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a b s t r a c t 

Accurately estimating key performance indicators in inventory models for perishable items is essential 

in order to assess and improve the management strategy of these systems. We analyse the production 

of platelet concentrates at blood banks under the EWA replenishment policy. We give analytical approxi- 

mations of the most important performance measures, such as the size of orders, the size of stocks, the 

percentage of outdating, the age distribution of stocks and the freshness of units issued, among others. 

The production of platelet concentrates is a prototypical example of inventory models for short life items 

with random demand and a weekly pattern, where a high service level is required. The methodology and 

the approximations presented here can be easily adapted to other inventory systems with similar char- 

acteristics. Most of the formulae in this article are new for nonstationary models under the EWA policy; 

indeed, formulae for the age distribution of units in stock and of units issued have not appeared in the 

literature even for the simpler base-stock replenishment policy. We apply our results to a real blood bank 

and find very close agreement between the formulae and the results of Monte Carlo simulations. The ac- 

curacy of our approximations is also tested in several scenarios, depending on the lifetime of units, safety 

stock levels and the probabilistic distribution of demand. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Background and motivation 

Inventory management of perishable items is of great impor- 

ance in many sectors of the economy. Food and blood products 

re just a couple of examples of perishable goods. The mathemat- 

cal analysis of inventory models for these products is much more 

ifficult than for nonperishable items. Also, although there are a 

reat many research papers on models for perishable goods they 

re still far fewer in number than the papers and books devoted to 

onperishable products; see, e.g., Silver, Pyke, & Peterson (1998) . 

Much of the research on inventory management for perish- 

ble products has focused on blood products, and has been pub- 

ished both in medical and mathematical journals; see Atkinson, 

ontaine, Goodnough, & Wein (2012) , Beliën & Forcé (2012) , 

ivelek, Karaesmen, & Scheller-Wolf (2015) , Ensafian & Yaghoubi 

2017) , Rajendran & Ravindran (2019) . Blood products are used for 
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ransfusion in most hospitals and are seen as a scarce, precious 

esource. They are of vital importance for patients, so a sufficient 

tock must be kept in order to avoid stockouts. Different compo- 

ents of blood, such as red blood cells, plasma and platelets, are 

sed for transfusion. Among them, platelet concentrates are con- 

idered as a critical product since they have a short lifetime (usu- 

lly 5 or 7 days). They are also expensive (for instance, Haijema, 

an der Wal, & van Dijk (2007) assume a cost of more than 450 Eu-

os per patient per treatment), and overcautious policies in keeping 

ig stocks result in a large number of outdated units, leading to an 

nnecessary waste of money and ethical concerns. 

In this paper we focus on a periodic review model for fixed life- 

ime perishable goods such that stockouts must be kept to a min- 

mum. Platelets are a clear example of such products, and we use 

he inventory model of the Basque Centre for Transfusion and Hu- 

an Tissues (CVTTH) in Galdakao, Bizkaia, Spain, for the derivation 

f our formulae. This research originated in collaboration between 

he University of the Basque Country and the CVTTH for the imple- 

entation of a mathematical model for the management of blood 

roducts; see Pérez Vaquero, Gorria, Lezaun, López, Monge, Eguiz- 

bal, & Vesga (2016) , Gorria, Labata, Lezaun, López, Pérez Aliaga, 

 Pérez Vaquero (2020) . The paper focuses on this model for the 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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roduction of platelet concentrates, but our analysis can easily be 

dapted to other perishable goods where the service level needs to 

e high. 

.2. Objective of the paper 

In practice, it is very useful to have approximations of the per- 

ormance measures of an inventory system, which can be used to 

alidate policies and optimise the parameters of the model. When 

uch approximations are not available, validation and optimisation 

ust rely on simulations. This paper sets out to derive analytical 

pproximations for the main performance measures of nonstation- 

ry models when the Estimated Withdrawal and Aging (EWA) re- 

lenishment policy is used and a high service level is needed. EWA 

s a modification of the base-stock replenishment policy where the 

nventory position is modified by subtracting an estimation of the 

mount of outdating, for placing a new order. 

We do not assume any specific form for the probabilistic dis- 

ribution of the daily demand. Among others, we obtain formulae 

or the expected on-hand inventory, the probability of stockout, ex- 

ected outdating, the age distribution of stocks and the freshness 

f units issued. The models that we consider are not stationary, 

ut weekly stationary: the weekly pattern exists in the distribution 

f the demand and in the operational assumptions of the system 

for instance, orders are placed every weekday but not on week- 

nds). Since our model has a weekly pattern, all the formulae are 

btained for each day of the week. 

We derive the approximations for a particular model to be de- 

cribed in detail in Section 2 . This may be seen as somewhat re-

trictive, but we see two advantages in it. First, the model is real- 

stic, since it is very close to the operation of a real blood bank.

econd, it includes a variety of situations (e.g. not all days have 

he same lead or review times and units arriving on Mondays have 

 different remaining lifetime than units arriving on other days); 

hus, the reasoning and derivation of the formulae for the model 

an be adapted without difficulty to other systems. 

To the best of our knowledge, this is the first paper where ap- 

roximations for performance measures are given when the model 

s nonstationary and the EWA policy is used (except for the fill 

ate, which has already been approximated in van Donselaar & 

roekmeulen, 2011 ). A key point in our analysis concerns the for- 

ulae for ν i 
t , the expected number of units ordered on day t which 

re in stock at the end of day t + i , derived in Section 3.3 . These

ormulae enable us to give approximations for many performance 

easures of the model, such as expected outdating. Freshness, de- 

ned as the expected remaining lifetime of units issued, can also 

e easily computed from ν i 
t . In fact, we give more comprehensive 

nformation on units issued by deriving approximations for the val- 

es w 

r 
t , the expected number of units issued on day t with r days 

f remaining lifetime. 

We also use ν i 
t to compute the age distribution of the stock, 

.e. the expected number of units in stock with remaining lifetime 

 , . . . , m at the beginning of a day in the long run. This distribution

ives full information on the behaviour of the system. We point 

ut that age distribution of stock in nonstationary models for per- 

shable items has not appeared in the literature even under the 

impler base-stock policy. 

While in most instances of inventory systems demand is dis- 

rete in nature, continuous distributions are often used to model 

t. Throughout the paper we assume that demand is well modelled 

y a continuous distribution, so our formulae are expressed using 

ntegrals and probability density functions (PDF); if a discrete dis- 

ribution for demand is to be used, then, PDFs must be replaced 

y probability mass functions and integrals by sums. 
1138 
.3. Literature review 

There is a great variety of mathematical models for perishable 

tems. They differ in many characteristics, such as deterministic or 

andom demand, fixed or random lifetime, zero or positive lead 

ime, stationary or time-varying demand, among others. We work 

ith a random demand, fixed lifetime model here, so we restrict 

urselves to that setting for the rest of the paper. 

An excellent review of the research published on inventory 

odels for perishable items can be found in Nahmias (1982) for 

arly papers on the subject; in Raafat (1991) for papers up to 1991; 

n Goyal & Giri (2001) for publications from the early 90s to 20 0 0;

nd in Bakker, Riezebos, & Teunter (2012) , Janssen, Claus, & Sauer 

2016) and Chaudhary, Kulshrestha, & Routroy (2018) for more re- 

ent work. The first mathematical studies on inventory systems 

or perishable items set out to find optimal solutions in terms 

f minimising cost functions. However, in contrast to what hap- 

ens for nonperishable items, where optimal solutions are known 

n a wide variety of settings, researchers found that models for 

erishable items were much harder to analyse, at least when de- 

and was random. Thus, optimal solutions were obtained only in a 

imited number of situations such as very short product lifetimes 

 m = 1 , 2 ) or zero lead time; see Nahmias (1982) and references

herein. 

One way of finding an optimal solution is by using dynamic 

rogramming, which is a suitable tool for these models, taking 

 state space defined by the age distribution of the stock and a 

tochastic transfer function (see Nahmias, 1975 ). This technique 

olves, at least theoretically, the problem of finding a policy which 

inimises the cost function subject to a service constraint. How- 

ver, due to the “curse of dimensionality” of dynamic program- 

ing, the state space of the problems becomes huge even for mod- 

rate values of m (lifetime) and maximum storage capacity and the 

roblems become unsolvable in practice. In the last few decades 

he increasing speed and capacity of computers have led to a re- 

mergence of this technique, although it still needs to be combined 

ith aggregation of states or simulation to find solutions in a rea- 

onable time. Haijema et al. (2007) , who combine dynamic pro- 

ramming with simulation, work with a model whose state space 

s larger than 10 8 , which implies a complexity of the order of 10 13 

or one week iteration, so a downscaling of four to one units is 

arried out. Algorithms based on aggregation of states in multiple 

evels are proposed in Voelkel, Sachs, & Thonemann (2020) . 

Another approach for finding good policies in inventory mod- 

ls is discrete event simulation. It consists of modelling the sys- 

em and implementing it in simulation software. By running the 

imulation with different policies and in various settings, the per- 

ormance of the policies can be compared with a view to choos- 

ng the best. Simulation has been widely used to model real blood 

anks. For instance, Rytilä & Spens (2006) compare different sce- 

arios of production and distribution of blood components in Fin- 

and. Asllani, Culler, & Ettkin (2014) build a model for a blood bank 

entre supplying 50 health care facilities in the US to search for the 

est platelet production policy in the week, when platelets are dif- 

erentiated by blood type. Dalalah, Bataineh, & Alkhaledi (2019) use 

 simulation-optimisation approach to find an optimal policy when 

emand is differentiated by the age of platelets, and apply it to 

uwait public hospitals. Gorria et al. (2020) use data from two 

lood banks in Spain to study the decrease in outdating when 

he lifetime of platelet concentrates is extended from 5 to 7 days 

ia pathogen reduction technologies and analyse what days of the 

eek are most appropriate for applying these technologies. An ad- 

antage of the simulation approach is that the model can be as 

ealistic as desired. However, no analytical expressions of the op- 

imal solution or the performance measures of the model are ob- 

ained, which prevents the parameters of the model from being in- 
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erpreted directly; moreover, simulations must be run every time a 

hange in the parameters is observed. 

Yet another approach is to use heuristics to find a good so- 

ution. This approach does not seek to find the best of all feasi- 

le solutions, but rather to propose reasonable, easy-to-implement 

olicies which perform well in practice. Many of these policies are 

yopic, in the sense that they make period-by-period decisions, 

nd/or involve a simplification of the state space (for instance, us- 

ng a simple function of the composition of the stock instead of its 

omplete age distribution). Nandakumar & Morton (1993) describe 

euristic solutions in the case of zero lead time which are close 

o optimal. For positive lead time, Chiu (1995) develops a solution 

ased on a period-by-period optimisation of an approximation of 

he cost function which only takes into account the size of the 

tock but not its age distribution. Haijema & Minner (2019) give 

n overview of some of the most important stock-age dependent 

rder policies, propose new ones and compare them in a broad set 

f scenarios. 

One heuristic developed for periodic review and fixed life- 

ime models, which yields good results, is the EWA policy, intro- 

uced in Broekmeulen & van Donselaar (2009) . It is known (see 

roekmeulen & van Donselaar, 2009; Haijema & Minner, 2019 ) 

hat the EWA policy significantly outperforms the base-stock pol- 

cy. The EWA policy has been analysed by van Donselaar & Broek- 

eulen (2011) , van Donselaar & Broekmeulen (2012) , Broekmeulen 

 van Donselaar (2019) . van Donselaar & Broekmeulen (2011) give 

pproximations for the fill rate both when demand is stationary 

nd when it has a weekly pattern. In the case of stationary mod- 

ls, van Donselaar & Broekmeulen (2012) give analytical expres- 

ions to approximate the expected outdating; these approxima- 

ions are then improved by simulating a large number of sce- 

arios and fitting a regression model. Also for stationary mod- 

ls, Broekmeulen & van Donselaar (2019) propose several poli- 

ies for reducing waste and increasing freshness. Freshness is a 

ery important performance measure when dealing with perish- 

ble items, since waste due to outdating occurs very frequently 

t customer level: e.g. households for food ( Secondi, Principato, & 

aureti, 2015; van Geffen, van Herpen, & van Trijp, 2020 ) or hos- 

itals for platelets ( Flint, McQuilten, Irwin, Rushford, Haysom, & 

ood, 2020; Pérez Vaquero et al., 2016 ). Moreover, fresher units 

re usually preferred by customers in the case of both food prod- 

cts ( Li & Teng, 2018 ) and platelets, since they have better proper-

ies than older ones, Caram-Deelder, Kreuger, Jacobse, van der Bom, 

 Middelburg (2016) , Aubron, Flint, Ozier, & McQuilten (2018) . 

roekmeulen & van Donselaar (2019) were the first to obtain an 

pproximation of freshness in an inventory model for perishable 

tems. To estimate freshness, they propose an expression based on 

ittle’s formula for queuing theory; the expression uses an estima- 

ion of expected outdating, so simulations must be run and a re- 

ression model fitted as in van Donselaar & Broekmeulen (2012) in 

rder to compute the approximation of freshness. 

A more comprehensive description of the performance of an 

nventory system for perishable items is achieved by computing 

he age distribution of the stock. Formulae for the age distribu- 

ion of stock are challenging to obtain even in the stationary case 

nd under the base-stock policy. They have been computed only 

or continuous-review models assuming that demand follows a 

oisson process, using the theory of queuing networks. See Kouki, 

egros, Babai, & Jouini (2020) and references therein. 

The rest of the paper is organised as follows. Section 2 describes 

he model used for developing our approximations and how the 

WA policy applies to it. The formulae for the approximations are 

iven in Section 3 . The accuracy of the approximations is assessed 

ia comparison with Monte Carlo simulations in a real example in 

ection 4 . Section 5 shows the results for 72 scenarios and analy- 

es the extent to which our approximations can be regarded as re- 
1139 
iable. Conclusions and ideas for future work are given in Section 6 . 

he paper has four appendices with some additional formulae and 

nformation and a Supplementary Material file with tables related 

o Sections 4 and 5 . 

. The model 

For ease of exposition, we develop our results for a particular 

odel, i.e. the production of platelet concentrates in the CVTTH. 

he characteristics of the model presented are common to many 

lood banks. For instance, a similar model is analysed by Haijema 

2013) using dynamic programming. The formulae derived here can 

e easily adapted to any model with periodic review, stochastic de- 

and, fixed lifetime and a weekly pattern. 

We consider a FIFO issuing policy (older items are issued first). 

IFO is the most common issuing policy in the literature on per- 

shable items, especially when dealing with blood products; it is 

nown that the freshness of units issued is lower using a FIFO pol- 

cy than with other issuing policies such as LIFO (newer items are 

ssued first), but outdating is lower with FIFO than with LIFO; see, 

or instance, Cohen & Prastacos (1981) , Stanger, Yates, Wilding, & 

otton (2012) . 

There is daily demand from hospitals from Monday to Sunday 

hose distribution depends on the day of the week. Let D t be the 

andom variable representing the demand on day t ≥ 1 . We take 

ay t = 1 to be a Monday. As usual in these models, we assume

hat demands on different days are independent of each other. 

imilarly, we assume that the demand is weekly stationary, i.e. the 

robability distribution of D t+7 k is identical to D t for all 1 ≤ t ≤ 7 , 

 ≥ 1 . We denote by F t the cumulative distribution function (CDF) 

ssociated with D t and its mean and variance by μt = E[ D t ] and
2 
t = V ar[ D t ] , respectively. 

For t, i ≥ 1 , the aggregated demand during the interval [ t, t + i ]

s denoted by 

 t ,t + i = 

i ∑ 

j=0 

D t+ j . 

For t ≤ s , let F t,s be the CDF of D t,s and μt,s = E[ D t,s ] and σ 2 
t,s =

 ar[ D t,s ] the corresponding mean and variance. We also write F t,s 
ith 1 ≤ s < t ≤ 7 to denote the CDF of D t,s +7 , which has the same

istribution as D t, 7 + D 1 ,s ; for instance, F 5 , 2 represents the distri- 

ution of D 5 , 9 , the demand from a Friday to the following Tues- 

ay. Accordingly, for 1 ≤ s < t ≤ 7 , let μt,s = E[ D t, 7 ] + E[ D 1 ,s ] and
2 
t,s = V ar[ D t, 7 ] + V ar[ D 1 ,s ] , the mean and variance of F t,s . 

In practice, historical data is used to fit a distribution for F t and 

o estimate μt and σt , t = 1 , . . . , 7 . The estimations of F t,s , μt,s and

t,s can be computed from the estimations of F t , μt and σt , t = 

 , . . . , 7 since we assume independence of the random variables D t .

Platelet concentrates have a fixed lifetime of m days. We derive 

ur formulae for general m ; when a specific value of m is needed 

e take m = 5 since this is the most common lifetime of platelet 

oncentrates and the one used in Pérez Vaquero et al. (2016) . Pro- 

uction orders can be placed every day from Monday to Friday. 

his is equivalent to saying that there is a review interval of one 

ay from Monday to Thursday, R = 1 , and of three days on Friday,

 = 3 . An order means that blood is processed immediately after 

he order and platelet concentrates are produced during the day. 

f the order is placed on any day between Monday and Thursday, 

he concentrates are ready for use in the morning of the following 

ay, with a remaining lifetime of m days; orders placed on Friday 

re ready for use on Monday morning, with a remaining lifetime 

f m − 2 days. That means that the lead time is L = 1 for orders

laced from Monday to Thursday and L = 3 for orders placed on 

riday. Note that this model is not daily stationary, but weekly sta- 

ionary: the distribution of demand, the review interval and the 
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ead time depend on the day of the week. We assume that the 

ervice level is high, which is customary in blood banks, and that 

nsatisfied demand is not backlogged (in practice, stockouts are 

overed by an urgent request to a neighbouring bank). Orders are 

laced at the beginning of the day, taking into account the on-hand 

nventory and the arriving units but before the demand for the day 

s known. If a unit has not been used by the m th day of life it is

isposed of; for instance, if m = 5 , concentrates ordered on Mon- 

ay and not used by Saturday are discarded. The order of events 

ach day is: (1) receive the incoming order (only for weekdays); 

2) place the new order (only for weekdays); (3) observe and meet 

he demand; (4) dispose of outdated units. 

.1. The EWA policy 

Ours is a typical model for perishable items with fixed lifetimes. 

s commented in the Introduction, there is no known optimal pol- 

cy for such a model (weekly pattern, nonzero lead time, stochastic 

emand and lifetime greater than 2). A heuristic approach to find 

 reasonable solution is the base-stock policy, which is a simple 

rder-up-to policy. The EWA policy is an improvement of that pol- 

cy. We describe both these policies here. 

The base-stock policy has been widely used as a heuristic for 

tochastic demand, fixed lifetime inventory systems; see for in- 

tance Nahmias (1982) , Cooper (2001) and references therein. It 

as been also used as a benchmark for comparison with more 

omplex policies: Tekin, Gürler, & Berk (2001) , Broekmeulen & van 

onselaar (2009) , Duan & Liao (2013) , Haijema & Minner (2019) . 

The base-stock policy works like an order-up-to policy for non- 

erishable items. Its rationale is to have sufficient on-hand in- 

entory to meet demand until the inventory replenishment corre- 

ponding to the next order. At each review point t an order of size 

 

B 
t = max { SS t + μt ,t + L + R −1 − IP t , 0 } (1) 

s placed. Here SS t is the safety stock for day t , μt ,t + L + R −1 is the 

xpected demand from the placement of the order until the ar- 

ival of the next order and IP t is the inventory position. Note that 

oth L and R may depend on the day of the week. When val-

es are assigned to the subscript t + L + R − 1 , the R correspond-

ng to day t and the L corresponding to day t + R are taken. Let

 t = SS t + μt ,t + L + R −1 be the order-up-to quantity of day t . 

This policy takes into account the inventory position for plac- 

ng an order, but not its age distribution. The EWA policy, proposed 

y Broekmeulen & van Donselaar (2009) , works like the base-stock 

olicy, but the inventory position is decreased by an estimation of 

he expected outdating between the placement of an order and 

ay L + R − 1 thereafter. The order quantity under this more so- 

histicated policy for day t is 

 t = max { SS t + μt ,t + L + R −1 − IP t + 

ˆ E t , 0 } , 
here ˆ E t is an estimation of E t , the expected outdating during 

he interval [ t, t + L + R − 2] . Note that the outdated quantity on

ay t + L + R − 1 is not included because it does not affect the

bility to meet demand that day. In the EWA policy, the estima- 

ion 

ˆ E t is computed assuming that demands during the interval 

 t, t + L + R − 2] are equal to their mean values. More accurate es-

imations of waste can be computed by using the exact distri- 

ution of demand instead of its mean, but they show little im- 

rovement and are very time-consuming (see Haijema & Minner, 

019 ). There is an irrelevant shift of the index of the days to be

onsidered for outdating in the computation of ˆ E t , when com- 

ared to Broekmeulen & van Donselaar (2009) . In their paper the 

ays to be considered are t + 1 , . . . , t + L + R − 1 while we take

, . . . , t + L + R − 2 . This is because in their study orders are placed

t the end of the day but in ours they are placed at the beginning

f the following day. 
1140 
To estimate E t , we need some notation. Let B r t , r = 1 , . . . , m be

he number of units in stock (on-hand) at the beginning of day t

ith r days of remaining lifetime after the arrival of new items, 

nd B t = B 1 t + · · · + B m 

t . Note that B t is equal to IP t except for Satur-

ays and Sundays, where Friday’s order is included in IP t but not 

n B t . Let W 

r 
t be the number of units with r days of remaining life-

ime which are issued on day t . The following recursive formulae 

elate the outdated quantity O t on day t to the on-hand units B r t , 

he units issued W 

r 
t and the demand D t (see Broekmeulen & van 

onselaar, 2009 ): 

O t = B 

1 
t − W 

1 
t = max 

{
B 

1 
t − D t , 0 

}
, 

W 

r 
t = min 

{ 

B 

r 
t , D t −

r−1 ∑ 

k =1 

W 

k 
t 

} 

, r = 1 , . . . , m, 

 

r−1 
t+1 = B 

r 
t − W 

r 
t + A 

r−1 
t+1 , r = 2 , . . . , m, B 

m 

t+1 = A 

m 

t+1 , (2) 

here A 

r 
t is the number of units arriving on day t with r days of 

emaining lifetime. The term A 

r−1 
t+1 

is not included in formula (6) 

f Broekmeulen & van Donselaar (2009) because in their case all 

nits enter the system with m days of remaining lifetime. In our 

ase, units arriving from Tuesday to Friday have m days of remain- 

ng lifetime while units arriving on Monday have m − 2 . Due to the 

ecursive nature of (2) , there is no simple way to express O t+ i as a

unction of B 1 t , . . . , B 
m 

t and D t , . . . , D t+ i . Moreover, since D t , . . . , D t+ i 
re random, so are O t , . . . , O t+ i , but a deterministic value is needed

or the latter in order to approximate the expected outdating E t . 

he EWA policy assumes that D t , . . . , D t+ L + R −2 are equal to their 

xpected values, uses (2) to get the estimates ˆ O t , . . . , ˆ O t+ L + R −2 of 

 t , . . . , O t+ L + R −2 and then takes ˆ E t = 

ˆ O t + · · · + 

ˆ O t+ L + R −2 . 

.2. Application of the EWA policy to the model 

We first show the application of the base-stock policy to our 

odel, which is needed for the EWA policy. Recalling (1) , and 

ue to weekly stationarity, we need to define SS t , t = 1 , . . . , 5 , the

afety stock for Mondays, Tuesdays, Wednesdays, Thursdays and 

ridays, respectively (no orders are placed on Saturdays or Sun- 

ays). Note that the values of R and L depend on the day of the

eek. The values of R and L to be used for the order placed on

ay t are the time until the next order is placed ( R ) and the time

etween the placement of that order and its arrival ( L ). For Mon- 

ay, t = 1 , the review interval is R = 1 , since a new order will

e placed on Tuesday, and the lead time is L = 1 , since the or-

er placed on Tuesday will arrive on Wednesday. Also, L = R = 1 

or Tuesday and Wednesday ( t = 2 , 3 ). For Thursday, t = 4 , the re-

iew interval is R = 1 , since a new order will be placed on Friday,

nd L = 3 , since the order placed on Friday will arrive on Monday;

or Friday, t = 5 , we have R = 3 , L = 1 . In other words, the period

rom t to t + L + R − 1 corresponds to Mon-Tue for orders placed 

n Monday, Tue-Wed for orders placed on Tuesday, Wed-Thu for 

rders placed on Wednesday, Thu-Sun for orders placed on Thurs- 

ay and Fri-Mon for orders placed on Friday. There are different 

ays to determine the safety stock for day t . A common option, for 

oth nonperishable and perishable items, is to take it as a factor of 

he standard deviation of the demand; see Chapter 7 in Silver et al. 

1998) . We take it as 

S t = 

{
kσt ,t + L + R −1 + k 1 for t = 1 , 2 , 3 , 

kσt ,t + L + R −1 + k 2 for t = 4 , 5 , 

ith k, k 1 , k 2 ≥ 0 , where the values of L, R depend on the day of

he week as explained above. That is, the safety stock is propor- 

ional to the standard deviation of the demand to be covered, plus 

 fixed value ( k 1 or k 2 ); we allow different values of k j for Mon-

ays, Tuesdays and Wednesdays, which cover only 2 day demand, 
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Table 1 

Random variables related to the inventory system. 

B r t t ≥ 1 ; r = 1 , . . . , m number of units in stock (on-hand) at the beginning of day t with r days of 

remaining lifetime once the incoming order has arrived 

B t t ≥ 1 total number of units in stock (on-hand) at the beginning of day t once the 

incoming order has arrived 

Q t t ≥ 1 order quantity of day t

S t t ≥ 1 order-up-to quantity of day t

O t t ≥ 1 number of units outdated on day t

E t t ≥ 1 expected outdating in the interval [ t, t + L + R − 2] 

W 

r 
t t ≥ 1 ; r = 1 , . . . , m number of units issued on day t with r days of remaining lifetime 

V i t t ≥ 1 , i = 1 , . . . , m number of units ordered on day t which are in stock (on-hand) at the end of 

day t + i before outdated units are discarded 

H t t ≥ 1 number of units in stock (on-hand) at the end of day t once outdated units 

are discarded 

U t t ≥ 1 unsatisfied demand on day t
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(
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s

i  

t  

a

3

 

S

t  

m

t

s

s

o  

p

T
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f
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m

i

p

B

nd for Thursdays and Fridays, which cover 4 day demand. We de- 

ided to use only two parameters, k 1 and k 2 , instead of five differ-

nt parameters k t , t = 1 , . . . , 5 , one for each weekday, for reasons

f simplicity and efficiency. This assertion is based on the conclu- 

ions of a simulation-optimisation model for the management of 

latelets used in Pérez Vaquero et al. (2016) , where the optimal 

olutions in terms of few outdatings and freshness of units issued 

ere found for the empirical data of 52 weeks in the CVTTH. In 

ny event, the choice of this form of safety stocks does not affect 

he derivation of our formulae, and they can be straightforwardly 

dapted to any other form of safety stocks, such as taking a differ- 

nt parameter k t for t = 1 , . . . , 5 . 

We now turn to the application of the EWA policy. To compute 
ˆ 
 t , we consider several cases, depending on the day of the week. 

hen day t is a Monday, from (2) , O t = (B 1 t − D t ) 
+ , where a + =

ax { a, 0 } . Since the EWA policy assumes D t = μ1 , it follows that
ˆ 
 t = (B 1 t − μ1 ) 

+ . As L + R − 2 = 0 in this case, ˆ E t = (B 1 t − μ1 ) 
+ . The

ame expression is valid when day t is a Tuesday or a Wednesday 

replacing μ1 by μ2 , μ3 , respectively). 

When day t is a Thursday or a Friday, L + R − 2 = 2 . Thus, O t =
B 1 t − D t 

)+ and 

ˆ O t = 

(
B 1 t − μt 

)+ . Also, O t+1 = 

(
B 1 

t+1 
− D t+1 

)+ , with 

 

1 
t = min 

{
B 1 t , D t 

}
, W 

2 
t = min 

{
B 2 t , D t − W 

1 
t 

}
, which yields B 1 

t+1 
= 

B 2 t −
(
D t − B 1 t 

)+ )+ and O t+1 = 

((
B 2 t −

(
D t − B 1 t 

)+ )+ − D t+1 

)+ . The 

erivation of O t+2 = 

(
B 1 

t+2 
− D t+2 

)+ is more involved. Note that 

 

1 
t+2 = B 2 t+1 − W 

2 
t+1 , with B 2 t+1 = 

(
B 3 t −

(
D t − W 

1 
t − W 

2 
t 

))+ and W 

2 
t = 

in 

{
B 2 t , 

(
D t − B 1 t 

)+ }. We have 

B 

2 
t+1 = 

(
B 

3 
t −

((
D t − B 

1 
t 

)+ − B 

2 
t 

)+ )+ , 

 

1 
t+1 = min 

{(
B 

2 
t −

(
D t − B 

1 
t 

)+ )+ , D t+1 

}
, 

 

2 
t+1 = min 

{
B 

2 
t+1 , 

(
D t+1 −

(
B 

2 
t −

(
D t − B 

1 
t 

)+ )+ )+ }. 

herefore, B 1 
t+2 

= 

(
B 3 t −

(
D t+1 + 

(
D t − B 1 t 

)+ − B 2 t 

)+ )+ . Collecting 

ll the terms above gives O t+2 = ( 
(
B 3 t −

(
D t+1 + 

(
D t − B 1 t 

)+ − B 2 t 

)+ )+

D t+2 ) 
+ . The value of ˆ E t is obtained by summing up O t , O t+1 

nd O t+2 and replacing D t , D t+1 and D t+2 by μt , μt+1 and μt+2 , 

espectively. 

The expressions are valid for general m . They are simple for 

onday, Tuesday and Wednesday, but are rather complicated for 

hursday and Friday. However, they get simpler when a concrete 

alue of m is taken since some B r t are equal to 0. For instance, m =
 gives ˆ E t = (B 3 t − μ4 , 6 ) 

+ for Thursdays and 

ˆ E t = (B 2 t − μ5 , 6 ) 
+ + 

B 3 t − (μ5 , 6 − B 2 t ) 
+ − μ7 ) 

+ for Fridays. 

. Approximations of performance measures under the EWA 

olicy 

We now derive analytical approximations of the main perfor- 

ance measures in the model. Table 1 summarises the random 
1141 
ariables related to the inventory system. We use the same nota- 

ion, with small instead of capital letters, for their expected values 

n the steady state. The model is weekly stationary, so these ex- 

ected values depend on the day of the week, which means that 

he expected on-hand stock h t , say, is the same for all t + 7 k , k ≥ 0 .

ee Appendix A for a theoretical justification of the existence of 

he long-run distribution and its periodicity. In the rest of the Sec- 

ion we write the formulae for t = 1 , . . . , 7 only. On some occa-

ions the subscripts in the formulae become negative or zero: for 

nstance when day t is a Monday ( t = 1 ) and we write D t −3 ,t −1 ; in

hose cases the value t in the formula must be understood as t + 7 .

In this section we keep m general as long as we can. When the 

pproximations need a specific value for m , we take m = 5 . 

.1. Approximation of the order quantities 

Note that the order quantity of day t , Q t , is (S t − B t ) 
+ , where

 t = SS t + μt ,t + L + R −1 + 

ˆ O t + · · · + 

ˆ O t+ L + R −2 , and 

ˆ O t+ j is the estima- 

ion of the outdated quantity on day t + j in Section 2.2 . Approxi-

ating ˆ O t by o t gives an approximation of the order-up-to quanti- 

ies: 

s t ∼ μt ,t +1 + kσt ,t +1 + k 1 + o t , t = 1 , 2 , 3 

 4 ∼ μ4 , 7 + kσ4 , 7 + k 2 + o 4 + o 5 + o 6 , 

 5 ∼ μ5 , 1 + kσ5 , 1 + k 2 + o 5 + o 6 + o 7 . (3) 

Note that, depending on the particular value of m , some of the 

 t are 0. For instance, if m = 5 , then o 4 = o 5 = 0 since there is no

roduction on Saturdays or Sundays, so there is no outdating on 

hursdays or Fridays. 

We now make two assumptions. The first is (B t − D t ) 
+ ∼ B t −

 t , which is quite reasonable since the service level is high, so 

ost days we have B t ≥ D t and, even if B t < D t , the difference

 t − B t = U t (unsatisfied demand on day t) is small. In fact, this 

ssumption is common when analysing inventory systems: for in- 

tance, Silver et al. (1998) assert (p. 253) that a usual assumption 

or the inventory management of items with random demand is 

Unit shortage costs (explicit or implicit) are so high that a prac- 

ical operating procedure will always result in the average level of 

ackorders being negligibly small when compared with the aver- 

ge level of the on-hand stock”. The second assumption is S t ≥ B t 
or every weekday t , as otherwise the stock at the beginning of the 

ay is very large and Q t = 0 , which is infrequent in many inventory

odels, such as models for the production of platelet concentrates 

n blood banks, where the size orders are positive at every review 

oint. 

Now we approximate b t . For t = 2 , 3 , 4 , 5 , we have 

 t = ( B t−1 − D t−1 ) 
+ + Q t−1 − O t−1 = ( B t−1 − D t−1 ) 

+ 

+ ( S t−1 − B t−1 ) 
+ − O t−1 ∼ S t−1 − D t−1 − O t−1 . 
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y (3) , b t ∼ μt + kσt−1 ,t + k 1 for t = 2 , 3 , 4 and b 5 = μ5 , 7 + kσ4 , 7 +
 2 + o 5 + o 6 . For Saturday, B t = (B t−1 − D t−1 − O t−1 ) 

+ ∼ S t−2 −
 t −2 ,t −1 − O t−2 − O t−1 which yields b 6 ∼ μ6 , 7 + kσ4 , 7 + k 2 + o 6 . 

or Sunday, B t = (B t−1 − D t−1 − O t−1 ) 
+ ∼ S t−3 − D t −3 ,t −1 −

 t−3 − O t−2 − O t−1 and b 7 ∼ μ7 + kσ4 , 7 + k 2 . Last, for Monday, 

 t ∼ S t−3 − D t −3 ,t −1 − O t−3 − O t−2 − O t−1 , so b 1 ∼ μ1 + kσ5 , 1 + k 2 . 

Since Q t = (S t − B t ) 
+ ∼ S t − B t , the approximations for the ex- 

ected order quantities are 

 1 ∼ μ2 + k (σ1 , 2 − σ5 , 1 ) + k 1 − k 2 + o 1 

 2 ∼ μ3 + k (σ2 , 3 − σ1 , 2 ) + o 2 

 3 ∼ μ4 + k (σ3 , 4 − σ2 , 3 ) + o 3 

 4 ∼ μ5 , 7 + k (σ4 , 7 − σ3 , 4 ) + k 2 − k 1 + o 4 + o 5 + o 6 

 5 ∼ μ1 + k (σ5 , 1 − σ4 , 7 ) + o 7 

Note that the formulae above depend on o t , t = 1 , . . . , 7 ,

hich are unknown. We give approximations for their values in 

ection 3.4 . 

.2. Expected on-hand inventory 

Since H t = (B t − D t ) 
+ − O t and stockouts are assumed to be un-

ommon, we can approximate H t ∼ B t − D t − O t and the formulae 

n Section 3.1 give 

 1 ∼ kσ5 , 1 + k 2 − o 1 

h t ∼ kσt−1 ,t + k 1 − o t , t = 2 , 3 , 4 

 5 ∼ μ6 , 7 + kσ4 , 7 + k 2 + o 6 

 6 ∼ μ7 + kσ4 , 7 + k 2 

 7 ∼ kσ4 , 7 + k 2 − o 7 

.3. A formula for v i t and the age distribution of the stock 

In this section we derive a formula for E[ V i t ] , the expected num-

er of units ordered on day t which are in stock at the end of 

ay t + i before outdated units are discarded. First note that V i t = 0

or i = 1 , . . . , m when t = 6 is a Saturday or t = 7 is a Sunday;

lso, V 1 t = V 2 t = 0 if t = 5 is a Friday, since units arrive on Mon-

ay. For the rest of the values V i t , recall that Q t = (S t − B t ) 
+ . Now,

ince the order placed on day t sets the inventory position to 

 t and we use a FIFO issuing policy, V i t can be approximated by 

S t − D t ,t + i − (O t + · · · + O t+ i −1 )) 
+ , with a limit of (S t − B t ) 

+ . That

s, 

 

i 
t ∼ min 

{
( S t − D t ,t + i − ( O t + · · · + O t+ i −1 ) ) 

+ , (S t − B t ) 
+ }. 

n order to compute E[ V i t ] , we condition on B t . In what follows, we

ake S t as if it was deterministic, which is not true because under 

he EWA policy it depends on the age distribution of the stock. Let 
˜ 
 t ,t + i = D t ,t + i + O t + · · · + O t+ i −1 , for t ≥ 1 , i = 1 , . . . , m . Note that if

 t ≥ S t , then V i t = 0 for every i = 1 , . . . , m ; if B t < S t , then 

[ V 

i 
t | B t ] ∼ (S t − B t ) P ( ̃  D t ,t + i ≤ B t ) + 

∫ S t 

B t 

(S t − x ) f ˜ D t ,t + i 
(x ) dx 

= 

∫ ∫ 
{ (x,y ): B t <y<S t , 0 <x<y } 

f ˜ D t ,t + i 
(x ) d xd y 

= 

∫ S t 

B t 

F ˜ D t ,t + i 
(x ) dx, 

here f ˜ D t ,t + i 
and F ˜ D t ,t + i 

are the PDF and CDF, respectively, of the 

emand in the interval [ t, t + i ] plus the outdated units in the in-

erval [ t, t + i − 1] . Thus, 

[ V 

i 
t | B t ] ∼

{∫ S t 
B t 

F ˜ D t ,t + i 
(x ) dx if B t < S t , 

0 if B t ≥ S t . 
1142 
y the properties of conditional expectation, 

 

[
V 

i 
t 

]
∼

∫ S t 

0 

(∫ S t 

y 

F ˜ D t ,t + i 
(x ) dx 

)
f B t (y ) dy 

= 

∫ ∫ 
{ (x,y ):0 <y<x<S t } 

F ˜ D t ,t + i 
(x ) f B t (y ) d xd y 

= 

∫ S t 

0 

(∫ x 

0 

f B t (y ) dy 

)
F ˜ D t ,t + i 

(x ) dx 

= 

∫ S t 

0 

F B t (x ) F ˜ D t ,t + i 
( x ) dx. (4) 

To apply formula (4) , we need approximations of F ˜ D t ,t + i 
(x ) and 

 B t (x ) . Since we approximate O t by its expected value o t , we have 

 ˜ D t ,t + i 
(x ) = P ( D t ,t + i + O t + · · · + O t+ i −1 ≤ x ) 

∼ F t ,t + i (x − (o t + · · · + o t+ i −1 )) . 

The approximation of B t depends on the day of the week. When 

ay t is a Monday, using the approximations in Section 3.1 , 

 B t (x ) ∼ P (S t−3 − D t −3 ,t −1 − O t−3 − O t−2 − O t−1 ≤ x ) 

∼ P (μ5 , 1 + kσ5 , 1 + k 2 − D t −3 ,t −1 ≤ x ) 

= F 5 , 7 (μ5 , 1 + kσ5 , 1 + k 2 − x ) , 

here F (t) = 1 − F (t) . 

When day t is Tuesday, Wednesday or Thursday, 

 B t (x ) ∼ P (S t−1 − D t−1 − O t−1 ≤ x ) 

∼ P (D t−1 ≥ μt−1 ,t + kσt−1 ,t + k 1 − x ) 

= F t−1 (μt−1 ,t + kσt−1 ,t + k 1 − x ) . 

ith t = 2 , 3 , 4 , respectively. 

Analogously, for Friday: 

 B t (x ) = P (S t−1 − D t−1 − O t−1 ≤ x ) 

∼ F 4 (μ4 , 7 + kσ4 , 7 + k 2 + o 5 + o 6 − x ) . 

The above expressions, together with (4) , yield the required ap- 

roximations of v i t , t = 1 , . . . , 5 , i = 1 , . . . , m . For instance, the ex-

ected number of units that are ordered on Thursday and are in 

tock at the end of Sunday, v 3 
4 
, can be approximated by 

∫ μ4 , 7 + kσ4 , 7 + k 2 + o 4 + o 5 + o 6 

0 

F 3 (μ3 , 4 + kσ3 , 4 + k 1 − x ) 

×F 4 , 7 (x − (o 4 + o 5 + o 6 )) dx. 

These formulae are explicit; however, they depend on o 1 , . . . , o 7 , 

he expected number of outdated units each day. In the next sec- 

ion we show how to estimate these quantities. Once they have 

een estimated, their values can be plugged into the above formu- 

ae to compute the approximations of v i t , since the distributions F t,s 
re known. 

The formulae above enable us to approximate the age distri- 

ution of the stock b r t . In fact, when day t is not a Monday, the

umber of units with r days of remaining lifetime at the begin- 

ing of day t , once the incoming order has arrived, B r t , is V 
m −r 

t+ r−m −1 
,

or r = 1 , . . . , m − 1 , and B m 

t = Q t−1 . When day t is a Monday, B r t =
 

m −r 
t+ r−m −1 

, for r = 1 , . . . , m − 3 , B m −2 
t = Q t−3 and B m −1 

t = B m 

t = 0 . The

pproximation of b r t is obtained by substituting the values of Q and 

 by the corresponding approximations of q and v . 

.4. Expected outdating 

In this section we set m = 5 . Derivation of the formulae when 

 is 4 and 6 can be found in Appendix B . Other values of m can

e worked out in a similar way. 
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Let m = 5 . Recall first that o 4 = o 5 = 0 since there is no outdat-

ng on Thursdays or Fridays. Now, since O t = V 5 
t−5 

, we use formula

4) with i = 5 , and get 

 1 ∼
∫ μ3 , 4 + kσ3 , 4 + k 1 + o 3 

0 

F 2 (μ2 , 3 + kσ2 , 3 + k 1 − x ) F 3 , 1 (x − o 3 − o 6 − o 7 ) dx, 

 2 ∼
∫ μ4 , 7 + kσ4 , 7 + k 2 + o 6 

0 

F 3 (μ3 , 4 + kσ3 , 4 + k 1 − x ) F 4 , 2 (x − o 6 − o 7 − o 1 ) dx, 

 3 ∼
∫ μ5 , 1 + kσ5 , 1 + k 2 + o 6 + o 7 

0 

F 4 (μ4 , 7 + kσ4 , 7 + k 2 + o 6 − x ) 

×F 5 , 3 (x − o 6 − o 7 − o 1 − o 2 ) dx, 

 6 ∼
∫ μ1 , 2 + kσ1 , 2 + k 1 + o 1 

0 

F 5 , 7 (μ5 , 1 + kσ5 , 1 + k 2 − x ) F 1 , 6 (x − o 1 − o 2 − o 3 ) dx, 

 7 ∼
∫ μ2 , 3 + kσ2 , 3 + k 1 + o 2 

0 

F 1 (μ1 , 2 + kσ1 , 2 + k 1 − x ) F 2 , 7 (x − o 2 − o 3 − o 6 ) dx. 

(5) 

The formulae above are cyclical, since o s is needed to compute 

 t . We solve this via an iterative procedure: we set all o t = 0 , com-

ute the formulae in (5) to get an approximation of o t and plug 

he new values into the formulae to get another approximation. 

his procedure is iterated until the changes in the o t are smaller 

han a tolerance value. While we have not proved analytically that 

his procedure converges, in all our settings below a small number 

f iterations (less than 8) were needed for a tolerance of 10 −3 . 

.5. Remaining lifetime of units issued and freshness 

For a given day t , the number of units issued with a remain- 

ng lifetime of r days, W 

r 
t can be expressed as W 

r 
t = V m −r 

t+ r−m −1 
−

 

m +1 −r 
t+ r−m −1 

, for r = 1 , . . . , m − 1 and W 

m 

t = Q t−1 − V 1 t−1 . This formula

as two exceptions related to the weekend: when t is a Monday 

nd r = m − 2 , W 

m −2 
t = Q t−3 − V 3 

t−3 
, and when t is a Saturday and

 = m , W 

m 

t = 0 . Thus, the values w 

r 
t can be approximated by sub-

tituting Q and V by their approximations in Sections 3.1 and 3.3 , 

espectively. Also, freshness of units issued on day t , t = 1 , . . . , 7

an be approximated by ∑ m 

r=1 rw 

r 
t ∑ m 

r=1 w 

r 
t 

. 

Note that extending the formula derived by Broekmeulen & van 

onselaar (2019) for freshness in stationary models to the present 

ituation is difficult, since the distribution of the demand, the val- 

es of the lead time L and the review interval R , and the remaining

ifetime of units when they enter the inventory depend on the day 

f the week. Thus, there seems to be no easy way of using Lit- 

le’s formula in our context to find the freshness of units delivered 

ach day of the week. Appendix C shows how that approach can 

e used to get a formula for the freshness of units without differ- 

ntiating by the day of issue, although it still requires the approx- 

mations in Section 3.4 . 

.6. Expected shortage 

We are assuming that stockouts are rare, but they may still oc- 

ur, so it is important to have an approximation of the expected 

hortage, u t , where U t = (D t − B t ) 
+ . We begin when day t is a

uesday, Wednesday or Thursday. Using the approximations for B t , 

 t and O t in the previous sections, U t ∼ (D t − S t−1 + D t−1 + O t−1 ) 
+ ,

o 

 t ∼ E 
[
(D t−1 ,t − (μt−1 ,t + kσt−1 ,t + k 1 )) 

+ ]
= 

∫ ∞ 

μt−1 ,t + kσt−1 ,t + k 1 
(x − (μt−1 ,t + kσt−1 ,t + k 1 )) f t−1 ,t (x ) dx 

= 

∫ ∞ 

μt−1 ,t + kσt−1 ,t + k 1 
F t−1 ,t (x ) dx, 
1143 
or t = 2 , 3 , 4 . 

When t is a Friday, U t ∼ (D t − S t−1 + D t−1 + O t−1 ) 
+ and 

 5 ∼
∫ ∞ 

μ4 , 7 + kσ4 , 7 + k 2 + o 5 + o 6 
F 4 , 5 (x ) dx. 

When t is a Saturday, U t ∼ (D t − S t−2 + D t −2 ,t −1 + O t−2 + O t−1 ) 
+ ,

o 

 6 ∼
∫ ∞ 

μ4 , 7 + kσ4 , 7 + k 2 + o 6 
F 4 , 6 (x ) dx. 

For Sunday, U t ∼ (D t − S t−3 − D t −3 ,t −1 + O t−3 + O t−2 + O t−1 ) 
+ 

nd 

 7 ∼
∫ ∞ 

μ4 , 7 + kσ4 , 7 + k 2 
F 4 , 7 (x ) dx. 

Lastly, when t is a Monday, U t ∼ (D t − S t−3 − D t −3 ,t −1 + O t−3 + 

 t−2 + O t−1 ) 
+ , so 

 1 ∼
∫ ∞ 

μ5 , 1 + kσ5 , 1 + k 2 
F 5 , 1 (x ) dx. 

The fill rate of day t can be approximated by 100(1 − u t /μt ) . 

.7. Probability of on-hand inventory being lower than a threshold 

The probability of the on-hand inventory at the end of day t

before outdated units are discarded) being less than a is P [ D t >

 t − a ] , which can be approximated in a similar way to the previ-

us section, obtaining: 

 (D t > B t − a ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

F 5 , 1 (μ5 , 1 + kσ5 , 1 + k 2 − a ) if day t is a Monday , 

F t−1 ,t (μt−1 ,t + kσt−1 ,t + k 1 − a ) if day t is a Tuesday , 

Wednesday or Thursday , 

F 4 , 5 (μ4 , 7 + kσ4 , 7 + k 2 + o 5 + o 6 − a ) if day t is a Friday , 

F 4 , 6 (μ4 , 7 + kσ4 , 7 + k 2 + o 6 − a ) if day t is a Saturday , 

F 4 , 7 (μ4 , 7 + kσ4 , 7 + k 2 − a ) if day t is a Sunday . 

n particular, taking a = 0 gives an approximation of the probability 

f a stockout, i.e. 1 −service level. 

. Application to the CVTTH data 

We assess the accuracy of our approximations by comparing 

hem with the values obtained by Monte Carlo simulations in a 

eal example. For the distributions of the daily demand we choose 

hose fitted to the data of the CVTTH for 2012 (which were consid- 

red by Pérez Vaquero et al. (2016) ), i.e. (discretised) normal distri- 

utions with means and standard deviations as shown in Table 2 . 

he lifetime of platelet concentrates is m = 5 . 

The normality assumption was checked using the Shapiro test 

or normality. Significant p−values were found for Saturday and 

unday. Note however that the distributions of the demand on 

hose days are never used on their own in our formulae; instead 

hey are used at least together with Friday (for Saturday) and with 

riday and Saturday (for Sunday). Therefore, what needs to be 

hecked is not the normality of the demand on Saturdays and on 

undays but the normality on Friday + Saturday and Friday + Sat- 

rday + Sunday. Table 3 shows that the normality assumption is 

easonable. 

We remark that the hypothesis of normality is not necessary for 

he derivation of our formulae: they can be applied with any other 

istribution, including the empirical distribution of historical data 

f available. 

Regarding independence of the daily demand, we performed 

he (Pearson) correlation test for each pair of consecutive days. 

wo of the pairs were found to be significant, namely Tue-Wed 

 p−value 0,045) and Thu-Fri ( p−value 0,004). An analysis of the 
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Table 2 

Means and standard deviation for daily demand of platelet concentrates in CVTTH in 2012. 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

μt 27,75 23,71 24,57 22,16 29,39 13,29 11,82 

σt 6,85 5,65 7,86 6,90 7,81 4,89 4,38 

Table 3 

p−values of the Shapiro test of normality for demand of platelet concen- 

trates in CVTTH in 2012. 

Mon Tue Wed Thu Fri Fri + Sat Fri + Sat + Sun 

0,05 0,32 0,95 0,22 0,50 0,59 0,41 

Table 4 

p−values of the Pearson correlation test for independence of demand on consecu- 

tive days in CVTTH in 2012. 

Mon-Tue Tue-Wed Wed-Thu Thu-Fri Fr-Sat Sat-Sun Sun-Mon 

0,10 0,06 0,38 0,11 0,67 0,07 0,79 
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Fig. 1. Efficient Frontier relating waste with the fill rate (solid curve) for m = 4 

(blue), m = 5 (green) and m = 6 (red). Dotted curves represent the freshness of 

units issued in each optimal configuration. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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catterplots of these two pairs reveals the existence of influential 

oints which correspond to very low demand (under 10 units) on 

ublic holidays over the year. Once these points are removed the 

p−values are greater than 0,05, so independence can be assumed: 

ee Table 4 . 

We compare our approximations with the estimations ob- 

ained from simulations for different values of parameters k, k 1 , k 2 . 

amely, we take all combinations where k ranges in { 1 . 5 , 2 , 2 . 5 , 3 }
nd (k 1 , k 2 ) is (0,0) or (10,5). For the Monte Carlo simulations,

e set 10 0 0 runs and a run length of 520 weeks (10 years),

here the first 52 weeks of each simulation run are taken as the 

arm-up period. The number of simulations and their length are 

hosen to give a small simulation error. This can be checked in 

able D.8 in Appendix D which shows, for the case k = 1 . 5 , k 1 =
 2 = 0 , the standard deviation of the estimations using simulation 

ogether with their relative errors, measured as the ratio of the 

alf-width of the 95 % confidence interval over the sample mean. 

n almost every instance the relative error is smaller than 2% , with 

he only exceptions being quantities with a very small sample 

ean. Increasing the length of the simulation runs or their num- 

er (and thus increasing the simulation time) produces almost no 

hanges in the sample means. The computation of our formulae in 

ection 3 for the setting k = 1 . 5 , k 1 = 0 , k 2 = 0 takes 4 ms. on an

ntel(R) Core(TM) i5 (3.30 GHz), while simulation takes 1130 ms. 

.1. Results for the CVTTH data 

Table 5 shows the results of our formulae and the simulation 

or k = 1 . 5 , k 1 = 0 , k 2 = 0 . The tables for the rest of the cases are

vailable in Section 1 of the Supplementary Material file. In the 

ables there are two rows for each quantity: the upper row (plain 

ont) is the result of the application of the formulae in Section 3 ;

he lower row (italic font) is the result obtained by averaging the 

esults over the simulation runs. We explain Table 5 in detail, and 

he rest of the tables have the same structure. 

The first part of the table gives the results for each day of the 

eek. The first column shows the values of b t ; for instance b 1 , the

xpected number of units in stock at the beginning of a Monday is 

6,2 by our formula in Section 3.1 and 46,8 by the simulation. Be- 

ow we write first the result of our formula and then, in brackets, 

he result of simulation, i.e. b 1 is 46,2 (46,8). The second column 

s q t , the expected order size; thus, for instance, the expected or- 

er size on Mondays is 18,6 (18,3). The next column gives o t , the

xpected quantity outdated on day t: so there are, on average, 0,17 

0,14) units outdated on Wednesdays. The next column is h t , the 
1144 
xpected number of units on-hand at the end of day t . Column u 

ives the value of u t , the expected shortage on day t . The following

wo columns give the service level and the probability of the on- 

and stock being below a threshold at the end of the day; we use 

 units as the threshold in all settings. Thus, for instance, the ser- 

ice level on Tuesdays is 94,0 % (95,2 % ) and 14,7 % (14,1 % ) of Tues-

ays end with an on-hand stock lower than 5 units. The following 

olumns b(1) , . . . , b(5) are the values of b r t , the expected number

f units with a remaining lifetime of r days at the beginning of 

ay t; for instance, the expected number of units with 2 days of 

emaining lifetime at the beginning of a Monday is 18,8 (18,9). The 

ollowing five columns w (1) , . . . , w (5) are w 

r 
t , the number of units

ssued on day t with remaining lifetime equal to r days; for in- 

tance, the expected number of units issued on Monday with 2 

ays of remaining lifetime is 16,7 (16,7). The last column is fresh- 

ess, the expected remaining lifetime of units issued on day t; for 

nstance, units issued on Wednesday have an expected remaining 

ifetime of 4,14 (4,09). 

The second part of the table, below the “Week” line, sum- 

arises the values over the whole week, computing sums, aver- 

ges or percentages over the 7 days where appropriate. The first 

olumn gives the average of the b t values, i.e. the average num- 

er of units on-hand at the beginning of a day: 43,9 (44,1). q is 

he total number of units ordered over the week: 152,9 (151,7), 

hich correspond to 100,2 % (99,4 % ) of the demand. The next col- 

mn shows that 0,25 (0,22) units go out of date over the week, 

.e. 0,16 % (0,15 % ) of the units ordered. The average on-hand inven- 

ory at the end of the day is 22,0 (22,4) units. There are, on aver-

ge, 1,426 (1,243) units not served over the whole week, i.e. 0,93 % 

0,81 % ) of the demand, so the fill rate is 99,07 % (99,19 % ). The fol-

owing two columns show that the service level is 95.6 % (96,2 % );

.e. 4,4 % (3,8 % ) of the days have a stockout, and 9,6 % (9,5 % ) of the

ays end with less than 5 units in stock. Columns b(1) , . . . , b(5) 
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Table 5 

Performance measures for the CVTTH data in Section 4 : approximations by formulae (plain font) and simulation (italic font). k = 1 . 5 ; k 1 = 0 ; k 2 = 0 . 

Day b q o h u s.l. P(u.t.) b(1) b(2) b(3) b(4) b(5) w(1) w(2) w(3) w(4) w(5) freshness 

Monday 46,2 18,6 0,00 18,4 0,328 0,938 0,120 0,0 18,8 27,7 0,0 0,0 0,0 16,7 11,1 0,0 0,0 2,40 

46,8 18,3 0,00 19,3 0,226 0,954 0,110 0,0 18,9 27,9 0,0 0,0 0,0 16,7 10,8 0,0 0,0 2,39 

Tuesday 37,0 25,9 0,08 13,2 0,229 0,940 0,147 2,2 16,6 0,0 0,0 18,6 2,1 13,6 0,0 0,0 8,0 2,93 

37,6 25,4 0,08 14,0 0,197 0,952 0,141 2,2 17,1 0,0 0,0 18,3 2,1 13,9 0,0 0,0 7,5 2,87 

Wednesday 39,1 23,5 0,17 14,4 0,252 0,940 0,139 3,1 0,0 0,0 10,5 25,9 2,9 0,0 0,0 9,6 12,1 4,14 

39,5 22,6 0,14 15,0 0,238 0,947 0,138 3,2 0,0 0,0 10,8 25,4 3,1 0,0 0,0 9,8 11,5 4,09 

Thursday 37,8 57,3 0,00 15,7 0,275 0,939 0,132 0,0 0,0 0,9 13,7 23,5 0,0 0,0 0,9 11,9 9,3 4,38 

37,5 57,5 0,00 15,6 0,254 0,944 0,141 0,0 0,0 1,0 14,0 22,6 0,0 0,0 1,0 12,2 8,8 4,36 

Friday 73,0 27,7 0,00 43,6 0,000 1,000 0,000 0,0 0,0 1,8 14,2 57,3 0,0 0,0 1,8 13,2 14,7 4,43 

73,1 27,9 0,00 43,7 0,000 1,000 0,000 0,0 0,0 1,8 13,8 57,5 0,0 0,0 1,8 12,9 14,6 4,44 

Saturday 43,6 0,0 0,00 30,3 0,013 0,996 0,011 0,0 0,0 1,0 42,6 0,0 0,0 0,0 0,8 12,4 0,0 3,93 

43,7 0,0 0,00 30,4 0,011 0,997 0,011 0,0 0,0 0,9 42,8 0,0 0,0 0,0 0,8 12,5 0,0 3,94 

Sunday 30,3 0,0 0,00 18,5 0,329 0,938 0,120 0,0 0,1 30,2 0,0 0,0 0,0 0,1 11,4 0,0 0,0 2,99 

30,4 0,0 0,00 18,9 0,317 0,942 0,124 0,0 0,1 30,3 0,0 0,0 0,0 0,1 11,4 0,0 0,0 2,99 

Week 

Average 43,9 22,0 0,956 0,096 0,8 5,1 8,8 11,6 17,9 

44,1 22,4 0,962 0,095 0,8 5,2 8,8 11,6 17,7 

Sum 152,9 0,25 1,426 5,0 30,4 25,9 47,2 44,2 3,62 

151,7 0,22 1,243 5,2 30,7 25,8 47,4 42,4 3,60 

Percentage 100,2% 0,16% 0,93% 3,3% 19,9% 17,0% 30,9% 28,9% 

99,4% 0,15% 0,81% 3,4% 20,3% 17,0% 31,3% 28,0% 

Table 6 

Performance measures for the CVTTH data in Section 4 : approximations by formulae (plain font) and simulation (italic font). Aggregated weekly results. 

Safety stock b q o h u s.l. P(u.t.) b(1) b(2) b(3) b(4) b(5) w(1) w(2) w(3) w(4) w(5) freshness 

k = 1,5, k1 = 0, k2 = 0 43,9 100,2% 0,16% 22,0 0,93% 0,956 0,096 0,8 5,1 8,8 11,6 17,9 3,3% 19,9% 17,0% 30,9% 28,9% 3,62 

44,1 99,4% 0,15% 22,4 0,81% 0,962 0,095 0,8 5,2 8,8 11,6 17,7 3,4% 20,3% 17,0% 31,3% 28,0% 3,60 

k = 1,5, k1 = 10, k2 = 5 51,0 100,4% 0,36% 29,1 0,19% 0,990 0,024 1,3 6,3 10,7 14,8 17,9 5,5% 23,2% 20,0% 36,9% 14,4% 3,31 

51,0 100,1% 0,31% 29,2 0,18% 0,991 0,025 1,3 6,4 10,7 14,8 17,8 5,6% 23,3% 20,1% 36,8% 14,2% 3,31 

k = 2, k1 = 0, k2 = 0 49,4 100,4% 0,43% 27,5 0,26% 0,985 0,038 1,4 6,5 10,1 13,6 18,0 6,0% 23,4% 16,4% 34,1% 20,1% 3,39 

49,5 100,1% 0,36% 27,6 0,25% 0,987 0,039 1,4 6,5 10,1 13,6 17,8 6,1% 23,5% 16,5% 34,4% 19,5% 3,38 

k = 2, k1 = 10, k2 = 5 56,6 100,9% 0,86% 34,6 0,04% 0,997 0,007 2,2 7,8 12,4 16,2 18,0 9,1% 25,7% 21,2% 35,4% 8,6% 3,09 

56,5 100,7% 0,72% 34,5 0,05% 0,998 0,008 2,2 7,8 12,5 16,1 17,9 9,2% 25,7% 21,4% 35,3% 8,3% 3,08 

k = 2,5, k1 = 0, k2 = 0 55,0 101,0% 1,00% 33,0 0,06% 0,996 0,012 2,3 7,9 11,6 15,2 18,1 9,8% 25,4% 16,8% 35,1% 13,0% 3,16 

54,8 100,7% 0,82% 32,8 0,06% 0,996 0,013 2,3 7,8 11,5 15,2 18,0 9,8% 25,4% 16,9% 35,3% 12,7% 3,16 

k = 2,5, k1 = 10, k2 = 5 62,2 101,8% 1,80% 40,0 0,01% 0,999 0,002 3,4 9,2 14,2 17,2 18,3 13,6% 26,7% 22,8% 32,1% 4,7% 2,88 

61,8 101,5% 1,47% 39,7 0,01% 1,000 0,002 3,3 9,1 14,2 17,1 18,1 13,6% 26,5% 23,5% 31,8% 4,5% 2,87 

k = 3, k1 = 0, k2 = 0 60,6 102,1% 2,02% 38,4 0,01% 0,999 0,003 3,5 9,2 13,1 16,6 18,3 14,1% 25,8% 18,1% 34,1% 7,9% 2,96 

60,6 101,7% 1,69% 38,4 0,01% 0,999 0,004 3,5 9,1 13,1 16,6 18,3 14,5% 25,6% 18,1% 34,0% 7,8% 2,95 

k = 3, k1 = 10, k2 = 5 67,8 103,4% 3,28% 45,2 0,00% 1,000 0,000 4,7 10,5 15,9 18,1 18,6 18,3% 26,5% 24,5% 28,2% 2,5% 2,70 

67,7 102,9% 2,78% 45,2 0,00% 1,000 0,000 4,7 10,4 15,9 18,1 18,6 18,7% 26,1% 25,5% 27,4% 2,4% 2,69 

11
4

5
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Table 7 

Mean absolute error between formulae and simulation in the settings of Section 4 . 

Day b q o h u s.l. P(u.t.) b(1) b(2) b(3) b(4) b(5) w(1) w(2) w(3) w(4) w(5) freshness 

Monday 0,2 0,3 0,00 0,3 0,020 0,003 0,002 0,1 0,3 0,4 0,0 0,0 0,1 0,1 0,1 0,0 0,0 0,00 

Tuesday 0,3 0,7 0,04 0,4 0,005 0,002 0,002 0,2 0,4 0,0 0,0 0,3 0,1 0,2 0,0 0,0 0,2 0,03 

Wednesday 0,5 0,6 0,31 0,3 0,003 0,002 0,001 0,1 0,0 0,0 0,2 0,7 0,4 0,0 0,0 0,3 0,3 0,06 

Thursday 0,5 0,6 0,00 0,5 0,005 0,001 0,002 0,0 0,0 0,3 0,5 0,6 0,0 0,0 0,3 0,3 0,3 0,03 

Friday 0,3 0,4 0,00 0,3 0,000 0,000 0,000 0,0 0,1 0,2 0,4 0,6 0,0 0,1 0,2 0,2 0,1 0,01 

Saturday 0,3 0,0 0,00 0,3 0,000 0,000 0,000 0,0 0,1 0,3 0,5 0,0 0,0 0,1 0,1 0,2 0,0 0,02 

Sunday 0,3 0,0 0,00 0,3 0,006 0,001 0,003 0,0 0,2 0,4 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,01 

Week 

Average 0,1 0,1 0,001 0,001 0,0 0,1 0,0 0,0 0,1 

Sum 0,6 0,32 0,029 0,2 0,2 0,4 0,3 0,6 0,01 

Percentage 0,4% 0,20% 0,02% 0,1% 0,2% 0,3% 0,3% 0,3% 
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ive the average number of units in stock with r days of remain- 

ng lifetime at the beginning of a day; thus, the average number of 

nits with 4 days of remaining lifetime at the beginning of a day 

s 11,6 (11,6). The next five columns give the distribution of the 

emaining lifetime of units issued; for instance, 30,4 (30,7) units 

re issued with 2 days of remaining lifetime over the week, corre- 

ponding to 19,9 % (20,3 % ) of the total units issued. The freshness

f units issued is 3,62 (3,60). 

Analysing the results for all the values of (k, k 1 , k 2 ) ( Table 5

nd Tables 1–7 in the Supplementary Material file) close agree- 

ent is observed between the values given by the formulae in 

ection 3 and those obtained by simulation. For daily measures, 

here are no discrepancies greater than 1,5 units in any quantity 

nd there are very few cases where the discrepancy is greater than 

 unit. One of the main novelties of the paper lies in the formulae

or the age distribution of units issued (columns w (1) , . . . , w (5) ).

n all instances the discrepancies observed are lower than 1 unit 

or all ages and days. This results in a very accurate estimation of 

reshness, with no discrepancies greater than 0,1 days in any case, 

or every day. Note also that columns b and b(1) , . . . , b(5) are com- 

uted using very different expressions (those in Sections 3.1 and 

.3 , respectively); but the sum of columns b(1) , . . . , b(5) is still

ery close to column b, which shows the internal consistency of 

ur formulae. 

A summary of the eight tables, with the aggregate (weekly) re- 

ults, is given in Table 6 . This table shows for each measure the

alue of either the Average or Percentage row, as in the last rows 

f Table 5 . Table 6 also shows very close agreement between for- 

ulae and simulations: there are no discrepancies greater than 0,5 

nits or greater than 1 % in the case of percentages (actually, most 

ercentages show discrepancies lower than 0,5 % ). 

Table 7 shows the mean absolute errors between formulae and 

imulations over the 8 settings; that is, for each quantity, the abso- 

ute values of the differences between the value given by the for- 

ula and the value obtained by simulation are added together and 

hen divided by 8 (the number of settings). All the figures in the 

able are smaller than 1 unit (or 0,5 % in the case of percentages)

nd the approximation of freshness in particular is very accurate, 

ith a mean absolute error of 0,01 days. 

.2. Optimisation 

We do not include costs in our model. This could be readily 

one since the cost function can be written in terms of the approx- 

mations given in Section 3 . In this paper we do not look deeper

nto the use of the formulae for optimisation of the parameters 

n the model, but we show a direct application which consists on 

nding the safety factors to minimise outdating subject to the con- 

traint of having a minimum fill rate. The optimisation can be done 

sing the formulae in Section 3 via a grid search of the values 

, k , k . An Efficient Frontier showing how the outdating depends 
1 2 

1146 
n the target fill rate can then be computed. The Efficient Frontier 

s a tool proposed and analysed in Broekmeulen & van Donselaar 

2019) which enables different settings to be compared. We use 

t here to compare three values of m (4, 5 and 6) in the model in

ection 4 (normal distributed demand with mean and standard de- 

iations in Table 2 ). See Fig. 1 , which also includes the freshness of

he delivered platelet concentrates for the optimal parameters for 

ach fill rate. Observe that there is a small difference in waste be- 

ween m = 5 and m = 6 , and m = 4 gives much higher waste quan-

ities. For freshness, there are three almost parallel curves with a 

hift slightly smaller than 1. The overall conclusion is that fresh- 

ess is not greatly influenced by the fill rate and the differences in 

reshness for different values of m are basically the differences in 

he lifetimes of the units. On the other hand, waste is affected by 

he fill rate, especially when m = 4 , with the differences between 

 = 5 and m = 6 being very small. 

. Simulation experiments 

Section 4 shows that our formulae give accurate approximations 

n the case of the data analysed in Pérez Vaquero et al. (2016) .

ince these data can be seen as a specific environment, with m = 5 ,

ormally distributed demand, low demand uncertainty and similar 

verage demand on non-weekend days, in this section we analyse 

ther situations to determine the extent to which our approxima- 

ions are applicable. There are many settings that can be consid- 

red, so we have chosen the following four “parameters” to vary: 

1) Lifetime m : 4, 5 and 6; (2) demand distribution: normal dis- 

ribution with CV = 0,25, normal distribution with CV = 0,5, expo- 

ential distribution and Poisson distribution; (3) mean demand 

n weekdays: flat demand (30,30,30,30,30) and peaked demand 

22,32,42,32,22), with the mean demand on Saturday and Sunday 

et to 15 in both cases (note that the mean demand for the whole 

eek is 180 units); (4) safety stock parameters (k, k 1 , k 2 ) : (1.5,0,0),

2,5,5) and (2.5,10,5). The choice of the normal and Poisson dis- 

ributions is a natural one since they are, by far, the most widely 

sed distributions for modelling demand in inventory systems, es- 

ecially in blood banks. Setting CV at 0,25 is similar to the data 

n Pérez Vaquero et al. (2016) ; we also take a value of 0,5 to see

he effect of greater variability in demand on the accuracy of the 

pproximations. Note that the CV in the Poisson distribution is 

 over the square root of the mean, so the values obtained are 

,15 to 0,26 for that distribution in our scenarios. Haijema et al. 

2007) take values of CV from 0,20 to 0,35 for their experiments, 

hile Stanger et al. (2012) take values from 0,1 to 0,5. Other publi- 

ations, such as van Donselaar & Broekmeulen (2011) and Haijema 

 Minner (2019) , use the ratio variance / mean instead of CV as the

arameter and take values in the range from 0,75 to 4; note that 

he variance / mean ratio is 1 in the Poisson distribution and ranges 

rom 0,9 to 10,5 in the normal distributions that we consider. The 

xponential distribution is not commonly used for modelling de- 
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and, but it is considered, for instance, in Williams & Patuwo 

1999) ; and the geometric distribution (which can be seen as its 

iscretised version) appears in Cooper (2001) and van Donselaar & 

roekmeulen (2012) . We include it because it has a high variabil- 

ty, with a CV of 1 and variance / mean ratio ranging from 15 to 42

the mean of the distribution). 

For each of the 3 × 4 × 2 × 3 = 72 settings we compute our for-

ulae and run the Monte Carlo simulations (using the same num- 

er and length of runs as in Section 4 ). The results are shown

n Tables 8–13 of the Supplementary Material file. The tables are 

btained by varying m and the mean demand on weekdays and 

ach one contains 12 settings defined by the distribution of the 

emand and the values of (k, k 1 , k 2 ) . Their structure is the same

s in Table 6 . 

Table 14 of the Supplementary Material file summarizes the re- 

ults in the 72 settings. For each value of m = 4 , 5 , 6 and for each

istribution, we compute the absolute and relative errors of four 

utput variables ( % outdating, on-hand stock, fill rate and fresh- 

ess). The absolute error is defined as | x sim 

− x approx | and the rela- 

ive error as | x sim 

− x approx | /x sim 

. We get 6 values of these variables 

or each pair (m, dist ribut ion ) and show their minimum, average 

nd maximum. 

The tables reveal that all parameters are relevant for the be- 

aviour of the systems, but some of them seem to have little influ- 

nce on the accuracy of our formulae. For instance, the system per- 

orms better when the demand on weekdays is equally distributed 

flat demand), but the accuracy for flat and peaked demand is very 

imilar, with the rest of the parameters being equal. Analogously, 

ystems with longer unit lifetimes behave better, in the sense of 

aving a smaller outdated quantities with the same service level, 

ut the accuracy of our formulae is not clearly influenced by this 

arameter. 

On the other hand the distribution and, especially, the variabil- 

ty of demand measured by its CV play an essential role in the 

loseness of our approximations to the simulated values. Very high 

ccuracy is observed for the Poisson and normal distributions with 

V = 0 , 25 . For these distributions, the difference in outdating be-

ween our approximations and the simulated values is less than 

% of total demand in all instances, with a maximum difference of 

,6 units per week in the case of Poisson distribution and 1 unit 

er week in the normal distribution. Note that some relative er- 

ors in the column % outdating of Table 14 are large, due to a small

alue in the denominator of the formula. For instance, the Pois- 

on distribution with m = 4 has a maximum relative error of 53 , 6%

orresponding to the setting with k = 1 , 5 , k 1 = k 2 = 0 and flat de-

and. In this setting, our formula yields a mean number of out- 

ating units per week equal to 0,77, while the value estimated by 

imulation is 0,50, so the difference is 0,27 units per week, which 

an be regarded as negligible when evaluating the performance 

f the model, regardless the large relative error. The approxima- 

ions for freshness (differences lower than 0,05 days with relative 

rrors smaller than 1,5 % ), unsatisfied demand (differences smaller 

han 0,4 units per week and relative errors of the fill rate smaller 

han 0,25 % ) and average on-hand stock (differences smaller than 

,8 units and relative errors smaller than 3 % ) are also very accu- 

ate. 

For the normal distribution with CV = 0 , 5 , the accuracy of the

ormulae for unsatisfied demand (differences between approxima- 

ions and simulated values smaller than 1 unit per week in all set- 

ings, with a maximum relative error of the fill rate equal to 0,5 % )

nd freshness (maximum difference of 0,08 days) can still be re- 

arded as very good. For the number of outdated units, the for- 

ula behaves slightly worse than in the cases of the Poisson and 

ormal distributions with CV = 0,25, with a maximum difference 

f 2 , 40% of total demand, which corresponds to 4,32 units per 

eek. 
1147 
The exponential distribution can be seen as an extreme exam- 

le, as it has very high variance / mean ratios, ranging from 15 to 

2 in our settings, far from those used in van Donselaar & Broek- 

eulen (2011) and Haijema & Minner (2019) , where the maximum 

atio considered is 4. In fact, the number of outdated units is very 

igh: in the most favourable case ( m = 6 ), outdating is 26 % for a

ll rate of 98 , 7% ; this means that an average of 2,5 units are not

atisfied every week, while 47 units are outdated. When m = 4 , 5 

he situation is even more extreme; for instance, with m = 5 , a fill

ate of 98 , 7% is associated with an outdating of 35 , 8% . For this

istribution the fill rate is poorly estimated by our formulae, since 

he approximations for unsatisfied demand are almost double the 

alues obtained by simulation, which yields differences of up to 

 units per week between the formula and the simulation. Major 

ifferences are also observed in the estimation of freshness, with 

 maximum of 0,28 days and relative errors up to 10 , 9% . Notably,

he approximation for the number of outdated units is not so bad; 

ctually, the differences between our approximations for outdating 

nd the simulated values are smaller than 1% of the total demand 

n all but four of the settings, meaning a difference of less than 

 units per week, while the number of outdated units per week 

anges from 22 to 90 across all the scenarios. 

A common feature observed in the tables is that (leaving out 

he exponential distribution) our formulae can be seen as conser- 

ative, since there is a slight bias which presents the model as 

orse than the real situation. In fact, in almost all instances where 

here is a difference between the approximations and the simu- 

ations, our formulae give higher values for outdating and lower 

alues for service levels and fill rates. Therefore, practitioners can 

se our formulae to get a good approximation of the actual perfor- 

ance measure and can expect the model to behave as predicted 

y the formulae or slightly better. 

Given that we have observed no substantial differences in 

ccuracy depending on the mean demand during the week 

flat / peaked) or on the lifetime of the units, our advice on the use

f the formulae depends essentially on the variability of demand. 

e recommend using them when demand has moderate variabil- 

ty such as the Poisson or others with a similar CV. The approxima- 

ions are still good for distributions with a slightly higher variabil- 

ty, although the number of outdated units may be overestimated. 

n the other hand, we do not recommend it for systems where 

here is high uncertainty in demand, since it is very difficult in 

uch cases to maintain a high service level, which leads to poor 

pproximations. 

. Conclusions and future work 

• We have analysed a complex inventory model for perishable 

items with fixed lifetimes, random demand, nonzero lead time 

and a weekly pattern, where stockouts must be kept to a mini- 

mum. No assumptions on the distribution of demand are made. 
• We use a realistic model for production of platelet concentrates, 

with particular values of L , R , form of the safety stock, etc. This

has the advantage of including a variety of situations (different 

days have different characteristics) which are present in many 

inventory systems. Therefore, users can easily adapt the formu- 

lae in this paper to their particular operating procedures. 
• We derive analytical approximations of the main performance 

measures of the model, namely day by day approximations of 

expected on-hand inventory, size of stockouts, order size, num- 

ber of outdated units, fill rate, probability of stockouts and of 

having on-hand inventory below a threshold, age distribution 

of units in stock, date of issue and freshness. To the best of 

our knowledge, no approximations of these quantities (except 

for the fill rate) in nonstationary models under the EWA policy 

have appeared in the literature. 
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• Monte Carlo simulations are used to assess the accuracy of the 

approximations. Platelet concentrate production at a real blood 

bank is analysed in detail. The results show a very close agree- 

ment between our formulae and the results obtained by simu- 

lation for that case. Then the comparison is extended to 72 sce- 

narios depending on the lifetime of the units, the distribution 

of demand and the values of the safety stock. The results indi- 

cate that the approximations in this paper are reliable as long 

as the variability of daily demand is not very high (CV smaller 

than 0,5). More extensive simulations are needed to assess the 

usefulness of the approximations in more general settings. 
• Our formulae are developed under the EWA replenishment pol- 

icy. If the simpler base-stock policy is used, straightforward 

modifications can be made to obtain the corresponding formu- 

lae. In particular, the resulting approximations for the age dis- 

tribution of the stock would be new, since they have appeared 

in the literature only for continuous review models where the 

distribution of demand is stationary. 
• We use the approximations to find an Efficient Frontier which 

shows how the outdated quantity (and the freshness of units 

issued) depends on the target fill rate. We do not include costs 

in our model but this can be readily done since the cost func- 

tion can be written in terms of the approximations given in 

Section 3 . In future work we will look for the values of the

parameters ( k, k 1 , k 2 in our model) which minimise the long- 

run expected cost subject to certain service restrictions (service 

level, freshness, etc.). 
• We also seek to compute approximations of the performance 

measures for a LIFO issuing policy. Although the LIFO policy 

may not be very relevant for blood products, there are other 

systems where it is common, such as retail food distribution, 

where the customer can see the expiration dates of the prod- 

ucts; see Section 9 of Silver et al. (1998) . When dealing with 

food products, it will be desirable to consider also the effect of 

case pack sizes, as in Broekmeulen & van Donselaar (2019) . 
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ppendix A. Existence of the long-run expected values 

In Section 3 we derive approximations for the long-run expec- 

ations of the random variables related to the model described in 

able 1 . The model has a week pattern, so the long-run expecta- 

ions depend on the day of the week. For every random quantity 

 t , the long-run expectation is defined as 

 t = lim 

n →∞ 

1 

n 

n ∑ 

k =1 

X t+7 k , 

or t = 1 , . . . , 7 . 

The theory of discrete time Markov chains guarantees that the 

bove limits exist. In fact, the system can be modelled as a homo- 

eneous Markov chain Z t = 

(
Day t , Z 

1 
t , . . . , Z 

m 

t 

)
, where Day t is the 
1148 
ay of the week and Z r t is the number of units in stock at the be-

inning of day t with r days of remaining lifetime (except when 

is a Saturday or a Sunday, where Z m 

t and Z m −1 
t are the number 

f units ordered on the previous Friday). Assuming an (arbitrarily 

arge) daily production capacity M, the process (Z t ) is a discrete 

ime irreducible periodic (period = 7) Markov chain with finite 

pace state E. This assures the existence of the almost sure limits 

f 
∑ n 

k =1 h (Z t + 7 k ) /n , for any h : E → R . Therefore, all the expected

alues (interpreted as long-run averages) in Section 3 exist. 

The theory of Markov chains enables the existence of the long- 

un expectations to be shown, but it is not useful for finding a for- 

ula for their values, since they are expressed as a function of the 

olution of a linear system where the coefficient matrix is the tran- 

ition matrix of the chain. The dimension of the matrix is equal to 

he cardinal of E which, for m ≤ 6 , is (m − 1)(M + 1) m −2 + 2(M +
) m −1 + (6 − m )(M + 1) m . For instance, if the lifetime of units is

 = 5 and the daily production capacity is M = 100 , then the car-

inal of E is greater than 10 10 . Even if the solution could be ob- 

ained numerically, it would give no insight on the role of the dif- 

erent parameters in the model. 

ppendix B. Derivation of the formulae in Section 3.4 

For m = 4 , o 3 = o 4 = 0 . Using formula (4) with i = 4 , we get: 

 1 ∼
∫ μ4 , 7 + kσ4 , 7 + k 2 + o 5 + o 6 

0 

F 3 (μ3 , 4 + kσ3 , 4 + k 1 − x ) 

×F 4 , 1 (x − o 5 − o 6 − o 7 ) dx, 

 2 ∼
∫ μ5 , 1 + kσ5 , 1 + k 2 + o 5 + o 6 + o 7 

0 

F 4 (μ4 , 7 + kσ4 , 7 + k 2 + o 5 + o 6 − x ) 

×F 5 , 2 (x − o 5 − o 6 − o 7 − o 1 ) dx, 

 5 ∼
∫ μ1 , 2 + kσ1 , 2 + k 1 + o 1 

0 

F 5 , 7 (μ5 , 1 + kσ5 , 1 + k 2 −x ) F 1 , 5 (x −o 1 − o 2 ) dx,

 6 ∼
∫ μ2 , 3 + kσ2 , 3 + k 1 + o 2 

0 

F 1 (μ1 , 2 + kσ1 , 2 + k 1 − x ) F 2 , 6 (x − o 2 − o 5 ) dx,

 7 ∼
∫ μ3 , 4 + kσ3 , 4 + k 1 + o 3 

0 

F 2 (μ2 , 3 + kσ2 , 3 + k 1 − x ) F 3 , 7 (x − o 5 − o 6 ) dx.

Analogously, for m = 6 , we have o 5 = o 6 = 0 . Using formula

4) with i = 6 : 

 1 ∼
∫ μ2 , 3 + kσ2 , 3 + k 1 + o 2 

0 

F 1 (μ1 , 2 + kσ1 , 2 + k 1 − x ) 

×F 2 , 1 (x − o 2 − o 3 − o 4 − o 7 ) dx, 

 2 ∼
∫ μ3 , 4 + kσ3 , 4 + k 1 + o 3 

0 

F 2 (μ2 , 3 + kσ2 , 3 + k 1 − x ) 

×F 3 , 2 (x − o 3 − o 4 − o 7 − o 1 ) dx, 

 3 ∼
∫ μ4 , 7 + kσ4 , 7 + k 2 + o 4 

0 

F 3 (μ3 , 4 + kσ3 , 4 + k 1 − x ) 

×F 4 , 3 (x − o 4 − o 7 − o 1 − o 2 ) dx, 

 4 ∼
∫ μ5 , 1 + kσ5 , 1 + k 2 + o 7 

0 

F 4 (μ4 , 7 + kσ4 , 7 + k 2 − x ) 

×F 5 , 4 (x − o 7 − o 1 − o 2 − o 3 ) dx, 

 7 ∼
∫ μ1 , 2 + kσ1 , 2 + k 1 + o 1 

0 

F 5 , 7 (μ5 , 1 + kσ5 , 1 + k 2 − x ) 

×F 1 , 7 (x − o 1 − o 2 − o 3 − o 4 ) dx. 

ppendix C. Use of Little’s formula for freshness 

In Broekmeulen & van Donselaar (2019) the authors use Little’s 

ormula L = λW from queuing theory to estimate freshness in a 

tationary model. Although Little’s formula can be applied to non- 

tationary models under some circumstances, for instance when 
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here is a fixed T such that the system is empty at times 0 and

 (see Little, 2011 ), it seems that it cannot be used to estimate

reshness of units issued on a certain day. However, if the goal is 

o find the mean freshness of all units issued (without drawing 

 distinction by the day they are issued) then, following Theorem 

.1 in Whitt (1991) , and given that our system is weekly stationary, 

ittle’s formula can be applied using the approach in Broekmeulen 

 van Donselaar (2019) . In our case, we consider the week as the

ime unit. A platelet concentrate enters the (queueing) system as 

oon as it is ordered and not when it arrives at the blood bank 

ince in that case units ordered on Friday, which arrive three days 

ater, would be different from units ordered on other days. The 

ime in the system of a concentrate is 1 day if it is issued with

 days of remaining lifetime, 2 days if it is issued with m − 1 days

f remaining lifetime and so on; the time in the system of an out- 

ated unit is m days. Therefore W , the mean time in weeks that a

nit spends in the system is 

 = 

1 

7 

n m 

+ 2 n m −1 + · · · + mn 1 + mn 0 

n m 

+ n m −1 + · · · + n 1 + n 0 

, 

here n r is the mean number of units issued with r days of re- 

aining lifetime for r = 1 , . . . , m and n 0 is the mean number of

utdated units. The mean number of units in the system is 

 = 

∑ 4 
i =1 q i + 3 q 5 + 

∑ 7 
i =1 h i 

7 

, 

here the first two terms in the numerator correspond to the days 

hat the units ordered spend in the queuing system before actually 

rriving at the blood bank and the last term is the number of units

n the blood bank throughout the week. Lastly, λ, the mean num- 

er of units arriving during the week is n m 

+ · · · + n 1 + n 0 . There-

ore, Little’s formula yields 7 L = n m 

+ 2 n m −1 + · · · + mn 1 + mn 0 and

e have 

7 L − mn 0 

λ − n 0 

= p m 

+ 2 p m −1 + · · · + mp 1 , 

here p r = n r / (n m 

+ · · · + n 1 ) is the probability of a unit being is-

ued with r days of remaining lifetime, r = 1 , . . . , m . Since fresh-

ess is equal to m + 1 − (p m 

+ 2 p m −1 + · · · + mp 1 ) it follows that

f reshness = m + 1 − 7 L − mn 0 

λ − n 0 

. (C.1) 

or instance, in the case of Table 5 (simulated values), m = 5 , 7 L =
64 , 4 , λ = 151 , 7 and n 0 = 0 , 22 , yielding a freshness value of 3,60

ays, which coincides with the value in the table. 

Formula (C.1) is exact but its application still requires approx- 

mations of main performance measures on specific days and not 

nly their weekly aggregated values. In particular, it seems there is 

o way to circumvent our formulae in Section 3.4 to approximate 

reshness. Moreover, note that (C.1) provides only partial informa- 

ion on freshness as it gives the weekly average, while our formu- 

ae in Section 3.5 approximate freshness of units issued on each 

ay of the week. 

ppendix D. Accuracy of simulations 

Results on the accuracy of simulations in the setting of 

able 5 are shown in Table D1 . For each day, the first row shows

he sample standard deviation SD of each quantity across the 10 0 0 

imulation runs. The second row shows the ratio in percentage 

erms of the half-width of the 95 % confidence interval for the ex- 

ectation over the sample mean value, that is, 

1 , 96 × SD/ 
√ 

10 0 0 

X 

, 

here SD is the value in the first row and X is the sample mean

iven in Table 5 (italic font). For values where the sample mean is 

maller than 0,001 the ratio (second row) is not computed. 
1149 



C. Gorria, M. Lezaun and F.J. López European Journal of Operational Research 303 (2022) 1137–1150 

S

f

R

A  

A  

A  

B  

B  

B  

B  

C  

C

C

C  

C  

C

D  

D  

E

F  

G  

G  

H

H

H  

J  

K  

L  

L

N

N

N  

P  

R

R

R  

S  

S  

S  

T  

v  

v

v  

V  

W

W  
upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.ejor.2022.03.018 . 

eferences 

sllani, A. , Culler, E. , & Ettkin, L. (2014). A simulation-based apheresis platelet in-

ventory management model. Transfusion, 54 , 2730–2735 . 
tkinson, M. P. , Fontaine, M. J. , Goodnough, L. T. , & Wein, L. M. (2012). A novel al-

location strategy for blood transfusions: Investigating the tradeoff between the 
age and availability of transfused blood. Transfusion, 52 , 108–117 . 

ubron, C. , Flint, A. W. , Ozier, Y. , & McQuilten, Z. (2018). Platelet storage duration

and its clinical and transfusion outcomes: A systematic review. Critical Care, 22 , 
185 . 

akker, M. , Riezebos, J. , & Teunter, R. H. (2012). Review of inventory systems with
deterioration since 2001. European Journal of Operational Research, 221 , 275–284 . 

eliën, J. , & Forcé, H. (2012). Supply chain management of blood products: A litera-
ture review. European Journal of Operational Research, 217 , 1–16 . 

roekmeulen, R. A. , & van Donselaar, K. H. (2009). A heuristic to manage perishable

inventory with batch ordering, positive lead-times, and time-varying demand. 
Computers & Operations Research, 36 , 3013–3018 . 

roekmeulen, R. A. , & van Donselaar, K. H. (2019). Quantifying the potential to im-
prove on food waste, freshness and sales for perishables in supermarkets. Inter- 

national Journal of Production Economics, 209 , 265–273 . 
aram-Deelder, C. , Kreuger, A. L. , Jacobse, J. , van der Bom, J. G. , & Middel-

burg, R. A. (2016). Effect of platelet storage time on platelet measurements: A 

systematic review and meta-analyses. Vox Sanguinis, 111 , 374–382 . 
haudhary, V. , Kulshrestha, R. , & Routroy, S. (2018). State-of-the-art literature review 

on inventory models for perishable products. Journal of Advances in Management 
Research, 15 , 306–346 . 

hiu, H. N. (1995). A heuristic (R,T) periodic review perishable inventory model with 
lead times. International Journal of Production Economics, 42 , 1–15 . 

ivelek, I. , Karaesmen, I. , & Scheller-Wolf, A. (2015). Blood platelet inventory man-

agement with protection levels. European Journal of Operational Research, 243 , 
826–838 . 

ohen, M. A. , & Prastacos, G. P. (1981). Critical number ordering policy for LIFO
perishable inventory systems. Computers & Operations Research, 8 , 185–195 . 

ooper, W. L. (2001). Pathwise properties and performance bounds for a perishable 
inventory system. Operations Research, 49 , 455–466 . 

alalah, D. , Bataineh, O. , & Alkhaledi, K. A. (2019). Platelets inventory management:

A rolling horizon Sim–Opt approach for an age-differentiated demand. Journal 
of Simulation, 13 , 209–225 . 

uan, Q. , & Liao, T. W. (2013). A new age-based replenishment policy for supply
chain inventory optimization of highly perishable products. International Journal 

of Production Economics, 145 , 658–671 . 
nsafian, H. , & Yaghoubi, S. (2017). Robust optimization model for integrated pro- 

curement, production and distribution in platelet supply chain. Transportation 
Research Part E, 103 , 32–55 . 

lint, A. W. , McQuilten, Z. K. , Irwin, G. , Rushford, K. , Haysom, H. E. , &

Wood, E. M. (2020). Is platelet expiring out of date? A systematic review. Trans- 
fusion Medicine Reviews, 34 , 42–50 . 

orria, C. , Labata, G. , Lezaun, M. , López, F. J. , Pérez Aliaga, A. I. , & Pérez Va-
quero, M. Á. (2020). Impact of implementing pathogen reduction technologies 

for platelets on reducing outdates. Vox Sanguinis, 115 , 167–173 . 
oyal, S. K. , & Giri, B. C. (2001). Recent trends in modeling of deteriorating inven-

tory. European Journal of Operational Research, 134 , 1–16 . 

aijema, R. (2013). A new class of stock-level dependent ordering policies for per- 
ishables with a short maximum shelf life. International Journal of Production Eco- 

nomics, 143 , 434–439 . 
1150 
aijema, R. , & Minner, S. (2019). Improved ordering of perishables: The value 
of stock-age information. International Journal of Production Economics, 209 , 

316–324 . 
aijema, R. , van der Wal, J. , & van Dijk, N. M. (2007). Blood platelet production:

Optimization by dynamic programming and simulation. Computers & Operations 
Research, 34 , 760–779 . 

anssen, L. , Claus, T. , & Sauer, J. (2016). Literature review of deteriorating inventory
models by key topics from 2012 to 2015. International Journal of Production Eco- 

nomics, 182 , 86–112 . 

ouki, C. , Legros, B. , Babai, M. Z. , & Jouini, O. (2020). Analysis of base-stock perish-
able inventory systems with general lifetime and lead-time. European Journal of 

Operational Research, 287 , 901–915 . 
i, R. , & Teng, J.-T. (2018). Pricing and lot-sizing decisions for perishable goods when

demand depends on selling price, reference price, product freshness, and dis- 
played stocks. European Journal of Operational Research, 270 , 1099–1108 . 

ittle, J. D. (2011). Or forum-little’s law as viewed on its 50th anniversary. Operations 

research, 59 , 536–549 . 
ahmias, S. (1975). Optimal ordering policies for perishable inventory–II. Operations 

Research, 23 , 735–749 . 
ahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30 , 

680–708 . 
andakumar, P. , & Morton, T. E. (1993). Near myopic heuristics for the fixed-life

perishability problem. Management Science, 39 , 1490–1498 . 

érez Vaquero, M. , Gorria, C. , Lezaun, M. , López, F. J. , Monge, J. , Eguizabal, C. ,
& Vesga, M. (2016). Optimization of the management of platelet concentrate 

stocks in the Basque Country using mathematical simulation. Vox Sanguinis, 110 , 
369–375 . 

aafat, F. (1991). Survey of literature on continuously deteriorating inventory mod- 
els. Journal of the Operational Research Society, 42 , 27–37 . 

ajendran, S. , & Ravindran, A. R. (2019). Inventory management of platelets along 

blood supply chain to minimize wastage and shortage. Computers & Industrial 
Engineering, 130 , 714–730 . 

ytilä, J. S. , & Spens, K. M. (2006). Using simulation to increase efficiency in blood
supply chains. Management Research News, 29 , 801–819 . 

econdi, L. , Principato, L. , & Laureti, T. (2015). Household food waste behaviour in
EU-27 countries: A multilevel analysis. Food Policy, 56 , 25–40 . 

ilver, E. A. , Pyke, D. F. , & Peterson, R. (1998). Inventory management and production

planning and scheduling (3rd ed.). Wiley New York . 
tanger, S. H. , Yates, N. , Wilding, R. , & Cotton, S. (2012). Blood inventory manage-

ment: Hospital best practice. Transfusion Medicine Reviews, 26 , 153–163 . 
ekin, E. , Gürler, Ü. , & Berk, E. (2001). Age-based vs. stock level control policies

for a perishable inventory system. European Journal of Operational Research, 134 , 
309–329 . 

an Donselaar, K. H. , & Broekmeulen, R. A. (2011). Fill rate approximations for a per-

ishable inventory system with positive lead time and fixed case pack size using 
a modified (R,s,nQ)-replenishment policy in a lost sales environment. Available 

at SSRN 1861157 . 
an Donselaar, K. H. , & Broekmeulen, R. A. (2012). Approximations for the rela- 

tive outdating of perishable products by combining stochastic modeling, sim- 
ulation and regression modeling. International Journal of Production Economics, 

140 , 660–669 . 
an Geffen, L. , van Herpen, E. , & van Trijp, H. (2020). Household food waste-how

to avoid it? An integrative review. In E. Närvänen, N. Mesiranta, M. Mattila, & 

A. Heikkinen (Eds.), Food waste management (pp. 27–55). Springer International 
Publishing . 

oelkel, M. A. , Sachs, A.-L. , & Thonemann, U. W. (2020). An aggregation-based ap-
proximate dynamic programming approach for the periodic review model with 

random yield. European Journal of Operational Research, 281 , 286–298 . 
hitt, W. (1991). A review of L = λW and extensions. Queueing Systems, 9 , 235–268 . 

illiams, C. L. , & Patuwo, B. E. (1999). A perishable inventory model with positive

order lead times. European Journal of Operational Research, 116 , 352–373 . 

https://doi.org/10.1016/j.ejor.2022.03.018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00225-9/sbref0043

	Performance measures of nonstationary inventory models for perishable products under the EWA policy
	1 Introduction
	1.1 Background and motivation
	1.2 Objective of the paper
	1.3 Literature review

	2 The model
	2.1 The EWA policy
	2.2 Application of the EWA policy to the model

	3 Approximations of performance measures under the EWA policy
	3.1 Approximation of the order quantities
	3.2 Expected on-hand inventory
	3.3 A formula for  and the age distribution of the stock
	3.4 Expected outdating
	3.5 Remaining lifetime of units issued and freshness
	3.6 Expected shortage
	3.7 Probability of on-hand inventory being lower than a threshold

	4 Application to the CVTTH data
	4.1 Results for the CVTTH data
	4.2 Optimisation

	5 Simulation experiments
	6 Conclusions and future work
	Acknowledgments
	Appendix A Existence of the long-run expected values
	Appendix B Derivation of the formulae in Section 3.4
	Appendix C Use of Little’s formula for freshness
	Appendix D Accuracy of simulations
	Supplementary material
	References


