blue square, Q2 ∈
[2, 4] GeV2, and red triangles Q2 ∈ [4, 12] GeV2.

see this effect. Since the role of the two-gluon exchange in the t channel becomes dominant, next-to-
next-to-leading-order corrections to the DVCS kernel [420] are certainly desirable, and may confirm the
behavior highlighted here at NLO.
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Conclusions, perspectives and some thoughts

If the understanding of hadron structure remains today one of the most intriguing problems in physics,
this study is an attempt at covering a tiny sub-field: Among all possible hadrons, we have focused on
pions. As discussed at the very beginning, this choice was driven by both practical and fundamental
arguments. Indeed, the pions could seem quite simple in comparison with other hadrons, while they
remain intimately connected with fundamental phenomena of quantum field theory. Moreover, if there
exist a plethora of possibilities in what concerns the study of hadrons’ structure, we stuck to a definite
approach: Compton scattering. The reason for that choice was again two-fold: On one hand the
scattering of photons off a given target has showed throughout history as an astonishingly enlightening
tool for the assessment of matter’s inside; on the other side, it remains simpler to analyze and handle
than the scattering of any other probe. Thus, the first chapter of this dissertation considered a particular
configuration for Compton scattering, that where an off-sell photon scatters off a hadron target which,
after the interaction, remains unaltered letting the photon emerge on its mass-shell. This is virtual
Compton scattering. That chapter was mainly a review of existing results, a compilation of known
arguments allowing for the introduction of generalized parton distributions as arising in the factorization
of the amplitude for deeply virtual Compton scattering to occur. Chapter 1 thus sets the starting
point of the this dissertation: In generalized Bjorken kinematics, the amplitudes for virtual Compton
scattering are given by Compton form factors, which are convolutions of hard kernels calculable in
perturbation theory; and soft distributions, the GPDs. Accordingly, a detailed knowledge about GPDs
draws a path towards a comprehensive analysis of hadron structure, both formally and in practice. As a
matter of fact, here we pursue a bottom–up approach to knowledge (at risk of sounding too pretentious).
If we are capable of grounding an analysis of pion GPDs on very first principles of modern physics and
explore its observable implications; when comparison with experimental data is available, a proper
interpretation of the phenomena governing pions’ inside shall be achieved.

The structure of this thesis is designed in consequence: The first half of this dissertation, which
comprises the second and third chapters, is devoted to a detailed analysis of generalized parton
distributions in the case of pions. As a result, the first realistic models for pion GPDs capable of
fulfilling all the necessary theoretical constraints are derived. On that basis, the second half explores
the observable implications of those models, giving rise to an unprecedented picture about pions’ inside
and its manifestations in experimental data.

In that way, Ch. 2 started presenting a comprehensive review of the GPD properties. Most of the
developments of that chapter can be found throughout the available literature, but such collection
provides a general overview on the subject which, in addition, revealed extremely useful in the upcoming
work. In particular, two essential properties of GPDs were identified: Polynomiality and positivity.
Those arise from two of the most fundamental principles of quantum field theory: Lorentz invariance
and the structure of Hilbert spaces, respectively. As a consequence, the main objective to be fulfilled
when constructing models for generalized parton distributions is stated: Any GPD model aiming at
the description of Nature must fulfill with both, positivity and polynomiality, a task which conventional
approaches fail to accomplish. Thus, Ch. 3 headlong plunges into one of the main subjects of this
dissertation: Developing an approach to GPD modeling capable of fulfilling with these two constraints at
a time, and by construction. This is the covariant extension strategy. In short: Starting from a DGLAP
GPD, the companion ERBL domain can be determined in a manner consistent with polynomiality.
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Thus, provided that the input DGLAP GPD is positive, the GPDs resulting from the covariant extension
fulfill by construction with the two most fundamental features of GPDs. Within that picture two
necessary steps are identified: (i) The development of positive DGLAP GPDs and (ii) their covariant
extension to the ERBL region. Chapter 3 is structured accordingly.

The first half of that passage is devoted to the development of positive DGLAP GPDs. An strategy
based on the overlap representation was chosen, thus the light-front wave-functions being the essential
ingredients. For their construction, a functional approach was prosecuted. Relying on the formalism
of the Bethe-Salpeter equation, we found a sensible assumption at the level of hadron constituents’
dynamics to be enlightening: The longitudinal and transverse degrees of freedom in the constituents’
dynamics may decouple. Strikingly, such hypothesis was found to be strongly related to the restoration
of chiral symmetry. As a consequence, provided that the pions remain massless, it is argued to provide
an accurate first order approximation to their description. Sticking to it, we were capable to develop
a whole new family of DGLAP GPDs which explicitly fulfill with the relevant positivity constraints
by construction. Importantly, such models are outstandingly simple to build; only knowledge on the
forward limit GPD is needed, thus being suitable for its exploitation in phenomenological analyses not
only within this thesis, but also in independent studies.

A crucial result of this dissertation: A novel family of positive models for pion GPDs within the
DGLAP region. However, for the accomplishment of the before-advertised aim of developing models
of GPDs binding positivity and polynomiality, their companion ERBL GPD must be found. This is
the task we dealt with in the second part of that same chapter. There, the covariant extension was
presented in its full glory. The foundations were carefully reviewed, leaving time for an exhaustive
discussion of its practical implementation finding a inversion of the Radon transform operator that
connects GPDs and double distributions to play a pivotal role in such procedure. Given the ill-posed
character of that problem, a reformulation became necessary; and with that aim we chose a numerical
approach. On that basis, the covariant extension was found to be feasible, allowing for its exploitation
in a kinematic completion of the models for DGLAP GPDs developed previously. As an outcome, the
main outcome of this dissertation was produced: We derived the first models for the quark generalized
parton distributions within pions that fulfill by construction with both, positivity and polynomiality.

With models for pion GPDs that agglutinate all the relevant features, we placed ourselves in a
position for the assessment of pion properties as it shall be realized in experiment. With this aim
we started putting things together. Indeed, the evaluation of DVCS amplitudes was found to be a
matter of plugging-in the obtained GPDs. However, a further step now reveals crucial in that regard:
Scale-evolution. The GPDs parametrically depend on an energy scale. Such was set in Ch. 4 according
to a very sensible assumption: There exist a low-enough scale, µRef. = 0.331 GeV, such that the pion’s
structure can be approximated by a pair of dressed-quark–dressed-antiquark. Consequently, the evaluation
of GPD evolution became a necessary step for the assessment of hadron properties at resolution-scales
relevant for actual experiments. This was the topic covered in the fourth episode of this document.

The equations driving the logarithmic scale-evolution of generalized parton distributions are known
to next-to-leading order in the strong coupling. Nonetheless, the definition-scale of our GPD models
is intrinsically non-perturbative. Thus conventional perturbative evolution breaks down. Trying to
overcome this situation we relied on a simple idea: Some of the non-perturbative features relevant for
scale-evolution from low-scales can be tackled on the basis of an effective redefinition of the strong
coupling. We thus implemented leading-order evolution-equations supplemented with an effective strong
coupling which, in turn, saturates in the infrared regime. Such strategy was shown to produce accurate
results in the forward limit, and thus drives optimism about its application in off-forward kinematics.
Ch. 4 thus carefully reviewed all these steps: The origin of scale-evolution for GPDs, the definition
of the effective coupling and the outcomes of a LO effective evolution for PDFs. Afterwards, such
strategy was applied to the evolution of our GPD models. As a result, gluon and sea-quark distributions
compatible with expectation from Lattice QCD were obtained. Moreover, the results were shown to fulfill
with the soft-pion theorem and with factorization theorems for DVCS, thus making them suitable for
its application in the development of predictions for observables.
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On the basis of the exposition of Ch. 4 our models can be “translated” to any relevant scale. Thus
we managed to collect every single ingredient needed for the assessment of the observable manifestations
sbout the pion’s structure in experiment. On the one hand, we have GPD models showing all the
necessary features. On the other hand, deeply virtual Compton scattering provides a unique window
to GPDs. Thus, the only remaining step is to evaluate the corresponding Compton form factors. We
carefully developed this task up to next-to-leading-order in the strong coupling, finding an striking
result: Gluons dominate the behavior of the DVCS Compton form factors. As a consequence, it is
expected that gluons drive the response of pions subjected to deeply virtual Compton scattering as
observed at future colliders.

Such finding is indeed remarkable and deserves special attention. Most of Ch. 5 was devoted to
that task. The aim was to elaborate on the observable implications of the behavior found for the
Compton form factors. For that reason we focused on forthcoming electron-ion colliders: EIC and
EicC, which shall show the potential to observe the relevant process. Given the difficulties in preparing
pion targets, the Sullivan process was argued to constitute an ideal test ground for our predictions.
Two contributions were then identified: Deeply virtual Compton scattering, related to GPDs; and the
Bethe-Heitler process, parametrized by the pion’s electromagnetic form factor. We thus reviewed the
calculation of the cross-section for the Sullivan process. On that basis, the corresponding number of
events after one year of measurements together with beam-spin-asymmetries were presented. From
those results, several observations were extracted:

• DVCS on pions shall be measurable at the future EIC.

• Quark and gluon distributions interfere to modulate the expected statistics.

• The regime for gluon dominance is pinned down by an inversion in the beam-spin-asymmetries.

• Gluons play a non-negligible role even within the valence region probed at EicC.

The above observations were carefully derived and elaborated within the last section of Ch. 5. They
are indeed remarkable and draw an unprecedented picture about pions’ structure. Importantly, it is the
role of gluons within pions which must be emphasized. That being, perhaps, the most relevant outcome
of this dissertation. In fact, gluon content within pions remains essentially unconstrained nowadays and,
for quite some time, was completely overlooked. In contrast, the work developed along dissertation brings
it to light. Starting from first principles considerations and “simply” elaborating on its implications
at future colliders, the effect of gluon has been identified. Moreover, clear indications for a practical
assessment of our results were given, finding zero-crossings in measurable beam-spin-asymmetries to be
the ideal place for benchmarking our predictions.

Without doubt, our analysis can be refined. On a theoretical ground, two main points could be
mentioned. Our models for DGLAP GPDs take advantage of reliable Ansätze for the pion’s Bethe-
Salpeter amplitude which, importantly, neglect all but the purely pseudo-scalar structure. A clear
manifestation of this effect was found in Ch. 3 to be associated with an inaccurate behavior of form
factors at large-|t|. Although our subsequent analysis on the phenomenology associated to such GPDs
is restricted to low squared momentum transfers, a proper description of pions’ structure could only
be achieved through the understanding of these effects. In particular, the gravitational form factors
are intimately connected with the invariant tensor decomposition of QCD’s energy momentum tensor;
which in turn, is strongly related with the emergence of hadron mass within the standard model. It is
then manifest that a proper access to the gravitational form factors through GPDs would be extremely
desirable in what concerns our understanding about fundamental phenomena such as the breakdown of
chiral symmetry. Also intimately related to that subject is the x–k⊥ decoupling hypothesis on top of
which we worked out our DGLAP GPDs. In the line above, it is expected that a deeper understanding
of this hypothesis would be enlightening for the description of hadrons structure.

If the building of DGLAP GPDs is an essential ingredient of this work, so it is the treatment
of scale-evolution. In fact, our models rely on the assumption that the structure of pions can be
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approximated by valence degrees of freedom. In disentangling the accuracy of such picture, scale-
evolution plays a central role. Yet the effective-evolution approach here pursued can be argued to
improve the conventional perturbative strategy and that it can be found to yield accurate results (at
least in forward kinematics); a detailed analysis of the possible artifacts there introduced would be
in order, allowing to clarify the distinction between modeling- and evolution-induced effects in our
predictions. On a similar ground, taking into account possible gluon saturation in the low-x-Bjorken
regime could also be found to play an important role, just as it occurs in deep inelastic scattering.
On the phenomenological side, calculations of the Compton form factors have been carried out at
next-to-leading order. Notwithstanding, a NNLO analysis could also prove enlightening in what the
soundness of our predictions concerns. On the experimental part, the evaluation of event rates can be
refined by accounting for the actual specifications of detectors, which is nowadays still lacking.

Nevertheless, two main outcomes shall be emphasized: First, the status of the current analysis on
the three-dimensional structure of pions have been pushed forward. This work has provided with a
suitable framework for the production of GPD models which are theoretically complete, in the sense
that they fulfill with all first-principles requirements. At the same time, they have been proved to be
suitable in phenomenological analysis of pions’ structure, triggering the expectation of the special role
of gluons in the making up of pions and thus of the underlying fundamental phenomena. If the work
can be refined, a first exploratory study has been timely developed. We should now well exploit the
time before the first EIC run, preparing ourselves to capitalize on forthcoming data to push the frontier
of our understanding about the origin of mass in the Nature.
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Conclusiones

El estudio de la estructura de hadrones en términos de excitaciones elementales es uno de los campos
más activos en física de partículas. Tan amplio como es el ámbito de física hadrónica, esta tesis aborda
una pequeñísima fracción: la descripción de la estructura de piones. Desde luego, esa elección no ha
sido casual. En primer lugar los piones son, a priori, más simples que otros hadrones; por el ejemplo el
protón. Desde un punto de vista formal, los piones están íntimamente relacionados con fenómenos como
la rotura dinámica de simetría quiral, por lo que la descripción de su “composición” proporciona una
ventana sin precedentes hacia características primordiales de la teoría cuántica de campos. Pero no solo
por centrarse en el estudio de piones esta tesis abarca una pequeña fracción del de la física hadrónica.
De entre todas las posibles estrategias que permitirían estudiar la estructura de hadrones elegimos el
caso del scattering Compton. De nuevo hay dos razones de peso para esta elección. Por un lado, el
uso de fotones ha sido (y sigue siendo) una de las herramientas más prolíficas a la hora de estudiar
la composición de la materia. En segundo lugar, la descripción de fenómenos de scattering mediante
fotones es más simple que la de aquellos que utilizan otro tipo de sondas; digamos bosones débiles.
Así, este trabajo comienza abordando la descripción del scattering Compton sobre hadrones en una
configuración particular: aquella en la que un fotón virtual interacciona con un hadrón, transfiriéndole
una cantidad de movimiento tal, que dicho fotón emerge siendo real y dejando intacto al hadrón. En
ese contexto se definen las llamadas distribuciones generalizadas de partones (GPDs), que parametrizan
la amplitud de probabilidad asociada a procesos de scattering Compton profundamente virtual (DVCS).
De ese modelo el capítulo uno establece el punto de partida para este trabajo: si las GPDs parametrizan
la amplitud de probabilidad de que los procesos de DVCS tengan lugar, su determinación constituye
una de las herramientas más importantes para el análisis de la estructura hadrónica tanto formal como
empíricamente. Esta tesis se apoya sobre ese formalismo para afrontar el estudio de la estructura
interna en piones: primero, la obtención de GPDs en piones capaces de capturar las características
físicas esenciales en estos; y segundo, el uso de tales GPDs para la descripción de piones mediante
los procesos de DVCS que podrían ser observados en futuros experimentos. De esa manera, una vez
los resultados de medidas experimentales estén disponibles, la comparación con nuestras predicciones
permitirá obtener una imagen sin precedentes sobre la estructura de los piones, además de contrastar la
estrategia seguida para el desarrollo de los modelos de GPDs.

La estructura de este trabajo está diseñada de acuerdo a esa idea: una primera parte (que comprende
el segundo y tercer capítulo) está dedicada a la obtención de GPDs para piones en términos de los
grados elementales de libertad. Como resultado, el capítulo concluye presentando los primeros modelos
de GPDs piónicas capaces de satisfacer todos los requisitos impuestos por la estructura de una teoría
cuántica de campos. Partiendo de esa base, la segunda parte del trabajo dichos cálculos para poner de
manifiesto sus implicaciones observables experimentalmente y revelar así una imagen del interior de
piones.

El capítulo dos empieza con una discusión detallada sobre la definición y propiedades de las GPDs.
La mayoría de los resultados que se exponen allí son de sobra conocidos y pueden encontrarse a lo largo
de la literatura. Sin embargo esa discusión permite poner de manifiesto dos de las características más
importantes de una GPD: la polinomialidad y la positividad. La primera surge como consecuencia de la
invariancia bajo transformaciones de Lorentz. La segunda, como una manifestación de la desigualdad de
Cauchy-Schwarz que satisface la definición de norma en espacios de Hilbert. En consecuencia, cualquier
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modelo realista de GPD debe satisfacer tanto la polinomialidad como la positividad; una tarea que, no
obstante, las estrategias perseguidas usualmente para la construcción de distribuciones generalizadas de
partones no consiguen acometer. Ese es uno de los objetivos principales de este trabajo: desarrollar
un método capaz de generar modelos de GPDs que satisfagan, por construcción, las condiciones de
polinomialidad y positividad.

El tercer capítulo de la tesis aborda el problema con todo detalle. La idea es simple y recae
fundamentalmente sobre la llamada estrategia de extensión covariante: dada una GPD en la región
DGLAP, es posible determinar su correspondiente expresión en la región ERBL de forma que que la
polinomialidad se satisface por construcción. De ese modo, asumiendo que la distribución de partida
satisface la condición de positividad, los modelos que resultan de la extensión covariante combinarán,
a piori y por construcción, polinomialidad y positividad. Se plantean entonces dos problemas: (i)
obtener GPDs DGLAP compatibles con la condición de positividad; (ii) ser capaces de evaluar la
correspondiente extensión covariante hacia la región ERBL. Eso es lo que se expone en el capítulo tres.

Para afrontar el problema de construir GPDs DGLAP que sean compatibles con la condición de
positividad adoptamos la llamada representación de solapamiento. En esa imagen, las funciones de onda
sobre el cono de luz son el ingrediente fundamental. Para su obtención adoptamos una aproximación
funcional a la descripción de estados ligados en teoría cuántica de campos. En este contexto, y a partir
de la estructura de la correspondiente ecuación de estado ligado, la hipótesis de desacoplo entre los
grados de libertad longitudinales y transversales en la dinámica partónica resulta extremadamente útil.
De hecho, explotando su relación con la restauración de la simetría quiral (lo que en el caso de piones
constituye una muy buena primera aproximación) conseguimos desarrollar una nueva familia de modelos
para GPDs DGLAP que cumplen, por construcción, las correspondientes desigualdades de positividad;
y además, requieren únicamente del conocimiento de las llamadas funciones de distribución de partones
para su construcción.

Este es una de los resultados centrales de esta tesis. Sin embargo, para cumplir el mencionado
objetivo de obtener GPDs que aglutinen las propiedades de positividad y polinomialidad, aún queda
explorar la extensión covariante de nuestros modelos hacia la región ERBL. La segunda parte del
capítulo tres discute este proceso con todo detalle, desde de la formulación de la extensión covariante,
hasta su implementación práctica. En ese sentido, la inversión del operador transformada de Radon
resulta ser la tarea básica. La dificultad más importante está en que el problema inverso de Radon
viola las tres condiciones enunciadas por Hadamard para problemas bien propuestos. Para salvar esa
dificultad utilizamos una estrategia de inversión numérica basada en el método de elementos finitos, lo
que nos permites solventar los problemas asociados al carácter mal definido del problema así como su
implementación de un forma totalmente general. Así, la extensión covariante nos permite prolongar
los modelos derivados anteriormente, obteniendo modelos de GPDs para piones que, por primera vez,
satisfacen por construcción las condiciones de polinomialidad y positividad.

Obtenidos modelos de GPDs que son teóricamente completos, en el sentido de que cumplen con
todos los requisitos posibles, es posible abordar la descripción práctica de la estructura de piones. Con
ese objetivo se plantea la segunda parte de esta tesis que empieza por ordenar los resultados obtenidos
a lo largo de los tres primer capítulos para preparar el cálculo de observables asociados a procesos de
scattering Compton profundamente virtual sobre piones en una región cinemática accesible a futuros
aceleradores. No obstante, un paso intermedio necesario es la evolución de los modelos. Ocurre que las
GPDs dependen de una escala de renormalización/factorización, por lo que su “traslación” a escalas
accesibles en experimentos reales es un paso fundamental.

El capítulo cuatro lidia con la evolución de nuestros modelos. Ello se hace sobre la base de una
hipótesis fuerte: existe una escala lo suficientemente baja, µRef. = 0.331 GeV, como para que la
estructura de piones pueda ser aproximada mediante un pareja de un quark vestido con otro antiquark
vestido. Esta escala, sin embargo, es lo suficientemente baja como para que la teoría de perturbaciones
sobre la que se construyen las ecuaciones de evolución deje de ser válida. Para solventar este problema
adoptamos una estrategia efectiva para el evolución. La idea es utilizar un acoplamiento efectivo de
manera que pueda describirse (al menos de forma aproximada) la evolución de GPDs desde una región
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intrínsecamente no perturbativa. Esta estrategia es de hecho conocida y proporciona resultados bastante
acertados para la evolución de funciones de distribución de partones. Su aplicación a la evolución de
funciones generalizadas de partones es por tanto el siguiente paso lógico. El capítulo cuatro revisa todos
estos elementos, desde el origen de la evolución para GPDs y la definición de acoplamientos efectivos,
hasta la estrategia efectiva de evolución, su aplicación al caso de PDFs y su posterior explotación para
la evolución de GPDs. En ese punto se explora la evolución de nuestros modelos de GPDs, obteniendo
distribuciones de quarks del mar y gluones compatibles con recientes estimaciones lattice así como con
los teoremas de factorización en DVCS.

Con estos modelos que, además de cumplir con todos los requisitos teóricos posibles, exponen su
acuerdo con los pocos datos conocidos es posible desarrollar el primer análisis fenomenológico de la
estructura de piones. El quinto y último capítulo de esta tesis empieza entonces reorganizando todos
estos resultados par, así poder utilizar los modelos desarrollados en el cálculo de los factores de forma
Compton que parametrizan la amplitud de probabilidad asociada a procesos de DVCS sobre piones. El
resultado obtenido es sin duda reseñable: es el contenido gluónico el que domina el comportamiento
de piones participando de scattering Compton profundamente virtual. Verificar esa observación es
necesario, y a ello se dedica el final de este trabajo. Centrándonos en los futuros aceleradores electrón-ion
proyectados en EEUU y China (EIC y EicC, respectivamente) utilizamos los factores de forma Compton
obtenidos para calcular el número de eventos y la asimetrías de polarización en procesos de tipo Sullivan
tal y como deberían ser observados en las futuras instalaciones. Así, tras recordar el cálculo de estas
magnitudes, el capítulo cinco presenta y discute los resultados finales; a saber:

• EIC debería ser capaz de medir DVCS sobre piones.

• Las distribuciones de quarks y gluones en piones interfieren, modulando el número de eventos
esperado.

• Si el contenido gluónico es predominante en la estructura de piones y en lo que se refiere a procesos
de DVCS, la inversión de las correspondientes asimetrías de polarización permite acotar el régimen
cinemático donde esto ocurre.

• Los gluones juegan un papel reseñable en la “construcción” de piones incluso en la región de
valencia accesible en EicC.

La imagen que dibujan las observaciones anteriores sobre la estructura interna de los piones no tiene
precedentes. Es importante destacar que durante mucho tiempo se ignoró el papel de los gluones en
este sentido; y de hecho existen muy pocos datos experimentales sobre él. En contraposición, esta tesis
pone de manifiesto la necesidad de dedicar esfuerzos al estudio de esta contribución, propone cómo
hacerlo (la inversión de las asimetrías de polarización) y deja intuir el papel de estos en fenómenos
primordiales en teoría cuántica de campos.

Por supuesto, el análisis que aquí se presenta se puede mejorar. En lo teórico hay dos puntos
principales sobre los que trabajar. Por un lado, aunque nuestros modelos de GPDs satisfacen todas la
propiedades necesarias, están construidos sobre Ansätze para las amplitudes de Bethe-Salpeter que
solo tienen en cuenta contribuciones puramente pseudo-escalares. De hecho encontramos una clara
manifestación de esto en el comportamiento observado para los factores de forma electromagnético y
gravitacionales en el límite de gran-|t|. Aunque las implicaciones fenomenológicas que hemos derivado
son válidas en el régimen de baja transferencia de momento, una comprensión completa de la estructura
de hadrones como el pión requiere, sin duda, de la inclusión de todas las estructuras posibles. En
particular, las factores de forma gravitacionales son esenciales en la descomposición del tensor energía-
momento de QCD, por lo que su cálculo es necesario para entender el fenómeno de generación dinámica
de masa. De modo similar, al estar tan íntimamente relacionada con la rotura dinámica de simetría
quiral, la hipótesis de desacoplo x–k⊥ sobre la que trabajamos para obtener nuestros modelos de GPDs
DGLAP requiere una mejor comprensión. En el mismo nivel de importancia que el desarrollo de los
modelos podríamos situar la evolución de estos con la escala. De hecho, gran parte de este trabajo
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se basa en la hipótesis de que existe una escala a la que es posible aproximar la estructura de piones
mediante un par quasi-quark–quasi-antiquark. Aunque la estrategia efectiva de evolución que hemos
empleado parece proporcionar resultados realistas (al menos en el caso de las PDFs), esta no deja de
ser una aproximación a la realidad y por tanto necesita un análisis más detallado tanto de su validez
teórica como otro de la incertidumbre que lleva asociada. Además, dada la relevancia del contenido de
gluones, es necesario refinar el trabajo para tener en cuenta posibles efectos de saturación gluónica en el
régimen de pequeño x-Bjorken; tal y como ocurre en el análisis de scattering profundamente inelástico.

Desde un punto de vista fenomenológico, los factores de forma Compton se han calculado a
segundo orden teoría de perturbaciones. Dado el régimen de escalas en el que estamos trabajando,
sería conveniente extender dicho cálculo a órdenes superiores. Desde un punto de vista puramente
experimental, tener en cuenta las limitaciones de los montajes experimentales reales sería conveniente.
Sin embargo, aún a día de hoy, se desconocen las especificaciones técnicas de los detectores.

Pese a las posibles limitaciones, los resultados obtenidos a lo largo de esta tesis han permitido
dibujar por primera vez una imagen detallada del interior de los piones por medio de distribuciones
generalizadas de partones. Hasta hoy, la carencia de modelos de GPDs capaces de cumplir con todos
los requisitos necesarios constituía una gran limitación para su aplicación en estudios fenomenológicos.
Este trabajo ha venido a llenar este hueco, presentando un método para la construcción sistemática de
modelos de GPDs con el potencial de proporcionar una imagen realista de la estructura de hadrones.
Más aún, estos se han utilizado para desarrollar un primer estudio fenomenológico de la estructura
de piones, resaltando el papel del contenido gluónico y estableciendo mecanismos para su análisis en
experimentos. Ahora que se han dado pasos importantes en el análisis de la estructura hadrónica
mediante distribuciones generalizadas de partones, es el momento de continuar aprovechando lo mejor
posible el tiempo que queda antes de la llegada de una nueva generación de aceleradores, preparándonos
para romper la frontera de nuestro conocimiento sobre la estructura hadrónica y el origen de una
propiedad tan esencial como la masa.
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A | Kinematics of virtual Compton scat-
tering

The central topic of this dissertation is virtual Compton scattering. All along the text we take advantage
of features that are of a kinematic origin. Although all of the can be found in the literature [9, 10] it is
worth reviewing all of them. This is the purpose of this appendix.

h h

γ γ

q

p p′

q′

h h

γ γ

∆

Q+ ∆
2

P − ∆
2

P + ∆
2

Q− ∆
2

Figure A.1: Diagrams showing momentum flow in a two-body Compton scattering process —
Left panel: proton-photon variables. Right panel: Symmetric variables.

Consider the scattering of a (off-shell) photon and a hadron of the form (Fig. A.1):

γ (q) + h (p)→ γ
(
q′
)

+ h
(
p′
)
. (A.1)

The kinematics of that process is characterized by a set of three independent momenta: Say p, p′

and q, together with four momentum conservation:

p+ q = p′ + q′ . (A.2)

Identically, one may employ a system of symmetric variables:

P =
1

2

(
p+ p′

)
, Q =

1

2

(
q + q′

)
, ∆ =

(
p′ − p

)
=
(
q − q′

)
, (A.3)

such that
p = P −∆/2 , p′ = P + ∆/2 ,

q = Q+ ∆/2 , q′ = Q−∆/2 .
(A.4)

Three conventional Mandelstam variables can also be defined for the scattering process at hand:

s = (p+ q)2 =
(
p′ + q′

)2
=
(
P +Q

)2 ,

t =
(
p′ − p

)2
=
(
q − q′

)2
= ∆2 ,

u =
(
q′ − p

)2
=
(
q − p′

)2
=
(
Q− P

)2 ,

(A.5)

so that kinematics of virtual Compton scattering can be characterized in terms of seven invariant
quantities: Four mass scales: p2, p′2, q2 and q′2, and the three Mandelstam variables: s, t and u.
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Chapter A. Kinematics of virtual Compton scattering

Using either of these representations for the scattering particles momenta, a complete characterization
of virtual Compton scattering can be achieved in any frame. In particular, that from Fig. A.1–Left panel
reveals more transparent for a description in the center of mass frame (or similarly in the laboratory
frame) which is preferred among experimentalists. In contrast, the choice of symmetric momenta in
right panel of the same figure turn out to be suitable for a description in “hadron frame” (Sec. A.3),
which is widespread among theoretical approaches to the same problem. In the following, we shall
devote special attention to these three frames, providing complete formulae for the description of virtual
Compton scattering on hadrons.

A.1 Center-of-mass frame

Lets start with the center of mass frame, characterized by1

p+ q = p′ + q′ = 0 . (A.6)

That condition indeed leaves places for an appropriate choice of the axes. We make a common
choice: The incoming photon travel along the positive z-direction, Fig. A.2:

q =
(
Ecmγ , 0, 0, pcm

)
,

p = (Ecmh , 0, 0,−pcm) .
(A.7)

y

z

x

e−

e−

k

k′

q

pπ

ψ

q′

p′π

Figure A.2: Definition of the center-of-mass frame for the description of virtual Compton
scattering: The incident photon travels along the positive z-axis. By definition,
the target hadron travels along the negative z-direction. Assuming that photon
to be emitted by a probing electron-beam, the xz plane is taken to be defined by
incoming-outgoing electrons

The four momenta of the scattered particles can be characterized using spherical coordinates as:

q′ =
(
Ecmγ′ ,

∣∣p′cm∣∣ sin θcmγ cosψ,
∣∣p′cm∣∣ sin θcmγ sinψ,

∣∣p′cm∣∣ cos θcmγ
)
,

p′ =
(
Ecmh′ ,

∣∣p′cm∣∣ sin θcmh cos (ψ + π) ,
∣∣p′cm∣∣ sin θcmh sin (ψ + π) ,

∣∣p′cm∣∣ cos θcmh
)
.

(A.8)

In the parametrization above, ψ is the azimuthal angle, accounting for the opening between the
lepton- and scattering-planes. Notice, such angle remains invariant under Lorentz boosts along the
z-direction. Accordingly one can develop the analysis of Compton scattering in the center of mass
frame, and then boost it to the laboratory frame, which is of practical use for experimentalists. From its

1Bold face quantities denote Euclidean three-vectors.
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Laboratory frame

part, θcmh/γ is the hadron/photon scattering angles which, as imposed by four-momentum conservation
satisfy, θcmh = θcmγ ≡ θcm.

It is always helpful to write all kinematic variables in terms of Lorentz-invariant quantities. To this
end consider the Mandelstam variable s, which represents the energy in the center of mass frame:

s = (p+ q)2 = p2 + q2 + 2p · q = p2 + q2 + 2
[
Ecmγ Ecmh + |pcm|2

]
=

= −p2 + q2 + 2Ecmh
(
Ecmγ + Ecmh

)
= −p2 + q2 + 2Ecmh

√
s ,

(A.9)

where, in the second line, we made use of the relativistic dispersion p2 = E2
h − |p|

2.
From the above relation, the energy of the incoming photon and hadron can be found to be:

Ecmh =
s+ p2 − q2

2
√
s

, Ecmγ =
s− p2 + q2

2
√
s

. (A.10)

Similarly, the three-momentum of the initial-state particles is found to read:

|pcm|2 =

(
s+ p2 − q2

2
√
s

)2

− p2 =

(
s− p2 + q2

2
√
s

)2

− q2 . (A.11)

Finally, the particles in the final state can be also characterized through relativistic invariant
quantities:

Eh′ =
s+m2

2
√
s

,
∣∣p′cm∣∣ =

s−m2

2
√
s

,

Eγ′ =
s−m2

2
√
s

,

(A.12)

while the scattering angle is obtained to be:

t =
(
p′ − p

)2
= p2 +m2 − 2

[
Ecmp Ecmp′ + |pcm|

∣∣p′cm∣∣ cos θcm
]
⇔

⇔ cos θcm =
t− p2 −m2 + 2Ecmp Ecmp′

−2 |pcm| |p′cm|
.

(A.13)

A.2 Laboratory frame

The analysis of the kinematics in the center-of-mass frame, a characterization in that frame where the
target hadron is at rest can be achieved by a simple boost along the z-axis (see Fig. A.2). Nevertheless,
it is instructive to develop an analysis similar to that of the previous section. To this end let us choose
the incoming photon’s momentum to point in the positive z-direction. Thus the initial-state kinematics
can be characterized by

q =

√
−q2

ε

(
1, 0, 0,

√
1 + ε2

)
, p = (m, 0, 0, 0) , (A.14)

where m denotes the hadron’s mass, and the short hand notation

ε =
2mxB√
−q2

with, xB =
−q2

2p · q
(A.15)

was introduced together with the conventional Bjorken variable, xB.
Similarly, one can characterize the final-state momenta by:

q′ =
(
ELab.
γ′ ,

∣∣q′Lab.∣∣ sin θLab.γ cosψ,
∣∣q′Lab.∣∣ sin θLab.γ sinψ,

∣∣q′Lab.∣∣ cos θLab.γ

)
,

p′ =
(
ELab.
h′ ,

∣∣p′Lab.∣∣ sin θLab.h cos (ψ + π) ,
∣∣p′Lab.∣∣ sin θLab.h sin (ψ + π) ,

∣∣p′Lab.∣∣ cos θLab.h

)
.

(A.16)
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Chapter A. Kinematics of virtual Compton scattering

The final state of the interaction can be characterized similarly. Indeed, using the Mandelstam
variable t, one readily obtains

ELab.
h′ = m

(
1− t

2m2

)
, ELab.

γ′ =
−q2 + xBt

2mxB
(A.17)

and thus ∣∣p′Lab.∣∣ =

√
t2

4m2
− t ,

∣∣q′Lab.∣∣ = ELab.
γ′ (A.18)

where we have been assuming the final-state photon to be on its mass-shell.
The only quantity that remains to be expressed in a Lorentz-invariant manner to the scattering

angle θLab.h/γ . To this end notice that four-momentum conservation requires:

(p+ q) =
(
p′ + q′

)
⇒ p⊥ = −q′⊥ (A.19)

where x⊥ ≡
(
x1, x2

)
. Thus, ∣∣p′Lab.∣∣ sin θLab.h =

∣∣q′Lab.∣∣ sin θLab.γ . (A.20)

and the photon scattering angle can be obtained again as:

√
1 + ε2 cos θLab.γ − 1 =

(
t− q2

)
ε

2
√
−q2ELab.

γ′

(A.21)

A.3 Hadron frame P⊥ = 0

As advertised before, a different possibility is that of analyzing the kinematics of the process from the
perspective of an observer who measures the average hadron momentum being purely longitudinal, say
along the z-direction:

P =
(
P 0,0⊥, P

3
)
⇒ p⊥ = −p′⊥ . (A.22)

Within this picture it is often helpful to introduce a set of lightlike four-vectors

ñµ = Λ (1, 0, 0, 1) ,

nµ =
1

2Λ
(1, 0, 0,−1) ,

(A.23)

normalized such that ñ · n = 1 and allowing for the decomposition of any four-vector, vµ, in the form

vµ = v+
n ñ

µ + v−n n
µ + vµ⊥ = (v · n) ñµ + (v · ñ)nµ + vµ⊥ , (A.24)

where vµ⊥ = (0,v⊥, 0) are the components of the four-vector transverse to the to lightlike directions
defined by ñ and n. For further compactness in the notation we shall choose the set of lightlike vectors
ñ, n as

P · n = 1⇔ 1

2Λ

(
P 0 + P 3

)
=

1√
2Λ

P+ = 1⇒ Λ =
P+

√
2
, (A.25)

where P+ is introduced with regard to the usual definition of light-cone variables: P± =
(
P 0 ± P 3

)
/
√

2,
and thus

ñµ =
P+

√
2

(1, 0, 0, 1) ,

nµ =
1√

2P+
(1, 0, 0,−1) .

(A.26)
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Hadron frame P⊥ = 0

On that basis, a decomposition for the average hadron momentum can be found, reading

Pµ = P+
n ñ

µ + P−n n
µ = ñµ +

m2

2
nµ , with m2 ≡ m2 − t

4
. (A.27)

Similarly, the momentum transfer ∆ can be decomposed onto the same light cone basis Eq. (A.26),
yielding

∆µ = −2ξ

(
ñµ − m2

2
nµ
)

+ ∆µ
⊥ (A.28)

where, for the time being, the parameter ξ is defined to be a measure of the momentum transfer along
the light-cone direction defined by ñ,

−2ξ ≡ ∆+
n = ∆ · n =

∆+

P+
≡ ∆ · n
P · n

(A.29)

and we employed
P ·∆ = 0 = P+

n ∆−n + P−n ∆+
n −∆⊥ · P⊥ ⇒ ∆−n = ξm2 (A.30)

From the definition of the parameter ξ it follows that

ξ = − ∆ · n
2P · n

=
p+ − p′+

p+ + p′+
, (A.31)

which explicitly expresses its interpretation as the momentum transferred along the longitudinal
direction. Indeed, for such picture it can be inferred that ξ ∈ [−1, 1]: The amount of momentum
transferred along the longitudinal direction is bounded by the amount of momentum that is accessible,
i.e. the average hadron momentum.

Strikingly, the momentum transferred along the transverse direction, ∆2
⊥, satisfies:

∆2
⊥ = −t

(
1− ξ2

)
− 4ξ2m2 , (A.32)

which by definition is non-negative: ∆2
⊥ ≥ 0. From that point on, bounds on either the squared

momentum transfer or the momentum transferred along the plus light-cone direction can be found

−t ≥ 4ξ2m2

1− ξ2
, ξ2 ≤ −t

−t+ 4m2
. (A.33)

which, in the limit of massless hadrons we explore along this dissertation reduce to

−t|m=0 ≥ 0 , ξ2
∣∣
m=0

≤ 1. (A.34)

Finally, the light-cone projection of the average photon momentum as seen from the hadron frame
can be found to read:

Q
µ

= −ζñµ − Q
2

+Q
2
⊥

2ζ
nµ +Q

µ
⊥ . (A.35)

with the photon’s average momentum along the ñµ, η, given by:

ζ =
−Q2

2XBm2

1∓

√√√√1 +
4X2

Bm
2

−Q2

(
1 +

Q
2
⊥

Q
2

) (A.36)

and the generalized Bjorken variable defined as:

XB ≡
−Q2

2P ·Q
−−−→
∆=0

XB = xB =
−q2

2p · q
. (A.37)
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Chapter A. Kinematics of virtual Compton scattering

A.3.1 A remark on GPD variables

As exposed in Ch. 1, the generalized parton distributions arise as parametrizations of the amplitudes
for virtual Compton scattering in the generalized Bjorken limit. That kinematic configuration is
characterized as in Eq. (1.20): Q2 →∞ with XB fixed. There are striking implications on the set of
variables parametrizing VCS when the deep virtual region is considered. In particular, the momenta
above simplify as:

Pµ ' ñµ ,

∆µ ' −2ξñµ + ∆µ
⊥ ,

Q
µ ' XBñ

µ +
Q

2

2XB
nµ .

(A.38)

when every mass-scale can be neglected in front of the squared average-photon momentum.
From these simplified relations, holding in the typical kinematic range where GPDs can be introduced,

one may find:

ξ ' − ∆ ·Q
2P ·Q

, (A.39)

which is the definition of the GPD skewness variable employed in Sec. 1.3.2.
Moreover, we can consider again the generalized Bjorken variable. Without any approximation it

can be written as:

XB = − Q
2

2P ·Q
= −

q2

2 −
t
4

2p · q + q2

2 + t
2

= −
q2

2p·q −
t

4p·q

2 + q2

2p·q + t
2p·q

=
xB − t

2q2xB

2− xB − t
q2xB

, (A.40)

which, in the generalized Bjorken limit simplifies to:

XB '
xB

2− xB
. (A.41)

Similarly, for the skewness variable as given by Eq. (A.39) one finds:

ξ ' − ∆ ·Q
2P ·Q

=
− q2

2

2p · q + q2

2 + t
2

' xB
2− xB

, (A.42)

meaning that, in the generalized Bjorken limit, the kinematics of virtual Compton scattering is
characterized by one single scaling variable; say, the skewness: ξ.
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B | Operator product expansion

In any quantum field theory, it is very common to encounter situations when one needs to handle products
of local operators A (x)B (y). In fact, we have already faced this situation along this dissertation: The
product of electromagnetic currents is the starting point of the whole work developed here (Ch. 1). The
most relevant attribute of general operator products in quantum field theory is its singular behavior.
Indeed, given arbitrary operators A (x), B (y); built on the basis of quantum fields φ (x), φ (y) localized
at a spacetime points x, y to represent some physical observables, it is a completely general feature
of the operator product A (x)B (y) that it diverges as x→ y. We can easily get a physical intuition
about this fact: The action of the operator product A (x)B (y) represents the measurement of physical
observables, which may diverge as x→ y to represent Heisenberg’s uncertainty principle. It is therefore
of great interest in quantum field theory calculations to develop a systematic procedure allowing to
cast the singular behavior of operator products. This is precisely the spirit of the operator product
expansion (OPE) introduced by K. G. Wilson [41], which we briefly review in this appendix.

B.1 Short distance operator product expansion

According to Wilson, a general operator product can be expanded as

Oα1 (x1) . . .Oαn (xn) −−−−−−−−→
(xj−xk)µ→0

∑
i

C(i)
α1...αn (x1 . . . xn)O(i) (xn) , (B.1)

where the label αj denotes tensor and spinor structures of a composite operator Oαj (xj); C
(i)
α1...αn

are c-number (singular) functions at the “diagonal” xj = xk with 1 ≤ j < k ≤ N , known as Wilson
coefficients; and the symbol “→” means that the decomposition in Eq. (B.1) has to be understood as
an asymptotic expansion [421] valid when a pair of operators are defined at the same spacetime point.

The OPE was originally presented as a reasonable approach to the problem of dealing with
singularities in non local field operators. Originally, it was based mostly on intuition rather than on
formal developments, but soon after its formulation the first systematic proofs for its validity at all
orders in perturbation theory were developed [42, 422, 423]. The usefulness of the short distance
expansion in Eq. (B.1) was such, that readily after its presentation it found application to many areas
of particle and theoretical physics.

The substance of the operator product expansion and its application in quantum field theory is
implicit in the paragraphs above: The singularities of the operator product can be “isolated” into the
coefficients functions; while the local operators, on a basis of which the OPE takes place, remain regular
at short distances. One can then take advantage of this feature to analyze the “strength” of the singular
behavior developed by each Wilson coefficient and thus, arrange the OPE in a way allowing to identify
the most relevant contributions to the operator product in the short distance limit.

As an illustration, let us consider the case of a product of two operators A (x)B (0), for which the
expansion Eq. (B.1) simplifies to

A (x)B (0) −−−→
xµ→0

∑
i

C(i)
αβ (x)O(i) (0) , (B.2)

139



Chapter B. Operator product expansion

with α, β the set of tensor and spinor indices characterizing the operators A (x) and B (0), respectively.
Let then the mass dimension of each term in the OPE Eq. (B.2) be: dA, dB, diO and diC with obvious
identifications1. Then, naive power counting imposes: dA + dB = diC + diO. Moreover, in unrenormalized
quantum field theory, the only term that can account for mass dimensions in the Wilson coefficients
is, precisely, the spacetime separation x :=

√
|x2|, meaning that the coefficient functions in the OPE

roughly behave as

C(i)
αβ (x) ∼

(
1

x

)dA+dB−diO
, (B.3)

when the spacetime separation between the operators A (x) and B (0) tends to vanish. The values dA
and dB are fixed, thus one may conclude that it is the mass dimension of the operators O(i) (0) which
governs the degree of singularity in each term of the operator product expansion: The larger dOi , the
smoother the short distance behavior of the corresponding Wilson coefficient. Thus, a given Wilson
coefficient develops a singular behavior in the short distance limit provided that

diO ≤ dA + dB . (B.4)

In a (non-interacting) quantum field theory, take a free scalar field theory as an illustration, the
operators can be always ordered by mass dimension, starting with the unit operator (of dimension zero).
From that point on, adding more fields or derivatives increases the operator’s mass dimension. Thus,
according to Eq. (B.4), only a finite number of Wilson coefficients can develop singularities in the short
distance limit. However, reality requires the above arguments to be refined. In general, interaction
requires renormalization to enter the game, and thus a dependence on a renormalization-scale µR for the
operator product arises. As a consequence, the reasoning leading us to Eq. (B.3) breaks down, since a
further source of mass dimension for the Wilson coefficients can arise through the renormalization-scale.
However, as dictated by the renormalization group, this occurs only through logarithmic corrections
to the bare approximation (see e.g. [424]). As a consequence the singular behavior of the c-number
coefficient functions for the OPE is modified from Eq. (B.2) through logarithmic corrections

C(i)
αβ (x) ∼

(
1

x

)dA+dB−diO
(γ log (xµR) + · · · ) , (B.5)

where γ is the corresponding anomalous dimension. Without minimizing the relevance of these
logarithmic corrections, which indeed have proved to play a crucial role in the description of physical
observables (the most paradigmatic case being, perhaps, that of the proton’s structure functions as
measured in deep inelastic scattering [128–130]), a flavor about the singular behavior developed by the
Wilson coefficients can be obtained already from naive dimensional analysis. For that reason, it is often
useful to focus on the gross power-law behavior, Eq. (B.3), such that the most relevant contribution to
the operator product expansion is given by local operators of the lowest possible mass dimension,

A (x)B (0) −−−→
xµ→0

C
(0)
αβ (x)O(0) (0) ∼

(
1

x

)dA+dB−d0
O
O(0) (0) (B.6)

B.2 Light cone operator product expansion

So far we have briefly reviewed the main features about an operator product expansion in the short
distance limit. However, along this thesis we are interested not exactly on that situation, but mostly
on the light-cone behavior of operator products, characterized by x2 → 0. Of course, both cases
are intimately related. In fact, one may naively argue that the short distance condition is somehow
implicit in a particular limit of lightlike separations. It is therefore not hard to realize that, at a given

1By mass dimension we mean the canonical dimension of operators as they appear in the Lagrangian density of the
corresponding quantum field theory. A more general discussion can be developed on the basis of more complicated
definitions for “dimension” such that the behavior of operators under space time dilation.
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Light cone operator product expansion

order in a light-cone expansion for an operator product, there must arise singular coefficients which
may not be present in its short distance counterpart; while those contributing to Wilson’s OPE will
always arise in the corresponding light-cone operator product expansion (LC-OPE). As an illustration
consider two coefficient functions: xµ/x2 and 1/x2. In the short distance limit considered before, both
develop different singular behaviors. On the contrary, in the limit of light like separation, both have the
same singularity and therefore both must identically contribute to the corresponding operator product
expansion.

On the basis of the discussion above, it is not hard to realize that an expansion for the product of
operators separated lightlike spacetime intervals might be built in parallel to Wilson’s short distance
OPE. In fact, R. A. Brandt and G. Preparata showed the LC-OPE to exist in perturbation theory and
to read [43]:

A (x)B (0) −−−→
x2→0

∑
i

∞∑
j=0

C(i)
j,αβ (x)xµ1 · · ·xµjOj(i)µ1···µj (0) ≡

∑
i

∞∑
j=0

C(i)
j,αβ (x) Õj(i) (x, 0) (B.7)

where the coefficients in the expansion are, again, c-number singular functions and each operator
Õj(i) (x, 0) identically contribute to the light cone singular behavior of the operator product. The main
conceptual difference between the expansions Eq. (B.2) and Eq. (B.7) is that rather than a finite number
of fields, as occurs in the short distance case, an infinite number of operators contribute at a given
order in the LC-OPE.

We can proceed in analogy to the analysis at short distances, forget about contributions arising
from radiative corrections in quantum field theory and asses the singular behavior of the coefficients
functions in Eq. (B.7) by means of dimensional analysis. Thus, if we label the mass dimensions of the
operators as dijO we may find –modulo logarithms–,

C(i)
j,αβ ∼

(
1

x

)dA+dB−(dijO−j)
, (B.8)

a relation that makes apparent that the quantity governing the light cone behavior of an operator
product is no longer the mass dimensions of local operators, but the twist [44]: τ ijO ≡ d

ij
O − j. Again, a

bound can be found for the corresponding coefficients to develop singularities, this time reading:

τ ijO ≤ dA + dB , (B.9)

meaning that they are the operators with the lowest possible twist which contribute the most to the
singular behavior of operator products on the light-cone.

Assuming that the operators O(i)
µ1···µj belong to an irreducible representation of the Lorentz group,

as it might be the case in the analysis of an actual quantum field theory, j represents the operator’s
spin [33]. Thus the twist of an operator must be readily understood as the difference between the mass
dimension and the spin of an operator:

τ = mass dimension− spin . (B.10)

The maximal spin of an operator is obtained when its indices are all symmetrized [9, 33]. The
irreducibility implies that contraction of any pair of indices with the metric tensor gives zero. Therefore
the Lorentz structure of such operators must be traceless. Accordingly, it is often stated that symmetric
and traceless operators give the contributions of the minimum possible twist; i.e. the dominant
contribution the LC-OPE.

When concerned with analyses in quantum chromodynamics, such ours for deeply virtual Compton
scattering or the more conventional treatment of deep inelastic scattering, we face the situation where
scattering amplitudes are controlled by products of currents on the light-cone. In this context, the
LC-OPE Eq. (B.7) postulates itself as the natural toolbox for its treatment [7, 44, 425, 426] and
therefore a systematic assessment for the twist of the operators that will potentially arise is in order.
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Chapter B. Operator product expansion

In this respect it is worth recalling a well known fact about QCD: Operators of the lowest possible
twist are those characterized by τ = 2 [9, 28, 108, 110]. Therefore, when invoking the operator product
expansion for the study of scattering amplitudes in the (generalized) Bjorken limit as done in Ch. 1,
it will be those operators which play the central role, triggering the definition of (generalized) parton
distributions.
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C | Numerical inversion of the Radon trans-
form

The inversion of the Radon transform operator plays a pivotal role in the covariant extension strategy.
As it was argued in Ch. 3, we lack from a closed form solution to that problem and there are only
a very few examples where a the calculation can be developed analytically. The natural approach is
to turn to a numerical formulation of the inverse Radon transform problem. Sec. 3.2.2 exposes the
algorithmics employed in this work, which mostly rely on the development of Refs. [92, 159]. However
we find it enlightening to further depict it. That is the purpose of this appendix.

C.1 In a nutshell

The key ingredient in the inversion of the Radon transform is the discretization of the problem. The
aim is to turn from a continuous integral relation

H (x, ξ) = R [h (β, α)] , (C.1)

to an equivalent matrix formulation of the same problem: Hi

 =

 Rij

 hj

 . (C.2)

Within that realization, Hi represents the value taken by the GPD at (xi, ξi). hj are the values of
the double distribution at given points that we may call nodes and Rij is a matrix representation of
the Radon transform operator. The solution of such system of algebraic equations allows for a solution
of the inverse Radon transform problem.

The point then is: How can we achieve at the transition from Eq. (C.1) to Eq. (C.2)?. The answer
to that question was already sketched at the very beginning of Sec. 3.2.2: We employ a strategy inspired
in the finite element methods conventionally employed in the solution of partial differential equations.
In the following, we elaborate on that.

C.2 Discretization

The initial step is the discretization of the problem domain. Let us consider a two-dimensions domain,
say Ω+, subdivide it into small pieces Ω+

e such that:

Ω+ =
⋃
e

Ω+
e . (C.3)

Such task can be achieved in many different ways. In fact, there is no need for the small pieces to
be all of the same geometry nor sizes. The only single requirement that one may impose is for them not
to overlap but to cover the entire region of interest. It is not hard then to realize about the variety of
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Chapter C. Numerical inversion of the Radon transform

Figure C.1: Delaunay triangulation built over the Ω+ domain of double distributions with the
triangle library. In the present example eight nodes, producing seven elements,
define the discretization mesh.

discretization procedures one may find. Each of them shall reveal more suitable for a given particular
problem, but one is widespread: Triangulation, i.e. division of the region Ω+ into small triangles
(Fig. C.1). We take such step through the triangle software [272]. As a result, a mesh characterized
by a set of points (nodes) representing the vertices of each small triangle (element) is generated.

C.3 Interpolation

Triangulation of the domain Ω+ is thus achieved at the price of discretizing also the double distribution,
which no longer lives on such continuum region, domain but on the discretization mesh

⋃
Ω+
e . It is

therefore necessary to find a way of systematically reproducing the DD on the new domain.
That step can be achieved through interpolation. In short (and loosely speaking), a problem-

function h (β, α) whose actual values hj ≡ h (βj , αj) are known over a given set of points {(βj , αj)}nj=1
is approximated by a known (simpler) function P (β, α) defined of the the exact same domain: Its global
interpolant. Such is defined to exactly reproduce hj and approximate the target function in between:

h (β, α)→ P (β, α) : P (βj , αj) = h (βj , αj) ∀ {(βj , αj)}nj=1 . (C.4)

The choice of the interpolant can be done in may different ways. Again, each of them may be
suitable for different problems. For instance: One may employ a complicated function given in terms of
a set of arbitrary coefficients which are adjusted to approximate the target function. Nonetheless, That
way proceeding has strong drawbacks, specially in the case at hand: What is the appropriate functional
form of such interpolant? What is an optimal number of coefficients?.

C.3.1 2D piecewise linear interpolation

For our purposes, a much more convenient way of proceeding, and also a much more widespread
approach in multidimensional problems, is that of piecewise interpolation. In brief, a set of interpolants
is chosen for each element making up the discretization mesh Pe (β, α). Their domain is restricted to
each Ω+

e . Thus, the interpolation of the target-function is achieved as

h (β, α)→ P (β, α) =
∑
e

Pe (β, α) θ
(
Ω+
e

)
, (C.5)

i.e. as a piecewise function.
The interpolants Pe (β, α) can be now taken to be simple functions e.g. low-degree polynomial,

which provided that the elements are small-enough, may accurately approximate the behavior of the
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Interpolation

(β1, α1) (β2, α2)

(β3, α3)

T12

T23T13

A : (β, α)

(β1, α1)
(β2, α2)

(β3, α3)v1 (β, α)

(β1, α1)
(β2, α2)

(β3, α3)
v2 (β, α)

(β1, α1)
(β2, α2)

(β3, α3)
v3 (β, α)

Figure C.2: Definition of basis functions for piecewise linear interpolation on a two-dimensional
mesh. Interpretation as barycentric coordinates.

problem function. A caveat is in order: Now the problem-function must be known over a set of points
allowing for an unambiguous definition of each Pe within each element. Nonetheless, such can be easily
overcome by taking the points {(βj , αj)}nj=1 to define the discretization mesh.

In our particular case, we take those points to be the vertices defining each element in the mesh
produced by triangle. And choose the interpolants to be degree-one polynomials:

Pe (β, α) = ce + beβ + aeαe , (C.6)

a linear interpolant.
How is the linear interpolant of a given problem-function defined over a triangular mesh?. Let us

consider an element Ω+
e in our triangulation. It is characterized by a set of three couples

Ω+
e = {(βk, αk)}3k=1 , (C.7)

the coordinates of its vertices (see Fig. C.1–Upper panel). Let then Pe (β, α) be the linear interpolant
of the underlying function, h (β, α) within Ω+

e . Thus {(βk, αk)}3k=1 and (β, α, Pe) all lay on a plane.
Such condition can then be phrased in formal terms∣∣∣∣∣∣

β − β1 α− α1 Pe − h1

β − β2 α− α2 h1 − h2

β − β3 α− α3 h2 − h3

∣∣∣∣∣∣ = 0 , (C.8)

which follows from the defining property of a plane for the triple product of three vectors there-on lying
to vanish. One may then evaluate such determinant to obtain the linear interpolant to be given by:

Pe (β, α) =

∣∣∣∣∣∣
β α 1
β2 α2 1
β3 α3 1

∣∣∣∣∣∣∣∣∣∣∣∣
β1 α1 1
β2 α2 1
β3 α3 1

∣∣∣∣∣∣
h1 +

∣∣∣∣∣∣
β1 α1 1
β α 1
β3 α3 1

∣∣∣∣∣∣∣∣∣∣∣∣
β1 α1 1
β2 α2 1
β3 α3 1

∣∣∣∣∣∣
h2 +

∣∣∣∣∣∣
β1 α2 1
β2 α2 1
β α 1

∣∣∣∣∣∣∣∣∣∣∣∣
β1 α1 1
β2 α2 1
β3 α3 1

∣∣∣∣∣∣
h3 . (C.9)
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Chapter C. Numerical inversion of the Radon transform

The linear interpolant Pe (β, α) can thus be expressed as:

Pe (β) =
∑
k

vk (β, α)hk , (C.10)

with obvious identifications for vk (β, α): The canonical basis functions for linear interpolations on a
triangle Ω+

e .

Barycentric coordinates

An easy interpretation for the basis functions vk (β, α) follows directly from their definition. Indeed, the
denominators in Eq. (C.10) all represent the same quantity: Twice the area of a triangle characterized
by a set of vertices {(βk, αk)}3k=1,

T123 =
1

2

∣∣∣∣∣∣
β1 α1 1
β2 α2 1
β3 α3 1

∣∣∣∣∣∣ . (C.11)

The numerators, from their part, represent the area of a triangle defined by an arbitrary point,
A : (β, α) inside Ω+

e , and two more vertices. For instance, following the the labeling of Fig. C.2

T23 =
1

2
Num [v1 (β, α)] =

1

2

∣∣∣∣∣∣
β α 1
β2 α2 1
β3 α3 1

∣∣∣∣∣∣ , (C.12)

according to Fig. C.2: Twice T23. Thus, one may interpret the basis functions vk (β, α) as representing
the relative areas shown in such figure:

v1 (β, α) =
T23

T123
, v2 (β, α) =

T13

T123
,v3 (β, α) =

T12

T123
. (C.13)

For a given point, A, this set of parameters allows for its unambiguous identification. They are
dubbed barycentric coordinates. By definition, three properties follow:

• For A : (β, α) ∈ Ω+
e vk (β, α) < 1 ∀k ,

• vk (βi, αi) = δki ,

•
∑
k

vk (β, α) = 1 ,

C.3.2 2D piecewise linear interpolation: Revisited

Lets then consider a triangular mesh. The procedure above must be iterated over all elements, finding
every piecewise-linear interpolant, Pe (β, α). Further, we would like to express them in terms of the
corresponding basis functions, which easily evaluated by turning to barycentric coordinates. Lets then
consider a vertex j within that mesh. In the picture above, all the elements adjacent to that node
will contribute to vj (β, α). Thus one may find the node-j basis function to be given by the assembly
(Fig. C.3):

vj (β, α) =
⋃
e

adjancet to j

vj (β, α) θ
(
Ω+
e

)
, (C.14)

which are often dubbed P1 Lagrange polynomials.
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Discrete Radon transform

β

α

nj

vj (β, α)

Figure C.3: Example of piecewise linear interpolating Lagrange polynomials employed for the
interpolation of the double distributions within the algorithm for the numerical
inversion of the Radon transform.

C.4 Discrete Radon transform

After discretization, the double distribution is thus approximated by:

h (β, α) =
∑
j

vj (β, α)hj , (C.15)

where j label the nodes making up the mesh and vj (β, α) are the corresponding, known, basis functions.
Readily plugging approximation into Eq. (C.1), which defines our integral problem, yields:

H (x, ξ) =
∑
j

R [vj (β, α)]hj , (C.16)

turning our integral problem into a set of algebraic equations relating the value of the input GPD with
those of the double distributions at the interpolation nodes. Indeed, notice that the basis functions are
simple linear polynomials whose Radon transform can be evaluated.

C.4.1 Sampling

As an illustration lets consider a point within the DGLAP region (xi, ξi). Within the picture drawn in
Sec. 3.2.1, such defines a DGLAP line which samples the double distribution domain: Fig. C.4. One
may then identify the elements that our touched by the considered line. In the example above there are
three of them, which we will label for this simple illustration as e = {1, 2, 3} (top-bottom). The GPD is
thus obtained through Radon transform of the interpolated double distribution along such line:

H (xi, ξi) =
∑
j

hj

∫
Ω+

dβdαδ (xi − β − αξi) vj (β, α)

=
∑

Sampled
Ω+
e

∑
j∈Ω+

e

hj

∫
Ω+
e

dβdαδ (xi − β − αξi) vj (βα) ,
(C.17)

making apparent that only the basis functions belonging to the sampled elements do contribute to the
integral along the chose DGLAP line.

Strikingly, the basis functions are simple degree-one polynomials with fixed coefficients. Thus one
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Chapter C. Numerical inversion of the Radon transform

Figure C.4: Exampling DGLAP line characterized by a pair (xi, ξi) sampling the double distri-
bution domain. Hit elements are highlighted in purple.

can take their Radon transform in closed form:

H (xi, ξi) =
∑

Sampled
Ω+
e

∑
j∈Ω+

e

hj

∫
Ω+
e dβdαδ (xi − β − αξi) [cj + bjβ + ajαj ] =

=
∑

Sampled
Ω+
e

∑
j∈Ω+

e

hj

∫ β
(e)
out

β
(e)
In

dβ

[(
cj + aj

x1

ξ1

)
+

(
bj −

aj
ξ1

)
β

]

=
∑

Sampled
Ω+
e

∑
j∈Ω+

e

hj
β

(e)
In − β

(e)
Out

2

[
2

(
cj + aj

x1

ξ1

)
+

(
bj −

aj
ξ1

)(
β

(e)
In − β

(e)
Out

)]
,

(C.18)

where β(e)
In/Out denote the integration boundaries, defined by the entrance and exit of the sampling line

in the relevant element.
A clear identification then follows for the elements of the operator implementing the transformation

from the GPD to the DD domain:

Rij :=
β

(e)
In − β

(e)
Out

2

[
2

(
cj + aj

x1

ξ1

)
+

(
bj −

aj
ξ1

)(
β

(e)
In − β

(e)
Out

)]
. (C.19)

which can be built for every chosen sampling line. Thus, the continuum Radon transform problem is
readily turned into a system of algebraic equations given by:

Hi = Rijhj (C.20)

where i, the number of rows in the Radon transform matrix Rij labels the sampling line; and j, the
columns, label the interpolation nodes. The values Hi ≡ H (xi, ξi) are given, while the values of the
double distribution at the interpolation nodes, hj ≡ h (βj , αj) are the unknowns of a system of equations
which might be solved following the strategy described in Sec. 3.2.2.

C.5 A word on the numerical implementation

The path to follow for a numerical approach to the Radon transform problem has thus been depicted.
One starts with the discretization of the Ω+ domain, followed by the necessary interpolation of the

148



A word on the numerical implementation

double distribution. We choose P1 Lagrange polynomials. Then the Radon transform matrix is built by
choosing different sampling lines (xi, ξi) according to Eq. (C.19). To that end, the following algorithm
is followed:

for (i=1, number_of_elements)
If ((xi = β + αξi) crosses element[i])
Compute_boundaries()
for(j=1, 3)
Compute Rij

else
i++

149





D | Comments on the existence of
(
RTR

)−1
In Sec. 3.2.2, we addressed the problem of computing DDs by solving a squared linear system whose
matrix is written as:

(RTR)jk =
∑
i

RijRik (D.1)

where Rij is the contribution of the element j to the integral over the line xi − β −αξi = 0 with (xi, ξi)
in the DGLAP region. Its inversion is a necessary step for the solution of the inverse Radon transform
problem. Thus the condition of maximal rank for the matrix RTR must be fulfilled.

As we shall prove through this appendix, such a condition is unavoidably met if the Radon transform
matrix, R, has maximal rank; a condition which, as discussed in Sec. 3.2.2, can be assumed to be true
without loss of generality.

Prior to our proof for the invertibility of RTR, we must present the two central pieces of our
arguments:

1. Rank-nullity theorem
Let V,W be finite dimensional F-vector spaces and T : V → W a linear application. Then, the

rank-nullity theorem states:

dimFV = dimF T (V ) + dimFker (T )

= Rank (T ) + dimN (T )
(D.2)

with N (T ) denoting the null-space of the application.
In particular, for a matrix A ∈Mm,n (k), with m ≥ n:

n = Rank (A) + dimN (A) (D.3)

from which one can deduce that,

dimN (A) = 0⇔ Rank (A) = n (D.4)

i.e., the matrix A has maximal rank.
Therefore, in the particular situation where the matrix An is squared, i.e. m = n, the condition

dimN (An) = 0 implies that such matrix has maximal rank and thus, by means of Rouché-Frobenius
theorem, that such matrix is invertible:

dimN (An) = 0⇔ ∃A−1
n ∈Mn|AmA−1

n = A−1
n A = In (D.5)

2. N (A) = N
(
ATA

)
Once again, let us consider an arbitrary matrix A ∈Mm,n (k), with m ≥ n and a vector x ∈ N (A).

Applying ATA ∈Mn (k) on it:
ATAx = AT0 = 0 (D.6)

where the first identity follows from the definition ofN (A), it immediately implies that x ∈ N
(
ATA

)
⇒

N (A) ⊂ N
(
ATA

)
.
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(
RTR

)−1

Equivalently consider a vector x ∈ N
(
ATA

)
. Then,(

ATA
)
x = 0⇒ xT

(
ATA

)
x = xT0 = 0 (D.7)

and thus,
xT
(
ATA

)
x = (Ax)T (Ax) = ||Ax||2 = 0 (D.8)

where ||·|| denotes the vector norm.
Because A is different from the null-operator, it follows that:

||Ax||2 = 0⇒ Ax = 0 (D.9)

thus x ∈ N (A)⇒ N
(
ATA

)
⊂ N (A).

The combination of these two results imply

N (A) = N
(
ATA

)
(D.10)

3. Proof:
Keeping this in mind let us turn to the specific problem we are involved with. Consider R ∈

Mm×n (R), the Radon transform matrix of Sec. 3.2.2, with m ≥ n. And the matrix RTR ∈Mn (R),
where RT stands for the transposed Radon transform matrix.

By hypothesis, RankR = n, as discussed through Sec.3.2.2. Therefore, by means of Eq. (D.4),
dimN (R) = 0. Furthermore, relation (D.10) guarantees that dimN

(
RTR

)
= dimN (R) = 0. Then,

through (D.5), the matrix
(
RTR

)−1 exists.
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E | The Sullivan process

Through the discussion in Ch. 5 we found the Sullivan process to provide an outstanding tool for
a practical assessment of pion’s structure. Indeed, on top of it, we were able to expose observable
manifestations of the essence of quark-gluon combination inside pions. Nonetheless, for the sake of
continuity in the arguments of that chapter, we mainly relied on available analyses about the Sullivan
process. Specially those from [83]. However, the results derived on that basis are relevant enough to
devote some efforts in carefully exposing them. This is the purpose of this appendix.

E.1 Kinematics of the Sullivan process

Let us first consider the kinematics of the Sullivan process: Fig. E.1 (DVCS contribution). Fortunately,
most of the work was already developed in App. A.

e− (k)

e− (k′)

p+ (p)

n (p′)

γ (q′)

π+ (p′π)

qπ = k − k′

pπ = p− p′

Figure E.1: Diagram representing the DVCS contribution to the Sullivan process. As usual,
the intermediate photon and pion are understood to be off their mass shells.

We choose to workout the description of the process on the electron-proton center of mass frame,
characterized by:

k + p = 0 . (E.1)

If we choose the proton to travel along the negative-z direction, the four-momentum of the colliding
particles read

k = (Ecme , 0, 0,kcm) = (Ecme , 0, 0, |pcm|) ,

p =
(
Ecmp , 0, 0,pcm

)
=
(
Ecmp , 0, 0,− |pcm|

)
.

(E.2)

The final-state electron and neutron can arise from the scattering process in arbitrary directions,
which we characterize through four angles. The polar, θe/n, and azimuthal ψe′,n angles of the outgoing
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Chapter E. The Sullivan process

electron and neutron measured in the ep center of mass frame:

k′ =
(
Ecme′ ,

∣∣k′∣∣cm sin θe′ cosψe,
∣∣k′∣∣cm sin θe′ sinψe,

∣∣k′∣∣cm cos θe
)
,

p′ =
(
Ecmp′ ,

∣∣p′∣∣cm sin θn cosψn,
∣∣p′∣∣cm sin θn sinψn,

∣∣p′∣∣cm cos θn
)
.

(E.3)

Since actual experiments may handle this process in different frames, typically in the target rest frame,
it is convenient to express all momenta in a frame independent manner. Indeed, the electron-proton
scattering process can be characterized by six invariant quantities:

Q2 = −q2 = −
(
k − k′

)2 , t = p2
π =

(
p′ − p

)2 , xB =
Q2

2p · q
, y =

p · q
p · k

, ψe , ψn . (E.4)

All of them are indeed well known: Q2 represents the incoming-photon virtuality and, in addition,
characterizes the underlying scattering process between the probing photon and the exchanged pion.
From its part, t is the momentum transfer between nucleon states but also defines the four-momentum
of the pion in the intermediate state; again necessary for the specification of the underlying (potentially)
deeply virtual Compton scattering. The ψe, ψn represent the azimuthal angles of the scattered lepton
and neutron. Finally, xB is the conventional Bjorken variable and y measures the energy transfer from
the incoming electron to the probing photon

Working in the electron-proton center of mass frame, one can readily find (see Sec. A.1):

Ecme =
s+m2

2
√
s

, |p|cm =
s−m2

2
√
s

,

Ecmp =
s−m2

2
√
s

,

(E.5)

where, as usual, we neglected the electron’s mass and denoted m that of the proton. Also, we introduced
the usual Mandelstam variable s which can be written as:

s = m2 +
Q2

xBy
. (E.6)

The kinematic configuration for the scattered electron and neutron can be also specified in a similar
form:

The kinematics of the underlying photon-pion scattering process can be know characterized exactly
as in Sec. A.1. If we let the relevant quantities to be labeled by a subscript “π” to distinguish them
from those associated to the parent electron-proton scattering we would find, in the initial state:

Eπ =
sπ + p2

π +Q2

2
√
sπ

, |pcmπ | =

√(
sπ + p2

π +Q2

2
√
sπ

)2

− p2
π

Eγ =
sπ − p2

π −Q2

2
√
sπ

,

(E.7)

and for the outgoing particles:

Eπ′ =
sπ +m2

π

2
√
sπ

,
∣∣p′cm∣∣ =

sπ −m2
π

2
√
sπ

Eγ′ =
sπ −m2

π

2
√
sπ

,

(E.8)

where we have defined

tπ =
(
p′π − pπ

)2 , xπ =
pπ · k
p · k

, xπB =
Q2

2pπ · q
, yπ =

pπ · qπ
pπ · k

, ψ (E.9)

with ψ representing the angle between the lepton and pion-photon plane as represented in Fig. A.2.
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Cross-section of the Sullivan process

E.2 Cross-section of the Sullivan process

Once we have analyzed the kinematics of the Sullivan process we find our selves in a position to evaluate
its cross-section. In this regard it is useful to distinguish two pieces for the same scattering: (i) The
emission of pions by the nucleons; and (ii) the scattering of the electron beam with those pions. Within
that picture one may write the amplitude for the Sullivan process as:

MSullivan = i
√

2gπNN ūσ′
(
p′
)
γ5uσ (p)

i

t−m2
π

F (t; Λ)Meπ→eγπ , (E.10)

where, as we already discussed in Sec. 5.2, gπNN is the nucleon-pion coupling and F (t; Λ) is a
phenomenological factor introduced for later convenience.

The cross-section for the Sullivan process can thus be obtained conventionally:

dσSullivan =
1

Fep
|MSullivan|2 dΠ4 , (E.11)

with dΠ4 being the 4-body phase-space element, defined as∫
dΠn=4 =

(
n=4∏
i=1

∫
d3pi

(2π)3

1

2Ei

)
(2π)4 δ(4)

(
k + p−

n=4∑
i

pi

)
, (E.12)

with pi collectively denoting the four-momentum of the outgoing particles. And Fep the electron-proton
flux factor:

Fep ≡ 2
√
λ (s,m2, 0) = 2

(
s−m2

)
. (E.13)

Putting all the pieces together, the differential cross-section for the Sullivan process reads:

dσSullivan =

[√
2gπNNF (t; Λ)

]2
2 (s−m2)

−t
(t−m2

π)2 |Meπ→→eγπ| dΠ4 , (E.14)

where two quantities reveal interesting: The amplitude for the underlying exclusive Compton scattering
on a pion where a real photon emerges in the final state (Fig. E.2). But also, the four-body phase
space. Assessing the former requires explicitly looking at the dynamics of the process and its analysis is
presented in Sec. 5.2. In turn, the phase-space is a purely kinematic factor which we are already in a
position to depict.

E.2.1 Lorentz-invariant phase-space

For the case at hand, the Lorentz-invariant four-body phase-space reads:∫
dΠ4 =

1

(2π)12

∫
d3p′d3k′d3p′πd

3q′

16Ep′Ee′Eπ′Eγ′
(2π)4 δ(4)

(
p+ k − p′ − k′ − p′π − q′

)
(E.15)

If we let pπ = p− p′ the four-body phase space is readily arranged as:

∫
dΠ4 =

1

(2π)3

∫
d3p′

2Ep′

[
1

(2π)9

∫
d3k′d3p′πd

3q′

8Ee′Eπ′Eγ′
(2π)4 δ(4)

(
k + pπ − k′ − p′π − q′

)]
, (E.16)

making apparent the fact that the four-body phase-space contains the three-body one∫
dΠ4 =

1

2 (2π)3

∫
d3p′

2Ep′

∫
dΠ3

(
p′ = p− pπ

)
(E.17)

which depends on the outgoing-neutron momentum through pπ.
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Within this picture the calculation of the complicated four-body phase-space is related to that of
dΠ3 which is much more amenable. Moreover, if we now let q = k − k′ the three-body phase-space
turns: ∫

dΠ3

(
p′
)

=
1

(2π)3

∫
d3k′

2Ee′

[
1

(2π)6

∫
d3p′πd

3q′

4Eπ′Eγ′
(2π)4 δ(4)

(
pπ + q − p′π − q′

)]
, (E.18)

where it is now manifest that the three-body phase-space contains that of two bodies:∫
dΠ3

(
p′
)

=
1

2 (2π)3

∫
d3k′

2Ee′

∫
dΠ2

(
p′, k′ = k − q

)
, (E.19)

which depends on p′ through the scattering-pion four-momentum (pπ) and on k′ through that of the
incident photon.

Two-body phase-space

The calculation of the two-body phase-space is, indeed, a textbook result (see e.g. [28]) which, for the
sake of completeness, we quickly sketch here. We proceed in the photon-pion center-of-mass frame,
which we exhaustively analyzed in Sec. A.1 and, in addition, simplifies the calculation. Splitting the
delta distribution to separately impose energy and three-momentum conservation we can express it as:∫

dΠ2

(
p′, k′

)
=

1

(2π)2

∫
d3p′πd

3q′

4Eπ′Eγ′
δ
(
Eπ + Eγ − Eπ′ − Eγ′

)
δ(3)

(
p′π + q′

)
. (E.20)

The integral over the outgoing photon three-momentum can be readily evaluated by means of the
corresponding delta distribution, yielding:∫

dΠ2

(
p′, k′

)
=

1

(2π)2

∫
d3p′π

4Eπ′ |p′π|
δ
(
Eπ + Eγ − Eπ′ −

∣∣p′π∣∣) , (E.21)

where we took advantage of the onshelness of the outgoing photon.
One may now turn to spherical coordinates coordinates: d3p′π = |p′π|

2 d |p′π| d cos θcmπ′ dψ ≡ |p′π|
2 d |p′π| dΩcm

π′ ,
where θcmπ′ and ψ are the pion’s scattering- and azimuthal-angles introduced in Sec. A.1; and thus write
the phase-space element as∫

dΠ2

(
p′, k′

)
=

1

(2π)2

∫
d
∣∣p′π∣∣ dΩcm

π′
|p′π|
4Eπ′

δ
(
Eπ + Eγ − Eπ′ −

∣∣p′π∣∣) (E.22)

Now taking the integral over
∣∣p′π′∣∣ yields:∫

dΠ2

(
p′, k′

)
=

1

4 (2π)2

∫
dΩcm

π′
|p′cmπ |

|p′cmπ |+ Ecmπ′
=

1

4 (2π)2

∫
dΩcm

π′
sπ −m2

π

2sπ
(E.23)

Since the azimuthal angle remains invariant under boosts along the z-axis (as emphasized in Sec. A.1)
the above can be written in a explicitly Lorentz-invariant manner by means of Eq. (A.13), which allows
to change coordinates from d cos θcmπ′ to dtπ as:∣∣∣∣ dtπ

d cos θcmπ′

∣∣∣∣ =
sπ −m2

π

2sπ

√
(sπ + t− q2)2 − 4sπt , (E.24)

giving ∫
dΠ2

(
p′, k′

)
=

1

4 (2π)2

∫
dtπdψπ′√

(sπ + t− q2)2 − 4sπt
, (E.25)

which, as expected, explicitly depends on p′ and k′ through sπ = (k + pπ)2 = (k + p− p′), t = (p′ − p)2

and q = (k − k′).
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Three-body phase-space

One can now take advantage of this result to obtain the three-body phase-space as in Eq. (E.19):∫
dΠ3

(
p′
)

=
1

4 (2π)5

∫
d3k′

2Ee′

∫
dtπdψ√

(sπ + t− q2)2 − 4sπt
. (E.26)

Lets workout the integration measure on the electron’s three-momentum. Again introducing spherical
coordinates, and neglecting the electron’s mass:

d3k′

2Ee′
=

1

2Ee′
E2
e′dEe′d cos θcme′ dψe (E.27)

where, as described in the preceding section: θcme′ is the scattering angle of the outgoing electron as
measured in the electron-proton center of mass frame and ψe is its azimuthal angle; i.e. that between
the lepton and nucleon planes.

One can now use the the relativistic invariants

Q2 = −q2 = −
(
k − k′

)2
= 2EeEe′ (1− cos θcme′ ) ,

W 2 = (p+ q)2 = s− 2Ee′
[√
s+ (Ep − |p|) cos θcme′

]
.

(E.28)

to define a transformation from
(
Ee′ , cos θcme′

)
variables, to

(
Q2,W 2

)
which is characterized by the

Jacobian matrix:

J
(
Ee′ , cos θcme′ ;Q2,W 2

)
=


2Ee (1− cos θcme′ ) 2Ee′

(
Ee +

√
E2
p −m2

)
−2EeEe′ 2Ee′

(
Ee +

√
E2
p −m2

)
 (E.29)

from which one readily obtains:

d3k′

2Ee′
=

dQ2dW 2dψe
8Ee (Ep − |p|)

=
dQ2dW 2dψe

8 (p · k)
. (E.30)

Finally, one can rewrite the invariant W 2 as:

W 2 = m2 −Q2

(
1− 1

xB

)
, (E.31)

and thus finally get:
d3k′

2Ee′
=

1

4

y

xB
dQ2dxBdψe . (E.32)

to express the three-body phase-space as:∫
dΠ3

(
p′
)

=
1

16 (2π)5

∫
y

xB

dQ2dxBdψedtπdψ√
(sπ + t− q2)2 − 4sπt

. (E.33)

Four-body phase-space

One can now proceed similarly to obtain the four-body phase-space of Eq. (E.17):∫
dΠ4 =

1

32 (2π)8

∫
d3p′

2Ep′

∫
y

xB

dQ2dxBdψedtπdψ√
(sπ + t− q2)2 − 4sπt

. (E.34)
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Once again, we can introduce spherical coordinates to rewrite the integration measure

d3p′

2Ep′
=

1

2Ep′

∣∣p′∣∣2 d ∣∣p′∣∣ d cos θcmn dψn (E.35)

with θcmn and ψn the scattering and azimuthal angles of the outgoing neutron. By means of the
relativistic invariants:

t =
(
p′ − p

)2
= 2m2 − 2

(
EpEp′ − |p|

∣∣p′∣∣ cos θcmn
)
,

xπ = 1− p′ · k
p · k

= 1−
Ep′ + |p′| cos θcmn

Ep − |p|
,

(E.36)

we obtain the Jacobian of the transformation and find the integration measure to be written in a
explicitly covariant form as:

d3p′

2Ep′
=

1

4
dtdxπdψn , (E.37)

so that the four-body phase-space reads∫
dΠ4 =

1

128 (2π)8

∫
y

xB

dtdxπdψndQ
2dxBdψedtπdψ√

(sπ + t− q2)2 − 4sπt
. (E.38)

Eight-fold differential cross-section

Once we have evaluated the four-body phase-space, the eight-fold differential cross-section of the
Sullivan process, Eq. (E.14) reads:

d8σSullivan

dtdxπdψndQ2dxBdψe′dtπdφπ′
=

1

128 (2π)8

y

xB

g2
πNNF

2 (t; Λ)

(s−m2)

√
(sπ + t+Q2)2 − 4sπt

−t
(t−m2

π)2 |Meπ→eπγ |2 ,

(E.39)
which is written in an explicitly covariant way. As discussed throughout this appendix, all the quantities
there involved can be taken under control in practice, only reliable detection of the outgoing pions,
neutrons and leptons is required; which in turn is also necessary to guarantee the exclusivity of the
process being measured1.

Strikingly that expressions readily exhibits intuitive separation between Compton scattering on
pions, which we are actually interested in; and the somehow auxiliary process describing the emission
of pions from a nucleon. Lets consider the sub-process: eπ → eγπ. Its cross-section is obtained as:

dσeπ→eγπ =
1

Feπ
|Meπ→eγπ|2 dΠ3 . (E.40)

We have already computed the three-body phase space. And now, the flux factor is given by:

Feπ = 2
√
λ (seπ,m2

π, 0) = 2
(
seπ −m2

π

)
= 2xπ

(
s−m2

)
+O (t) , (E.41)

allowing us to write

dσeπ→eγπ ' 1

xπFep
|Meπ→eγπ|2 dΠ3 . (E.42)

Using this relation in combination with Eq. (E.39) we may identify the five-fold eπ → eπγ therein
an write:

d8σSullivan

dtdxπdψndQ2dxBdψedtπdψ
= xπ

g2
πNN

16π3
F 2 (t; Λ)

−t
(t−m2

π)2

d5σeπ→eγπ

dQ2dxBdψedtπdψ
(E.43)
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e− (k)

e− (k′)

π+ (pπ)

γ (q′)

π+ (p′π)

q = k − k′ e− (k)

e− (k′)

π+ (p′π)

π+ (pπ)

γ (q′)

Figure E.2: Diagrams illustrating the two contributions to the eπ → eγπ scattering amplitude
contributing to the Sullivan process – Left panel: Virtual Compton scattering,
Right panel: Bethe-Heitler process. Notice, that an additional crossed-channel
diagram accompanies that of the BH scattering process, where real outgoing photon
is emitted by the incoming electron.

E.2.2 Cross-section for eπ → eγπ

In light of the findings above, all of the dynamics is encoded in to the five-fold differential cross-section

d5σeπ→eγπ

dQ2dxBdtπdψedψ
=
α3
QED

16π2

y

xB (seπ −m2
π)

|Teπ→eγπ|2√
(sπ + t+Q2)2 − 4sπt

(E.44)

where, for later convenience, we have extracted a factor e3 from the scattering amplitude and defined
e3Meπ→eγπ = Teπ→eγπ. Changing variables to xπB and yπ

dσeπ→eγπ

dxπBdyπdtπdψedφn
=

α3
QEDx

π
Byπ

16π2Q2
√

1 + ε2
|Teπ→eγπ|2 , (E.45)

where we finally defined the parameter ε2 = 4m2
π (xπB)2 /Q2.

There exist two contributions to the scattering amplitude (Fig. E.2): The Bethe-Heitler contribution,
where the outgoing photon is emitted by either the initial- or final-state electron; and that from virtual
Compton scattering on a pion. Thus we may write:

Meπ→eγπ =MVCS +MBH , (E.46)

identifying two contributions to cross-section:

|MVCS|2 + |MBH|2 ± I (λ) (E.47)

for which detailed formulae can be found in [51, 65, 75, 76, 83]. Strikingly, the amplitude for virtual
Compton scattering on a pion is the main subject of study within this dissertation. We devoted a
whole chapter (Ch. 1) to its study, with special emphasis on the hadronic part; this term providing
access to the generalized parton distribution of the pion. The Bethe-Heitler contribution, from its
part, is shown to be related with the pion’s electromagnetic form factor [65, 83]. The third term, I (λ),
describes the coherent interference between both processes. These terms have a dynamical origin, their
understanding being crucial for a proper interpretation of our results. For that reason their discussion
is placed directly within Ch. 5.

1Actually, momentum conservation allows for that requirement to be relaxed. In particular we may require all the
outgoing but the pion to be detected.
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