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Abstract: Ride comfort improvement in driving scenarios is gaining traction as a research topic. This
work presents a direct methodology that utilizes measured car signals and combines data processing
techniques and machine learning algorithms in order to identify driver actions that negatively affect
passenger motion sickness. The obtained clustering models identify distinct driving patterns and
associate them with the motion sickness levels suffered by the passenger, allowing a comfort-based
driving recommendation system that reduces it. The designed and validated methodology shows
satisfactory results, achieving (from a real datasheet) trained models that identify diverse interpretable
clusters, while also shedding light on driving pattern differences. Therefore, a recommendation
system to improve passenger motion sickness is proposed.

Keywords: motion sickness; ride comfort; driving style; ADAS; clustering

1. Introduction

Research into advanced driver assistance system(s) (ADAS) has improved the activity
of driving. Dynamic cruise control [1], automatic lane-keeping [2], risk prediction [3]
among others, relieve the driver of certain duties, making driving a much more automatic
and straightforward task, which translates into better driving conditions.

This rapid development of ADAS has led to comfort being an objective to be researched.
Moreover, systems that combine all of these assignments are becoming the foundation of
automated driving, and with high automation, drivers become passengers, which may
negatively impact their riding comforts [4]. So, as the scope of automated driving widens,
comfort should also be one of the considerations to be taken into account even in the early
phases of development strategies or driving assistants [5].

Overall, the subjective sensation of comfort makes its evaluation complicated with
external factors becoming important. Regarding comfort, age is a notable condition [6] and
personality or personal driving preferences make each driver have different assessments
for the same situations [7]. In [8], other agents that affect motion sickness are summarized
(e.g., smell, sound). Recently, physiological data were ’tried’ as predictors of levels of
motion sickness. Forehead humidity [9] or complex wearable acquisition that combines
brain activity and other physiological factors [10] shows promising results.

Current studies have attempted to accommodate comfort parameters by motion
planning [11], speed, suspension control, uneven roads [12], or traffic sign information
analysis [13]. Therefore, it is evident that the improvement of the ride comfort of passengers
requires an exhaustive analysis of the origins of discomfort. Alternative approaches for
motion sickness reduction have also been studied, such as designing an adaptive interface
that reduces it [14] or training the visuospatial ability of drivers themselves [15].

Regarding driving style, a consensus driving styles evaluation was done in [16]. It is
determined that speed, acceleration, and distances between vehicles are the most relevant
differentiating variables. Moreover, research shows a more preferable approach to calmer
and less dynamic driving styles [17].
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A signal-based analysis was used to identify driving styles and drivers. Smartphone-
based signal processing was used to create scoring criteria and study driver differences [18],
driving patterns, and maneuvers within styles [19]. Moreover, different machine learning
approaches have been utilized with classifier-based recognition of risk levels and styles
in [20], or with clustering algorithms to label gathered data into aggressive and smooth
classes [21], as a means of driver quality separation and classification using sensor data
of driver actions [22,23] and as a predictor for fuel consumption in [24]. Nevertheless, the
applications of these algorithms are not commonly researched from the perspective of
comfort and motion sickness.

The objective of this research paper was to present an exhaustive methodology that,
using measured car signals and different machine learning techniques, determines the
origin of motion sickness in passengers during a journey. For that purpose, a methodology
that identifies what kind of actions a driver can apply to his/her driving style in order to
improve the sensation of motion sickness in the vehicle is proposed.

With this recommendation system in mind, these sub-objectives are presented:

1. A data processing methodology that combines different techniques on car signals in
order to obtain an adequate database for machine learning algorithms.

2. Machine learning techniques, particularly cluster models that effectively recognize
and group diverse and interpretable driving patterns from a comfort perspective.

3. A recommendation system to fix non-comfortable situations by adapting driver actions.
4. We validate this methodology by means of a real established database and then

effectively interpret the results in order to identify and determine specific driver
behaviors from a motion sickness perspective and recommend driving improvements.

Section 2 discusses ride comfort and motion sickness evaluation methods and propos-
als. Section 3 describes the Uyanik instrumented car’s database and justifies its use in this
work. Section 4 presents the selection of techniques used to preprocess the available data
and the utilized machine learning algorithms. Section 5 explores the validation of each of
the preprocessing and clustering steps. The results of the two best-obtained models are com-
pared in Section 6 by analyzing cluster interpretability and evaluating their outcomes by
comparing driver tendencies. This section also displays driver recommendation examples
for each of the identified situations. Finally, conclusions are presented in Section 7.

2. Comfort Evaluation Methods

Comfort is a subjective feeling, and there are no unified and clear definitions for it in
academia. The passenger comfort discussed in the present article refers to the discomfort
of passengers during a car ride, specifically regarding motion sickness.

The level of ride discomfort is associated with the frequency of the vibration and is
directly proportional to its intensity. Furthermore, it has also been observed that increasing
the time of exposure to vibration means an increase in discomfort. With this in mind, we
know that low-frequency vibrations, close to 1 Hz, are transmitted throughout the body by
increasing malaise. Higher frequency vibrations are attenuated by the human body and
reduce discomfort. Monotone continuous low-frequency vibrations increase fatigue, while
transient vibrations produce stress [25].

The human body responds differently to vibration frequencies depending on the body
part and in which direction the force acts. How the frequencies affect humans depends on
the proportions of a person’s body and the type of frequency that affects the person [26].

Thus, two types of discomfort are differentiated. In [27], discomfort (also named
average discomfort, or simply discomfort) is defined as a general feeling of not well-being,
while motion sickness is associated with dizziness, fatigue, and nausea. In this work, we
will focus on the latter type—motion sickness.

Most of the time, comfort is evaluated using a subjective rating test and/or using
electrical accelerometers combined with comfort evaluation parameters. Many of these
parameters (vibration dose value (VDV), estimated dose value (eVDV), vibration num-
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ber (VN), motion sickness dose value (MSDV), vomit rate (VR)) are part of the essential
standards in this area: ISO-2631 [28] and British Standard 6841 [29].

Two main standards are used to evaluate comfort, the British Standard 6841 (BS
6841) and the International Standard 2631 (ISO 2631). Both standards describe ways to
evaluate vibration exposure to the human body. They define methods for the measurement
of vibrations as well as how to process measurement data to standardized quantified
performance measures concerning health, perception, comfort, and motion sickness.

In this work, motion sickness-related frequencies will be studied; between the cited
examples of the cited standards, only MSDV and VR can be used.

In the bibliography, there are some alternative indices, such as motion sickness inci-
dence (MSI) [30], and fast motion sickness scale (FMS) [31]. Quantitative methods based on
questionnaires can also be noted, such as the motion sickness susceptibility questionnaire
(MSSQ) [32]. Nonetheless, given its relevance in this work, the motion sickness dose value
is used (MSDV, Equation (1)).

MSDV is a measure of the likelihood of nausea and its evaluation is also determined in
ISO 2631 Standard by the w f filter seen in Figure 1. This standard only provides guidelines
for the interpretation of the MSDV for the vertical direction, MSDVz.
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Figure 1. Acceleration filters proposed in the ISO−2631 standard for comfort.

MSDVz =

√∫ T

0
(az,w f (t))2 dt (1)

Forstberg provides an interpretation of the MSDV for the lateral direction in [33] and
our previous real-time experiments [34] have shown that MSDV values obtained in the
X and Y axes are substantially bigger than the Z-axis [35], this is a direct consequence
of accelerations in X and Y being bigger than the vertical ones when measured in m/s2

without the added effect of gravity.
The British Standard 6841 (BS 6841) [29] attempts to combine the influences of different

axes to obtain a general approach toward the origin of motion sickness by quantifying the
lateral and longitudinal contribution as the sum of the parts as seen in Equation (2).

MSDVTotal =

√∫ T

0
(ax,w f (t))2 dt +

√∫ T

0
(ay,w f (t))2 dt (2)

In this work, we propose an alternative approach, which also takes into account both
X-axis and Y-axis vibrations, but follows the same reasoning as the general discomfort
formula for Av proposed in the ISO 2631 [36]. This proposal has already been used in
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motion planning [37] and it is observed in Equation (3). The objective is to find common
ground in internal structures to derive both X-related and Y-related motion sickness while
retaining the ability to identify causes with monodirectional origin. The vertical axis is
excluded due to low impact.

MSDVxy =

√∫ T

0
(ax,w f (t))2 dt +

∫ T

0
(ay,w f (t))2 dt (3)

As seen in Equations (1)–(3), motion sickness is cumulative. In order to avoid this
effect, a windowing process is done, which allows a generalized approach.

3. Uyanik Instrumented Car Dataset

As highlighted in [34,38], road type, traffic conditions, and the car itself are crucial in
the evaluation of passenger discomfort. In this work, given that the objective is to study
the influence of driving patterns on comfort, or lack thereof, we considered a group of 18
drivers exhibiting different driving behaviors while driving the same car, along the same
route, and in similar environmental conditions.

We used real-world signals from the Uyanik instrumented car [39,40], a Renault
Mégane sedan car (seen in Figure 2) that complies with a large number of different signals
and travels a fixed route around the city of Istanbul.

Figure 2. Instrumented car utilized in the collection of signals and images of the Uyanik database.

Regarding signals, both the data stream from its CAN-bus and the IMU XYZ accel-
erations are taken into account: accelerations in all three axes (ACCX, ACCY, ACCZ),
rotational speeds (RR, YR, PR), and a variety of car sensor variables, such as vehicle speed
(VS), engine RPM (ERPM), steering wheel angle (SWA), steering wheel angle relative speed
(SWRS), brake pedal pressure (BP), gas pedal pressure (GP), and percent gas pedal (PGP)
were recorded and analyzed. These last seven variables of car sensor signals will be named
driver-controlled variables from now on.

In this study, all signals were handled jointly, which requires a re-sampling of the
data streams to the highest frequency of 32 Hz. After a thorough analysis, the root means
square and variance of the features were computed over 15-s windows (i.e., 480 samples)
with a 7.5-s shift. That is to say, the overlapping between consecutive windows is 7.5 s
(i.e., 240 samples). Moreover, the longitudinal acceleration signal was differentiated into
positive and negative.

The route is presented in Figure 3, with 25 km of road and a duration of 40 min. It
includes different types of road sections with different motion sickness predispositions
(university campus, road entrances, city, highway, very busy city, and residential areas).
The data were labeled with the road types, from type-0 to type-5.

The driver population was selected from academic partners and volunteer creators of
the Uyanik dataset. From this database, many of the drivers had to be discarded in order to
meet the same environmental conditions (no exceptional events, exactly the same route, no
additional tasks). These exhaustive measures left us with 18 drivers. Out of the 18 drivers,
3 of them were female and 15 were male. The ages of the drivers varied, with the youngest
driver being a 21-year-old female and the oldest a 61-year-old male.
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Figure 3. Uyanik route and its geographical location through different zones of Istanbul.

Road Type Selection

After observing the complete compiled data, with the objective of having a similar
driving pattern group, a single road type was selected. Of all possibilities, the main priority
was to select the type of road with the greatest variety of motion sickness values. To do this,
the data were separated into road types and categorized with colors to express different
motion sickness levels (MSDVxy). The obtained results are shown in Figure 4. The Y-axis
represents the windows that belong to different comfort levels within each type of road.

With the aforementioned goal, type-1 was selected. This road has all MSDVxy levels
presented in the selected dataset, including the highest one, and it is the road with the best
distribution of samples at each level. While type-4 also meets this condition, the extremely
small sample size would make it impossible to use, so it was discarded.
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Figure 4. MSDVxy values for each road type. Criteria values are classified in five intervals that can
be distinguished by color. The total number of windows depends on the length of each sub-route.

4. Data Processing Methodology

In order to analyze the driving style from a comfort-based perspective and, thus, be
able to give driving recommendations for motion sickness improvements, a data processing
pipeline was designed and implemented. The initial data are altered and augmented so that
they could effectively be used in the training of machine learning techniques, specifically
clustering techniques. The method is schematized in Figure 5 and it is summarized in
this section.
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Figure 5. Comfort-oriented processing methodology applied to the Uyanik database.

The Uyanik database presented in Section 3 is used as the starting point. On the
one hand, in the motion sickness evaluation step, accelerations are used to calculate
the MSDVxy variable as explained in Section 2 in order to evaluate passenger motion
sickness. On the other hand, all recorded data variables are processed in the data cleaning
and normalization step, where outliers are analyzed and eliminated, and signals are
normalized. Next, in order to select the most relevant variables of the dataset from a comfort
perspective, in the dimensionality reduction step, different ways to do it are studied and
implemented. In the data categorization and oversampling step, the MSDVxy value is
used to categorize samples in different levels of motion sickness. Those categories will be
used to augment the data by utilizing different oversampling methods, which will return a
database that is uniformly distributed over motion sickness. Those four steps will output
a database perfectly suited for model training. The objective of the clustering step is to
find interpretable cluster systems that represent different driving patterns, so, the selected
normalized and categorized variables of the previous steps are used to train clustering
algorithms. Different clustering algorithms were ’tried’ to assess the differences and the
quality of the obtained results. From the obtained results, in the model selection, the best
solutions will be chosen in order to understand them from a motion sickness perspective in
the named Model interpretation step. Finally, the analysis of the obtained driving patterns
will be the basis for the proposed recommendation system.

Next, the above-mentioned steps are detailed.

4.1. Data Cleaning

The first step is based on identifying and deleting possible error points or samples
that are out of reasonable bounds. For this purpose, three different methods were used:
manually identifying strange samples, the isolation forest algorithm [41], and the local
outlier factor algorithm [42].
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4.2. Dimensionality Reduction

In order to simplify the final system, dimensionality reduction will be studied. Dif-
ferent techniques that show improvements in comparison to not using feature selection
at all were ’tried’ in order to select the most important features [43–45]. The first selection
method is based on the correlation analysis between car signal variables and the motion
sickness evaluation criteria (MSDVxy). Secondly, recursive feature elimination (RFE) with a
Random Forest regressor [46] is used. Moreover, in order to study an alternative approach
that focused on obtaining results by starting just from driver-controlled variables, PCA was
used to transform and reduce the dimensionality of the original data [47].

4.3. Categorization and Oversampling

MSDVxy is the motion sickness evaluation criterion, and although it is not used later in
the unsupervised learning of the clustering algorithms, since it is important that the dataset
becomes closer to a uniform distribution over motion sickness levels, it is the criterion for
categorization. It is believed that the higher the motion sickness, the smaller the number of
samples; thus, the purpose of this section is to generate more high-level discomfort samples
to identify the different causes of medium/high discomfort.

Hence, categorization is done by separating motion sickness into different levels.
On the other hand, for Oversampling, different algorithms (SMOTE [48], BorderlineS-
MOTE [49], and SVMSmote [50]) generate new synthetic samples following some sim-
ple rules.

4.4. Clustering Methods

Once the main data processing pipeline was applied to the starting data, our newly
created database was used to effectively train machine learning techniques. In particular,
different clustering algorithms were ’tried’. Algorithms that allowed complete control over
the number of clusters became favored. In this situation, model creation and interpretation
greatly benefit since a bigger number of clusters of our choosing subsequently create
different and richer internal separations, perfect for better interpretations. These algorithms
are K-Means [51], SpectralClustering [52], and AgglomerativeClustering [53].

4.5. Model Selection

As the combination of techniques and algorithms will generate many models, an
objective criterion is needed. To do this, the silhouette coefficient [54] was employed,
which quantified the distance between each point within a cluster and the average distance
of all clusters. A data space with perfectly separated clusters scored a coefficient of 1 while
a space with very adjacent clusters and an indistinguishable structure scored close to 0.

It is important to note that clustering algorithms are often used with labeled samples,
which in turn assess the quality of the models. In this work, there is no real category
attached to the samples; the grouping of samples (car signal values) will depend on the
internal criteria of the used technique.

4.6. Model Interpretation

Once all models were evaluated, the subsets of models with the highest values of
the silhouette coefficient were manually analyzed to identify those with the highest inter-
pretability according to their driving variables. This slightly subjective approach aims to
find the clustering solution that distinguishes different driving patterns and, hence, motion
sickness levels, and the origin of this lack of comfort.

4.7. Recommendation System

After the combination of actions that generated motion sickness in each cluster was
identified, we determined the driving patterns related to higher levels of motion sickness
and recommend specific driving improvements that reduced it.



Appl. Sci. 2023, 13, 1510 8 of 18

5. Experimental Results of the Applied Methodology
5.1. Data Processing Algorithms

First, in order to clean errors in the dataset, the local outlier factor algorithm was
selected, eliminating 25 samples. It was observed that the isolation forest method had a
very aggressive approach to data point elimination, which with our limited sample size
brought problems down the line.

Concerning dimensionality reduction, first, the Pearson coefficient for correlation
analysis was analyzed. In Figure 6, all variables presented in Section 3, are compared to
the motion sickness criteria: MSDVxy. Secondly, recursive feature elimination (RFE) with
a random forest regressor was applied to all variables until five variables were left. The
results of both methods are summarized in Table 1.

In the first group, all variables with a higher factor than 0.5 to MSDVxy were declared
of interest. In the second, only the variables which showed a correlation higher than 0.67
were selected. The third group contains the five variables obtained from applying the RFE
algorithm. From the three options, the options with fewer variables are preferable, so,
the two options that contained five variables from Table 1 were selected. Moreover, SWA
showed a 0.9 correlation with a SWRS variable; thus, among the two five-variable options,
the variables obtained with RFE were selected.
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Figure 6. Correlations between all variables that belong to accelerations, rotational speeds,
driver−controlled variables, and our discomfort criteria (MSDVxy).

Table 1. Different groups of variables after applying feature selection techniques.

Variables

CA (Coeff > 0.5) ACCy, YR, SWRS, ACCx, SWA,
BP, ACCx_neg, PR, RR

CA (Coeff > 0.67) ACCy, YR, SWRS, ACCx, SWA

RFE (N = 5) ACCy, YR, SWRS, ACCx, ACCx_neg

Concerning PCA technique results, the starting seven driver-controlled variables were
transformed into five new PCA variables (PCA1, PCA2, PCA3, PCA4, PCA5). These five
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variables are enough to explain 95% of the variance of the original dataset. The way that
PCA functions is that it finds the direction with the highest percentage (%) of the variance
of the data space, thus, PCA1 explains over 35% of the total variance, and PCA2, the second
direction with the most variance, explains almost 25%.

The new dimensions of our PCA-created space are a combination of the initial vari-
ables, orthogonal, and they minimize the reconstruction error of the samples. Each new
variable can be decomposed as a linear combination of the starting parameter used to train
the following Equation (4). Coefficients for the PCA model can be found in Table 2. Since
we can deconstruct the newly created axis, we can still maintain the high interpretability of
the variables.

PCAi = βi
1X1 + βi

2X2 + · · ·+ βi
N XN (4)

Table 2. Coefficients of the PCA model trained with driver-controlled variables.

PCA1 PCA2 PCA3 PCA4 PCA5

BP 0.429 0.403 0.357 0.198 −0.69

ERPM −0.343 0.570 −0.387 −0.546 −0.244

GP −0.184 −0.03 −0.421 0.164 −0.256

PGP −0.126 −0.078 −0.510 0.653 −0.211

SWA 0.561 0.039 −0.336 −0.164 0.225

SWRS 0.571 0.085 −0.402 −0.053 0.107

VS −0.089 0.705 0.104 0.423 0.536

Regarding oversampling, after considering different possibilities, MSDVxy was di-
vided into five equidistant categories, each representing a higher motion sickness sensation
ranging from very low to very high as seen in Table 3. It is obvious that the MSDVxy
distribution over all samples is not regular since there are many more samples with low
MSDVxy than high MSDVxy.

Table 3. Categorization divisions and the original values of the utilized criteria.

MSDVxy MSDVxy Category Sample Number(Normalized) (Original Values)

0–0.2 0–3.99 Very Low 371

0.2–0.4 3.99–5.71 Low 335

0.4–0.6 5.71–8.30 Normal 154

0.6–0.8 8.30–11.19 High 43

0.8–1 11.19–28.83 Very High 7

The three algorithms (SMOTE, BorderlineSmote, and SVMSmote) perform their tasks
of generating high-motion sickness samples adequately, balancing the number of samples in
each category. As a result, all categories had 432 samples after the algorithms were applied.
It was concluded that the best results were achieved with BorderlineSmote and SVMSmote
algorithms, with almost no difference between them. Applying any of those oversampling
algorithms showed big improvements over not applying oversampling algorithms at all.

5.2. Model Training

The first batch of results studied the models created by the three clustering algorithms
for the two groups of variables selected in the previous subsection. The process has
handled a variety of parameters, such as the number of clusters, initializations, and different
oversampling algorithms.
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The obtained silhouette coefficients for the first group of variables (ACCy, YR, SWRS,
ACCx, ACCx_neg) are presented in Table 4. Moreover, the results of the silhouette coeffi-
cients regarding the models created with the PCA variables (PCA1, PCA2, PCA3, PCA4,
PCA5) using the same combination of algorithms and parameters are shown in Table 5.

Concerning the clustering result evaluation, as the representation spaces used to
evaluate the silhouette coefficients are not the same, coefficient results for both approaches
cannot be directly compared. However, we can argue that K-means obtained the best
results in both classes. The difference is especially high in Table 5 where the worst K-means
model to appear in the Table is almost better than any model of the other algorithms. As a
general rule, fewer clusters obtain better scores but since the final objective is to utilize the
created clusters to identify driving patterns and styles, more clusters may be beneficial in
pattern identification.

Table 4. Obtained silhouette coefficients for feature-selected variables.

Number of Clusters Clustering Algorithm

Spectral Agglomerative K-Means

N = 5 0.3269 0.3581 0.3978

N = 6 0.2871 0.3492 0.3791

N = 7 0.2652 0.3159 0.3394

N = 8 0.2736 0.29246 0.3375

N = 9 0.2675 0.2995 0.3149

Table 5. Obtained silhouette coefficients for PCA-generated variables.

Number of Clusters Clustering Algorithm

Spectral Agglomerative K-Means

N = 5 0.2727 0.3053 0.3133

N = 6 0.2468 0.2545 0.3171

N = 7 0.2714 0.2623 0.3034

N = 8 0.2763 0.2674 0.3051

N = 9 0.2798 0.2695 0.3048

Due to the nature of the data, a good amount of overlapping is expected, which explained
the low silhouette scores, but the results allow us to objectively identify the best models.

6. Cluster Interpretation and Feasible Recommendations

Once the best models are identified, the final model selection is done manually by ana-
lyzing the best previously selected ten models of each approach. In this section, two models
with high silhouette scores (with interpretable rich internal structures) were analyzed.

Although clustering was done with the selected variables detailed in Section 5.2, once
clustering was completed, a statistical analysis of all driver-controlled variables for each
cluster was computed. Relating this analysis with the level of MSDVxy, it is possible to
diagnose the driving actions that cause motion sickness. Therefore, the interpretation
of each cluster can be used to assist the car or driver with recommendations in order to
improve the motion sickness of passengers.

6.1. Solution 1: Variables Selected by the RFE Method and Classified by K-Means Algorithm

The model was created with the variables ACCx, ACCx_neg, ACCy, YR, and SWRS,
which were selected using correlation and the recursive feature elimination method detailed
in Section 4.2.
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The mean value of MSDVxy for each cluster is displayed in Table 6, whereas the
mean of the driver-controlled variables for each of the groupings is shown in Figure 7.
The generated 5 clusters ordered from C1 (Green) to C5 (Black) are interpretable for the
following reasons:

• C1 (Green): BP, SWA, and SWRS values are low. It also has one of the slowest VSs.
It stands out that while ERPM and GP values are high compared to other clusters,
motion sickness is the lowest of all. No recommendation would be given to a window
of this color.

• C2 (Cyan): It contains the highest average VS of all clusters; the SWA and SWRS
variables are very low (similar to those in the C1 cluster), but the BP variable shows
moderate use. A more careful and smooth brake pedal usage or slower speeds would
reduce the medium motion sickness of this cluster.

• C3 (Purple): While the motion sickness sensation is just a bit higher than that of C2,
the causes are completely different; samples in the C3 cluster show a correct and small
BP usage combined with low VS and similar motor and acceleration values to C1. The
SWA and SWRS variables are the key difference. A reduction in sharp turns would
reduce the steering wheel use, the most important factor in the motion sickness of
this cluster.

• C4 (Red): A high BP usage with sharp SW actions. Red shows a high level of motion
sickness. Reducing the brake pedal and the steering wheel’s aggressive use would be
the most direct recommendation.

• C5 (Black): It is the smallest cluster, and it is just a more extreme version of the red clus-
ter, with similar BP and higher SWA and SWRS values. The same recommendations
as the ones for C4 apply.

Table 6. The obtained MSDVxy average value when all samples of each cluster (Ci) of Solution 1
are considered.

Clusters (Ci) MSDVxy

C1 (Green) 0.15

C2 (Cyan) 0.29

C3 (Purple) 0.36

C4 (Red) 0.49

C5 (Black) 0.75

BP

ERPM

GP

PGPSWA

SWRS

VS

0.25

0.50

0.75

1.00

Low MSDVxy

C1

(a) Low MSDVxy

BP

ERPM

GP

PGPSWA

SWRS

VS

0.25

0.50

0.75

1.00

Mid MSDVxy

C2
C3

(b) Medium MSDVxy

BP

ERPM

GP

PGPSWA

SWRS

VS

0.25

0.50

0.75

1.00

High MSDVxy

C4
C5

(c) High MSDVxy

Figure 7. Spider graphs of low (a), medium (b), and high (c) MSDVxy clusters in the models trained
with the RFE chosen variables. The visualized variables can be represented with values in the
[0, 1] range since they are normalized. The combination of the mean of each variable gives us the
characteristic form of each cluster.
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6.2. Solution 2: Variables Obtained by the PCA Method and Classified by K-Means Algorithm

The model was created with the five PCA variables defined in Section 4.2. The mean
value of MSDVxy for each cluster is displayed in Table 7, whereas the means of the driver-
controlled variables for each grouping is shown in Figure 8. The different meanings and
recommendations for the clusters are as follows:

BP

ERPM

GP

PGPSWA

SWRS

VS

0.25

0.50

0.75

1.00

Low MSDVxy PCA

D1
D2

(a) Low MSDVxy

BP

ERPM

GP

PGPSWA

SWRS

VS

0.25

0.50

0.75

1.00

Mid MSDVxy PCA

D3
D4
D5

(b) Medium MSDVxy

BP

ERPM

GP

PGPSWA

SWRS

VS

0.25

0.50

0.75

1.00

High MSDVxy PCA

D6
D7

(c) High MSDVxy

Figure 8. Spider graphs of low (a), medium (b), and high (c) MSDVxy clusters in the models trained
with PCA-transformed variables. The visualized variables can be represented with values in the
[0, 1] range since they are normalized. The combination of the mean of each variable gives us the
characteristic form of each cluster.

Table 7. The obtained MSDVxy average values when all samples of each cluster (Di) of Solution 2
are considered.

Clusters (Di) MSDVxy

D1 (Green) 0.11

D2 (Cyan) 0.19

D3 (Blue) 0.26

D4 (Purple) 0.26

D5 (Orange) 0.31

D6 (Red) 0.49

D7 (Black) 0.58

• D1 (Green): Baseline cluster that shows very good driving with the lowest motion
sickness. GP and PGP have medium values but do not translate into motion sickness.
It is also characterized by very low values in everything else, BP pressure, SW, and VS.
No recommendation is needed here.

• D2 (Cyan): With the second-lowest motion sickness value, this cluster group samples
with very high ERPM and medium GP, PGP, and VS, but shares low BP and SW values
in D1. No recommendation is needed here.

• D3 (Blue): The same motion sickness as D3, but instead of abrupt BP usage, D4 groups
the samples with even higher GP values, combined with medium VS. Smoother
accelerations would result in direct improvements.

• D4 (Purple): Medium motion sickness; holds the highest average VS with medium-
high BP values. Other variables are either medium or low. Driving slower or smoother
brake pedal usage would be ideal recommendations.

These first four clusters do not have high steering wheel usage, so recommendations
need to be focused on speed and pedals.

• D5 (Orange): The first cluster with medium SWA and SWRS values; it does not have
any high or distinguishable high-variable value. It has low BP and VS. A smoother
steering wheel usage would significantly improve the generated motion sickness.
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• D6 (Red): High motion sickness cluster related to very high SWA and SWRS values
with aggressive BP management. The improvement of the problematic variables
(steering wheel and brake pedal) would make the samples closer to the D5 cluster.

• D7 (Black): High motion sickness cluster related to high SWA and SWRS values with
aggressive BP management and high VS. Comfort improvement could be achieved
by smoother steering wheel usage, slower driving, and less aggressive braking. The
main difference with D6 is the higher vehicle speed and ERPM.

While the cluster numbers are higher than in the previous Section 6.1, many of the
generated structures from the previous solution also appear here. The worst clusters, red
(C4 and D6) and black (C6 and D7), are very similar in both models sharing high BP, SWA,
SRWS, and medium speeds. The C3 cluster of Solution 1 is very similar to the D5 of Solution
2 with medium-high SWA, SWRS, ERPM, GP, and PGP. The C2 cluster of Solution 1 is also
similar to the D4 cluster of Solution 2, obtaining the characteristically high BP, VS, and little
of everything else. The most comfortable cluster of Solution 1, C1 (Figure 7), also seems to
be a mixture of the comfortable D1 and D2 clusters of Figure 8 with D1 obtaining the lower
end of ERPM and VS, and D2 obtaining the higher end of these variables.

This last model shown in Figure 8 is used in the following sections, where driving
style and temporal evolution are studied; thus, Table 8 summarizes the clustering driving
patterns and driving advice recommendations in each case.

Table 8. Motion sickness level of each cluster, the characteristic that causes discomfort in passengers
and the recommendations given to reduce it.

Cluster MSDV Level Driving Pattern Recommendation

D1
(Green)

Low None None

D2
(Cyan)

Low High ERPM None

D3
(Blue)

Medium High GP, PGP,
Medium VS

Reduce GP, PGP

D4
(Purple)

Medium High VS,
Medium-High BP

Reduce VS, BP

D5
(Orange)

Medium Medium SW Reduce SW

D6
(Red)

High High SW and BP Reduce SW, BP

D7
(Black)

High High SW,
Medium Everything

Reduce SW, VS, BP

6.3. Driving Style Analysis

Driving styles can be deduced based on cluster assignment by utilizing Figure 9,
which shows the cluster distribution for models created by the RFE variables (left, Ci
clusters, Solution 1 from Section 6.1) and PCA variables (right, Di clusters, Solution 2 from
Section 6.2). Those figures show the number of windows belonging to each cluster for each
driver traveling the same route. The number of windows determines the duration of the
route; faster drivers will have fewer windows.
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Figure 9. Cluster assignments from the chosen model created after using the RFE feature selection (a),
Ci clusters of Solution 1) or PCA (b), Di clusters of Solution 2) on the driver-controlled variables. Each
vertical bar represents one driver, starting with IF1017 and ending with IM1089; the bar represents
how many points from each driver belongs to what cluster. This allows us to visualize the distribution
of each driver and its comparison to others.

As the model obtained in Solution 2 offers a more diverse cluster result with seven distinct
clusters, we will use this clustering to determine driver style differences. Table 9 summarizes
the figure interpretation, driving style determination, and possible recommendations.

Many of these conclusions are applicable if we use the solution obtained by applying
RFE (Figure 9a); however, since the models are different, some patterns are not completely
represented and making direct links between the two models can be indicative but not
decisive. Drivers that have the lowest amounts of C1 windows, also have low D1 and D2
cluster memberships. The only notable exception seems to be IM1051, which has 80% of
C1 windows but only a small number of windows are in D1. We can safely say that both
models have categorized the low MSDVxy samples of each driver in different yet similar
ways. Concerning clusters related to high steering wheel usage of the PCA model (D5, D6,
and D7) and RFE variables (C3, C4, C5), it seems that D5 is perfectly represented in the C3
cluster in driving style distribution. With C4 and C5, direct comparisons are not as useful
since the error of a small number of windows could completely change our evaluation,
but we can observe how all five drivers with no C4 and C5 clusters do not have D6 or D7
(except IM1086, which has a low D6).

Table 9. Driving style categorization, driver special features, and possible recommendations.

Drivers Distinctive Clustering
or Special Features

Possible Recommendations

IF1019 Fastest driver -

IM1070, IM1072, IM1089 Slowest drivers -

IM1072
Best driver

Highest number of D1
No high-risk clusters

-

IF1019, IM1060, IM1079,
IM1084, IM1087

High number of D2 Smoother gear change and
ERPM

IF1017, IM1051, IM1085 High number of D3 Smoother GP, PGP and ERPM

IM1051, IM1062 High number of D4 Smoother VS and BP
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Table 9. Cont.

Drivers Distinctive Clustering
or Special Features

Possible Recommendations

IF1018, IM1062, IM1089 High number of D5 Smoother SW

IF1018, IM1059, IM1060,
IM1062, IM1065, IM1070

High number of D6 Smoother SW and BP

IM1059, IM1060 Presence of D7, D6 and D5 Smoother general driving is
advised: SW, BP, VS reduction

IF1017 Presence of D7 but no D6 Smoother general driving is
advised: SW, BP reduction

IF1019 Presence of D7 but no D6, D5 Smoother general driving is
advised in exceptional cases

6.4. Temporal Evolution

Following the results and analysis of the previous sections regarding Solution 2, another
way to visualize the distribution of the assigned clusters is presented in Figure 10. The
figure examines the windows on a temporal basis, showing how the cluster assignment of
each driver changes within the route.

0 10 20 30 40 50
Number of windows

IF1017
IF1018
IF1019
IM1051
IM1059
IM1060
IM1062
IM1065
IM1067
IM1070
IM1072
IM1079
IM1082
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IM1087
IM1089

D
riv

er
s

D1 0.11
D2 0.19
D3 0.26
D4 0.26
D5 0.31
D6 0.49
D7 0.58

Figure 10. Temporal evolution of the cluster assignments of all drivers for Solution 2 clusters. Each
horizontal bar represents a driver, starting with IF1017 and ending with IM1089. Each bar is composed
of a number of windows, depending on how fast they completed the route. By observing the order of
the assigned clusters, we can assume the nature of the road and observe how each driver approaches
the route.

It is possible to observe some blank windows, for example, the first two windows of
driver IF1018. These empty windows are those that were eliminated in the data cleaning
step but are still represented so that the chronology is maintained.

By comparing the clusters and recommendations summarized in Table 8 with Figure 10,
we can observe the path of all drivers. The first direct conclusion is that, as observed in our
previous work [34], the route features play a key part in passenger comfort. Data support
that the route has a rough start, with many of the D5, D6, and D7 windows located at
the start. Moreover, while high-risk windows are located in the same parts, the number
of windows, an indicator of the intensity of the pattern, can be clearly discerned. Thus,
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drivers, such as IM1067, IM1065, IM1062, and IM1051, exhibit at least four medium/high-
risk windows. Driver IM1089 only has one D5 window before moving into a continuous
D1 assignment.

Furthermore, while changes between clusters do happen, most changes are restricted
to clusters of the same motion sickness severity.

7. Conclusions

This work presents an exhaustive methodology that combines data processing tech-
niques and clustering algorithms in order to determine which driver actions are responsible
for the motion sickness in passengers.

After analyzing numerous data augmentation and transformation techniques, the
best data processing pipeline was designed, and an exhaustive clustering analysis was
conducted in order to obtain a good recommendation system that is comfort-based.

The pipeline consists of data cleaning by the local outlier factor (LOF), data normal-
ization, a dimensionality reduction process based on PCA, and the data augmentation of
either SVMSmote or BorderlineSmote, in conjunction with a K-means clustering algorithm;
it is the most promising.

The method was validated with a subset of the established Uyanik database. The
results show that a balanced number of clusters with distinct driving patterns and different
levels of motion sickness is achieved. This cluster system can be used to distinguish driving
styles and propose driving advice. Thus, the main objective of creating a recommenda-
tion system based on comfort (by studying driving patterns) was proven possible and
was achieved.

The proposed methodology, algorithms, and analysis have good results on the selected
road type, which sheds light on the generalization of the proposed approach.

The next reasonable step is the generalization of the methodology in order to apply it
to different types of roads. A robust model that must take the road type into account to
correctly assess different situations is proposed. Furthermore, instead of focusing on the
motion sickness analysis, the generalization of the methodology is proposed in order to
use it for general discomfort improvement. Moreover, the physical implementation of the
obtained model in field programmable gate array (FPGA) hardware will be carried out.
Finally, a real-time comfort analysis (before and after the driving recommendations) was
executed and will be compared with passengers’ answers from questionnaires in order to
validate the complete system.
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