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Extracto - resumen

En el ámbito del diseño de computadores, la simulación es una herramienta
imprescindible para la validación y evaluación de cualquier propuesta arquitectónica.
Las ténicas convencionales de simulación, diseñadas para su utilización en
computadores secuenciales, son demasiado lentas si el sistema a simular es grande o
complejo. El objetivo de esta tesis es buscar técnicas para acelerar estas simulaciones,
aprovechando el paralelismo disponible en multicomputadores comerciales, y usar esas
técnicas para el estudio de un modelo de encaminador de mensajes. Este encaminador
está diseñado para formar infraestructura de comunicaciones de un hipotético
computador masivamente paralelo.

En este trabajo se consideran tres técnicas de simulación paralela: síncrona,
asíncrona-conservadora y asíncrona-optimista. Estos algoritmos se han implementado
en tres multicomputadores: un Supernode basado en Transputers, un Intel Paragon y
una red de estaciones de trabajo. Se caracteriza la influencia que tienen en las
prestaciones de los simuladores aspectos tales como los parámetros del modelo
simulado, la organización del simulador y las características del multicomputador
utilizado.

Se concluye que las técnicas de simulación paralela optimista no resultan adecuadas
para trabajar con el modelo considerado, aunque pueden ofrecer un buen rendimiento en
otros entornos. La red de estaciones de trabajo no resulta una plataforma apropiada para
estas simulaciones, ya que una red local no reúne condiciones para la ejecución de
aplicaciones paralelas de grano fino. Las técnicas de simulación paralela síncrona y
conservadora dan muy buenos resultados en el Supernode y en el Paragon,
especialmente si el modelo a simular es complejo o grande—precisamente el peor caso
para los algoritmos secuenciales. De esta forma, estudios previamente considerados
inviables, por ser demasiado costosos computacionalmente, pueden realizarse en
tiempos razonables. Además, se amplía el espectro de posibilidades de los
multicomputadores, utilizándolos para algo más que aplicaciones numéricas.



Abstract

In the field of computer design, simulation is an essential tool to validate and
evaluate architectural proposals. Conventional simulation techniques, designed for their
use in sequential computers, are too slow if the system to simulate is large or complex.
The aim of this work is to search for techniques to accelerate simulations exploiting the
parallelism available in current, commercial multicomputers, and to use these
techniques to study a model of a message router. This router has been designed to
constitute the communication infrastructure of a (hypothetical) massively parallel
computer.

Three parallel simulation techniques have been considered: synchronous,
asynchronous-conservative and asynchronous-optimistic. These algorithms have been
implemented in three multicomputers: a transputer-based Supernode, an Intel Paragon
and a network of workstations. The influence that factors such as the characteristics of
the simulated models, the organization of the simulators and the characteristics of the
target multicomputers have in the performance of the simulations has been measured
and characterized.

It is concluded that optimistic parallel simulation techniques are not suitable for the
considered kind of models, although they may provide good performance in other
environments. A network of workstations is not the right platform for our experiments,
because the communication demands of the parallel simulators surpass the abilities of
local area networks—the granularity is too fine. Synchronous and conservative parallel
simulation techniques perform very well in the Supernode and in the Paragon, specially
if the model to simulate is complex or large—precisely the worst case for traditional,
sequential simulators. This way, studies previously considered as unrealizable, due to
their exceedingly high computational cost, can be performed in reasonable times.
Additionally, the spectrum of possibilities of using multicomputers can be broadened to
execute more than numeric applications.
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1.1 Motivation of this work

The objective of the work presented in this dissertation is to propose efficient,
parallel ways to simulate message passing networks. The interest of the work is, from
our point of view, twofold:

• Most of the effort of our research group is focused on the study of the architecture
of parallel systems. As part of this research, we perform a significant amount of
simulation work. These simulations are very time-consuming, hence we would
like to find a way of accelerating them.

• We are also interested in the efficient use of currently available and future
multicomputers; in this context, we see simulation as an interesting application to
parallelize.

Next we elaborate these two ideas.

1.1.1 Analysis of real systems

During the last few years our research group has been working in the analysis and
design of message routers, with the goal of proposing innovative and efficient
architectural alternatives for the communication infrastructure of a distributed memory
multicomputer. The effectiveness of our proposals has to be validated somehow, and
these are the tools considered for this purpose: analytical models, actual
implementations and computer simulation. This situation is common to many fields of
science and engineering, so from now on we will widen our focus and speak, in general,
about the evaluation of any kind of real (or imaginary) system.

Analytical tools can be described as cheap and fast to use. Of course the
development of an analytical model of a system can be very complex, but once a set of
equations has been developed, it is easy to extract information from it. Unfortunately,
this approach commonly requires the assumption of simplifications in some (or many)
of the characteristics of the system, for the researcher to be able to tackle the analytical
problem. These simplifications can lead to a model whose behavior is (or may be) far
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from the behavior of the real system: the results might not be accurate if some of the
simplifying assumptions are not realistic.

The second approach can be described as slow and expensive. The system has to be
built, which usually means a good deal of prototyping and development of auxiliary
systems, and the price to pay is high, generally speaking. Another problem of this
approach is that it is very inflexible: once a system has been built, it is very difficult to
introduce improvements, replace parts of the system, etc. It is evident, though, that the
information obtained from the study of the real system (after an appropriate
instrumentation) is very accurate.

Computer simulation offers an interesting compromise: the system can be described
somehow (using a simulation language, in most cases) and then simulated using a
computer. The description could include simplifying assumptions, like the analytical
model, and then the simulation time would be short. In contrast, the description could
be very detailed, containing as many elements as the real system, and then a highly
accurate insight into the behavior of the system would be obtained. Of course, the
accuracy comes at a price: long simulation times.

Computer simulation is extremely flexible. It can be used in many contexts,
including the following ones:

• To validate an analytical model.
• To see how an existing system works, when it cannot be easily instrumented.
• To study a non existing system, without building it. There are many reasons not to

build a system: it might be very expensive, or it might be simply impossible.
• To analyze the effect of different design parameters, in an existing or a non-

existing system.

It has been mentioned already that the accuracy of the description of a system has an
important influence on the execution time of the simulations. However, not only the
degree of detail of a system description influences the execution times, but also its size.
Those using simulators know that analyzing large and/or detailed systems can be
desperately slow. In this context, any possibility of increasing the execution speed of
the simulators is very welcome. The speed increments due to the advances in VLSI
technology have been significant, but it always exists demand for more. The
introduction in the market of reasonably priced parallel systems has allowed researchers
to accelerate many computations, and it seems logical to think that simulation may also
benefit from this technology.
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1.1.2 Parallel implementation of applications in distributed memory
parallel computers

As researchers in the broad field of parallel computing, we are interested in
architectural proposals for building the next generation of Massively Parallel
Processors, and also in making a good use of currently available parallel computers.
During this research we have had access to three different parallel computing systems: a
Supernode at the UPV/EHU, a Paragon at Purdue University and a network of
workstations with MPI libraries also at Purdue. It was our interest to see how well
traditionally sequential applications could be adapted to run in these machines. A good
deal of work can be found in the literature reporting parallel algorithms to solve many
problems, mainly in scientific and engineering fields, but most of those problems have
some characteristics that make them, to some extent, easy to parallelize: big,
partitionable data structures, simple communication patterns, reduced data
dependencies, etc. There are many, general-purpose applications that have not received
such attention: compilers, editors, document preparation programs, etc. In many cases,
these applications do not have the properties that make the scientific code able to be
successfully parallelized.

Simulation can be included in this last group. While it is a tool commonly used by
scientists and engineers, simulation algorithms exhibit a behavior that makes them
difficult to parallelize: data structures are not always regular, communication among the
parts of the model may follow arbitrary patterns, there are very strong data
dependencies, and so on. But difficult does not mean impossible. As it will be explained
in Chapter 2, simulations can be parallelized, provided that new algorithms are
developed, instead of simply trying to make in parallel some of the operations of the
sequential programs.

Being successful in the search of parallel simulators is very important, because it
widens the spectrum of applications that can be run in an available parallel computer,
increasing the usefulness of the (in general expensive) investment, and demonstrating
that parallel computers are useful for more things than “number crunching”.

Obviously, we are not the first research group working in this field, as many work
has been done in the last 10—15 years. Most of the work discussed in the literature
about parallel discrete event simulation has been done using shared memory
multiprocessors. This is perfectly reasonable, for two reasons: (1) many multiprocessors
have been built and sold, so it makes sense to use them, and (2) they allow a more
optimized implementation of many algorithms (compared to distributed memory
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systems), including parallel simulation. However, it is currently assumed that future
massively parallel systems will be distributed memory systems [Zorp92]. Many
currently available machines, including the Intel Paragon multicomputer and systems
based on transputers, are built this way, using messages for synchronization and
communication. The use of a network of workstations as a fully distributed parallel
system is also becoming very popular, because it is a very cost/effective alternative to a
full-blown multicomputer. The most popular model of communication for these systems
is also message passing, and this is the approach we follow in this work.

1.2 The tool: parallel simulation

In the last years a considerable effort has been devoted to the parallel implementation
of discrete event simulators. The objectives were (1) to exploit the parallelism available
in current multicomputers and multiprocessors and, mainly, (2) to accelerate simulation
runs.

For some simulation studies, it is necessary to run several simulations to study the
influence of a certain set of parameters on the system under study. In these cases, the
most convenient way of accelerating the job is simply running as many simulations as
processors are available, each one with different input parameters. This technique is
called replication . The achieved efficiency is very good, because the simulations are
completely independent, and therefore there is no need of communication or
synchronization among the involved processors.

However, it is not always possible to replicate the simulator. In some studies it is
necessary to have the results of one simulation before starting with the next one; this is
the case when the aim is to tune a set of parameters. It is also possible that the memory
available at each processor is not large enough to keep a complete copy of the
simulator. These limitations of the replication approach justify the need of ways to
parallelize a single simulation run. Even if the processing elements are powerful enough
to run an individual simulation, it is possible to have more processors than experiments
to perform. Under these circumstances, it would be interesting to use many processors
for each experiment, combining replication with other forms of parallel simulation.

The most promising set of techniques to perform parallel simulation uses the model

decomposition  principle: the system to simulate is decomposed into several subsystems,
and each subsystem is assigned to a logical process (LP). The collection of LPs can run
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concurrently, each one simulating its part of the whole. However, in order to maintain
the causal relationships among the events in the simulation, a synchronization
mechanism is needed.

In this work we analyze three different synchronization mechanisms: synchronous,
conservative and optimistic. A brief description follows.

• Parallel simulation can be synchronous . This means that all the LPs which form
the simulator share the same vision of time, as if they had a global clock. Events
are simulated in the same order a sequential simulator would choose, simulating
in parallel only those events scheduled for the same time.

• Parallel simulation may also be asynchronous. In this case each LP has its own,
local view of time. In order to perform a simulation globally correct, each LP
needs to obey the following rule: execute all the incoming events in non-
decreasing timestamp order. This rule is not easy to follow because, after
executing a sequence of events, a new one might arrive from other LP, with a
timestamp smaller than that of the last executed event, thus impeding the receiver
LP to obey the stated rule.

- A conservative simulator never allows these situations to happen. To do
so, LPs block before executing an event, until it is totally safe to proceed.

- An optimistic simulator allows erroneous situations to arise, but those are
detected and a rollback  is done to jump to an error-free point in the
(simulated) past.

A more comprehensive description of these techniques will be given in Chapter 2.

1.3 The objective: analysis of message passing
networks

Previous research in parallel simulation shows that its efficiency is highly dependent
on the characteristics of the system under study. For this reason it is not feasible to
characterize the performance of the different parallel simulation algorithms in a general
context. It is possible, however, to select a set of related models and extract conclusions
about how a given algorithm performs with that set of models. Our research will focus
on models of message passing networks for multicomputers.
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In the quest for the TeraFLOP (and even the PetaFLOP) it seems that massively
parallel computers are the most reasonable way to go. These architectures consist of a
large collection of processors which might be able to collaborate to solve problems with
fine-grain parallelism. The programming model might be based either on message
passing or in the existence of a single memory space, although physically the memory
banks are distributed among the computer nodes. In either case, a mechanism is needed
to provide communication among the nodes, with low latency and high message
throughput.

The communication subsystem is one of the key points in the design of these new
architectures. Different designs and implementations, as those in the Cray T3D, the
Thinking Machines CM-5 and the Intel Paragon, are good examples of current parallel
computers where interconnection subsystems play fundamental roles.

Previous research of our group has been centered in this topic. In particular, several
interconnection topologies, routing strategies and message flow control techniques have
been studied with the aim of maximizing throughput and minimizing latency within a
reasonable cost [BHBL87, BHBA91, Migu91, IBJA93, Arru93, Izu94]. These studies
concluded that a bi-dimensional torus network with static routing in order of dimension
and cut-through flow control is a good candidate for a high performance message
passing network. The work presented in this dissertation has been focused on the
simulation of networks with these characteristics. A detailed description of the model
can be found in Chapter 5.

1.4 The means: programming in multicomputer
environments

A parallel computer might provide one or more of these programming paradigms:
SIMD  (Single Instruction Multiple Data), meaning that all the processes run the same
program, instruction by instruction, at the same time, and MIMD (Multiple Instruction
Multiple Data), meaning that each process might run a completely different program. A
particular, more restrictive case of MIMD is SPMD  (Single Program Multiple Data),
where all the parallel processes run the same program. The parallel simulation
algorithms briefly introduced in the Section 1.2 can be easily implemented as SPMD
programs.
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The processes running in parallel need a means of communication and
synchronization. The most common alternatives are shared memory and message
passing. In the first case all the processes share the same vision of the memory space;
communication is provided by means of shared data structures, while synchronization
might be provided by mechanisms such as semaphores. In the second case each process
has its own memory space; both communication and synchronization are provided by
means of messages sent between processes.

Our work has been developed in message passing environments. There are several
reasons for making this decision. Firstly, message passing is a paradigm used widely on
certain classes of parallel machines, especially those with distributed memory; in
particular, the Supernode, the Paragon and the network of workstations (NOW) with
MPI used for this work provide only message passing for communication among
processes. Secondly, parallel simulation algorithms based on model decomposition are
described by means of a set of processes which interchange messages.

There is not a single paradigm for message passing, though. Communication in the
Supernode is done using the concept of channel , and send/receive operations are both
blocking: an operation on a channel keeps a process blocked until the peer operation is
done by another process on the same channel. In the Paragon and MPI processes have
identifiers (addresses), and messages are delivered using the destination address. The
send operation is (usually) non-blocking, while a receive operation keeps a process
blocked until a message is received.

The hardware mechanism used for message passing should not be a concern for the
programmer, but nevertheless it has to be taken into account, because it greatly
influences the performance of the communication functions and, thus, of the
applications. Slow interconnection systems favor the development of solutions with
relatively infrequent communication, while a fast system allows the development of
fine-grain applications, where communication is very frequent. The characteristics of
the three different systems used in this research are quite different:

• In the network of workstations, the MPI message passing library uses TCP/IP
over an Ethernet local area network. This medium provides a raw 10 Mb/s data
rate, which must be shared among all the stations attached to it. The
communication effort is performed by the workstations CPUs, with the aid of the
Ethernet cards for accessing the medium.

• In the Supernode, each node (a transputer) has 4 bi-directional serial links with a
maximum data rate of 10 Mb/s each, so the aggregate data rate is higher than in
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the previous case. The communication effort is done inside the transputer: there
are hardware controllers for the links which can operate in parallel with the CPU,
but some functions (link sharing, routing) do not have any hardware support.

• In the Paragon there is a good deal of hardware support for message passing:
communication is separated of computation, by means of a collection of hardware
message routers organized in a mesh topology. The communication links which
join routers can move up to 1600 Mb/s. Additionally, each node has a second
processor specialized in communication, leaving the main processor free to spend
its time performing computation.

In Chapter 3 we will give a deeper insight into the programming models provided by
parallel systems, as well as particular descriptions of the environments used in this
research. The influence that the communication ability of the systems have on the
simulation performance is further considered in Chapter 6.

1.5 Major contributions

The major contributions of this work include the implementation of a model of
message passing network which can be simulated using a discrete event simulator,
along with six simulation engines able to work with that model: one is sequential, and
the other five are parallel, testing three different synchronization mechanism in three
different multicomputing environments. We have characterized:

• Which synchronization mechanisms provide an adequate tool for our studies, and
which others are not so good. The synchronous and conservative approaches
perform well, while the optimistic approach does not seem to be the right one for
our purposes.

• The influence of the target multicomputer on the efficiency of the simulation. Our
simulators exploit a fine-grain parallelism which requires a fast message passing
infrastructure. A network of workstations is not efficient, because communication
is too costly compared to computation.

• The effect of the parameters of the model on the performance of the simulators.
Models of large size whose components interact frequently constitute a challenge
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for sequential simulators, but simplify the synchronization tasks of conservative
and synchronous parallel simulators, offering good levels of performance.

• The effect that the organization of a simulator has in its performance. The
partition of a system into a set of subsystems might be done in several ways,
leading to fine, medium or large grain LPs. In the case of large grain LPs, each
processor executes just one LP. In the case of medium and fine grain LPs each
processor executes several (or many) LPs. Large grain LPs provide better
performance than fine grain LPs but, if the processors and the operating system
provide appropriate support for concurrency, it is advantageous to assign several
medium grain LPs to each processor.

1.6 Overview of this dissertation

The previous sections have given an introduction to the work presented in this
dissertation. Now we summarize how it is organized.

In Chapter 2 we provide a survey of parallel simulation techniques. We start with a
description of the general process of studying a system by means or simulation,
identifying the execution of a simulation program in a computer as one (but not the only
one) step in this process. After introducing the main discrete event simulation concepts,
two common sequential simulation techniques are presented: time-driven and event-
driven. Then, a description of the ways of exploiting the parallelism available in current
multiprocessors is given, focusing on those techniques based on model decomposition.
After that, the synchronous, conservative and optimistic synchronization mechanisms
are presented, along with a series of improvements and optimizations to the basic
algorithms.

Chapter 3 gives an introduction to the programming environments available for
parallel systems, with special attention to the three used in this research: a Supernode,
an Intel Paragon and a network of Sun workstations with a MPI (Message Passing
Interface) library. All three have in common that they are distributed memory systems,
providing a message passing mechanism for synchronization and communication.

Chapter 4 presents the results of a preliminary study of simulation techniques
performed in a transputer-based system. A simplistic, synthetic model is used to test
how four different simulators (sequential time-driven, sequential event-driven, parallel
conservative and parallel optimistic) behave under different parameters of the model,
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using different number of processors. Although the model is not realistic, it provides a
simplification of the actual models we are interested in. It is observed that the
characteristics of the simulated model have a great impact on the achieved performance,
for the case of the parallel simulators. Additionally, the performance of the conservative
simulator clearly exceeds that of the optimistic. The conclusions of this preliminary
study were tested (and corroborated) by later studies with a more complex model.

Chapter 5 describes the experimental environment developed for this work. It
includes a detailed description of the kind of interconnection network we are interested
in: torus networks of pairs <processor, router>. The router is the key element of the
study, because it is the network of routers what constitutes the communication
infrastructure of a multicomputer. After the description of the model we present five
parallel simulators which have been developed and studied as part of this work:
conservative for the Supernode; conservative, optimistic and synchronous for the
Paragon, and conservative for a network of workstations with MPI. Some portability
issues are also discussed: one of the algorithms has been implemented in three computer
systems, needing specific tailoring to adapt it to the different programming models.

Chapter 6 describes the experiments performed with the five parallel simulators.
Each one is studied separately, presenting in first place the experiments, followed by the
results and a series of partial conclusions. As the conservative algorithm has been
implemented in three different systems, the influence of the host computer on the
achieved performance is discussed. The availability of three different algorithms for one
of the host computers (the Paragon) also allows for a characterization of the obtained
performance as a function of the synchronization technique.

Finally, Chapter 7 summarizes the contributions of this work, suggesting lines for
further research.



 



Chapter 2

Parallel discrete event
simulation

This chapter surveys the literature about parallel discrete event

simulation, with the purpose of introducing the terminology and algorithms

used in the remainder of this dissertation. After a general introduction to

discrete event simulation, it is shown how the concept of causal order is the

key element which allows the parallelization of simulations, when used

instead of temporal order. The three parallel simulation algorithms used in

this research are then introduced: synchronous (SPED), conservative

(CMB) and optimistic (TW).
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2.1 Introduction

As already discussed in Chapter 1, most of the fields of science and technology
require the modeling and analysis of the behavior of dynamic systems. Common to
realistic models of time dynamic systems is their complexity, very often prohibiting
numerical or analytical evaluation. Prototyping is a complementary tool to use, but in
many cases it is very expensive and in others it is absolutely unfeasible. For those cases,
simulation remains the only tractable methodology.

As computer simulation in general is such a broad field, in this chapter we will
narrow our domain of study by focusing on simulation of discrete event systems. After
doing so, the classical, sequential approaches to this class of simulation problems are
described, and then we make a survey of the currently available techniques to realize
parallel discrete event simulations (PDES). The methods and terminology described in
this chapter will be repeatedly used in the remainder of this dissertation.

The chapter is structured as follows. We start considering the general topic of
analyzing systems by means of computer simulation (§2.2), and then the sequential
simulation algorithms for discrete event systems are introduced (§2.3). As these
algorithms become very expensive in memory demands and execution time when the
problem being simulated grows, the need of parallel computers to perform the
simulations becomes evident. Several approaches to the parallelization of discrete event
simulators are presented, with special attention to event-driven simulations based on
model decomposition (§2.4). Sections 2.5, 2.6 and 2.7 are devoted to the description of
three important families of parallel simulators: synchronous, asynchronous conservative
and asynchronous optimistic. The basic algorithms are introduced, with their most
important variations or optimizations. Finally, section 2.8 gives some conclusions and
some directions for those interested in a deeper insight into this field.

2.2 Modeling and simulation

We will start defining the problem to solve, i.e., the simulation of real systems using
computers [Zeig76, Bank84, Misr86]. This activity needs, at least, these four steps:
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1 Study of the real system in order to understand its characteristics.
2 Modeling the system. A key issue in this step is to discriminate between relevant

and irrelevant characteristics of the system. The irrelevant ones are not included in
the model.

3 Simulation of the model, using computers.
4 Analysis of the simulator’s output, to understand and predict the behavior of the

real system.

We are mostly interested in the third step, i.e., the simulation of the model. The
observation of systems, the modeling process and the evaluation of results strongly
depend on the actual system under study, but most simulation algorithms are
independent of the model characteristics.

The systems to study can be separated into two categories: discrete or continuous. A
system is discrete  when its state  changes only at discrete times, whereas a system is
continuous  when its state varies continuously in time.

A model being simulated can be classified as static or dynamic, deterministic or
stochastic, and discrete or continuous. A model is static  when it tries to capture a
snapshot of a system, at a particular instant of time, and it is dynamic  if it tries to
represent the evolution of the system along a certain interval of time. A model is
deterministic  when it generates, for a given set of input values, a single set of output
values; it is stochastic  when random variables are part of the input and, therefore, the
output can only be considered as an estimate of the actual behavior of the system.
Regarding the division of models among discrete  and continuous , the same definitions
used to characterize systems are valid here too. It should be stressed that it is not
necessary to use a model of a given class to describe a system of the same class. It is
possible, for example, to use a discrete model to describe a continuous system. The
selected model depends on the nature of the system and also on the set of expected
results.

Taking into account the nature of the systems we are interested in, we will
concentrate on discrete, dynamic and stochastic simulation models. Given one of these
models, we will introduce different ways of performing a computer simulation. Next we
will characterize the models object of our study. Some terminology used when
describing the different simulation techniques will also be introduced.

We consider that a real system, or physical system , is modeled as a set of one or
many physical processes (PPs) which evolve in time. It is assumed that all the PPs share
a common view of time, i.e., that a global clock  exists which can be used as a reference
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of the advance of time in the system. Each PP evolves autonomously, except to interact
with other PPs in the physical system. These interactions, called events , occur at
discrete times, and are modeled as interchanges of messages between pairs of PPs.
Messages contain two fields of information: the event they represent, and the time
where that event should happen (its timestamp). Most of the time we will use the terms
“event” and “message” interchangeably, unless the distinction is important.

We assume that PPs have a certain ability to predict the events that will occur in a
next future. When a PPi  knows that, at time t (t ≥ clock), it will interact with another
PPj, and that the interaction will be of type e, PPi  schedules  an event for PPj . This
scheduling action is modeled as PPi  sending a message <e, t> to PPj  (see Figure 2.1).

The restriction of t belonging to the future is self-explanatory: the past cannot be
affected by a present event. The content of the message depends on the characteristics
of the sender PP i (initial state, behavioral rules) and on the messages PPi  received
previously. The message <e, t> will be consumed in PP j when the clock reaches the
value t. As a result, PP j‘s state will change accordingly to the class of interaction

modeled by e. This state change can trigger the scheduling of new events for the future
and, therefore, the emission of new messages.

Sometimes a message previously scheduled for the future needs to be canceled
before it actually happens (i.e., before the clock reaches the event’s timestamp). The
timestamp of a message says when the event should happen. An already sent message
(scheduled event) for time t  can be canceled by means of another message timestamped
less than t.

1 2

3

<e, 7>

5Clock:

Figure 2.1. A group of 3 physical processes which form part of a physical system. The
(global) clock indicates that current time is 5.

At this time, PP1  schedules an event e to happen at time 7 in PP3 . To do so, a message <e,
7> is sent from PP1 to PP3.

Once we have a system modeled the way just described, and expressed in an
executable way using either a simulation language or a general-purpose programming
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language, the model can be simulated in a computer. There are two basic approaches to
do the simulation: it can be either time-driven or event-driven. Next we will give a
sequential algorithm (i.e., designed to run in one processing element) to realize a time-

driven  simulation. The main elements (data structures) managed by this kind of
simulator are:

• A clock, which represents the advance of time in the physical system. In each step
of the algorithm this clock advances one unit of time. The value of the clock
represents the time up to which the system has been simulated.

• A set of variables which represent the state of the set of PPs. This information
must include the messages sent between the PPs, which represent future events
that will occur in the system.

• Additionally, a set of variables for statistics  gathering are usually required.

As already mentioned, in each step of the algorithm the clock advances one time
unit. After doing so, all the state variables are examined, to check which events must
occur at that particular time: those whose timestamp equals the value of the clock. Then,
those events are consumed . Consuming an event in a particular PP produces the
following effects:

• A change in the state of the PP, i.e., in its state variables.
• New events might be scheduled for the future, i.e., some messages might be sent

to other PPs.
•  Some previously scheduled events might be canceled.

Because consuming a message means to execute the simulation code associated with
the corresponding event, we will sometimes use “to execute an event” meaning “to
consume an event”.

These two steps (clock advance, message consumption) are repeated until the
simulation finishes. Usually this happens when the clock reaches a given
end_of_simulation value, or when the system reaches a particular state.

As it can be seen from the description, the advance of the clock determines the
advance in the simulation, and in each step exactly one time unit is simulated. However,
in many systems events occur with a large time difference between each other, in such a
way that, in most of the iterations of the algorithm, there are none (or just a few) events
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to consume. In these cases we have a low event density, where the event density is
defined as the (average) number of events consumed per unit of simulated time.

Low event density scenarios led to an alternative simulation strategy, known as
event-driven , where the clock can advance faster than it does in a time-driven simulator.
The main elements of an event-driven simulator are, as in the previous case, a clock and
a set of state variables, but a new data structure is added: an event calendar (also called
event list , or event queue) which stores all the messages <event, timestamp> scheduled
for the future, along with an identification of the target (destination) PP. Each message
stored in the event calendar will be consumed when the clock reaches its timestamp,
unless it is previously canceled. The event calendar keeps the messages in such a way
that they can be retrieved in increasing timestamp order.

In each step of the algorithm the first message of the event calendar, i.e., the one with
minimum timestamp, is removed, and the clock is advanced to reach that timestamp.
Then the event is consumed at the destination PP, with the effects already described (the
state of the PP might change, new messages might be sent, old messages might be
canceled). This process is depicted in Figure 2.2. The way of advancing the simulation
clock determines the difference between time-driven and event-driven simulation: in the
last case, after consuming an event, the clock advances to reach the value of the next
message’s timestamp, with time jumps which might be larger than a time unit.

1 <e4, 21> 
3 <e3, 11> 
2 <e2, 7> 
3 <e1, 5> 

1 <e4, 21> 
2 <e5, 15> 
3 <e3, 11>  
2 <e2, 7>  

Event calendar

s1

s2

s3

3

(a)

Clock

State of the 
PPs

s1

s2

s3

5

(b)

Figure 2.2. (a) State of the event-driven simulator before executing e1, scheduled for PP3
and time 5. (b) State after executing e1 : the clock has advanced 2 units, the state of PP3 has

been changed and event e5 has been scheduled for PP2  and time 15. Event e5 has been
inserted in the appropriate position in the event calendar, using the timestamp as the

ordering criterion.



2. Parallel discrete-event simulation 19

Figure 2.3 shows how an actual simulation of a physical system consists of two
separate parts. One part is model dependent, an executable description of the model to
simulate written in a general-purpose high-level language or in a simulation language
(Simula, SimScript, etc.). This description includes the set of state variables of the
model, the set of events that affects the system and the actions to execute when an event
is consumed. The other part, or simulation engine, is model independent. It deals mainly
with the management of the events: insertion of events in the calendar and delivery of
stored events in timestamp order [DMS93].

Model independent Model dependent

Simulation engine Model description

Event
calendar

State

Events to execute

Events for the future

Figure 2.3. Sketch of a sequential simulator, where the description of the model is
separated from the event management functions.

It is very important to realize a good implementation of the simulation engine,
specially in the event-driven case, because the investment will be worthwhile, as it will
be useful for many simulations. A key piece to consider in this part of the design is the
implementation of the event calendar. This data structure is the core of the simulation,
and a bad implementation can introduce an unacceptable complexity in the simulator.
Many algorithms can be found in the literature about this topic, where highly optimized
data types are proposed to implement efficient insertions/extractions of messages
in/from the event calendar. A good survey can be found in [CSR93].

2.3 Parallel simulation alternatives

As computational demands grow and parallel computers become more popular, it is
clear the need to adapt the classic sequential simulators to the new architectures. In the
literature, several proposals can be found that take advantage of parallel systems, and
some of those are reviewed here.
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An immediate way of using the parallelism offered by a multiprocessor or a
multicomputer is simply to simultaneously run as many simulations as processing
elements are available [Fuji90b, RW89]. Usually, the study of a system needs multiple
executions of the simulator, in order to analyze the system under different sets of input
parameters or to reach a given confidence interval in the results. In these cases,
replication  of simulations is very efficient. However, the analysis of many system
requires a search for a particular set of input parameters, and the output of a simulation
run is needed precisely to refine the selection of parameter for the next run. Obviously,
in this case the replication approach is not valid. An additional problem of replication
comes from memory restrictions: many processing elements might be available, but
often they do not have enough memory to keep a complete description of the system
and work with it, so replication is simply impossible. In [Vaki92] a proposal of
massively parallel simulation of independent sets of parameters is given, specifically
tailored for SIMD architectures like the CM-2.

It should be apparent the need to parallelize each  simulation run, to reduce the
execution time and, at the same time, to distribute the data structures of the simulator
along the available memory modules. One approach is to modify the sequential
algorithms, making a task distribution  among different functional units (specialized
processing elements) [RW89]. As examples of functional units, the following can be
mentioned: random number generation, event calendar management, statistics
collection, input/output, file manipulation, graphics generation, overall supervision, etc.
The degree of speed improvement using task distribution is quite limited, because the
number of functional units that can be identified and put to work is very reduced, and so
this technique is not viable for its implementation in massively parallel systems
(although it can be effective if a specific-purpose machine is built).

Another approach is to parallelize the execution of each event, by dividing it into
several sub-events which can be executed concurrently. This event-parallel approach is
only useful when the simulation of the actions associated to an event leads to the
execution of a highly parallelizable algorithm, and we cannot say that this is the most
common situation.

The most promising PDES techniques realize a model decomposition , i.e., a division
of the model into different sub-models, assigning those sub-models to processes which
will be executed in the available processing elements. Clearly, the objective is to
concurrently execute events corresponding to different sub-models. However, a
mechanism must be provided to ensure that events are executed in the correct order.
There are strong cause/effect relationships between events which prevent the
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simultaneous consumption of an arbitrary set of events. Let us consider the following
scenario, where the existence of a single event calendar for all the simulation is
assumed. The two first messages of the event calendar are m 1 = <e1, t1> and
m2 = <e2, t2>, where t1 < t2. The sequential algorithm first removes m 1 from the
calendar, and consumes it. The effects of executing e1 include, among other things,
message m3 = <e3, t3> being scheduled, where t3 < t2. In the next iteration the selected
message is m3, and its effect is to cancel m 2. If we try to simultaneously remove and
consume m1 and m2, later on m3 will try to cancel m2, but it will be too late. Obviously,

this situation cannot be allowed.
One approach to cope with this problem is to realize a synchronous  PDES, where all

the processes which constitute the parallel simulator have the same (or very close) view
of time. If a time-driven approach is used, the simulation would proceed as follows: all
the processes increment the clock in one time unit, then the events whose timestamp
equals the value of the clock are executed and finally the processes synchronize
(typically using a barrier operation) to prepare for the next iteration. Incorrect message
consumption situations, like the one described above, cannot happen, because the
simulator behaves exactly like a sequential one. If, after finishing an iteration, the
synchronous parallel simulator performs (in a centralized or a decentralized way) a
computation of the minimum timestamp among all the pending messages, and the clock
is advanced to reach that point, the simulator is still synchronous, but event-driven. A
method like this is described in [KY91].

A synchronous parallel simulator can be successful in its attempt to accelerate
simulations only if the event density is high, and events are distributed evenly among all
the processors. If this is not the case, in many iterations only a few (if any) processors
would have work to perform. Consequently, in order to make a better use of the
available parallelism, a method to simultaneously consume events with different

timestamps is needed. Techniques that work this way are asynchronous, because the
different elements of the parallel simulator might have a different perspective of time.
Needless to say, mechanisms to perform some synchronization must be included in the
simulators, to prevent the consumption of events in incorrect order.

Several techniques to perform asynchronous PDES have been proposed in the
literature. They can be divided into two main groups: conservative [Brya77, CM79] and
optimistic [Jeff85], with several variations. These techniques have many points in
common, mainly that they are event-driven and asynchronous, but differ in the way the
synchronization among the parallel processes which form the simulator is achieved. In
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the following sections each technique will be described, along with the most important
variations or evolutions product of other researchers’ work.

2.4 Basic PDES concepts

In the previous section it was mentioned that the main challenge of PDES techniques
is to guarantee that the causal dependencies among events are respected. The simulation
of an event cannot be allowed to affect other previously simulated events, because those
situations would lead to an incorrect simulation. In this context, it can be proven that the
already described sequential event-driven simulator is correct: events are processed in
the right order, because in each iteration the event with minimum timestamp is selected,
and this choice guarantees that the event dependencies are observed (a formal proof can
be found in [Misr86]). Fortunately, this is not the only way of guaranteeing correctness
in a simulation.

2.4.1 Event dependencies

It this section we will formally define the classes of event dependencies that must be
observed in any event-driven simulation, sequential or parallel [Wagn89].

Definition 1: we say that event ei affects the execution of ej if at least one of these

situations arise:
• The execution of e i creates or cancels ej.
• The execution of ej  reads or updates state information that was created or

altered by the execution of ei.
In any case, it is assumed that the timestamp of ei is strictly less than the
timestamp of ej, because in a real system an event cannot influence past events.

Definition 2: we say that event a causally affects  event b (or that b causally depends
on a) if there is some chain of events a = e0, e1, e2, … , en = b such that, for each
pair ei and e i+1 , the execution of e i affects the execution of e i+1 .

Definition 3: given two events a and b, if neither a causally affects b nor b causally
affects a, then we say that a and b are causally independent . In particular, note
that any two events with exactly the same timestamp are causally independent by
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assumption. The “causally affects” relation defines a partial order on the events in
a simulation.

In a sequential simulator events are executed in non-decreasing timestamp order. It is
not strictly increasing order, because several events might have the same timestamp,
and those can be consumed in any order, even concurrently. This gives us the idea that
some  actions can be parallelized in the simulator. However, if it is not common to have
equally timestamped events, no parallelism is available.

The objective is, then, to concurrently execute events with different timestamp. To
do so we need to relax the requirement of executing events in temporal order, using
instead the defined causal order. Given a traditional sequential event-driven simulator,
and considering the previous definitions, a parallel simulator that executes all the pairs
of causally dependent events in causal order satisfies these properties:

• Exactly the same events are executed in the parallel simulator and in the
sequential one.

• When a given event is executed, the portion of the state of the system that affects
the simulation of that event is exactly the same in the parallel simulator and in the
sequential one.

e1, 7 e2, 9 e4, 20e3, 14 e5, 27 e6, 40

e1, 7 e2, 9 e4, 20 e6, 40

e3, 14 e5, 27

(a)

(b)

Figure 2.4. (a) A list of scheduled events, in timestamp order. The arrows indicate the
causal relationship among them. (b) The same sequence, ordered by causal dependencies.

In this case, the sequences (e2 , e4, e6) and (e3, e5) can be executed concurrently.

In other words, a simulation that executes events in any order consistent with the
causal order is indistinguishable from a simulation that executes events in temporal
order. Obviously, the temporal order imposed by a sequential simulator is consistent
with the causal order, but the opposite is not always true. For this reason, imposing a
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temporal order in unnecessarily restrictive. The most important asynchronous PDES
methods precisely try to take advantage of the more relaxed causal ordering to
simultaneously execute events with (potentially) different timestamps. Figure 2.4
depicts an example of restrictions imposed by causal dependencies, and shows how the
sequence of events (e2, e4, e6) can be executed in parallel with the sequence (e3, e5).
However, if any event were simulated in parallel with e 1, the causal dependencies

would be violated.

2.4.2 Model decomposition

Now we will describe a set of common characteristics of the most important families
of model decomposition-based PDES techniques. We consider, as defined at the
beginning of the chapter, that the physical system to be simulated is composed of a set
of physical processes which only interact at discrete times by means of messages. The
message has two fields: the event to occur and the timestamp or time when the event
should occur.

A parallel simulator is arranged as a collection of logical processes (LPs). For the
sake of simplicity, we will consider that there is one LP per PP, although it does not
necessarily have to be this way. The LPs do not share any kind of information among
them, and the only allowed means of synchronization and information interchange is
message passing. Each LP has its own local clock, which indicates up to what point in
simulated time the evolution of the corresponding PP has been simulated.

The interaction between two PPs, modeled as one PP scheduling an event for a
certain time, is simulated by means of a message interchange between the
corresponding LPs. The timestamp of an event scheduled by a LP must be greater than
the local clock of the LP; this is essential to maintain the causal relationships in the
system.

Each LP has one or several input queues, where incoming messages with events
awaiting to be executed are stored. Some PDES techniques use only one input queue,
where all the received messages are kept in timestamp order. Alternatively, a queue can
be kept for each possible source of incoming messages, without mixing messages
generated in different LPs. In either case, the LP selects, as the candidate to be
executed, the event with minimum timestamp among those awaiting in the input
queues. As it happens in the sequential simulator, the effect of executing an event
includes the advance of the clock (in this case, the local clock) to reach the timestamp
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of the event. Additionally, the state of the PP (and thus, of the LP) might be changed
and new messages can be sent to other LPs.

It is important to remark that there is not any global information shared by the set of
LPs. In particular, there is not a global clock but a collection of local clocks, which
might not have the same value at a given instant of real time; similarly, there is not a
central event calendar, but a collection of input queues which play the same role. In
Figure 2.5 we show a physical system composed of 3 PPs simulated by a set of 3 LPs.
In this case each LP keeps a separate input queue per message source, so messages
received from different LPs are never mixed.

30

PP a

PP b

PP c<e1, 35>

(a)

20

2530

LP a

LP b

LP c

(b)

<e1, 35>

Figure 2.5. (a) In the physical system, at time 30 PPa  schedules event <e1 , 35> for PPc . (b)
Simulation of the previous situation: when the clock at LPa  is 30, message <e1 , 35> is sent

to PPc , which saves it  in an input queue where only messages from PPa are stored. The
message will await there until it is time for it to be executed.

In a sequential simulation with only one event calendar it is easy to make the
decision about what is the next event to execute: the one with minimum timestamp (the
head of the list). However, when there are several event calendars (input queues)
distributed throughout the collection of LPs, the selection of the next event is not trivial.
Of course, if all the input queues of the system were examined and the message with
minimum timestamp in the whole system were selected and executed by its LP, while
all the remaining LPs await, the temporal order (and, therefore, the causal order) would
be observed, but no parallelism would be exploited. Fortunately, this selection criterion
in unnecessarily restrictive. In order to have a correct simulation, it is sufficient
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(although not necessary) to obey what it is know as the local causality constraint

[Wagn89, Misr86]:

If each LP consumes messages in non-decreasing timestamp order, then the

execution of the simulation is correct.

Remember that correct  means that there are no causal errors in the simulation of
events.

It is possible, while obeying this constraint, to have the collection of LPs selecting
and executing events in parallel. However, this constraint is not as easy to observe as it
can seem. Let us imagine the following scenario: a LP executes events <e1, t1>, <e2, t2>
and <e3, t3>, stored in its input queues, in non-decreasing timestamp order; after
executing <e3, t3> a new message <e4, t4> is received, where t4 < t3. Clearly, the local
causality constraint will be violated, because e3 has been consumed before e4. There is

not an easy way to know what the other LPs are doing, so it is clear that if no
mechanism is added to allow the LPs to interchange information about its progress, the
simulation will not work.

Two different strategies can be found in the literature to ensure that the local
causality constraint is kept while allowing the simultaneous execution of events with
different timestamp. Conservative simulators guarantee that the constraint is always

obeyed, stopping a LP when it does not have enough information from the other LPs to
continue safely. Optimistic  simulators allows an aggressive execution of events, with
the effect that situations may arise where the constraint is violated in some LPs, but
these situations are detected and then the affected LPs roll back to the past, undoing the
erroneous computation, to reach a point where all the events were consumed in a correct
causal order.

Any parallel computer that provides the SPMD or the MIMD models of computing
allows the implementation of a parallel simulator with the described characteristics. If
the communication model is message passing, as happens with the machines used in
this research, the interchange of messages among LPs is implemented in the obvious
way. If the system provides communication via shared memory, a library of functions to
emulate message passing can be easily built. The communication infrastructure of the
parallel computer must be able to support the interconnection topology of the LPs. In
general, it is assumed that the communication is reliable: no message is lost, modified,
duplicated, or delivered out of order.
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2.5 Synchronous event-driven simulation

In this section we will describe a possible design for a synchronous, parallel event-
driven (SPED) simulator, assessing its correctness and its performance potential. The
description is aligned with the definitions given in the previous section, although
different algorithms could be given using different assumptions. For example, we
assume that the model is distributed among a collection of LPs, and simulation events
are also stored in a distributed fashion along the LPs. Alternative designs could be
based on a central event list, but they are not considered because this central element
limits the scalabiliy of the design. Proposals like the one presented here can be found in
[KY91, Soul92].

Each LP of a SPED simulator keeps the same data structures of a single, sequential
event-driven simulator: clock, state variables, statistics and event calendar. Following
the terminology of the previous section, we will use the term “input queue” instead of
“event calendar”. The clock of all the LPs always keep the same value, so it can be said
that the LPs share a common clock. The rest of the data structures are private. Only an
input queue per LP is needed, where all the received messages are stored in timestamp
order.

Each LP performs the following algorithm:

clock = 0;

while (clock <= end_of_simulation) {

t = minimum_timestamp(); /* step 1 */

clock = global_minimum(t); /* step 2 */

simulate_events(clock); /* step 3 */

synchronize(); /* step 4 */

}

In the first step each LP obtains the timestamp of the first message of its input queue.
Then, a global operation is performed to compute the minimum among those
timestamps. This value is assigned to the clock of all the LPs. In the third step each LP
consumes all the events whose timestamp equals the new value of the clock. The last
step is needed to make the LPs start the next iteration at the same time. This
synchronization must be done after all the messages generated in the previous step have
been delivered and safely stored in the corresponding input queues.
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From the previous description, it is clear that simulations performed by a SPED
simulator are correct. Events are consumed in timestamp order. Only those with the
same timestamp are executed concurrently, and they are (by definition) causally
independent. The design of the LPs and the barrier synchronization ensures that the
local causality constraint is always obeyed.

Regarding the performance of this simulator, it is guaranteed that at least one LP will
consume one event in each iteration: the one that was used to compute the new clock;
but this step might be void in other LPs, specially if the event density is very low or the
events are not evenly distributed among the LPs. In the worst case, this simulator
behaves exactly like a sequential one. However, in a well balanced scenario, it
efficiently exploits the available parallelism, with a moderate synchronization cost. Two
positive aspects can be found in this method: the simplicity of the design (which makes
the simulator easy to build and to maintain) and the possibility of an efficient
implementation in SIMD systems, while other approaches to model-distribution
simulation are best suited for SPMD or MIMD systems.

2.6 Conservative synchronization

In works by Bryant [Brya77] and, independently, by Chandy and Misra [CM79], a
method called conservative is proposed to realize parallel discrete event simulation. The
name conservative comes from the way the local causality constraint is enforced: an LP
must await, before consuming an event, until it is absolutely sure that no new message
will arrive with smaller timestamp. To behave this way, some restrictions are imposed
to the LPs:

• Each LP maintains one input queue for each possible source of messages. The
interconnection topology of the LPs must be static, and known since the
beginning of the simulation.

• Each LP must send messages through each of its input channels in a non-
decreasing timestamp order.

The first restriction means that all the LPs which constitute the simulator must exist
since the beginning, and that all the communication channels must also be defined since
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the beginning. No dynamic LP creation is allowed, and a LP cannot communicate with
another one unless this circumstance has been foreseen.

The second restriction means that a LPi  cannot send a message m through the
channel that communicates it with LP j unless it is totally sure that no new output

messages timestamped less than m will be generated. This restriction is very important
to ensure that the input queues of all the LPs receive and keep incoming messages in
timestamp order. It is being assumed, as already mentioned, that the message passing
system reliably delivers messages in the same order they are emitted.

Once all the LPs of the simulator are defined, along with all the communication
channels, the simulation can start. All the LPs execute, independently, the same
algorithm. A particular LPj  keeps the following variables:

Cj: Local clock of LPj . Indicates up to what point, in simulated time, the simulation
of PPj  has been completed. It also gives a lower bound of the timestamps of the
messages that LPj  may generate: it is only allowed to schedule events for the

future.
cc ij: Collection of channel clocks. For each communication that has LP j as

destination and LPi  as source, a channel clock is maintained in LP j, which stores

the timestamp of the last message received through that channel.
mj: Auxiliary variable to store the next message to consume. Contains the event to

execute and the timestamp of that event.
Hj: Message acceptance horizon of LP j. Provides an upper bound on the timestamp

of messages that LP j is allowed to consume. In other words, a message cannot be
consumed unless its timestamp is less or equal than H j. This value is computed as
the minimum among the channel clocks of LP j (min i{ccij}).

The algorithm is as follows [Wagn89]:

Cj = 0;

for (each i) ccij = 0;

while (not finished) {

while (input queues are empty) await message arrival;

mj = message with minimum timestamp;

Hj = mini{ccij};

while (mj.timestamp > Hj) {

await message arrival;
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mj = message with minimum timestamp;

Hj = mini{ccij};

}

remove(mj);

Cj = mj.timestamp;

execute(mj.event);

}

Although in the algorithm it is not explicitly indicated, it is assumed that each LP
must manage its input queues. When a message is received, the LP stores it in the
appropriate input queue (the selection depends on the source LP) and updates the
corresponding channel clock.

A LP starts initializing its local clock and channel clocks. After that, it awaits to have
some message in its queues, i.e., to have some work to do. Once one or more messages
are available in the input queues, the one with minimum timestamp among them is
selected as a candidate to be consumed. Before proceeding to do so, the message
acceptance horizon must be computed: if the selected message falls below the
acceptance horizon, it can be safely consumed; otherwise, the LP must block, awaiting
for new messages.

The technique takes no risk when executing events (so its conservative character).
Let us see a situation where Hj = ccij , i.e., the channel clock that communicates LP i with
LPj has the minimum value among all the channel clocks and, therefore, gives the value
of the acceptance horizon. The message with smaller timestamp in LPj  is m min , with
timestamp tmin . If tmin  > ccij  then LPj  blocks , and the channel that communicates LP i

with LPj  becomes a blocking channel . A situation like this is depicted in Figure 2.6. It is
easy to see the reason LPj  blocks: as ccij  is smaller than tmin , it is perfectly possible to
receive from LPi  a message with timestamp larger than cc ij  but smaller than tmin . If
mmin  were consumed in the current circumstances, it would be at the risk of violating
the local causality constraint. The design of LPj  prevents it to do that, but forces it to be
blocked for a while, maybe unnecessarily. LP j can resume its work only if new
messages are received through the blocking channel: the new message from LP i will
either be consumed, if its timestamp is smaller than tmin , or cause an increment in H j,
allowing mmin   to be consumed.

It is important to notice how message arrival is the “fuel” that makes the simulation
progress. An incoming message gives a LP work to do, and also triggers an increment
in the receiving channel clock; this means a possibility of increasing the message
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acceptance horizon and, in turn, an increment in the number of stored messages that
become candidates to be consumed. Note that a channel from which messages are rarely
received becomes soon a bottleneck, because most of the time it will be the blocking
channel, forcing the LP to stay blocked for long periods.

e1, 10

e3, 36
e2, 20

e4, 18
e5, 23

36 23 6

LP a

cc ba cc ca cc da

Channel
b->a

Channel
d->a

Channel
c->a

Output channels

6 C a

Figure 2.6. LPa can receive messages from LPb , LPc and LPd , and a separate input queue
is reserved for each message source. The acceptance horizon is currently 6, the timestamp
of the last message received from LPd , which has been already executed (so the clock is

also 6). Channel d->a is now blocking LPa. Message <e1, 10> is the provisional candidate
for next consumption, but it must wait: a message timestamped less than 10 might arrive

from LPd.

2.6.1 The deadlock problem

The previous conservative algorithm has a pitfall which prevents it to be really
useful: situations of deadlock, where a set of LPs await without any opportunity to
resume their job, may easily arise. To determine how these situations may appear, let us
define five possible states of a LP which participates in a conservative simulation
[Wagn89]:

• A LP is halted  if its state satisfies the termination condition for the simulation,
and therefore it will produce no further messages.

• A LP that is not halted is idle  if no message is stored in any of its input queues.
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• A LP that is not halted or idle is blocked if its message acceptance horizon is
smaller than the minimum timestamp among all the pending messages.

• A LP is deadlocked if either (a) it is idle and all its message sources are either
halted or deadlocked, or (b) it is blocked and the sources of all its blocking
channels are either deadlocked or halted.

•  A LP is active if it is not halted, idle, blocked or deadlocked.

The simulation as a whole is deadlocked if at least one LP is deadlocked and all
other LPs are either halted or deadlocked.

From the definitions, two sources of deadlock can be identified. The simplest case of
deadlock is the one where a LP cannot progress because it is awaiting messages from
another LP that has already finished its work (it is halted) and will not generate new
messages. The second case is more complex: deadlock happens because a cycle of LPs
appears where each of the LPs in the cycle is blocked waiting for new messages from
LPs that are in the same cycle. Figure 2.7 shows an example of a group of deadlocked
LPs.

Clearly, deadlocks are undesirable because they prevent advance in the simulation. A
mechanism is needed to cope with deadlocks, allowing the simulation to progress
without imposing too much overhead.

The first source of deadlock is easy to avoid if each LP sends, just before halting, a
special end_of_simulation  message through all its output channels, timestamped ∞
(infinity, a value larger than any possible timestamp). This way all channels with that
LP as origin will never become blocking channels.
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Figure 2.7. Three deadlocked LPs. The channel clocks of LPc are 35, 23 and 21, thus Hc =
21. Channel b->c is blocking the progress of LPc. LPa and LPb  are in a similar condition.
Note the cycle of blocking channels, where all the corresponding input queues are empty.

However, a more sophisticated mechanism is needed to cope with the second source
of deadlocks. Two main alternatives can be found in the literature: deadlock avoidance,
where deadlocks never occur, and deadlock detection and recovery , where deadlocks
may occur they are detected and, after a recovery procedure, the simulation is allowed
to resume.

2.6.1.1 Deadlock avoidance

The original works in conservative PDES propose an avoidance mechanism to cope
with deadlocks. We will call this method CMB-DA (Chandy-Misra-Bryant, with
deadlock avoidance). To implement this mechanism, a special class of messages are
used in the simulator: null messages. These null messages are not directly related to the
model being simulated, in contrast with the normal (useful) messages, and they do not
carry an event field. However, null messages are, like useful messages, timestamped, so
they affect the channel clocks and may, therefore, help advance the acceptance horizon
of the receiving LPs.

To explain how this technique works, let us see how the use of null messages could
allow LPs of Figure 2.7 to progress without deadlock. In LPc the value of ccbc is 21.
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This means that a message timestamped 21 was received through channel b->c. As the
associated input queue is now empty, that message has already been consumed and,
therefore, the local clock is, at least, 21. LPc is not allowed to consume any further

message but it might  know that, even if a new message timestamped 21 arrives, no
output message timestamped less than 22 will be generated. To infer this, the LP must

have some knowledge of the characteristics of the PP it is simulating.
LPc may then send a message <null, 22> through channel c->a, meaning “I don’t

know when I’ll send a useful message through this channel, but it won’t be before time
22”. The practical effect is that the reception of the null message in LPa allows ccca to

be incremented from 15 to 22, and then channel c->a is not longer blocking and the
message timestamped 17 in LPa becomes a candidate to be safely consumed.

It should be clear that a wise policy for sending null messages can effectively avoid
deadlocks. A common one is to make a LP send null messages through all the output
channels when it detects it is going to block (i.e., to become idle or blocked). This
circumstance can easily be detected: if no message is available, or there is at least one
but it cannot be consumed because it does not fall below the acceptance horizon, then
the LP will block. Sending null messages will not prevent the blocking, but will allow
the neighbors to progress. A null message <null, t> is a promise not to send a useful
message timestamped less than t . The greater the value of t , the bigger the potential
advance which is allowed in the receiver.

The CMB-DA approach to PDES presents two serious drawbacks. The first one is
that many experiments report that the amount of null messages managed in the
simulation is huge, imposing a terrible overhead in the simulation and minimizing
achieved speedups (we will present some evaluations in Chapter 4). The second is more
important, and even compromises the usefulness of the algorithm for some kind of
models. In the previous presentation of how null messages prevent the appearance of
deadlocks, a message <null, 22> was sent when the local clock of the sending LP was
21. We justified this timestamp value saying that the LP can guarantee, using
information about the behavior of the model, that no message  timestamped less than 22
will be sent. But, what if a LP does not have any prediction ability? If a group of LPs
suffer from this absence of insight into the future, a cycle might appear with all the LPs
in the cycle sending null messages to the others, without any increment in the
timestamp of those messages. The simulation is not deadlocked, because null messages
are consumed, but no effective progress is achieved. In Section 2.6.2 the lookahead

concept will be introduced, which is tightly related to the prediction ability of a LP, and
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the relationship between this concept and the efficiency of the CMB-DA algorithm will
be shown.

2.6.1.2 Deadlock detection and recovery

The fact that CMB-DA cannot be used for some kind of models led Chandy and
Misra to the development of a variant of the conservative algorithm where no null
messages are needed: the simulation simply progresses until it eventually deadlocks.
After detecting this situation, a recovery algorithm is executed and the simulation can
resume [CM81]. We will call this simulator CM-DDR (from deadlock detection and
recovery). The simulation consists of two alternating phases: computation and deadlock
resolution. The computation phase is done in parallel, i.e., several LPs can be
consuming events at the same time, and progress until reaching a deadlock. The
deadlock resolution phase can be done in centralized or in a distributed fashion
[CMH83]. The easiest way of resolving a deadlock is to find the message with
minimum timestamp in the whole the set of LPs, then putting the corresponding LP to
run simulating this event.

During the deadlock resolution phase no progress is done, so this phase must be
considered as an overhead in the simulation. This overhead is the main source of
criticisms to this method: if deadlocks appear frequently, and solving them is costly
(comparing to the actual work done in the computation phases), the method is not
efficient.

2.6.2 The lookahead concept

When a conservative method is being used for parallel simulation, the simulator’s
knowledge of some characteristics of the model being simulated can be very useful to
achieve good performance. If the LPs are able to predict some aspects of the future
behavior of the model, they will be able to exploit this look ahead ability to reduce
synchronization overheads [Fuji88].

In a conservative simulation, when a LP i schedules an event e to occur in LP j at time
t, it sends the message m = <e, t>. That message must be kept in LPi  until it is

absolutely certain that no new message timestamped less than t will be generated. This
is needed to maintain the restriction of sending all the messages in timestamp order.
Due to this way of working, a certain amount of time will pass since e is scheduled until
m is actually sent. The length of the time interval depends on the ability of the LPs to
predict its future (look ahead). We can informally define the term lookahead  as a
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measurement of the prediction ability of a LP. If the lookahead is large, the message can
be sent soon, and this will be good for the receiver, as it will be allowed to increment
the corresponding channel clock—hence opening opportunities for a faster advance.
The bad news is that, in general, the value of the lookahead is a complex function which
varies with time, and it is absolutely dependent on the details of the model being
simulated.

The importance of lookahead is specially clear in the CMB-DA algorithm. When LP i

is next to block, it sends null messages to all its neighbors, with a timestamp calculated
as t = Ci + Li (with L i > 0), i.e., the value of the local clock plus a certain increment Li.
This increment is precisely the lookahead: LP i is predicting that no useful messages will

be sent through the output channels until time t. All the output pending messages
timestamped less than t can safely be sent, and the receivers of the null messages can
increment the corresponding channel clocks to reach t.

It is obvious that, the larger the lookahead, the larger the timestamp of the null
messages, and better opportunities are given to the neighbors to advance faster: a faster
increment in channel clocks means a faster increment in the acceptance horizon and, in
turn, a larger amount of messages that can be safely consumed without fear of violating
the local causality constraint. In other words, when null messages are used to make the
simulation advance without deadlock, the level of advance is proportional to the
lookahead of the LPs. An increase in the lookahead of the LPs reduces the number of
null messages (an important overhead) and accelerates the simulation.

After this description of the conservative PDES technique, Figure 2.8 shows a
graphical representation of a conservative LP. Again, the model description (model
dependent part) can be separated from the simulation engine. It is important to note that
the model description to use in a CMB simulator can be the same one used in a
sequential simulator, provided that some restrictions are obeyed (e.g., that no global
data structures are accessed). The simulation engine now is not totally model
independent: in order to achieve a good performance, the lookahead of the model must
be exploited, so somehow this information has to be obtained.
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Figure 2.8. A LP in a CMB simulator. The simulation engine deals with the messages
(events) scheduled for/by the LP, including null messages. The other part includes the

description of the PP simulated by the LP.

2.7 Optimistic synchronization

Due, among other things, to some undesirable characteristics of the conservative
PDES methods, an alternative proposal for LP synchronization was proposed by
Jefferson, under the name of Time Warp  [Jeff85]. This and similar approaches are know
as optimistic , because they try to exploit parallelism in a most aggressive way. The two
main criticism to conservative methods that led to the development of TW were:

• The need of an static LP interconnection topology. This restriction of conservative
methods is too strong for the study of models where objects are dynamically
created or destroyed. The only way to cope with this kind of models in a
conservative simulator is to create, since the beginning of the simulation, all the
LPs that are foreseen to be needed, plus all the necessary interconnections
between them. If the number of LPs is large and many of them are not active all
the time, the imposed overhead may be huge, in space and in synchronization
effort.

• After performing some evaluations, it was seen that conservative simulators do
not perform well when working with models that, in theory, are highly
parallelizable. Conservative methods guarantee the absence of causality errors,
but with the side effect of introducing deadlock risks, and the price to pay to solve
this problem (in synchronization terms) is too big.
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Conservative and optimistic methods differ in the way they cope with causality
errors. Conservative algorithms totally avoid the errors, while optimistic algorithms
allow  errors to happen, i.e., they do not ensure that the local causality constraint is
always obeyed. Each LP consumes messages as fast as it can, without worrying about
causal problems. It may happen, however, that a new message arrives to a LP with a
timestamp smaller than the local clock. Obviously, the local causality constraint has not
been obeyed, and the simulation correctness is at risk. Messages that allow the detection
of causal errors are known as stragglers .

Once the straggler has been received, the LP must continue its work, but from a point
in the (simulated) past when there was no causal error. To do so, a rollback  mechanism
is implemented, which undoes part of the simulation. The LP jumps to the past, to a
time equal or less than the timestamp of the straggler, consumes the straggler (now in
the right order) and then resumes its work, consuming the messages stored in the input
queue in timestamp order.

During the period of time while the temporal order was not obeyed (that between the
timestamp of the straggler and the value of the clock when the straggler was received),
surely the LP has modified its state variables and has sent messages to other LPs. The
rollback procedure must jump back to an error-free situation, which means (1) recover
an error-free collection of state variables and (2) cancel all the messages sent during the
erroneous computation. To be able to do so, the LP must (1) periodically save copies of
its state, just in case they are needed, and (2) maintain a log of all the generated
messages. The last part is done keeping a list of antimessages , negative versions of
normal (positive) messages. A message and its corresponding antimessage have the
ability to annihilate  each other.

During a rollback, a LP sends an antimessage per each erroneously sent message.
When a LP receives an antimessage, it searches in its (single) input queue to see if the
corresponding positive message has been already consumed. If not, then both messages
are destroyed and no additional action is needed. However, if the positive message has
already been consumed, an error arises, and the receiving LP must rollback to recover a
point in the simulation before the positive message was consumed, and then annihilate
it. This rollback might cause, in turn, new antimessages to be sent. After a sequence of
rollbacks, the LPs will eventually reach an error-free state.

Regarding the limitation that conservative methods impose in the interconnection
topology of LPs, TW is free of such a restriction. Only one input queue is kept in each
LP, where all the received messages are merged and stored in timestamp order,
independently of its source. It is assumed that the computer system that gives support to
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the simulation is able to provide communication among any pair of LPs, without
needing to make a previous reservation of resources.

2.7.1 The basic Time Warp algorithm

The following data structures are needed at each LP to execute the Time Warp
algorithm:

• One input queue, where all the received messages are stored. This queue is kept in
timestamp order. All the messages must be stored: those awaiting to be consumed,
and those already consumed. The next message to consume, thus, need not be the
first on the queue. A variable called next_event points to the first non-executed
message, i.e., the next candidate to be consumed.

• A state queue, which keeps past copies of the state of the LP. The simplest saving
strategy is to make a copy of the state and store it in the state queue immediately
before the consumption of each message. There exist more optimized state-saving
policies, though.

• An output queue, where an antimessage is stored per each generated (positive)
message.

• The local clock, which indicates up to what point the LP has progressed in the
simulation of its part of the physical system. This is the virtual time of the LP.

rm1 rm2 rm3 rm4 rm5

s0 s1 s2

- sm1 - sm2

- sm3

Input queue

State queue

Output queue

next_event

Figure 2.9. Data structures managed by a LP in TW. Before rm3 was consumed, a copy of
the state was saved in the state queue (s2). After executing rm3 , messages sm2 and sm3
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were sent to other LPs, so antimessages -sm2  and -sm3  have been stored in the output
queue. Everything is now ready to execute rm4.

Figure 2.9 sketches these data structures, along with the relationships between them.
The sequence of actions that each LP executes is as follows:

1 If no unprocessed message is awaiting in the input queue, wait for new arrivals
and then go to the next step.

2 Make a copy of the current state and save it in the state queue.
3 Consume the message pointed by next_event , i.e., advance the local clock, change

the status according to the class of event, and send new messages to other LPs.
4 Add an antimessage to the output queue per each message sent in the previous

step.
5 Advance the next_event  pointer. Go to step 1.

This algorithm can be interrupted each time a message arrives. The received message
can be positive or negative, and can belong to the past (if its timestamp is smaller than
the local virtual time) or to the future (if its timestamp is larger than the local virtual
time). Depending upon the circumstances, one of these four actions must be taken:

Positive message for the future . This is the common case in any event-driven
simulator. The message simply carries an event scheduled for the LP’s future. It is
stored in the input queue, in the right position according to its timestamp.

Antimessage for the future. This is a kind of cancellation. The corresponding
positive message is searched for and located in the input queue (it must be there,
if the communication system delivers messages in order), and both messages
(positive and negative) are annihilated.

Positive message for the past. This is a straggler. The local causality constraint has
not been obeyed, so a rollback is needed. All the effects of simulating messages
timestamped more than the straggler must be undone, to be re-executed after
consuming the straggler. The straggler is inserted in the input queue. The state is
restored to the copy saved just before consuming the message that now follows
the straggler in the input queue. All the copies of the state following the restored
one are destroyed. All the antimessages generated during the erroneous
computation are sent. The next_event pointer is set to point the straggler. After all
these steps, normal simulation can resume.
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Antimessage for the past . The corresponding positive message (already consumed)
is located in the input queue, and both messages are annihilated. A rollback must
be done, recovering the state associated to the destroyed positive message,
destroying other copies of the state and sending the necessary antimessages. The
next_event pointer is set to point to the message just after the annihilated one.
Normal computation can resume. Figure 2.10 depicts this situation.

It is to see how, when a LP receives a straggler, the rollback effects rarely are
confined into that LP. Instead, a kind of “chain reaction” is started: the LP rolls back,
which means that some antimessages are generated (as described in case 3 before) that,
in turn, will probably cause rollbacks in other LPs (as described in case 4 before). The
erroneous computation will progressively be undone, and eventually a correct state will
be reached in all the LPs.

rm1 rm2 rm4 rm5

s0 s1 s2

- sm1

Input queue

State queue

Output queue

next_event

Figure 2.10. Effect of receiving antimessage -rm3 before consuming rm4  (see Figure 2.9).
State s2  has been recovered, which corresponds to the situation of the LP just before

executing rm3 . This message is annihilated by -rm3. As part of the rollback, antimessages
-sm2 and -sm3  have been sent. The rollback has finished; simulation can resume, executing

rm4 .

Figure 2.11 represents an optimistic LP. Again, the model description is the only part
dependent on the model, while the simulation engine is totally independent, valid for
any simulation. However, a TW simulation engine must be able to access the state of
the PP, to make copies of it or to restore it to a previously stored value.
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Figure 2.11. A LP in a TW simulator. The simulation engine deals with messages (events).
The other part includes the description of the PP simulated by the LP.

2.7.2 Global control

Although most of the operations of the TW algorithm are done in a distributed
fashion, with the LPs evolving autonomously, the system cannot work unless a series of
global operations are done, satisfying these requirements:

• Guarantee that simulation advances, even taking rollbacks into account. The local
clock at a LP is not an accurate estimation of the actual situation of the
simulation: an unexpected straggler might arrive, making the LP jump back to the
past. A mechanism is needed to establish a fixed point in time, in such a way that
no jumps before that time will ever happen.

• Detect the end of the simulation. When a LP reaches the end_of_simulation  time,
it does not mean that it can finish: again, the possibility of a rollback exists, and
some work might need to be re-done.

• Realize input/output operations (usually, read/write operations into files and
terminals) without risk: if a LP needs to do an I/O operation at a given time, it
must be sure that the operation will not need to be canceled due to a rollback. In
general, I/O operations are considered as non-cancelable, therefore they cannot be
committed until it is safe to do so.

• The last and more important problem to solve is memory management. This is
probably the most complex part of TW. From the descriptions of the data
structures managed by the LPs, it can be deduced that those structures grow
unboundedly while simulation advances: all the messages are stored, a copy of the
state is done before each message execution and an antimessage is stored for each
sent message. All this information is stored because it might be needed to realize a
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rollback. However, the amount of memory available to the LP is finite (sometimes
it is quite small), and this limits the growth of the data structures.

To help solving all these problems a TW simulator needs, in addition to the
collection of LPs, a global control mechanism whose purpose is to keep an up-to-date
measurement of the global virtual time (GVT). This global time indicates up to what
point (of simulated time) the simulation has been done, with a global rather than a local
point of view. It is computed as the minimum among the timestamps of all non-
executed messages in the simulator (see Figure 2.12).

Taking as a restriction that the consumption of a message can never  affect the past, it
can be guaranteed that it is not possible to do a rollback to a time before the GVT.
Therefore, all the memory space associated with events timestamped less than the GVT
can be safely retrieved, because it will not be needed. This includes past messages, the
copies of the state stored before the execution of those messages and the antimessages
stored as an effect of the execution of those messages. This process of retrieving
memory space is known as fossil collection. Additionally, non-cancelable operations
(such as I/O operations) can be safely committed when the GVT reaches the time when
they must be done. The problem of signaling the end of simulation can also be solved
the same way: simulation ends when the GVT reaches the end_of_simulation  value.

LP
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Figure 2.12. A snapshot of the local clocks of a collection of LPs in a TW simulator. The
GVT is 5. All the computation done by the LPs with timestamp smaller than 5 is

consolidated, because it will never be undone. The remaining computation is speculative,
and may be undone by a rollback  [FK91].

The complexity of the memory management in the LPs, and the need of a global
control, makes implementations of TW quite tricky. In comparison, SPED and CMB
algorithms are much simpler. Additionally, TW needs much more memory space to
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work properly. Although some researchers demonstrated that a TW simulator can work
with a very reduced memory space, this does not mean that it will work efficiently. On
the other hand, TW does not require the LPs to have a knowledge of the model being
simulated to work properly (as it was the case with conservative simulators). A TW
simulation engine may be designed and implemented just once, and then be used to
simulate many different models without any special tailoring. This approach has been
adopted by Jefferson’s team, and led to the development of the Time Warp Operating
System [Jeff87], which they use to realize their experiments.

2.7.3 Variations on the basic TW

In [Fuji89b], Fujimoto characterizes four sources of overhead which appear when
TW is used to do parallel simulations, in comparison with an equivalent sequential
simulation. Those are:

• Keeping a log of the history of the LPs. That is, keeping the input queue, the state
queue and the output queue.

• Message passing. This is common to all the PDES techniques based on a
distribution of the model among a collection of LPs. The overhead is not only the
effort of passing messages, which can be very costly depending on the computer
and the message passing software being used, but also the time to prepare them
and extract information from them.

• Cancellations, rollbacks. One rollback does not impose a big overhead, but in
general rollbacks do not appear alone: one straggler might cause an avalanche of
rollbacks, and this in turn means the movement of an important number of
antimessages.

• Erroneous computations. All the (real) time that a LP devotes to execute events
whose effects are undone afterwards is lost time.

Once the problems have been characterized, solutions might be searched. In the
literature, several proposals can be found which try to improve TW by reducing its
sources of overhead [SSH89, LP91, GT93].

2.7.3.1 Lazy cancellation

In the TW algorithm previously described, which will be denoted as basic TW ,
during a rollback a set of antimessages is immediately sent, one per positive message
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generated during the erroneous computation. This policy of sending antimessages is
known as aggressive cancellation. An alternative to aggressive cancellation has been
proposed, known as lazy cancellation  [Fuji90a, Fuji90b]. This approach tries to
minimize the overhead imposed by the treatment of antimessages and, at the same time,
to reduce the chain reaction effect of the rollbacks.

The optimization is based on temporally holding the antimessages to be sent as a
consequence of the rollback. Instead of sending them immediately, the LP monitors the
positive messages it sends during the normal advance phase which follows the rollback.
If it sees that a newly generated message is identical to another generated during the
erroneous phase, then the first message can be considered as correct, the antimessage
need not be sent and the new positive message can be destroyed. If the described
situation is common, i.e., many of the messages generated by a LP are correct even
when the LP is violating the local causality constraint, the advantages of lazy
cancellation are obvious: less antimessages are sent, and less rollbacks are triggered.
However, in some cases lazy cancellation can be worse than aggressive cancellation. It
requires additional overhead, and may allow erroneous computations to spread further
than they would under aggressive cancellation [Fuji90b].

2.7.3.2 Lazy re-evaluation

Basic TW also performs aggressive re-evaluation, which means that past copies of
the LP state are immediately removed during the rollback procedure. A lazy re-
evaluation [Fuji90a, Fuji90b] approach also exists; in this case, copies of the state are
not destroyed so promptly. After the straggler has been executed, the LP compares the
copies of the state before and after that execution. If they are identical, then no further
action is needed (no antimessages need to be sent, no copies of the state need to be
removed), because the re-evaluation will produce exactly the same result as the original
evaluation. Thus, simulation may resume at the point where it was before the reception
of the straggler, without any re-evaluation of events. This is true unless new stragglers
are received. The advantages of this technique are evident, provided that stragglers that
do not modify the state are a majority. If this is not the case, the overhead imposed by
state comparisons does not compensate the possible advantages.

Both lazy cancellation and lazy re-evaluation have an additional negative effect:
antimessages or state copies are retained longer than in basic TW. On average, the data
structures kept for logging purposes are longer than they would under the aggressive
alternatives, so a larger amount of memory is needed to store them.
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2.7.3.3 Conservative time windows

In many TW simulations it has been observed that, when a LP runs its part of the
simulation faster than the others (because it runs in a faster processing element or
because is less loaded), it produces the apparition of cascades of rollbacks: some
straggler can roll back the fast processor, which has generated many messages which
are now canceled. While the slower LPs are busy annihilating message/antimessage
pairs, some of them rolling back and generating additional antimessages, the fast LP
may progress forward again [NF94].

To avoid this scenario, the optimism of the LPs must be somehow controlled. A
usual way of doing so is the imposition of time windows . For example, if the GVT is t, a
LP is allowed to advance optimistically until time t+∆t. If all the messages in this
window are consumed, and the remaining ones are timestamped more than t+∆t, the LP
must block and wait until the window is advanced [SSH89].

The size of the window may be fixed, but then is a parameter difficult to tune: if the
window is too wide, it is not effective; if it is too narrow, no optimism is allowed, and a
synchronous simulation is performed. Instead of using a fixed window size, it is
possible to tune it dynamically, i.e., to use an initial value and then make it vary
according to the behavior of the LP [MAB94, Pala94]. The common approach is to
increase the current window size if the LP is mainly doing useful work (i.e., if there is a
significant advance without many rollbacks) and to narrow the window if the LP is
rolling back too often. This approach is known as adaptive time windows.

2.7.3.4 Periodic and incremental state saving

Basic TW saves a copy of the state of the LP just before the execution of each
message. This usually means that a huge amount of memory is consumed, specially if
the size of the state to save is large. Using an optimization called periodic state saving,
copies of the state are saved every N message executions, instead of after every message
execution. This way memory demands are reduced considerably. However, if this
optimization is included, the rollback procedure is more complex: the LP must recover
a copy of the state saved before the one actually needed, and the right state must be re-
constructed by means of a re-execution of already executed messages (this is called the
coast-forward  phase of the rollback). During this phase no messages are sent to other
LPs. The practical effect is that less memory is needed, but more CPU time is
consumed, compared to basic TW. However, as state saving is also a time consuming
operation, its reduction can compensate the cost of the coast-forward phases.
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Experience seems to demonstrate that this optimization actually improves the
performance of the simulator, reducing execution time and memory demands [LPLL93,
Pala94].

An alternative, but similar approach to periodic state saving is incremental state

saving. With this optimization the complete state of the LP is again saved every N
message executions. In the rest of the cases only incremental changes in state are saved.
The coast-forward phase is then simpler: it is enough to find a full, old copy of the state
and then update it by applying a sequence of increments to re-construct the required
state value (Figure 2.13). It seems that, in general, this approach is more efficient than
the previous one, specially when the cost of executing events is high and the amount of
memory needed for an incremental state saving is low [PW93].

In either technique, we find again the problem of tuning the value of a parameter, in
this case the interval between two full state copies. If this interval is too wide, the time
spent saving copies of the state is reduced, but the coast-forward phase is very costly; if
it is too narrow, no advantage is obtained over basic TW. As happened with the
conservative time window optimization, this interval can be dynamically tuned to
optimize its width, and the same tuning procedure can be used: reduce the interval if the
LP is suffering from too many rollbacks, extend it otherwise.

Coast-forward phase Re-evaluation phase

(1)(3)(2)

Virtual time

Figure 2.13. A graphical representation of incremental state saving. A big rectangle means
a complete state copy, while a small rectangle means a state update. When a straggler is
received (1) the LP rolls back until it finds a full copy of the state (2). Then it applies a

sequence of updates until the state of the LP has the value that corresponds to a time equal
to the timestamp of the straggler (3).
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2.8 Conclusions

In this chapter we have introduced a series of basic ideas about simulation of discrete
event systems, including two sequential algorithms to realize this kind of simulation: a
time-driven and an event-driven one. It has been shown how it is not trivial to
implement a parallel simulation by simply modifying a sequential one, so new
approaches to the problem have been developed, based on the model decomposition
concept. The simulation of a physical system is distributed among a set of cooperating
logical processes, which execute the events that affect its part of the system. The
collection of LP must be synchronized somehow, in order to prevent the violation of the
cause-effect relationships among events.

The synchronous approach consists of making all the LPs progress at the same pace,
executing in parallel only those events with the same timestamp. The asynchronous
approach tries to go further, by executing in parallel events with different timestamp; a
synchronization mechanism must be included, though, to avoid any violation of causal
restrictions. Two asynchronous strategies have been presented: conservative and
optimistic. The former totally avoids the violation of causal restrictions. The latter
allows errors to happen, but recovers from them by means of a rollback procedure. Both
kinds of synchronization have been studied, and some modifications which can be done
to improve their performance have been also presented.

For the interested readers, many additional surveys about PDES can be found in the
literature. Some of those concentrate on a particular technique, and many others try to
cover a complete range of alternatives. Two main sources of information about
conservative algorithms are, in addition to the seminal works [Brya77, CM79], a survey
by Misra [Misr86] and Wagner’s Ph.D. dissertation [Wagn89]. For optimistic methods,
the work by Fujimoto [Fuji89b] is an excellent complement to the work by the author of
Time Warp [Jeff85]. In the group of general surveys, recommended readings are
[RW89, Fuji90b, FT94, MB95]. A recent survey by Nicol and Fujimoto [NF94]
summarizes the current situation and the new trends on PDES research. In the survey by
Ferscha & Tripathi [FT94] an interesting qualitative comparison of conservative and
optimistic methods is done; we reproduce it in Table 2.1. As it will be seen in the rest of
this dissertation, our experiences with both classes of simulators are quite in agreement
with the information in this table. We will give some actual performance figures in
Chapters 4 and 6.
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CMB TW
Operational
principle

Local causality constraint violation strictly
avoided.

Lets local causality violations occur, but
recovers when detected.

Synchro-
nization

Achieved by blocking LPs while awaiting
for safe messages. Deadlocks may appear,
and must be avoided (CMB-DA) or
detected and broken (CM-DDR).

Achieved by doing rollbacks, which may
appear in cascades, imposing serious
overheads in computation and in
communication.

Parallelism Model parallelism cannot be fully
exploited: if causalities are probable but
seldom, protocol behaves overly
pessimistic.

Model parallelism is fully exploitable: if
causalities are probable and frequent, it can
gain most of the time.

Lookahead Necessary to make CMB-DA operative,
essential for performance

Not necessary to make TW work, but it can
be used to improve performance

Balance CMB performs well if all channels are
equally utilized (there are not pathological
blocking channels). Large dispersion of
events in space and time is not bothersome.

TW performs well if average LVT
progression is balanced along the LPs.
Otherwise performance can be seriously
degraded.

GVT Implicitly executes along the GVT bound.
No explicit computation is needed.

Relies on global control to compute GVT.
Centralized GVT computation is
bottleneck-prone and not scalable.
Distributed GVT computation imposes high
communication overhead.

States Conservative memory utilization, copes
with simulation models with arbitrarily
large state spaces.

Performs best when state space and storage
requirements are small.

Memory Conservative memory consumption. Aggressive memory consumption. State
saving overhead. Fossil collection requires
efficient and frequent GVT computation to
be effective. Complex memory
management schemes.

Communi-
cation

Messages must arrive in timestamp order.
Separation of input channels is required.
Static LP interconnection topology.

Messages can arrive out of order (but
executed in timestamp order). One input
queue. Topology can be dynamic.

Implemen-
tation

Straightforward. Simple control and data
structures.

Hard to implement and debug. Complex
data manipulations. Tricky
implementations of control flow and
memory organization. Performance very
dependent on the implementation.

Performance
tuning

Mainly relies on the deadlock management
strategy. Computational and
communication overhead per event is
small, on average. Protocol in favor of fine
grain simulation models. Overall
performance highly dependent on the
characteristics of the model.

Mainly relies on controlling the optimism
and the memory consumption.
Computational and communication
overhead per event is high, on average.
Protocol in favor of large grain simulation
models. Overall performance highly
dependent on the implementation and on
the characteristics of the model.

Table 2.1. Qualitative comparison of CMB and TW [FT94].

It is interesting to note that, after more than fifteen years of research in PDES, with
successful applications in many fields (some of those will be described in other chapters
of this dissertation), the general simulation community has not embraced these
techniques yet. A series of articles appeared in ORSA Journal on Computing in 1993
[Fuji93a, Abra93, Bagr93, Lin93, Reyn93, UC93, Fuji93b] considers this problem, and
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the main conclusion is that a big effort has been devoted to study the PDES algorithms,
analyzing its behavior and proposing improvements, but still much work must be done
to simplify the development of models, i.e., the work of researchers that use simulation
as a tool, not as a research object. In this direction, future research lines are identified,
including the following ones: application specific library packages, new simulation
languages, support for shared memory, and automatic parallelization of models.



Chapter 3

Environments for parallel
computing

In this chapter we introduce a series of concepts related to the

architecture of parallel systems, and to the different programming models

which can be used to develop applications in those systems. The objective is

to stress the differential characteristics of the three parallel systems used in

this research, from a hardware but also from a software point of view, and

to justify our interest in the study of interconnection networks and message

routers.
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3.1 Introduction

In Chapter 1 we stated that our interest in multicomputers is twofold: from a
hardware point of view, it is our intention to make architectural proposals for efficient
multicomputer design. From the software point of view, we want to make an efficient
use of currently available (and future) multicomputers, broadening the spectrum of
applications that can use these architectures.

In this chapter we will study parallel computers in general, and multicomputers in
particular, as platforms for the design and execution of parallel applications. While
paradigms for sequential programs are well studied and understood, there is not a clear
model of how parallel applications should be. In fact, careful decisions must be made to
select the appropriate parallel programming model before starting with the design and
implementation of an application. In many cases, however, the available computer and
programming tools impose a given model, reducing the spectrum of design choices.

In Section 3.2 we will make an introduction to parallel programming from a software
point of view, i.e., how a programmer perceives and uses a parallel computer. Some of
the issues discussed in this chapter are purely software, independent of the underlying
architecture, while some others are highly dependent on the architectural design of the
parallel computer. After discussing a series of concept as MIMD vs. SIMD, shared
memory vs. messages, blocking vs. nonblocking communication modes, and partner
addressing techniques, the particular characteristics of the three environments used in
this work are summarized. A thorough discussion of these three systems can be found in
Appendix A.

In Section 3.3 we will give a brief introduction to some hardware issues involved in
parallel computer design, again focusing on multicomputers. Some of the design
choices have a clear impact on the performance achieved when running parallel
applications. In this context, the model of message router used in Chapters 5 and 6 to
test the efficiency of PDES is a case study on multicomputer design.

The chapter finishes with a series of conclusions in Section 3.4.
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3.2 Parallel programming environments

One of the difficult aspects of parallel programming is that there is not a clear
parallel programming paradigm efficient and easy to use for any kind of application and
any kind of target computer. Some applications can be naturally described using a
model of communicating processes, while in many others a data parallelism approach is
more expressive. If programmers are provided with flexible tools that allow many ways
of expressing and coding problems, they must make decisions about which ones are
appropriate for their problems. In contrast, if the available tools provide just a paradigm
of parallel programming, difficulties might arise when trying to implement applications
that do not easily fit in that paradigm. Now we will discuss some of the options
programmers must face when designing parallel programs.

3.2.1 MIMD vs. SIMD

Although it might be considered more a hardware than a software issue, the
organization of a parallel computer very often have a definite impact on the way
applications are programmed. From a software point of view, a MIMD  (Multiple
Instruction Multiple Data) system allows a set of processes to execute separate streams
of instructions, each one on its own data. The memory space might be shared among all
the processes, or might be separate for each process. In contrast, a SIMD  (Single
Instruction Multiple Data) system allows a collection of processes to execute the same

instruction stream, each process working on a different piece of data. This second
model of parallelism is appropriate for specialized applications characterized by a high
degree of regularity, while MIMD might work for both regular and irregular
applications.

Somewhere in between MIMD and SIMD, applications might follow a SPMD

(Single Program Multiple Data) paradigm, which means that all the processes run
exactly the same program, although not necessarily the same instruction at the same
time, on separate data. SPMD is, in fact, a restricted class of MIMD.

In this research we only consider MIMD (or SPMD) applications. This restriction
comes from the higher flexibility of this paradigm, and from the programming tools we
have available. We consider a parallel application as a set of concurrent communication
processes. A pair of those processes might run in parallel, if assigned to different
processors of a physical computer, or might time-share one processing element. The
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term process  is deliberately fuzzy: it might mean a Unix process, an Ada task or a
POSIX thread. Each process runs a sequential flow of instructions and is able to
communicate with other processes.

3.2.2 Shared memory vs. messages

Communication and synchronization are two operations needed in any concurrent
programming environment, parallel or not. Two concurrent processes, even being
totally unrelated, might need to compete for a shared resource, and they must
synchronize before accessing that resource in order to guarantee that one waits while
the other uses the resource without interferences. If the processes are cooperating to
perform a common task, they might need to interchange information (communicate) in
addition to synchronize. There are two basic paradigms for communication and
synchronization among concurrent processes: shared memory and message passing. We
will consider them separately.

If two or more processes share a common memory space, one easy way to
communicate is by means of a shared variable: one process writes the variable while
others can read it. Communication is achieved in a fast and efficient way. However,
problems might arise when more than one process try to update a variable without any
kind of synchronization. Race conditions are a fundamental issue when working with
this paradigm. The variable used for communication has to be considered as a shared
resource, and accesses to it must be somehow restricted to avoid inconsistent updates.
Processes must synchronize to access that resource. Many synchronization mechanisms
for shared memory environments might be found in the literature; two common ones are
test & set locks and semaphores.

An alternate paradigm is message passing. In this case each process might have a
separate memory space. Explicit communication functions are provided to copy one set
of data (a message) from a sender process to a receiver process. Both the sender and the
receiver must collaborate to actually perform the data movement: the sender performs a
send  (also called write) operation and the receiver performs a receive (also called read)
operation. Send and receive operations might also provide synchronization capabilities,
depending on its actual semantics. This topic will be further discussed later in this
chapter.

The research presented in this dissertation has been done using a message passing
paradigm. There are several reasons to justify this choice:
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1 Message passing is a paradigm widely used in certain classes of parallel
machines, specially those with distributed memory. Although there exist many
variations on message passing, some of those discussed in this chapter, the basic
concept of processes communicating through messages is well understood.
Additionally, a message passing system might be efficiently and portably
implemented in most parallel environments [MPI94].

2 The parallel simulation algorithms used in this research, based on model
decomposition, are described by means of message interchange. The
implementation is more direct this way.

3 The three parallel systems that have been available to perform this research
(Supernode, Paragon, MPI) provide only message passing for communication
among processors. Even if it was possible to select between shared memory and
message passing in any of these machines, message passing would be the choice
for portability reasons: porting an application from one machine to another is
easier if both use the same communication paradigm.

Therefore, from now on we will focus on message passing based communication.
In some cases, it is possible to mix both paradigms in the same application. A

common approach is to allow shared memory communication between processes
running in the same processor (or, in general, multicomputer node) while messages are
required if processes are in different nodes.

3.2.3 Semantics of send/receive operations

If the basic concepts of message passing are clear, the actual semantics of the send
(write) and receive (read) operations offered by a parallel programming environment
might be very different. We will try to organize those differences. Most of the following
descriptions will be based on MPI [MPI94], an intended standard for message passing.

Communication primitives may be blocking or nonblocking. In the blocking

communication model, read and write operations are done in one step. Returning from a
read means that a message has been received; returning from a write means that the
message has been sent, but not necessarily that it has been received. The blocking
nature of receive adds a degree of synchronization to the communication primitives.

In the nonblocking communication model operations are done in two steps: first the
read or receive primitive is posted, meaning that the corresponding function returns
without completing the operation. A separate call must be done to actually complete the
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communication. In this case, it is assumed that there is a separate synchronization
mechanism to inform a process when an operation finishes. For example, this might be
done by the process polling for operation completion, or using signals.

In addition to the communication models, a message passing system might provide
one or several of the following communication modes: basic, buffered and synchronous.
The receive operation is the same for all these models, but the behavior of send is
different, depending on what happens with the message and how long the calling
process must wait for the operation to complete:

Basic  send:  completes when the message has been safely stored away so that the
sender is free to access and overwrite the send buffer. The message might be
copied directly into the matching receive buffer, or it might be copied into a
temporary system buffer.

Buffered send: completes immediately after storing the message in a local buffer. Its
completion never depends on the occurrence of a matching receive.

Synchronous  send: completes when a matching receive has been posted and the
message interchange has been completed.

These differences in semantics make it difficult to port a message passing based
application from one environment to another providing different semantics.

3.2.4 Channels vs. addresses

In a message passing system, a mechanism must be provided to allow the sender of a
message to identify the intended destination, and the receiver of a message to identify
its sender. Two common paradigms can be found:

• Channels. The collection of processes collaborating in a parallel application can
be depicted as a graph, where nodes represent processes and arcs represent
communication channels . A channel, then, connects two processes. Send and
receive operations are done on channels, and the identification of the interlocutor
is implicit. No communication is possible between two processes not connected
by a channel. The process-channel graph can be static or dynamic.

• Addresses . Each process in the parallel application is identified, usually from 0 to
N-1, where N is the number of processes. Communication is allowed between any
pair of processes. Send operations include the address of the receiver. A receive
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operation may include the address of a sender, meaning that it will complete only
if a message from that particular sender is received. It is also possible to use
receive with a wild card as the sender specification, meaning that messages from
any sender are acceptable.

Using the channel paradigm, a pair of communicating processes may be joined by
more than one channel, in such a way that different flows of information may be
interchanged without being mixed. When addresses are used, it is common to have a
way to add a tag to the messages, with the same purpose. The sender gives a tag, in
addition to the destination address, and the receiver might choose to receive only those
messages that have a particular tag. Another possibility is to allow a process to have
more than one address.

3.2.5 Parallel programming languages & tools

In order to implement a parallel application, a programmer needs a language able to
express the parallelism. Alternatively, a programmer might design a sequential
application and let the compiler automatically extract as much parallelism as it can. We
will not consider this second option, focusing on the design of applications where
parallelism is explicit. We can identify at least three alternatives to do so: (1) parallel
programming languages; (2) conventional programming languages enhanced with
extensions to express parallelism, and (3) conventional programming languages with
libraries of functions to deal with parallel operations.

In the first group we can find languages like Occam [Inmo89a], developed by Inmos
as the preferred programming language for the transputer family of processors. A
collection of processes run in parallel (or concurrently, if several of those are mapped
onto the same processor) and communicate interchanging messages through channels,
using a blocking, synchronous communication model. The PAR construct allows to
explicitly express operations performed in parallel. The main disadvantage of this
approach is that the programmer needs to learn a completely new programming
language. On the other hand, the resulting executable code after compilation might be
very efficient, specially if the hardware provides a good language support (as it is the
case of transputers and Occam). Languages such as Ada might also be included in this
group, because the language provides support for concurrency. An Ada program might
consist of several tasks  which communicate in a RPC-like fashion (RPC stands for
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Remote Procedure Call), invoking special functions called entries in a blocking,
synchronous way.

In the second group we can find tools as CC++ and Fortran M [Fost95]. CC++ is an
extension of C++, where six new keywords have been added. Those keywords allow to
express concurrency, communicate via shared memory, synchronize access to shared
data, copy data from a process to another, etc. Globally, it is a powerful tool which
allows the programmer to use many paradigms of concurrency and communication.
Fortran M is a small set of extensions to Fortran which provides language constructs for
creating concurrent processes and communication channels, and for sending and
receiving messages. Communication is blocking and buffered.

In the third group we find libraries of functions which allow conventional languages
like C or Fortran to work in a parallel environment, but without modifying the language
itself. Many alternatives can be found, some of them commercial, tailored for a specific
environment, and some others in the public domain with implementations for many host
computers. The advantage of this approach is the use of a familiar programming
language along with an available compiler—i.e., the investment is minimum. There is a
price to pay in terms of efficiency, but only if the implementation of the library is not
optimized for a given environment. In this group we can find the set of libraries which
form part of the Inmos ANSI C Toolset [Inmo90], for transputer-based environments,
the NX library provided to program the Paragon [Inte93] and several publicly available
implementations of MPI (Message Passing Interface), able to work in many
environments (multicomputers as IBM SP1 and SP2, Paragon, IPSC860, Touchstone
Delta, Ncube2, Meiko CS-2, KSR-1, KSR-2, Convex Exemplar; SGI and Sun
multiprocessors; networks of workstations from Sun, HP, DEC, IBM, SGI; networks of
personal computers with LINUX or FreeBSD) [MPI94, Brid95].

In this research we have used the third alternative. The decision has been firstly
forced by the available tools; secondly, using the same programming language (C, in
this case) eases portability among platforms.

3.2.6 Programming environments used in this work

In this work we have used three different multicomputers, each one with a different
programming environment. To program the Supernode we have used the Inmos C
toolset [Inmo90]. The Paragon has been programmed using C and the Intel NX library
[Inte93]. To implement parallel programs in a NOW (Network Of Workstations) we
used C plus a MPI (Message Passing Interface) library [MPI94]. These environments
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have some characteristics in common, mainly the possibility of designing MIMD
programs with message passing communication. Note that the selected programming
language has been C for the three platforms; it has been this way to ease program
portability. Inmos offers Occam as an alternative to C, while the NX and MPI libraries
can be accessed from Fortran programs. The characteristics of each system are
summarized in Table 3.1.

The programming models of the Paragon (NX) and MPI are quite similar, being the
main differences the names of the communication functions and the parameters to pass.
The Inmos C toolset, specifically tailored to exploit the characteristics of the transputer,
is quite different: the blocking, synchronous nature of the message passing functions,
plus the use of channels instead of addresses, require a higher complexity in the
programs. Additionally, the Supernode is much more flexible than the other machines
(many aspects are user-configurable), and the practical result is that the programmer
must be concerned about much more things than simply coding the application. Details
about these three machines and their programming environments can be found in
Appendix A.

Supernode Paragon NOW
Programming tool ANSI C toolset, with

libraries for parallel
programming

specifically tailored for
transputer

environments.

ANSI C with the NX
library from Intel.

ANSI C with MPI
library.

Model of
parallelism

MIMD. MIMD (SPMD
preferred).

MIMD (SPMD
preferred).

Communication
paradigm

Message passing.
Restricted forms of

shared memory
possible.

Message passing.
Restricted forms of

shared memory
possible.

Message passing.

Communication
models

Blocking. Blocking, nonblocking. Blocking, nonblocking.

Communication
modes

Synchronous. Basic. Basic, buffered,
synchronous.

Partner
identification

Implicit (channels). Explicit (addresses). Explicit (addresses).

Table 3.1. Summary of characteristics of the programming environments used in this work.
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3.3 Parallel computer design

Speaking in very general terms, a parallel computer consists of a set of processing
elements interconnected by means of a communication network. Two broad groups of
parallel systems might be characterized: multiprocessors and multicomputers.

The term multiprocessor is used to refer to a parallel system with shared memory,
where p  processors are connected to m  memory modules by means of an
interconnection network (Figure 3.1). The design of the network is a critical issue,
because memory access times should be minimized. The most common class of
networks used in these designs are buses and multistage interconnection networks
(MIN), as Butterfly, shuffle-exchange, Omega and de Bruijkin networks. Another
important issue in the design of multiprocessors is the cache memory: a local cache is
needed at each process, to obtain a reasonable performance, and some cache coherency
mechanism must be added, because a memory word might be simultaneously in several
local caches. This issue, among other things, limits the scalability of multiprocessors.

P P P

M M M M

Interconnection network

…

…

Figure 3.1. Model of a multiprocessor.

The term multicomputer applies to a set of nodes <processor, memory>
interconnected by a network. Each node works as a conventional computer, and the
network provides the infrastructure for communication. The communication and
synchronization mechanisms are implemented by means of message interchanges
through the network. The main issues in multicomputer design are the structure of the
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node as well as the organization of the interconnection network. We discuss these topics
in the following subsections.
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…

Figure 3.2. Model of a multicomputer.

The preferred communication paradigm in multiprocessor environments is shared
memory, while in multicomputer environments is message passing. It is possible,
however, to have the memory modules physically distributed along the nodes of a
multicomputer while the programmer sees a shared memory space; a good deal of
hardware/software support is needed to achieve this. In the same context, it is possible
to simulate message passing over the shared memory space provided by
multiprocessors.

3.3.1 Design of the node

Typically, each node of a multicomputer consists of a classical von Neumann
machine: a CPU plus a certain amount of memory. Some multicomputer manufacturers
use custom designs for the CPU, although in most cases general purpose
microprocessors, like those used in workstations, are utilized. In some cases, the nodes
of a multicomputer are actually small multiprocessors, with several CPUs and memory
modules constituting a computing cluster; the interconnection network communicates
clusters, instead of individual CPUs.
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Figure 3.3. A multicomputer node where communication and computation functions are
integrated in the same unit. Message relaying functions are implemented in software.

In addition to processing tasks, a node must provide some communication
management functions. The kind of networks typically used in multicomputers are
direct networks like hypercubes and meshes. In those networks, each node must
perform certain message relay functions to allow a message to flow from its origin to its
destination, traversing intermediate nodes if necessary.

First generation multicomputers, as the Cosmic Cube and systems based on
transputers (as our Supernode), bundle computation and communication in a single
element (Figure 3.3). The processor has to divide its time among computation tasks and
relaying functions, which are implemented in software.

Current multicomputers, such as the CM-5, the Cray T3D and the Paragon, separate
computation and communication tasks, providing hardware support to implement
message passing functions, in such a way that these functions are assigned to a
collection of hardware routers, while the CPUs can concentrate on computation tasks
(Figure 3.4).
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Computation

Memory

Links to other nodes

Memory
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Figure 3.4. A multicomputer node where message relaying is separated from computation.
A hardware router performs the message passing tasks.

A NOW can be considered an special case of multicomputer, where each node is a
complete workstation and the interconnection network is typically a LAN (Local Area
Network). Each workstation has a LAN interface which performs the network access
functions.

In any of the three mentioned cases (first generation multicomputer, current
multicomputer, NOW) the CPUs have to devote a certain amount of time to perform
communication functions. Message passing has a series of overheads which might be
reduced with appropriate hardware support, but which are very difficult to eliminate.
Sending a message from one node to another requires a series of operations,
summarized in Table 3.2 [Blum95].

The operations in the center of Table 3.2 might be efficiently performed in hardware,
but there is still a good deal of software overhead. This can be very costly in systems
like NOWs, where message passing functions are not implemented directly over the
LAN hardware, but pass over several layers of protocols. As an example, the message
passing system of the NOW used in this work requires messages to pass through three
high level protocol layers, in addition to the LAN layer (in this case, an Ethernet): the
MPI library, TCP and IP. This software overhead can be minimized if messages are
long, but this is not a common situation when the objective is to achieve massive, fine-
grain parallelism. In some machines (like the Paragon) each node consists of two CPUs,
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one for computation and another one devoted to perform all the message passing
processing functions. The software overhead is greatly minimized, but with a significant
cost increase.

Sources of overhead

At the sender CPU

- Send system call
- Argument processing
- Allocate buffer
- Prepare message
- Initiation of send

At the network of routers
(software or hardware)

- Transfer message via network interface,
   at origin
- Transfer message over the network
- Transfer message via network interface,
   at destination

At the receiver CPU

- Interrupt service
- Buffer management
- Message dispatch
- Copy data to user space
- Receive system call

Table 3.2. Overheads involved in a pair of send / receive operations.

3.3.2 Design of the interconnection network

The interconnection network in a multicomputer must provide a message passing
support with:

1 low latency: messages must traverse the network as fast as possible, and
2 high throughput: the network must not be a bottleneck; it must be able to manage

all the messages generated by the computing elements.

Other desirable characteristics are low cost, fault tolerance, expandability, and
symmetry, not necessarily in this order. There are many issues to consider in order to
design a network with these desirable characteristics. Some of those are:

1 Topology or shape of the network. Common topologies are: bus, ring, hypercube,
mesh (2D and 3D), torus (2D and 3D) and fat-tree. Except for the bus, these are
direct networks where communication between two parties might require the
collaboration of intermediate nodes.

2 Switching technique: circuit switching or packet switching. Circuit switching
means that a physical connection  (reservation of links in the nodes along the path)
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must be done before communication is possible. A packet switching network does
not require reservation of links: each message is divided (if necessary) into a set
of smaller packets, and each packet traverses the network separately, using
resources like buffers and links only when they are needed. Packet switching
provides a better way of sharing network resources, but suffers from some
negative effects, including non-constant packet delays.

3 Message flow control: store-and-forward, wormhole, cut-through. Using store-
and-forward, a packet must be completely copied from a node to the next in the
path before it can start advancing towards the following node. With wormhole and
cut-through, a packet is divided in smaller units called flits (flow control digits)
and the forwarding process is done in a flit-by-flit basis. This means that a packet
might be, at a given time, dispersed along several routers. The pipelining effect of
these techniques makes the delay much less dependent on the distance between
source and destination. When contention arises, cut-through is able to collapse the
packet again, freeing network resources, making this technique more efficient
than wormhole.

4 Routing strategy: static, adaptive, with many alternatives for both cases. Static
means that messages traveling from a given source to a given destination always
follow the same path. A common choice is to route packets in order of dimension;
for example, in a 2D mesh, a packet moves first horizontally and then, when the
column of the destination has been reached, vertically. Most of the above
mentioned topologies provide more than one route between a given pair of nodes.
Adaptive techniques try to exploit the availability of alternate routes, in order to
make a better use of the network resources, or to provide fault tolerance. There are
many adaptive routing techniques; some are partially adaptive and use only
minimum length paths, while others are fully adaptive.

5 Deadlock management: necessary for some combinations of topology and routing
strategy. For example, a torus network with static routing is deadlock prone.
Adaptive routing techniques usually make a network deadlock prone,
independently of its topology. The common approach to deal with deadlocks is to
implement a deadlock avoidance technique. Such techniques are based on
imposing restrictions on the use of resources, in such a way that deadlocks cannot
appear. The cost to pay is a higher complexity in the router and a lower resource
usage.
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A detailed description of these terms is out of the scope of this dissertation. Those
readers interested in these topics may check [Arru93, Izu94] and the references listed
there.

Supernode Paragon NOW
Node Transputer T800 Intel i860 (two) Sun Sparcstation 5

Implementation of
message relay

functions

Software Hardware -

Network topology User defined 2D Mesh Bus (Ethernet)
Switching technique Packet switching Packet switching Packet switching
Message flow control Store-and-forward Wormhole -

Routing User defined Static -
Deadlock

management
User defined - -

Table 3.3. Summary of the hardware characteristics of the multicomputers
used in this work.

Commercially available machines offer many combinations of these parameters.
Table 3.3 summarizes the characteristics of the multicomputers used in this research.
Previous research performed by this group suggested that a torus network with packet
switching, cut-through flow control, static routing and a deadlock avoidance technique
described in [Arru93, Izu94], with all these functions performed by a hardware router,
might provide a reasonable option for a multicomputer interconnection network, in
terms of cost/performance. A network with these characteristics is the object of the
simulation study presented in Chapters 5 and 6.

3.4 Conclusions

In this chapter we have reviewed a series of concepts related to the view a
programmer has of a parallel programming system, and to the different architectural
organizations that can be used to actually build such a system. The presentation has
been purposefully biased towards multicomputer systems, where a set of computing
nodes, comprising a CPU and a certain amount of local memory, are connected by
means of a message passing network. This decision has been motivated by the
computing systems available for this research, and also by the model we chose to use in
our experiments.

The description of the hardware/software issues involved in parallel programming
has served to introduce the main characteristics of the three computers systems used in
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this research: a transputer-based Supernode, an Intel Paragon and a network of Sun
workstations with a MPI library. Much more detailed information can be found in
Appendix A. This chapter has also served to introduce the reasons of our interest in
interconnection networks and, particularly, in the design of hardware routers for
building those networks. Some general ideas have been given here, while in Chapter 5
the reader will find a detailed description of a possible design for a router.



 



Chapter 4

An evaluation of simulation
techniques

In this chapter we summarize the experimental work carried out in the

Supernode multicomputer with the purpose of evaluating the performance

of two sequential simulators (time-driven and event-driven) and two

parallel simulators (CMB-DA and TW). A toy model consisting of a

toroidal network of first-come, first-served queues was used to test the

simulators. It was our aim to determine the influence that the parameters of

the simulated model and the characteristics of the host multicomputer have

on the performance of the simulators.
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4.1 Introduction

In this chapter we present a first collection of experiments done to evaluate and
compare different simulation techniques when implemented in distributed memory
parallel computers. A simple model was chosen and four ad-hoc simulators were
developed and tested:

• sequential time-driven,
• sequential event-driven,
• parallel conservative event-driven and
• parallel optimistic event-driven.

The objective of the study presented in this chapter was to select an appropriate
parallel simulation algorithm for the analysis of the kind of models our group is
interested in, i.e., interconnection networks for multicomputer systems.

For this study the Supernode system described in Chapter 3 and Appendix A was
used. Up to 17 raw transputers were required for some of the experiments. Part of the
results shown in this chapter can also be found in [MG93, MAB93, MAB94 and
MB95]. The chapter is structured as follows. In §4.2 a review of the literature is done,
summarizing the main results of studies similar to this one. Section 4.3 presents the
model used in the experiments. In §4.4 a description of the implemented simulators is
done. In §4.5 the behavior of two sequential simulators is studied. Section 4.6 is
devoted to an exhaustive analysis of a parallel conservative simulator, while §4.7
compares this simulator with an optimistic one. Finally, some conclusions are
summarized in §4.8.

Throughout this chapter, we will use TW to refer to Jefferson’s Time Warp
algorithm and CMB to refer to the Chandy-Misra-Bryant conservative algorithms.
When necessary to make a distinction, the two main variants of the conservative
approach will be denoted CMB-DA (deadlock avoidance via null messages) and CM-
DDR (deadlock detection & recovery).
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4.2 Related work

Several works can be found in the literature making studies very much like this one,
although not identical. In this section some of the most exhaustive ones will be
presented. Unfortunately, all of them have been done using shared memory parallel
computers, and in most cases optimizations to exploit this kind of architecture have
been used. As our research is focused on distributed memory systems like those
described in the previous chapter, none of the reported optimizations could be used, so
an specific analysis was needed.

It should be clear that there are many other studies of parallel simulation algorithms;
the four presented here have been selected because of their generality or their similarity
to our work. Some other works, focused on very specific models, will be summarized in
the next chapter.

4.2.1 Reed, Malony & McCredie

This group analyzed in [RMM88] the performance of CMB algorithms when
simulating several queuing networks in a Sequent Balance 21000 with 20 processors, a
shared memory multiprocessor. The test included both CMB-DA and CM-DDR
variants of the conservative algorithm.

Their conclusions were devastating for CM-DDR, and not much better for CMB-DA,
even considering that speedups were computed taking as a reference the execution time
of the parallel simulator running in one processor, instead of using a good
implementation of a sequential simulator. The best figure they present is a speedup of
about 7.5 using 18 processors, but in general speedups are much poorer.

Fortunately, many other works (some of them mentioned here) were able to detect a
major pitfall in this study: no effort was made to exploit the lookahead of the studied
models, mainly networks of FCFS (firs-come, first served) queues. After this work
many other researchers concentrated on methods to exploit the lookahead of this and
other networks disciplines, allowing quite impressive performance for many cases
[Nico88, Fuji88, Wagn89].
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4.2.2 Wagner & Lazowska

These two researchers analyzed in [Wagn89, WL87] several aspects of the
implementation and usefulness of CMB algorithms for speeding up simulations. They
developed the two variants of these algorithms in a Sequent Symmetry with 20
processors. This shared memory architecture allowed the introduction of some
optimizations to the basic algorithm. For example, when using CMB-DA, no null
messages are needed, because a LP can directly access another LP’s channel clocks.

The main contribution of their work is a collection of methods to effectively exploit
the lookahead of queuing network models, obtaining much better results than those
presented by Reed et al. Continuing with the work by Nicol [Nico88] to accelerate the
CMB simulation of FCFS servers, similar techniques are presented for other queuing
disciplines such as multiclass servers with priorities, last-come first-served and
processor sharing.

They test their proposals using several queuing network models, obtaining in most of
the cases speedups about one half of the number of processors used in the simulations.

4.2.3 Konas & Yew

The work by Konas and Yew [KY91] analyzes three different parallel simulators: an
implementation of CMB-DA, an implementation of TW and a system called Parsim,
which is basically a synchronous parallel simulator. Parsim has a (single) central event
list and a global clock managed by a simulation kernel. The simulation is time-driven,
because the clock advances step by step. In each step, all the events with the same
timestamp are processed concurrently.

In their experiments they use an Alliant FX/80 shared memory multiprocessor, with
8 processing elements. The centralized memory of the machine allows the introduction
of several optimizations into the algorithms. To test the simulators they use two models:

• A synchronous  systems consisting of a set of 16 processing elements and 16
memory modules connected via an Omega network.

• An asynchronous  system consisting of a 4×4 torus network of FCFS servers, very

much like the one we will introduce in §4.3.

For the synchronous case, Parsim clearly surpasses TW and CMB-DA. These two
simulators show a similar behavior, in most cases, being TW slightly superior.
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However, for the asynchronous system, Parsim is not able to extract any parallelism in
the simulation, while TW and CMB-DA perform reasonably well, again exhibiting
similar speedups (about 4 with 8 processors, with a significant variance depending on
several parameters of the simulated model).

They conclude that the CMB method is inappropriate for the simulation of
synchronous models. The TW approach can achieve good results with synchronous or
asynchronous models, provided that the ratio (state saving overhead/performed
computation) is low. Parsim performs well in the simulation of synchronous models,
but the achieved speedup is very poor when dealing with asynchronous systems when
there is not much parallelism available at each time step.

4.2.4 Fujimoto

This researcher is one of the most active workers in the PDES field. From its vast
collection of papers, these four are specially interesting for our purposes: [Fuji88,
Fuji89a, Fuji89b, Fuji90b]. The first two concentrate on the evaluation of CMB, while
the third one analyzes the TW approach. The fourth one is an excellent survey of PDES
techniques, and summarizes most of the results previously presented by this author. For
this reason, we will present some results that appear in this last paper. In the
experiments, a BBN Butterfly multiprocessor with 16 processing elements is used.

In the case of the conservative simulators, Fujimoto repeats some of the experiments
of Reed et al., with improvements to exploit the lookahead of the models. For a queuing
network model where a speedup less than one was reported, he obtains speedups about
three (comparing with a sequential simulator). His main conclusion is that very good
performances can be obtained with conservative methods if a careful analysis of the
lookahead of the model is done. This is, however, the main criticism to this class of
algorithms: an extra effort (compared to studies done with classical, sequential
simulators) is required of the designer of a model in order to achieve good
performances. Unfortunately, not all the models have good lookahead ability, or they
have it but the way of exploiting it is not obvious.

In his last works Fujimoto has paid much more attention to optimistic methods,
proposing optimizations to improve their performance when implemented in a shared
memory system, being the main one the ability to annihilate previously sent messages
directly accessing the memory space of the receiving LP, instead of using anti-
messages.
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Simulating with TW a 256-node hypercube of FCFS servers, nearly linear speedups
are reported. If the queue discipline is changed to consider priorities and preemption,
results are slightly worse. Not all is good news, however; he also reports that, when the
size of the state to save increases, performance reduces dramatically.

The main conclusions are that TW seems to outperform the conservative methods for
most of the cases, with the additional advantage of not requiring any special effort to
search for a way of exploiting the lookahead of the model under study, although the
state saving and recovering mechanism can minimize the potential advantages. To
reduce this effect, he even considers the possibility of building special-purpose
hardware to perform this task.

4.3 The model under study

Several works of our research group have been devoted to the evaluation of toroidal
networks of message routers. Some of our studies showed the advantages of using tori
instead of meshes when message latency and network throughput are considered
[ABIM93, Arrua93, Izu94]. Most of this research was carried out using sequential time-
driven simulators. It was precisely the high cost in CPU time of these simulations the
reason that conduced us to the research in the field of parallel simulation.

In this section we present a model of a network of FCFS servers which can be seen
as a very simplified version of the kind of models we are interested in. We consider a
network of nodes which communicate via bi-directional links arranged as shown in
Figure 4.1a, i.e., forming a bi-dimensional torus. Each node of the network has, as
shown in Figure 4.1b, a service center (a server) and an associated queue. The queue
discipline is strictly FCFS. The network is traversed by a fixed number of jobs which
visit the servers to be somehow processed. Each server removes a job from its queue (if
there is any), processes it for a time (the service time) and, when finished, sends it to
one of the four neighbor’s queue. While a server is busy, queued jobs have to wait and
incoming jobs are stored in the queue.

This model has been used as a testbed of simulation techniques in [Fuji89a] and in
[KY91]. Similar models have been used in other works. For example, in [Fuji89b] a
hypercube of FCFS servers was studied, while in [Wagn89] a torus network with mixed
FCFS and PS (processor sharing) servers was simulated.
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Queue

(a) (b)

Figure 4.1. Model used in the experiments presented in this chapter. (a) Torus network of
FCFS servers. (b) Detail of a node.

The simulator might measure interesting characteristics of the model, to help to
characterize its behavior: mean queue size, occupation of the server (busy time/total
time), number of processed jobs per (simulated) time interval, mean queue time, mean
waiting time, etc. However, we are interested in measuring the performance of our
simulators, so the basic measurement we consider is the execution time of simulation
runs, for a fixed amount of simulated time. This figure is taken as the main point of
comparison for the different simulation approaches.

Some parameters of the model can be varied to evaluate their effects in the
performance of the simulators:

• Size of the network, i.e., number of nodes.
• Initial load (C) of the network. The amount of jobs in the network is established at

the beginning by inserting a number of jobs in each node’s queue. A value of load
C means that when the simulation starts each queue has C jobs waiting to be
served. The total number of jobs in the network can be calculated as C times the
size of the network.

• Distribution of the service time . A biased distribution has been considered, with
mean value M and minimum value L. For this model, the minimum service time L
can be taken as a lower bound of the lookahead of a process.

• For the parallel simulators, the number of processors—transputers—used.
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Using this model, an important aspect to be taken into account is that the simulation
of a job consumes a negligible amount of CPU time: only some increments of counters
or movements of small amounts of data are needed. For this reason, when a simulator is
running this model, the execution time is mainly due to the simulation algorithm itself
(management of events, synchronization, message passing, etc.), and not to the
simulated model (actual simulation of events). Another point to be considered is the
high communication time needed to pass a message between two transputers, because
the switching mechanism is store-and-forward and message management is done in
software [IAB91, IAB92]. These considerations are specially relevant when evaluating
the parallel simulators.

4.4 The simulators

The first considered simulator is sequential, time-driven. The network of queue-
server pairs is represented as a bi-dimensional data structure. The simulator consists of a
loop which traverses all the elements of this structure in each iteration. When a node is
visited, a time advance of one cycle is simulated: a job is put into service and removed
from the queue if necessary, a job is inserted in other node’s queue, etc.

The second simulator uses the sequential event-driven algorithm. The network of
nodes is also represented as a bi-dimensional data structure. Additionally, an event list
has been implemented using a linked list. Some other implementation of event lists
could have been better, but this one was chosen for the sake of simplicity. The simulator
is also a loop; in each iteration the first event of the event queue is removed and the
associated action is simulated: arrival of a job to a node, end of service in a server or
end of simulation.

The third simulator is an implementation of the parallel CMB-DA [CM79, Brya77]
algorithm as described in [Wagn89]. Each node of the network is simulated by a logical
process, running in parallel with other LPs.

The fourth simulator is an implementation of TW [Jeff85] as described in [Fuji90b].
Again, a LP is devoted to the simulation of each node of the model. No particular
performance improvement technique has been implemented, and a token-passing
scheme is used to compute the global virtual time.

Once we have the set of LPs which will form the simulator, those processes must be
mapped onto a set of processors (transputers, in this case). Figure 4.2 shows the
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mapping of a 8× 8 network of LPs onto a 2×2 network of transputers. The logical

channels which allow the communication between LPs have to be mapped onto either
transputers’ internal channels or external links. Unfortunately, the transputer does not
allow the simple mapping show in Figure 4.2: it is not allowed to map more than one
bi-directional channel onto one physical link. For this reason, and to provide a way of
monitoring the evolution of the simulation, a set of other elements have been added to
the parallel simulator to make the whole system work.

LP LP LP LP

LP LP LP LP

LP LP LP LP

LP LP LP LP

Figure 4.2. Mapping a set of LPs onto a set of transputers. Each transputer (dashed-line
square) holds the same number of LPs, 4 in this example.

To run a simulator over N transputers (where N = n × n), we arrange them to form a

torus network, and then an additional transputer is inserted in one of the wrap-around
links. A monitor process, whose purpose will be described later, runs in this last
transputer, the only one directly connected to the Idris front-end (Figure 4.3a). This
structure has been suggested in several works by Izu [Izu94] and by other researchers
working with transputer systems. It is important to notice that the topology of the
network of transputers used by the simulator need not be the same as the topology of
the simulated network. As in the Supernode the network of raw transputers can be
arbitrarily built, we selected this one because we considered it was reasonably good for
our purposes.

As mentioned before, we have as many LPs as nodes in the simulated network.
These LPs are evenly distributed among the available worker transputers, using the
trivial mapping shown in Figure 4.2. To allow all the LPs to communicate, in each
transputer there is a router  process which manages all the message interchange between
LPs, inside or outside the transputer (Figure 4.3b). When a LP wants to send a message
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to one of its neighbors, it transfers instead the message to its local router. If the
destination process is in the same transputer, the router sends the message directly to the
target process; otherwise, the message is sent to the appropriate transputer, traversing as
many intermediate transputers as necessary, in a store-and-forward fashion and, finally,
delivered to the destination LP by its local router. All the routing is done in software,
which means that a considerable time is devoted to manage message movements.

Host

Mon.

Workers

Router

LP LP LP LP

(a) (b)

Figure 4.3. Structure of the parallel simulator. (a) Interconnection of a network of
transputers to run the simulators. (b) Processes running in a worker transputer.

The monitor  is a special process which connects the network of LPs with the external
world. If a LP has a problem, a message is sent to the monitor, which prints a diagnostic
on the screen. The monitor also collects all the information sent by the LPs when their
part of the simulation finishes, processes it and prints a summary of the results on the
screen. This is the only process with abilities to access the file system and the terminal.

4.5 Results of the experiments with the sequential
simulators

This first set of experiments was done to evaluate and compare the performance of
the two sequential simulators: time-driven and event-driven. We selected a set of
parameters and simulated the corresponding model using one raw transputer of our
Supernode.



4. An evaluation of simulation techniques 79

1

10

100

1000

0 5 10 15 20

Td-4x4
Td-8x8
Td-16x16

Ed-4x4
Ed-8x8
Ed-16x16

Load C

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Figure 4.4. Execution times of the sequential simulators for different values of load and
size of the simulated network. Td = time-driven. Ed = event-driven.

Figure 4.4 shows the execution time, measured in seconds, for the sequential
simulators and for different values of load (C=1, 2, 5, 10, 15 and 20) and sizes of the
simulated network (4×4, 8×8 and 16×16 nodes). Other parameters have been fixed to

the following values: 10000 simulation cycles; time of service with mean M=9.5 and
minimum L=1. Other values of L  have also been considered, but its effect on the
performance of the sequential simulators is negligible.

From Figure 4.4 some conclusions can be drawn:

• The time-driven simulator is faster than the event-driven only when the number of
events managed by the simulator in each cycle (of simulated time) is large. We
will call this number the density of events in the simulation. Several parameters of
the simulator can increment the density of events: the load C, the size of the
network and the service time distribution.

• The performance of the event-driven simulator is much more sensitive to the
density of events than the time-driven one, mainly due to a non-optimized
management of the event queue. As the load and the size of the network increase,



80 An empirical evaluation of techniques for parallel simulation of message passing networks

the number of insertions and deletions in the event list also increases, and the
same happens with the size of the list. For this reason the management of the
event list becomes a bottleneck.

These conclusions should be taken into account when simulating a model, in order to
select the right simulator. If in each cycle of simulated time many events are processed,
then the time-driven simulator will perform well. On the other hand, if the time interval
between events is large, then the event-driven simulator will be a better option.

4.6 Results of the experiments with the CMB-DA
simulator

The next set of experiments has been designed to evaluate the conservative PDES
with deadlock avoidance (CMB-DA) and to determine the effects that the different
parameters of the model have in the performance of the simulator. Simulations with the
following parameters have been executed: 10000 simulation cycles; simulated network
of 12×12 nodes; distribution of the service time: M=9.5, Lookahead L=(1, 2, 4, 6, 8 and

10); load C=(1, 2, 4, 6, 8 and 10); number of transputers: 4, 9 and 16. In order to
evaluate the performance of the parallel simulator, similar simulations have been done
with the sequential event-driven program.



4. An evaluation of simulation techniques 81

0

100

200

300

400

500

0 2 4 6 8 10

L=1
L=2
L=4
L=6
L=8
L=10

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Load  

0

100

200

300

400

500

0 2 4 6 8 10

L=1
L=2
L=4
L=6
L=8
L=10

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Load

(a)                                                                (b)

0

100

200

300

400

500

0 2 4 6 8 10

L=1
L=2
L=4
L=6
L=8
L=10

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Load

(c)

Figure 4.5. Execution time as a function of the network load for different lookahead values.
Simulators with (a) 4 transputers (b) 9 transputers (c) 16 transputers.

Figure 4.5 shows the behavior of CMB-DA when the load, the lookahead and the
number of processor are varied. From the figures, some conclusions can be drawn. First,
it is clearly noticeable that the performance of CMB-DA is better when higher is the
load of the system. When the number of jobs is large, the number of interactions
between the LPs is also large, so the simulation can progress naturally: the LPs do not
block often and few null messages are needed. Another characteristic of the model that
plays a relevant role in obtaining good performance is the lookahead, mainly when the
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load level is low. Large lookaheads allow faster advance of the LPs’ clocks when
receiving null messages, so the synchronization effort is smaller. Finally, in relation to
the obtained degree of parallelism, it clearly appears that, when a bigger set of
transputers is used, a real gain in execution speed is obtained—i.e., the simulator scales
well. For high loads, execution times are around 145 seconds in the 4-transputer case,
85 for 9 transputers and 45 for 16 transputers.

Figure 4.6 shows the speedups obtained when increasing the number of transputers.
We use the sequential event-driven simulator as a reference point because it is not
realistic to calculate speedups from the execution times of CMB-DA running in one
transputer. In these figures, results with only one processor correspond to the sequential
event-driven simulator, while results for 4, 9 and 16 processors correspond to CMB-
DA.

It can be seen that achieved speedups are really poor in some cases (e.g., when the
load is 1), even smaller than 1, but simulation accelerates more than three times when
16 transputers are used. Speedup increases as load increases. Lookahead is also
important to improve the results, but its influence is clearly less important than the
load’s; it is relevant when the load is low and then synchronization messages (null
messages) are sent much more often. It must be said that no special effort has been done
in the simulator to aggressively exploit the lookahead of the model (using techniques
such as those by Nicol [Nico88]), so these results could be unnecessarily pessimistic.
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Figure 4.6. Execution time (in seconds) and speedup for different values of the load C  (a)
C=1 (b) C=6 (c) C=10

The obtained speedups are not really bad, specially if the consideration mentioned in
§4.3 about the cost of “housekeeping” functions in the simulator, and the effort devoted
to message interchange, are taken into account. In fact, most of the execution time is
due to the cost of the simulation algorithm, mainly to the synchronization of the LPs,
and to the interprocess communication, whereas the time to simulate an event is
negligible.



84 An empirical evaluation of techniques for parallel simulation of message passing networks

We tested what happens when the actual cost of processing an event is high. To do
so, we made some experiments artificially increasing this cost. A loop in the form “for
i=1 to  W  do nothing” was inserted in the code of the simulator at the point where an
entry of a job in the service center is simulated. The parameter W  is a form of synthetic

workload, which can be varied to evaluate its effect on the execution time of the
simulator.

Experiments with significant synthetic workload exhibit very satisfactory speedups.
The parallel simulator is able to distribute it among the processors, and thus available
parallelism is conveniently exploited. Additionally, the communication/computation
ratio becomes more balanced. Figure 4.7 shows how this workload can dramatically
improve the obtained speedups. Figure 4.7a represents the execution times for two
simulations (the first one with C=1 and L=1; the second one with C=6 and L=1) with
the sequential event-driven simulator and a 16-transputer CMB-DA simulator. Figure
4.7b represents the achieved speedups. The addition of this workload significantly
improves the achieved speedup, even when the other parameters of the model are not
specially well suited for the parallel simulation.
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Figure 4.7. Influence of a synthetic workload in the simulation.
(a) Execution times for the sequential and CMB-DA (16 transputers) simulators,

 for C=1 and C=6. (b) Achieved speedups.

A series of considerations can be done about the use of a transputer-based machine
as a workbench. The first one is that communication between processes has to be done
using messages. Other implementations of CMB-DA in shared memory multiprocessors
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make optimizations when sending null messages: those messages are not actually sent,
but the affected channel clocks are directly updated, accessing other LP’s memory
spaces. Additionally, software routers have to be implemented to convey messages
between transputers, and those routers consume both memory and CPU cycles.
Messages have to be sent from the sender LP to the router (internal communication),
from one router to another (external communication, maybe several times) and from
one router to the receiver LP (internal communication). The effort devoted to
communication means a real burden, and has to be done independently of the type of
message (null or real).

To summarize the results of all these experiments, it can be concluded that the
conservative approach to parallel simulation exhibits a poor performance when
simulating the type of physical model previously described. Nonetheless, other models
could successfully be simulated using CMB-DA, if they belong to any (or even better,
several) of these groups:

• Models that synchronize in a natural way by means of useful messages. In this
case, the need of null messages is low, which is specially convenient when a
message passing architecture is used.

• Models with high levels of lookahead, which allows progress in the simulation
when the LPs do not have events to process. If it is not possible to process useful
messages, at least null messages are generated less often and with larger
timestamps, and the channel clocks (and then the acceptance horizons, LPs’
clocks and simulation) advance faster.

• Models where the simulation of an event requires a high computation effort,
which is distributed among the processors.

In all these cases, the ratio “useful computation/synchronization effort” is quite
favorable. In general, this is the key parameter to optimize in order to get the best
performance from any parallel system.

4.7 Results of the experiments with TW

In the previous section a quite exhaustive evaluation of the CMB-DA algorithm has
been presented. In this section we will focus on our implementation of TW. Our aim is
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to discover under which circumstances TW performs better than CMB. To do so,
instead of presenting a collection of figures with the same sets of parameters used
before, we have selected five significant experiments, using them for our comparisons.

The parameters of the five selected experiments (A through E) are summarized in
Table 4.1. The first three are cases without synthetic workload, and represent a bad, an
average and a good case for the CMB-DA algorithm. The last two experiments consider
the use of a high synthetic workload, where the CMB-DA algorithm performs well or
even very well. Table 4.2 presents the figures for the conservative algorithm, extracted
from the previous section, to be taken as a reference point. It should be remarked that
results with 1 processor correspond to simulation runs with a sequential simulator,
instead of using CMB-DA in only one processor. For each experiment, the left-hand
column shows the execution time, and the right-hand column the obtained speedup,
relative to the execution time of the sequential simulator.

Experiment C L W
A 1 1 0
B 6 6 0
C 10 10 0
D 1 1 10000
E 6 1 10000

Table 4.1. Input parameters for the experiments reported in Tables 4.2 and 4.3.

A B C D E
Proc. Time SU Time SU Time SU Time SU Time SU

16 2’30” 0.29 0’46” 2.52 0’44” 3.39 4’16” 5.32 4’02” 9.56
9 3’32” 0.20 1’03” 1.84 0’58” 2.57 - - - -
4 8’10” 0.09 2’38” 0.73 2’26” 1.02 - - - -
1 0’43” 1 1’56” 1 2’29” 1 22’41” 1 38’33” 1

Table 4.2. Execution times and speedups for a series of experiments done with a
conservative parallel event driven simulator.

Once we started experimenting with the TW simulator, we found that it was terribly
greedy in memory demands. Many of our experiments were aborted because the
memory assigned to a LP was exhausted: the LPs data structures grew too fast, and the
fossil collection mechanism (made possible by means of a global control mechanism to
calculate and distribute the GVT) did not free much memory to be reused. In addition to
that, the message passing subsystem also failed because of a lack of space to store
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messages in their journey from a LP to another. After analyzing the evolution of the
programs, we discovered two reasons for this behavior:

• The characteristics of the model. The toroidal network used in the experiments
exhibits a high degree of local communication between neighbors. The result is
that an erroneous computation in a LP spreads quickly to the neighboring LPs,
making them advance in an erroneous way. What is worse, a feedback effect
appears when, after erroneously processing a job, it is sent to another LP which
also processes it and sends it back to the original LP, where the chain starts again.
In the proposed model, this situation is highly probable. The result is that, firstly,
a big deal of memory space is required to store anti-messages and copies of the
state and, secondly, whenever a causal error is detected, an avalanche of anti-
messages is sent, giving rise to an overflow in the message passing system.

• The transputer built-in scheduler. Many studies of optimistic simulators have been
done using ad-hoc microkernels to schedule the execution of a given number of
LPs in a smaller number of processors. Those schedulers prioritize the LPs with
minimum local time [Fuji89b, Fuji90a]. Using this approach, the greediness of the
optimistic LPs is strongly limited: erroneous computations do not go too far and,
consequently, anti-messages are sent less often and in smaller number. In our
simulator, instead of designing a new scheduler, we used the transputer built-in
one, whose main characteristic is its attempt to be fair and distribute the CPU
evenly among all the LPs.

To partially solve these problems we adopted a proposal of Sokol et al. [SSH89]: we
added a certain degree of “conservatism” into the LPs. With a purely optimistic scheme,
the LPs advance unboundedly (in fact, as just mentioned, they advance too fast). The
conservatism is imposed by limiting the ability to go into the future: LPs are allowed to
advance to a certain degree, calculated as the value of the GVT plus a time window size .
If it tries to go beyond, it is (temporally) blocked. The window size is dynamically
changed: if the LP is successful in its advance (i.e., if it does not force rollbacks), the
window size is increased. Otherwise, the window is reduced. A minimum window size
is guaranteed, to always have a degree of optimism.

We did the previously introduced series of experiments to evaluate our TW
implementation with the time window mechanism. The results are compiled in Table
4.3. As many authors reported that TW’s performance is much better than CMB’s
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[KY91, Fuji90b], we were quite disappointed: in most of the cases, the conservative
simulator ran faster than the optimistic.

A B C D E
Proc. Time SU Time SU Time SU Time SU Time SU

16 1’48” 0.40 2’50” 0.68 2’40” 0.93 6’00” 3.78 11’51” 3.25
9 2’12” 0.32 4’00” 0.48 3’22” 0.74 - - - -
4 3’40” 0.20 5’43” 0.34 5’02” 0.49 - - - -
1 0’43” 1 1’56” 1 2’29” 1 22’41” 1 38’33” 1

Table 4.3. Execution times and speedups for a series of experiments done with an
optimistic parallel event driven simulator.

Only in the worst case for CMB-DA (low load and low lookahead) the optimistic
simulator was faster. We studied the reasons of this behavior, and we found (as other
researchers did before [TV91]) that the memory management in the LPs is absolutely
critical, up to the point that, in most cases, the overhead of managing the data structures
is higher than the effort of synchronizing processes by means of blocking and null
messages. Additionally, although null messages are not needed, anti-messages are, and
its number is not negligible, especially when the optimistic advance of the LPs is not
bounded. The global time computation mechanism also adds a serious burden to the
simulator, because it needs a continuous interchange of messages among LPs to avoid
an exhaustion of the memory space.

An important characteristic of the TW simulator is that execution times are less
sensitive to parameters as load and, particularly, lookahead. This means that the user
does not have to worry about the best way to exploit the lookahead of the model. The
offered level of abstraction is higher. While a conservative simulator has to be done ad-
hoc for a class of models, if a good performance is desired, the optimistic one is more
general, and can be applied (with similar success) to a variety of models [Wiel89,
WJ89].

From the results shown in Table 4.3, it can also be concluded that the speedup scales
with the number of processors. Regarding the effect of the synthetic workload on the
performance (experiments D and E), a large value of W has an important effect on the
speedup, but this effect is not as dramatic as it was in the conservative case. The reason
is that, in the conservative simulator, the busy-wait loop which emulates a high
workload is done just whenever it is needed, and never has to be undone. On the other
hand, with the optimistic simulator, many jobs are processed in a speculative way, and
its effect have to be undone later. This means that, when the workload is big, the effect
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of erroneous computations is also a serious drawback: it could be better to wait and
consume a message just when it has to be consumed, than to consume it and later undo
its effects. As in experiment E the simulator has more jobs to process, the probability of
making a mistake is bigger, so it takes more time than experiment D.

To summarize our experience with TW, we only can say that we were quite
disappointed. It required much more programming effort than CMB-DA, because the
management of the data structures of TW (i.e., the memory management) is anything
but trivial. Additionally, it was much harder to debug. Due to the bad performance
results, and to the limited number of experiments carried out, we are not able to state a
definite set of characteristics of the simulated models that can help in obtaining a good
performance from TW.

4.8 Conclusions

The current simulation techniques are fundamentally sequential, optimized to get the
maximum performance from a single processor. Unfortunately, these methods cannot be
easily adapted for its use in multicomputer systems. For this reason, new, parallel
simulation methods have been developed. Among those, two promising ones are CMB
and TW.

Our experiments with a conservative simulator confirms the results of other authors:
high values of load, lookahead and synthetic workload make possible good
performance. Nevertheless, the simulator has to be tailored to exploit the characteristics
of the model. The optimistic simulator is more general, offering a higher level interface
to the user, but its performance is, in our experiments, much less brilliant than expected.
The memory management tasks involved in the Time Warp mechanism wastes most of
the CPU time. The selected model, the computer system used as workbench, and our
particular implementation allies to make the performance even worse.



 



Chapter 5

Simulation of message
passing networks

This chapter is devoted to the use of PDES to study real world problems.

We are interested in the study of a particular class of systems: message

passing networks for multicomputers. We present a detailed model of one of

these networks, along with the way this model can be described for its

simulation. Six simulators have been developed to study this model. One is

sequential, while the other five are parallel. Three parallel simulation

strategies (SPED, CMB-DA, TW) have been implemented in three

multicomputer environments (Supernode, Paragon, NOW).
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5.1 Introduction

In the previous chapter we have presented our preliminary implementation and
performance evaluation of several sequential and parallel simulation techniques in a
multicomputer environment. To do that evaluation we designed a toy model, quite
simple, but with a series of characteristics which were relevant to the kind of models we
are interested in. The experience was useful, because it allowed us to learn about the
implementation of the simulators, and to assess some of their properties. In this chapter
we will try to advance further, abandoning toy models and concentrating our study on
real world applications where PDES has been used with different degrees of success.

We will start by introducing some other researchers’ accomplishments. The
application domains considered by those authors are quite diverse: Petri nets, queuing
systems, computer networks, war scenarios, logic circuits, etc. Following that, we will
present our work in a particular field: the simulation of a message passing network,
designed to be used as the communication infrastructure of a multicomputer. Five
parallel simulators have been implemented to test three synchronization mechanisms
(synchronous, conservative, optimistic) in three different multicomputer environments
(Supernode, Paragon, network of workstations with MPI). These simulators are
described in detail in this chapter, while the obtained performance results are presented
in Chapter 6.

5.2 Related work

In this section we will review the literature to introduce significant domains of
application of PDES techniques. Some of the domains are very specific: logic
simulation, communication networks, computing systems, etc. Some others refer to the
simulation of models described using a kind of “specification language”, such as
queuing networks or Petri nets, while the model itself can be anything from a
supermarket to a factory.
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5.2.1 Digital logic simulation

The verification of VLSI logic circuits is one of the areas where computer simulation
is essential to check the circuit behavior, and has to be extensively performed before
actually manufacturing a chip. As the complexity of VLSI circuits increases (and the
trend is clearly in this direction), the execution time of the simulation also increases. It
is clear, therefore, that any acceleration in the simulation process would be greatly
welcome.

An interesting study in this field has been done by Soulé and Gupta at Stanford
[SG89, SG91, Soul92]. They use parallel simulators to analyze several non-trivial logic
circuits, including some circuits of the MIPS R6000 processor, the vector control unit
for Ardent’s Titan machine, and the cache coherence directory controller for the
Stanford DASH multiprocessor. They identify the number of available tasks that can be
performed concurrently by a parallel simulator, ranging from 70 to 250. This number
gives a clue about the potential performance of a parallel simulator. However, it does
not translate directly into speedups because of overheads such as communication
between processors and load unbalance. The experimental work is done in an ideal 64-
node multiprocessor, a 16-node Encore Multimax and a 16-node Stanford DASH. Three
parallel simulators are implemented and tested: SPED, CMB-DA and CM-DDR. They
conclude that both variants of CMB obtain better self-relative speedups (i.e., they are
more scalable) than the SPED algorithm. Nevertheless, for the amount of available
processors, SPED performs better. Achieved speedups using SPED range from 10 to 18
using 64 processors, while CMB only ranges from 1 to 6. Therefore, CMB is not
considered a viable approach to digital logic simulation.

The work by Su [Su90] at Caltech is devoted to the development of applications for
fine-grain multicomputers, using a set of CMB-DA simulations of small size logic
circuits (around 1000 gates) as a testbed. Programs were run in up to 128 nodes of a
Symult 2010. Su concludes that overheads of the CMB-DA algorithm are quite large if
small numbers of processors are used. However, self-relative scalability of the CMB-
DA algorithm is very good—almost linear, which makes CMB-DA a viable approach to
simulation on fine-grain, massively parallel computers.

A research group at the University of Cincinnati studies in [Chaw94, Pala94, MW95]
the applicability of Time Warp to perform logic simulations, using VHDL as the model
description language and a network of workstations as the hardware platform. Most of
this work is devoted to the design and implementation of improvements for TW, to
reduce execution time. No speedups (relative to a sequential simulator) are given.
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For those interested in the field of logic simulation, other experiences are reported in
[ML93, SB93, CH94, CGFO94].

5.2.2 Communication networks

One of the revolutions in the past few years in the information technology field has
been the increasing popularity of computer networks. They are becoming ubiquitous,
and the technology in this field is advancing at a very fast pace. Given the tremendous
number of options a network manager has to consider in order to update an existing
network, or to build a new one, the availability of tools to analyze an existing or
projected network (local, metropolitan or even global) is a must. As the size and the
complexity of the simulation can be quite large, PDES is a natural tool to look at.

In [TV91], Time Warp is used to analyze a 5-layer, Ethernet-based communication
architecture in a network of transputers, with disappointing results. These bad
performance results are mainly due to the huge number of rollbacks and the costly
memory management.

In [EGLW93], a new parallel simulation technique, named synchronous relaxation,
is used to simulate a large scale circuit-switching network. This technique is specially
appropriate for its use in SIMD machines, while most of the techniques described in this
dissertation are specifically designed for MIMD systems.

In Canada, a team leaded by Unger [ACGW95, GOR95, Gome95] is developing
ATM-TN, a set of tools with a modular architecture which supports modeling,
simulation and analysis of ATM networks. A key piece in ATM-TN is an
implementation of TW, optimized to run in shared memory environments. Previously,
this team reported their experiences using TW to study a Canadian switched telephone
network [Clea94].

5.2.3 Parallel computing

A growing number of papers can be found where experiences using PDES to analyze
different aspects of parallel computing are reported. Some common topics are:
performance of message passing networks (our work could be included here),
performance of cache memory schemes, and behavior of parallel programs.

In this field, one interesting work is the Wisconsin Wind Tunnel [FW94, BW95],
defined by the authors as “a parallel simulator for cache-coherent shared memory
machines”. The main purpose of this system is to analyze the behavior of parallel
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programs running in multiprocessors, and the effect of different cache memory schemes
in the execution efficiency of those programs. It uses a conservative algorithm for
synchronization, where the duration of the interprocess communication primitives
serves to compute the lookahead. The host machine for the simulations is a CM-5.

After some experiences with the WWT, the researchers become aware of an
important pitfall in the simulator: the communication delay between (simulated)
processing elements was supposed to be a constant, which is perfect to compute
lookahead, but rather unusual in actual parallel systems. Contention in the
interconnection network may produce arbitrary delays, which were not taken into
account. Some modifications in WWT allow the detailed simulation of an
interconnection network, using a model of router based in the Torus Routing Chip
[Dall86]. This detailed simulation is done using a centralized (instead of a fully
distributed) approach. Although the obtained data are much more accurate, there is a
price to pay: the execution time of the simulator is about 10 times slower.

A similar work is being done at the University of California at Santa Barbara, under
the name of Maya [ACLS94]. It is defined as “a simulation platform for evaluating the
performance of parallel programs on parallel architectures”. Its purpose is “to allow the
rapid prototyping of memory protocols with varying degrees of coherence and to
facilitate the study of the impact of these protocols on application programs”. It has
been developed to work in the Paragon and in networks of workstations. Again, a
conservative synchronization scheme is used, with a mixture of deadlock avoidance and
deadlock detection and recovery strategies. The communication network is not
simulated in detail: the communication delay is supposed to depend on the distance
between the communicating processing elements, plus a certain factor due to network
contention. A major problem of this simulator is that a central network manager takes
care of all the message passing among the LPs (to be able to compute communication
delays with a reasonable accuracy), and this manager becomes a bottleneck when the
number of LPs increases.

A different aspect of parallel computing led to the development of LAPSE [DHN94],
defined as a system that “allows one to use a small number of parallel processors to
simulate the behavior of a message passing code running on a large number of
processors, for the purpose of scalability studies and performance tuning”. It has been
implemented in the Paragon. Again, the synchronization mechanism is conservative.
The authors report very good performance figures: a simulation of the execution of a
64-PE application in 16 real PEs is between 5.4 times (for computationally intensive
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applications) and 45 times (for communication intensive applications) slower than the
actual execution on 64 actual PEs.

Closer to our work, Heidelberger et al. present in [ITH89, GHTY90, BH95] some
simulation studies of multistage interconnection networks, using synchronous parallel
simulation algorithms. They report speedups over 6 with 12 processors when simulating
a detailed model of the IBM SP-2 interconnection network.

Other interesting work in the field is [NGL94], where a technique for massively
parallel, trace-driven simulation of cache memory systems is presented.

5.2.4 Petri nets

Petri nets are widely used to model asynchronous concurrent systems that have
parallelism, synchronization and resource sharing [CF93]. Analytical evaluation and
discrete-event simulation of Petri net models allow researchers to perform qualitative as
well as quantitative analysis of the modeled systems.

Ammar and Deng propose in [AD91] a method to simulate stochastic Petri nets using
the Time Warp mechanism. They test it using an Encore Multimax with 18 processors.
No speedup figures are given.

Chiola and Ferscha [CF93] present a way of simulating timed Petri nets using
conservative and optimistic PDES. Tests are done using a Sequent Balance, an Intel
iPSC/860 and a T805-based multicomputer. They state that efficient distributed
simulations of timed Petri nets can be done, but real speedups can only be obtained after
identifying the model’s intrinsic parallelism and causality, and using this information to
optimize the logical processes. Communication overheads seem to be the main obstacle
to achieve good performance, so some methods to reduce the number of interchanged
messages are proposed. A typical advise in this direction is to make a LP have a load
big enough to keep the computation/communication ratio properly balanced.

5.2.5 Queuing systems

A significant effort has been devoted to efficiently simulate queuing networks
systems, as many real world applications can be modeled using this approach. Maybe
the most interesting works are those by Wagner and Lazowska, already described in
Chapter 4, and those by Nicol [Nico88, Nico92]. These works offer methods to
effectively exploit the lookahead of queuing systems to achieve good speedups when
the CMB-DA method is used. The techniques to exploit the lookahead are different for
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each queue discipline. Considered disciplines are FCFS (First Come First Serve), PS
(Processor Sharing) and RR (Round Robin), with or without priorities, with or without
preemption.

Several papers by Rego et al. at Purdue University [Sang94, SCR94a, SCR94b] also
study this field, although in a different context. The authors develop and analyze a
parallel simulator based on process migration, instead of message interchange. They
also propose mechanisms for efficient simulation of round-robin and processor sharing
queue disciplines, useful in any kind of discrete event simulator (i.e., not specifically
tailored for PDES).

Other interesting work in the field is [MR94], where a workbench for queuing
systems simulation over a network of transputers using the CMB-DA algorithm is
presented.

5.2.6 Other fields

There are many other fields where PDES has been successfully used. For example, in
[TB93] a simulation study of communicating finite state machines is done. Wieland et
al. analyze in [Wiel89, WJ89] the performance of TW simulating combat scenarios.
Wagner considers in [Wagn89] a model of a health care system, and a study of road
traffic is performed in [MRR90].

5.3 The model under study

In this section we describe the model we use to make an exhaustive study of parallel
simulation techniques. This particular model has been selected because our research
group has a good deal of experience working with it, mainly using sequential time-
driven simulations. Working with a well-known model, we can be sure that our
simulators are working properly.

For the interested reader, a much more detailed description of this model, and of
most the concepts introduced in this section, can be found in [Arru93], with
complementary information in [Izu94].
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5.3.1 Description of the model

We study a network of message routers designed as a communication infrastructure
which may be used for building multicomputer systems. Each node of the network is a
pair <processor, router>, with the two components joined by a message interface.
Processors are the source of messages, as well as the final destination of them. Routers
actually move messages from their source nodes to their destinations. It is assumed that
message length is fixed; it is measured in flits (flow control digits, [Dall86]). Each
message has a 1-flit header, which conveys the necessary information to make routing
decisions. Figure 5.1 shows a sketch of a message router. The main components are:

• 4 input ports . They are gates to receive messages from the neighboring routers,
through the corresponding input links. Each port is capable of storing one flit.

• 4 output ports . They are gates to send messages to the neighbors through the
corresponding output links. Again, the storage capacity is one flit.

• An injection port , where messages from the local source of messages (processor)
are received.

• A consumption port, where messages for the local sink of messages (processor)
are sent.

• 4 FIFO transit queues, one per output port, to temporary store messages when the
corresponding output link is busy. Each queue has 10 buffers, each one with
capacity for a full message. A buffer cannot be shared among two or more
messages.

• A routing automaton , which decides through which output port a message will be
sent.

• A small FIFO injection queue, located in the message interface, where up to 4
local messages can be temporally stored if the corresponding output queues are
full.

The system works synchronously: in 1 cycle, a flit is moved from port to port, from
queue to port, or from port to queue.
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Figure 5.1. Model of message router.

In the literature about message passing networks, several strategies are proposed to
control the flow of a message from its source to its destination, traversing several
routers along its journey. The most common ones are store-and-forward , wormhole  and
cut-through . The model presented here, which includes internal buffering, is specially
suited for cut-through, which is the most efficient of all these strategies.

The routing strategy, i.e., the selection of the route that a message follows to reach its
destination, could be any feasible one, but in our studies only dimension order routing
(DOR) has been considered. Other strategies can easily be integrated into the model.

It is assumed that processors immediately consume received messages, so they never
force a message to stay in a router occupying resources. Processors generate messages
following a certain traffic pattern. The most common ones for the analysis of this kind
of models are random, hot-spot, local traffic and several permutations (perfect shuffle,
bit reversal, matrix transpose, etc.). In this work we have only considered the random
pattern, i.e., each node can generate messages to any other node of the network, with the
same probability. The length of the time interval between two message generations at
the same node is given by an exponentially distributed random variable; the method of
computing the mean for this distribution will be explained later. When a new message is
generated at a node and it cannot be injected in the routing network because the
corresponding output port, the transit queue and even the injection queue are full, the
message is rejected (it is lost). This is considered as the saturation point of the message
passing network.
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This model of router can be used to form any kind of network of degree 4. Studies of
our group considered mainly bi-dimensional meshes and tori. Here we have focused on
tori, because they exhibit better performance characteristics. If the topology is a torus,
deadlocks among messages competing for resources in the network might appear. Our
model of router uses a deadlock-avoidance strategy based on imposing some restrictions
to the injection of new messages and the change of dimension1 .

There are three parameters of the model whose values can be changed to explore
their influence on the performance of the simulation algorithms. These are:

• Size of the network. We consider torus networks of D×D nodes (always a square).
Typical sizes are 16×16 and 32×32.

• Message length (M). The values used in the experiments are 4 and 32 flits.
• Load of the network (L). It represents a percentage of the maximum theoretical

bandwidth of the network, for a random traffic pattern. A 100% load means that
all the bandwidth of the network bisection is used.

These three parameters are needed to compute the time interval between the
generation of two consecutive messages at a given node. As said before, this time
separation is computed as an exponentially distributed random number. The rationale to
calculate the mean of that distribution is as follows.

Let us divide the network, a bi-directional 2D torus, from north to south into two
parts of the same size. If we concentrate on the left part, under the random traffic
assumption half of the messages there generated will have their destinations in the same
part, while the other half should cross the bisection to be consumed in the right part.
The symmetric reasoning can be applied to the right part. At each cycle, up to 4×D flits
can traverse the bisection (2×D in each direction). This imposes a limit to the number of
messages generated in the network in one cycle. No more than 2×(4×D) flits, or
(8×D)/M messages, can be processed by the routing network in one cycle. At this point

all the bisection links are fully occupied. Distributing these messages evenly among all
the nodes, this results in (8×D/M)/(D×D) = 8/(D×M) messages per node and per cycle.

This situation corresponds to a load L = 100.
For a different value of load L, ranging from 0 to 100, the number of messages

generated per node and per cycle is (8×L)/(100×D×M) = L/(12.5×D×M). In other words,

1 The concept of deadlock in the model does not  have any relationship with the deadlock in a

CMB simulator.
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the time interval between two message generations at a node can be computed as
(12.5×D×M)/L. It should be clear that the same value of load can mean that the network

manages many short messages or few long messages.

5.3.2 Types of events

Once we have the general description of the model, it is essential to determine the
data structures that will represent the elements of a router, and the events that would be
able to modify those elements. That is, we need to express our model in a way able to
be simulated by a generic event-driven simulator. The definition should be independent
of the simulators to be used. However, the class of parallel simulators we are working
with (based on the distribution of simulation tasks among a set of logical processes)
impedes the use of any sort of shared data structure, because the LPs constituting a
simulator may be distributed among different processors in an actual multicomputer.
The design of the set of events needs to take this restriction into account.

Each router of the simulated network is represented in the obvious way: a record
(struct) with elements representing ports, queues, etc., plus some additional elements for
statistics gathering.

The events which represent the evolution of the system are as follows:

INJECTION: the local processor generates a new message to be routed to another
node.

STEP: the router tries to send the header flit of a message from an output port to an
input port in the neighboring router.

PERMISSION: the neighboring router accepts the message.
ADVANCE: after the computation of the routing function, a header flit of a message

is advanced from an input port to an output port or, if busy, to an output queue
inside the router.

FREE_INP: an input port has been freed, so new messages can be accepted.
CONSUMPTION: a message has reached its destination.
FREE_OUT: the last flit of a message abandons the output port that it occupied.
FREE_QUEUE: the last flit of a message abandons the position it occupied in an

output queue.

In the parallel simulators all the events but STEP and PERMISSION are always
internal, i.e., scheduled to be consumed in the same LP that generates them, so they
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never need to be encapsulated into messages sent to other LPs. In contrast, these two
events can be either internal or external, depending on whether the involved routers are
being simulated in the same or in different LPs. We will explain the mapping of routers
onto LPs in the next section.

In the sequential simulator, PERMISSION events are not needed (and they are not
used), because it is possible to directly check the availability of space in a neighboring
router simply by accessing the data structure that represents it. In fact, they were
included in the parallel version precisely because global state information is not
available and all the interactions must be done by means of messages.

5.3.3 Output data

The description of the model is detailed enough to allow to obtain a good deal of
insight into the behavior of the routers. The simulators can measure and give
information about:

• Maximum and average message latency. The latency of a message is defined as
the number of cycles from the instant a message is generated until it is consumed.

• Maximum and average message delay. The delay is the difference between the
latency and the time a message would need to travel through the network if it
were the only one using it.

• Maximum and average size of the transit and injection queues.
• Number of generated and consumed messages.
• Other data.

This information is very valuable to us, primarily because it has already been
gathered in previous studies, and allows us to validate the correctness of our
simulations.

As it was done in the previous chapter, we will not present any of the output data
about the behavior of this model that the simulators generate. A reader interested in the
model itself should consider the reference [Arru93].
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5.4 The simulators

In this section we present a general description of the simulators used in this study. A
detailed description of each simulator is given in the following sections. Six different
simulators have been implemented and tested:

• SED (sequential event-driven), able to run in any of the parallel systems described
in Chapter 3.

• CMB-DA (Chandy-Misra-Bryant with deadlock avoidance), with versions for the
Supernode, the Paragon and MPI.

• TW (Time Warp), only for the Paragon.
• SPED (synchronous parallel event-driven), only for the Paragon.

All the parallel simulators work with the same description of the model. As
mentioned before, SED works with a slightly different description of the same model,
optimized to reduce the number of processed events. For a given machine and parallel
simulator, the main performance figure to be considered is the speedup, taking as a
reference the execution time of SED running in that particular machine.

All the simulators share as much code as possible, to be fair when making
comparisons and, obviously, to reduce development effort. In particular, in all the cases
a new set of functions to manipulate event lists has been used. These functions are
based on a heap data structure, following the recommendations in [CSR93]. In the
previous experiments (Chapter 4), events were stored in a linked linear list. For small,
simple models where the event calendar does not grow too much, this data structure
works well enough. However, for detailed, big models the complexity of the insertion
function in a linear list is too high: O(n), where n  is the length of the list. The
extraction/deletion is trivial, O(1). Using a heap, both insertion and extraction/deletion
operations cost O(log n).

The change from linear lists to heaps in the simulation engines resulted in an
extraordinary performance improvement, specially for the sequential simulator, where
all the events are stored in the same calendar. The difference was less noticeable in the
parallel simulators, because events are distributed among all the LPs and, therefore, lists
are shorter.
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5.4.1 Input parameters for the simulators

In addition to selecting the parameters of the simulated model (size D , load L  and
message length M), a user running the simulators has to facilitate a series of additional
parameters. These are enumerated in Table 5.1.

The first two parameters are needed for all the simulators, sequential and parallel,
and they do not need any further explanation.

The number of processing elements must be given for any parallel simulator. A
mapping of the simulated network of routers onto the actual network of PEs in the
target multicomputer (or network of workstations) must be done. The number of PEs is
always a square of P×P elements, where P must be a perfect divisor of D (the number

of routers per dimension in the simulated network). This way, the partition of the model
and its mapping onto the network of PEs is trivial (a square of size (D/P) routers is
simulated in each PE) and perfectly balanced (all the PEs have the same load).

Parameter Meaning
Cycles Simulated amount of time while the behavior of the network of routers

is studied.
Seed Seed for the random number generators.
Number of PEs Number of processing elements used in the simulation.
Grain size Number of routers assigned to each logical process of the parallel

simulator.
Lookahead A boolean value, indicating whether or not special effort must be done

to exploit the lookahead ability of the model.

Table 5.1. Parameters of the simulators.

When more than one router is assigned to each PE (and this is always the case for the
experiments we have performed), there are several alternatives for organizing a parallel
simulator. A parallel simulator always consists of a collection of collaborating LP
(logical processes), where each LP is, in fact, a Unix process (in the Paragon or in MPI)
or a transputer process (in the Supernode). Mapping the model onto the host computer
requires 2 steps: mapping routers onto LPs, and mapping LPs onto PEs. There are two
trivial possibilities:

1 Map each router onto a single LP, and then map groups of (D /P)2 LPs onto each
PE. We say that the grain size of the LP is minimum . A good deal of interprocess
communication is needed, because all the STEP and PERMISSION events are
external, i.e., they need to be sent as messages (although not necessarily need to
go from one PE to another).
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2 Map (D /P)2 routers onto one LP, and then each LP onto a different PE. We say
that the grain size of the LP is maximum . In this case, many of the STEP and
PERMISSION events are internal and the interprocess communication is
significantly reduced.

With the toy model of the previous chapter, we learned that it is good to have models
with large grain size, to balance the computation/communication ratio of the PEs. For
this reason, we redesigned the LPs to allow the simulation of a square of routers (even
of size 1), while the version previously used was only designed for minimum grain size.
It is interesting to notice that, in the case of maximum grain size, any of our parallel
simulators running onto one PE behaves exactly like the sequential simulator.

Note that more alternatives of grain size are possible. See, for example, Figure 5.2, a
case where D/P = 4. Figure 5.2a represents the mapping for maximum grain size, Figure
5.2c represents the mapping for minimum grain size and Figure 5.2b represents a
mapping for intermediate  grain size. If the mappings are always done using squares,
there can exist either none, one (like in the example) or several cases of intermediate
grain size.

Router

Logical process

Processing 
element

(a) (b) (c)

Figure 5.2. Mapping a network of 4×4 routers onto a PE.  (a) Maximum grain size.
(b) Intermediate grain size. (c) Minimum grain size.

The last parameter in Table 5.1 is the lookahead. When CMB-DA is being used, it is
highly recommended to analyze the simulated model to see where some lookahead can
be extracted, and to tailor the simulator to exploit that lookahead. If this can be
effectively done, timestamps of null messages will have higher values and the overall
number of required null messages will be reduced, while a faster clock advance of the
LPs will be allowed.

If a LP simulates only one router (i.e., the grain size is minimum), then the behavior
of the simulation is quite predictable, and some lookahead can be extracted. Let us
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suppose that, at time t, a router has sent a message header through an output port; the
simulator can be instructed to know that no new header will be sent through the same
port at least until t+M , where M is the message length, because messages advance a flit
per cycle. The difference between the current value of the LP’s clock and t+M is the
lookahead.

The actual lookahead computation proceeds as follows. When a LP is going to block,
it first sends null messages to each of its neighbors. For our models, there are always
four neighbors: north, east, west and south. Each of those channels of the LP are
directly related to the input/output ports of the simulated router. In order to compute the
timestamp of the null message that will be sent through channel i, the following
information has to be kept:

lps[i]: time when the LP sent the last PERMISSION message through output channel
i, i.e., when the simulated router authorized the reception of a message through
input port i.

lss[i]: time when the last STEP was sent through channel i , i.e., when the router tried
to send a message through output port i.

lpr[i]: time when the last PERMISSION was received through i, i.e., when the router
was authorized to send a message through output port i.

lsr[i]: time when the last STEP was received through i, i.e., when the router was
asked to allow the reception of a message through input port i.

Let us make a the minimum timestamp for the next STEP to send, b the minimum
timestamp for the next PERMISSION to send and ts the actual value to use as
timestamp for the null message sent through channel i. If clock is the current value of
the LP’s clock, a, b, and ts are computed as follows:

if (lpr[i] > lss[i]) a = lpr[i] + M - 1;

else a = lss[i] + M;

if (lsr[i] > lps[i]) b = lsr[i] + 1;

else b = lps[i] + M;

ts = min(a, b);

if (ts <= clock) ts = clock + 1

The minimum timestamp for an eventual next STEP depends on whether the
PERMISSION for the previous STEP has been received or not. If it has been received,
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another STEP can be sent M-1 cycles later. Otherwise, the next STEP will have to wait
at least M cycles.

If a STEP has recently been received, the next PERMISSION should be granted as
soon as possible, i.e., in the next cycle, unless the corresponding output queue is full. If
no STEP has been received, the LP knows that the minimum separation between two
PERMISSION messages is M.

The value of ts, a lower bound on the timestamp of the next message to generate
(STEP or PERMISSION), is the minimum of the two previously calculated values. If ts
falls below the current clock value, then the lookahead computation has been useless,
and the minimum value clock+1 is used for ts.

Unfortunately, when a LP simulates an aggregate of routers the behavior of the
aggregate is not easily predictable. The computation of the lookahead is too expensive
for the achieved result: most of the times the obtained value is one, a minimum which
can be used without any computation. For this reason, we have only measured the effect
of the lookahead for the case of minimum grain size.

5.4.2 Output results

The output of the simulator consists of a set of statistics about the model, as already
described, plus a set of measurements about the behavior of the simulator itself. The
most important of those measurements is the execution time of the simulation, because
it is the basis for computing speedup values.

Some other interesting figures are also obtained, for example:

• Number of null and useful messages in the CMB-DA simulator.
• Number of positive and negative messages in the TW simulator, plus number of

rollbacks.
• Number of messages and barrier invocations in the SPED simulator.

These additional data allow us to reason about the performance of the different
parallel simulators.
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5.5 Supernode implementation of CMB-DA

In this and the next sections we will give additional details about how each simulator
is implemented in each host multicomputer. Special attention will be paid to the
Supernode implementation, because it was the origin of the others. For the Paragon and
MPI versions we will pay attention to the details only where they differ from the
Supernode implementation.

To run a CMB-DA simulator in the Supernode, a network of raw transputers is
arranged, with the same structure explained in the previous chapter (a torus network of
worker transputers with a monitor transputer inserted in one of the wrap-around links).
The number of processes assigned to a worker transputer depends on the grain size of
the LPs. The general organization of the processes in a worker transputer is shown in
Figure 5.3. After the experience with the toy model, we observed that it is neither
necessary to implement a full-blown router in each transputer, nor to manage all the
messages through the routers. The LPs in one transputer can be directly joined via
internal channels, while the external links are needed only if two logical neighbors are
mapped onto different transputers. Even in this second case, a router is too
sophisticated, because the interchange of messages always occurs between neighbors.
However, channel sharing is still needed, and must be provided somehow.
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Figure 5.3. Configuration of each worker transputer.

The new approach is to simplify the design of the simulator, removing the routers
and substituting them by low-overhead channel multiplexers. Communication through
multiplexers is depicted on Figure 5.4. They are able to maintain several bi-directional
logical channels over just one physical link. Obviously, if maximum grain size is used
(only one LP per transputer), multiplexers are not needed, so they are not used and a
source of overhead is removed.
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Figure 5.4. Multiplexing several logical channels over a single physical channel.

5.5.1 Components of the simulator

Each LP is a transputer H-process (see Appendix A), compiled and linked separately.
Internally, the LPs are composed of three program-created L-processes. The
multiplexers as well as the monitor are also H-processes with some internal
concurrency. Next we describe how these processes work.

5.5.1.1 The monitor

The monitor, placed in a separate transputer outside the network of workers, collects
statistics, summarizes them and sends the final result to the host, to be shown on the
screen or saved in a file. Additionally, due to its location in the network, it has to act as
a bypass: every message (but the statistics blocks) received from the east/west has to be
sent to the west/east. This way the workers do not notice its presence in the network.
The structure of the monitor is shown in Figure 5.5.

The monitor knows the number of LPs in the simulator. When a statistics block is
received, always by the east channel, it is not bypassed; instead, it is stored in an
internal array. When the number of statistics blocks received equals the number of LPs
a summary is computed and sent to the host, which then signals the end of the
simulation.
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Figure 5.5. Structure of the monitor process.

5.5.1.2 The multiplexers

A multiplexer has to provide simultaneous communication between pairs of
neighboring LPs that have been placed in different (but adjacent) transputers. As
mentioned before, communication is always between immediate neighbors, so a more
general software router is not needed. A pair of multiplexers exist in each side of a
physical link.

As shown in Figure 5.4, only peripheral LPs are connected to a multiplexer. A LP
does not worry about whether it is connected to a multiplexer or not: all the channels
are equivalent. To keep this illusion, two communicating multiplexers maintain a very
simple protocol:

• The internal channels connected to a multiplexer are numbered from 0 to N-1.
• When a message m is received from internal channel x, a message (m, x) is sent

through the external link. In other words, a tag with the channel number is
attached to the message.

• When a message (m, x) is received from the external link, m is sent through
internal channel x.

This way, messages from different pairs of LPs are never mixed. The structure of a
multiplexer is shown in Figure 5.6.
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Figure 5.6. Structure of a multiplexer.

5.5.1.3 The logical processes (LPs)

The set of LPs constitutes the core of the simulator. All the other components are
only needed to build a working system. Internally, a LP is composed of three processes
(Figure 5.7):

• An input process, which manages the input queues and the internal event calendar
of the LP. It receives messages (events) from the neighboring LPs, and inserts
them into the appropriate input queue, updating important information as the
channel clocks and the message-acceptance horizon.

• A simulator process , which consumes the events. It interacts with the input
process, using channel pet  to demand messages, which are received through sig.
When an event is consumed, new events might be scheduled. Those that will be
consumed in the same LP are sent to the input process using channel loc. Those
for other LPs are sent to the output process through s2o. When the simulator
reaches the end_of_simulation time, a block with statistics is generated and sent to
the output process.
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• An output process, which manages these messages to be sent to other LPs or to
the monitor. It implements minimal routing mechanisms, for the management of
statistics blocks. An input process may receive statistics blocks from other LPs,
which the output process forwards towards the monitor. The communication
between these two processes is done by means of a shared data structure.

pet

sig

loc

s2o

Input channels

Output channels

Input 
process

Simulator 
process

Output 
process

Statistics

Figure 5.7. Structure of a logical process.

The division of the LP into three different L-processes allows to decouple the
activities of event consumption and message interchange. If the design of the LPs were
monolithic, communication deadlocks could easily appear2 , due to the way
communication is accomplished in the transputer: simultaneous send() and receive()
(ChanIn() and ChanOut()) operations are needed to complete a message interchange. If
a monolithic LP A wanted to send a message to a busy neighbor B , A would block
(wasting time) until B  invokes the peer operation. A deadlock would immediately
appear if B  were also blocked trying to send a message to A. More complex deadlock
scenarios, involving more than two LP, are also possible.

2 This is yet another class of deadlock, neither related to the model nor to the conservative

simulation algorithm. These deadlocks might appear due to a bad design of the simulator program.
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With the proposed design the simulator process never blocks in a send(), because the
corresponding output process is always ready to attend it. The simulator might block in
a receive(), but only if no suitable event is ready to be consumed (as the CMB-DA
algorithm requires). Meanwhile, all the incoming messages can be received and stored
by the input process, which is a greedy receiver. This design avoids communication
deadlocks, while allowing events to be managed as soon as possible.

5.5.2 Algorithms

In this section we describe the algorithms of the main elements of a LP: the input,
simulator and output processes, paying special attention to the input process, which
determines the conservative character of the simulation. A C-like language is used to
express the algorithms.

5.5.2.1 Simulator process

The basic scheme of the simulator process is as follows:

process simulator:

repeat {

send(pet, “ ”); /* empty message through channel pet */

receive(sig, m);

clock = m.timestamp;

if (m.type == WILL_BLOCK) send_nulls(); /* Risk of blocking */

else consume(m);

if (clock > end_of_simulation) build_and_send_statistics();

}

The simulator process runs concurrently with the input and output processes. The
consume() function first determines the type of the message and then proceeds
simulating its effect in the (simulated) network of routers. This is done in three phases:
first the status of the appropriate router is examined, then this status is modified and,
finally, events for the same or other routers are scheduled, if needed. If the target router
of an event is being simulated in the same LP, then the event is internal, so a message is
sent through loc . Otherwise, it has to be sent to other LP, so a message is sent through
s2o  for the output process to manage it.
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The main loop never stops. When the clock reaches the end_of_simulation value, the
simulator collects a block of statistics, which is sent to the output process in order to
reach the monitor. This operation is done only once, although the simulator goes on
working.

A conservative simulator has to block when no message is available for
consumption. This happens when no stored message has a timestamp below the
message-acceptance horizon. When this situation arises, the input process sends a
WILL_BLOCK message to the simulator process, instead of a useful message. This
means that, if no new messages are received, next time an event to consume is
requested no one will be given—so the simulator will block. The simulator, as always,
updates its clock, and then sends null messages to its four neighbors. The timestamp of
those null messages is calculated as the local clock plus one, unless special effort is
devoted to exploit the lookahead of the simulated model.

To reduce the number of null messages, which impose an important overhead in the
simulation, a null message is not sent unless it performs a useful task. Every LP keeps,
in addition to 4 channel clocks (one per input channel), 4 output  channel clocks, which
store the timestamp of the last message sent through the associated output channels.
Therefore, an output channel clock kept by one LP has the same value as the channel
clock kept by the neighboring LP for that channel. Before sending a null message
through a channel, the LP checks if it will increase the output channel clock. If this is
the case, the null message will be useful for the receiver. Otherwise, it won’t perform
any task, so the LP does not need to send it. This saves communication time as well as
processing time (in the receiver).

Once the null messages have been sent the simulator process blocks, waiting for
input from sig. Only the reception of new messages from other LPs will wake up this
process, by means of an increment on the message-acceptance horizon of the LP. This is
a task for the input process.

5.5.2.2 Input process

It has been mentioned already that an input process manages all the messages that
will be consumed in its LP. To do so, it maintains four input queues plus a local event
calendar for self-scheduled events. Requests for messages to be consumed are received
from pet , messages for the local calendar are received from loc and messages from the
neighboring LPs are received from the four input channels.

process input:
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in = wait_for_input(); /* “in” is a channel ready for an input */

if (in == pet) {

receive(pet, c); /* “c” is just a synchronization signal */

deliver_message();

}

else {

receive(in, m); /* “m” is either a null or a useful message */

if (in == loc) insert_local_calendar(m);

else {

/* the message has been received from channel in */

insert_input_queue(in, m);

check_blocked_simulator();

}

}

Function deliver_message() computes the message-acceptance horizon, as well as the
value of the minimum timestamp among all the messages awaiting to be consumed.
Only if this timestamp falls below the acceptance horizon the corresponding message
can be safely removed from its queue and consumed (sent by sig). This is the behavior
that makes the simulator conservative.

When no message is ready to be consumed, a WILL_BLOCK message is sent to the
simulator, in order to increment its clock and inform the other LPs about an incoming
blocking. Next time the simulator process asks for a message, no one will be delivered
(unless meanwhile a new arrival modifies the acceptance horizon) so the simulator will
block. The input process activates the flag blocked_simulator  to signal this condition.

function deliver_message:

h = acceptance_horizon();

ts = minimum_timestamp();

if (ts <= h) {

s = message_with_minimum_timestamp();

send(sig, s);

}

else if (h >= clock) send(sig, WILL_BLOCK_message);

else blocked_simulator = TRUE;
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If a new message arrives from an input channel then the corresponding channel clock
is advanced and, if it is not a null message, it is inserted in the associated input queue.
Null messages need not be stored, because their only interest is the advance they
produce in the channel clocks. This advance (due to a null or a useful message) might
increase the message-acceptance horizon, so it may allow an awaiting message to be
consumed. For this reason, each time a new message is received function
check_blocked_simulator() is invoked, which eventually may unblock a blocked
simulator process and allow the consumption of a message.

function check_blocked_simulator:

if (blocked_simulator) {

h = acceptance_horizon();

ts = minimum_timestamp();

if (ts <= h) {

s = message_with_minimum_timestamp();

send(sig, s);

blocked_simulator = FALSE;

}

else if (h >= clock) {

send(sig, WILL_BLOCK_message);

blocked_simulator = FALSE;

}

}

Clearly, this function is very much like deliver_message(). Note that, when the
recently calculated horizon surpasses the local clock, the simulator is awaked by means
of a WILL_BLOCK message. This way no useful message is consumed, but at least the
clock is advanced and this advance can be communicated to other LPs, using null
messages.

5.5.2.3 Output process

This process has to accept messages from the simulator and send them to the other
LPs. The routing effort is minimum, because messages are labeled with a port number
that clearly states which channel they must be sent through.
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5.5.2.4 Statistics processing

In the previous algorithms few references to the statistics blocks have been done, to
simplify the descriptions. We only said that, when a simulator finishes its period of
simulation, a statistics block is prepared and given to the output process.

The output process routes it to the monitor process (which is placed in the monitor
transputer), with the following strategy: if the LP is in the bottom row, send it to the
west; otherwise, send it to the south. An input process, therefore, can receive (near the
end of the simulation) statistics blocks mixed with normal messages. Those blocks must
not be inserted in the input queues, but forwarded until they reach the monitor. The
input process transfers these blocks to the output process using a shared queue (not a
channel) for communication. The statistics queue has capacity for several blocks,
because an avalanche of blocks can be received from the top and/or the east (specially
at the bottom row of LPs) by the time the LPs finish their work.

In addition to its usual work, the output process has to examine the statistics queue
and, if it is not empty, to forward the received blocks towards their destination. A
mutual exclusion semaphore is used to avoid conflicts between the input and output
processes when accessing this queue.

5.6 Paragon implementation of CMB-DA, TW and
SPED

In Chapter 3 and Appendix A we give a description of the Supernode and the
Paragon as development environments for parallel applications, and some important
differences among these two platforms are identified. Table 5.2 summarizes the most
significant ones.
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Supernode (Inmos C) Paragon (NX)
Libraries channel.h, process.h, misc.h, etc. nx.h.
Network topology Reconfigurable. User responsibility. Static (bi-dimensional mesh).
Addressing Communication through channels, which

must be statically defined in the
configuration file.

To send a message, the address (node,
process) of the destination process must
be given.

Message routing Hand-made (software) message passing
mechanisms to share links or to
communicate two processes in non-
adjacent transputers.

Fast, hardware message routing
mechanisms.

Communication
model

Blocking and synchronous. No buffering
provided.

Blocking (or nonblocking) and basic.
Buffering provided by the system.

Support for global
operations

None. Excellent.

Node
multiprocessing
ability

Excellent. Internal RR scheduling. A
process is descheduled if awaiting for
communication completion.

Poor. RR scheduling. A process always
finishes its quantum, even if it is blocked
for communication.

Parameters In the configuration file. Reconfiguration
is needed to re-run a program if any
parameter is changed.

In the command line. No additional step is
needed after compilation.

Table 5.2. Main differences between the Supernode and the Paragon.

The bottom line is: life is much more easier for a programmer in the Paragon. The
preparation/execution of programs requires less steps and, in general, programs are less
deadlock-prone, due to the buffering provided by the message passing system.

In the next subsection we will explain the changes in the CMB-DA simulator that
were required when porting it to the Paragon. After that, some insights into the
implementation of the TW and SPED simulators will be given.

5.6.1 CMB-DA

The adaptation of the CMB-DA simulator to run in the Paragon required basically to
cope with two of the differences stated in Table 5.2: synchronization among processes
and node multiprocessing ability. The change from channels to addresses was not
difficult, although the idea of channel was still used, because it is a key element of a
CMB-DA simulator. The other differences only resulted in a simplification of the
programs.

The implementation of CMB-DA in the Supernode fully exploits the good
multiprocessing abilities of the transputer: each transputer contains several H-processes
(LPs and multiplexers) which, in turn, are structured in several L-processes. There were
several reasons to justify this design:
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• The synchronous nature of message passing functions requires a decoupling of
message management (reception, storage, sending) and message consumption
tasks, to avoid communication deadlocks. The division of a LP in input, simulator
and output processes provides this decoupling.

• As we will see when analyzing the performance of the simulations, it is very
efficient to share a transputer among several LPs: one LP can be working while
others are blocked awaiting for communication. The transputer built-in scheduler
relinquishes the CPU from a process as soon as it blocks for communication.

None of these considerations apply in the case of the Paragon and, for this reason, a
re-design of the simulator was needed. The main differences between the Supernode
and the Paragon versions of CMB-DA are:

• Elimination of the multiplexer processes, and of the bypass functions of the
monitor. These simplifications have been possible because in the Paragon
messages can be interchanged between any pair of processes, independently of
their position. Routing, link sharing and other functions related with message
passing are managed by a separate network of message routers (very much like
the one we are using as the model to analyze), without interfering with the activity
of the processes. The application controlling process acts as the monitor, and its
purpose is to launch the LPs and to gather statistics at the end of the simulation
run.

• Integration of the input, output and simulation processes (the three L-processes
which form a LP in the transputer) into a single process. This new design has been

possible because of the buffered nature of the communication in the
Paragon, and

forced  by the poor multiprocessing abilities of the Paragon.
• Elimination of the minimum and medium grain sizes alternatives for the LPs: only

maximum grain size is considered. This means than only one LP run in each PE.
The reason to make this decision has been, again, the inefficient scheduling policy
of Paragon’s PEs.

The algorithm of the LP is as follows:

process LP:

repeat {
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h = acceptance_horizon();

ts = minimum_timestamp();

if (ts <= h) {

m = message_with_minimum_timestamp();

clock = m.timestamp;

consume(m);

if (clock > end_of_simulation) build_and_send_statistics();

}

else {

clock = h;

send_nulls();

m = receive(); /* Blocking */

insert_local_calendar(m);

}

}

Note that messages from other LPs are received only when the LP needs to
increment its channel clocks in order to advance. While a LP is busy, messages can
arrive from the neighbors, and they are stored in system buffers, awaiting until the LP
decides to actually receive them. This buffering provides enough decoupling to allow a
collection of LPs to progress without communication deadlock.

The rest of the simulator code is the same as the Supernode’s, except for changes in
the communication functions.

5.6.2 TW

Our implementation of TW follows, except for some minor details, the description
given in Chapter 2. Among all the possible optimizations, these two were implemented:

• conservative time windows, with dynamic window size, and
• incremental state saving, dynamically adjusting the interval between full copies of

the state.

Additionally, input queues were implemented as a combination of two data
structures: past events are stored in a linked list, with the components of the output
queue (antimessages) and the state queue (past copies of LP’s state) attached to the
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already consumed events, while future events are stored in a heap, to optimize
insertions.

The first optimization was included after the experience gained with the experiments
reported in Chapter 4. Without it, LPs tend to eagerly consume all the allocated
memory. Preliminary tests of TW with time windows gave us very poor performance
figures, much worse than expected. We found out that the large size of the state to save
per executed event was partially responsible for the poor results, so we added
incremental state saving.

The algorithm of a TW logical process is as follows:

process LP:

repeat {

if (message received) {

m = receive();

if (m.type = TOKEN_GVT) {

manage_gvt();

if (gvt > end_of_simulation) build_and_send_statistics();

}

else insert_input_queue(m);

}

if (next_timestamp() <= gvt + time_window) {

m = next_event();

clock = m.timestamp;

consume(m);

save_state();

}

}

Global virtual time (GVT) computation is performed in a fully distributed fashion,
using a token-based mechanism [Fuji90a]. LPs are numbered from 0 to N-1, and
organized into a logical, unidirectional ring. A special message, GVT_TOKEN, is
passed around this ring. The token contains three fields:

• owner , which identifies the LP owning the token,
• gvt , the last computed GVT, and
• min , a minimum timestamp value, which is used to compute the next GVT.



5. Simulation of message passing networks 123

Each LP keeps track of its smallest local virtual time since it last received the token,
min_lvt . When the token is received, the LP compares this value with the min  field of
the token. If the LP’s min_lvt  is smaller, it becomes the owner by writing its
identification and local minimum into the token (fields owner  and min , respectively).
The LP then passes the token to the next LP in the ring. If the token returns to its owner,
then it has traversed the ring without encountering a smaller local minimum, so the min

value of the token is actually the computed GVT value. This value is written into the gvt

field of the token. The owner then restarts the GVT computation by placing its local
clock value into the min  field of the token, and transmitting it to the next LP in the ring.

Each time a LP receives the GVT_TOKEN, an updated GVT value is obtained in the
gvt  field. This allows the LP to perform the fossil collection procedure, retrieving
memory from the input, state and output queues. The updated GVT value may also
allow a LP to progress when it is stopped because no event inside the time window is
available. An additional operation is performed when the GVT_TOKEN is received: the
adjustment of the time window size and the state saving interval [Pala94].

The LP keeps an activity counter, which is incremented each time an event is
consumed, and decremented each time an event has to be undone. When the GVT
computation is performed, the real-time interval between sending the token and
receiving it again is computed. Then a performance index  can be computed as the ratio
of effectively consumed events to elapsed real time. If the newly computed performance
index is equal or bigger than the previous value, then the LP is working well, and the
reward is an increment in the time window and in the state saving interval. However, if
the performance index is lower than before, it probably means that too much work is
being undone, so the LP reduces its degree of optimism by reducing the time window
and the state saving interval.

A second key piece of the LP is the insert_input_queue() function. It is invoked each
time a message is received, to store it in the input queue. The received message may be
an event scheduled for the future, which is simply inserted in the right position of the
input queue (in fact, in the heap part of the input queue). It may also be a straggler,
which causes a rollback before its insertion in the queue. Finally, it can be an
antimessage, which requires a positive message to be annihilated, either without
triggering a rollback (if the positive version has not been executed yet), or after a
rollback (if the positive version has been consumed already). The algorithm is as
follows:
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function insert_input_queue (message m):

if (m.timestamp > clock) {

if (m.type != ANTIMESSAGE) insert_future(m);

else  annihilate_future(m);

}

else if (m.timestamp < clock) {

if (m.type != ANTIMESSAGE) annihilate_past(m);

else insert_past(m);

}

else /* m.timestamp == clock */ {

if (m.type != ANTIMESSAGE) insert_future(m);

else {

if (already_consumed(m)) annihilate_past(m);

else annihilate_future(m);

}

}

Functions insert_past() and annihilate_past() include both the execution of a rollback
procedure. Insert_past() is executed whenever a straggler arrives. It performs the
following steps:

• Search, in the input queue, the location where the straggler has to be inserted.
• Adjust the local clock to match the straggler’s timestamp. Recover the state of the

LP at that time. This can be found in the state queue, in the position just before the
straggler, or may require and additional search in the past plus a coast-forwarding
phase.

• Clear the state and output queues, i.e., eliminate all the elements whose timestamp
is larger than the straggler’s.

• Execute the straggler.
• Save the new state.

Annihilate_past() is executed when a negative version of an already consumed
message is received. This function is very similar to the previous one:

• Search the location in the input queue were the positive message is stored.
Remove (annihilate) it.
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• Recover the state of the LP saved just before the corresponding positive message
was consumed. As before, this can be found in the state queue, in the position just
before the annihilated event, or may require and additional search in the past and a
coast-forwarding phase.

• Clear the state and output queue, i.e., eliminate all the elements whose timestamp
is larger than the straggler’s.

From these explanations, it is clear that our TW implementation performs aggressive
cancellation and aggressive re-evaluation.

5.6.3 SPED

The experience by Soulé et al. with a synchronous parallel event-driven (SPED)
simulator (reported at the beginning of this chapter) encouraged us to implement and
test it in the Paragon. As the NX library offers an excellent support for global
operations, it is easy to redesign the LPs to work synchronously (sharing the simulation
clock), instead of working asynchronously (as it is the case for CMB-DA and TW). The
basic design of a LP in our implementation of the SPED simulator follows, in broad
lines, the description given in Chapter 2, with some modifications that take advantage
of the set of communication operations offered by the NX library.

Each LP i in the SPED simulator executes a loop of 4 basic operations:

1 Clock advance. LPi  computes the minimum timestamp among the events stored in
the local event list, t i. Collectively, the LPs compute the minimum among all
those values, c  = min(t i). This global operation also performs a barrier

synchronization.
2 Event consumption. LPi  advances its clock to reach c. All the events with this

timestamp can be executed safely, because there are no causal relationships
among them. During this step, internal events are stored in the local event
calendar, while external events are stored in an auxiliary data structure.

3 Message distribution. LPi  sends the external events generated in the previous step,

using messages. This is done in two phases:
a) every neighbor is informed about how many messages will be sent to it

and
b) messages are actually sent.
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4 Message gathering. LP i reads all the external events, generated in other LPs, that

have been sent to it. Again, this is done in two phases:
a) gathering from the neighbors the number of messages to read and
b) actually reading the messages.

Message distribution and gathering phases are designed in such a way that all the
messages generated in one iteration are safely received and stored in the same iteration,
without interfering with the next one.

The resulting algorithm for a LP in a SPED simulator is as follows:

process PE:

while (clock <= end_of_simulation) {

ts = minimum_timestamp();

clock = global_min(ts); /* Minimum among all the LPs */

while (next_event_time() == clock) {

m = next_event();

consume(m);

}

send_messages();

receive_messages();

}

build_and_send_statistics();

5.7 MPI Implementation of CMB-DA

The MPI implementation of CMB-DA is very similar to the Paragon version. There
are only two relevant differences:

• Functions belonging to the Paragon’s NX library (declared in <nx.h>) have been
substituted by their equivalents in the MPI library (declared in <mpi.h>). The
change was straightforward, because these two libraries are very close in
semantics, and only a limited number of communication functions were used in
the programs.



5. Simulation of message passing networks 127

• In MPI the concept of controlling process does not exist. The two activities
performed by the monitor in the Paragon are (1) launching the application and (2)
gathering statistics. In MPI the first activity is performed from the Unix command
line, and the second one, as it is performed after the simulation finishes, can be
assigned to any LP without interfering with the simulation. This approach could
have been used in the Paragon, too.

5.8 Conclusions

In this chapter we have shown how PDES has been successfully used to study a
variety of real-world systems, including the study of different aspects of parallel
computing. Our contribution in this field is the use of PDES to analyze the behavior of a
network of routers designed to perform the message passing functions in a
(hypothetical) multicomputer.

Five different parallel simulators have been implemented, testing three different
synchronization mechanisms (synchronous, conservative, optimistic) and three parallel
computing environments (Supernode, Paragon, MPI on a network of workstations).
This has not been just an exercise on parallel simulation, but also an exercise on parallel
programming, because the characteristics of the different computing systems have had
an important influence in the way simulators have been programmed. The differences
between the parallel programming environment used in the Supernode and the one
provided with the Paragon are big enough to justify major design changes. In contrast,
porting from the Paragon to MPI has been straightforward, because the semantics of
their communication functions are very close.

In terms of programming effort, working with the Supernode has been harder than
working with the Paragon or MPI. It is not only that the system is less user friendly, but
also that most of the programming effort was in first place done for the Supernode
versions and then ported to the other platforms.

In terms of difficulty of implementation, we can say that the synchronous simulator
has been the simplest to program and debug. The conservative one needed considerably
more development time, but it was done in first place, so it served to acquire most of the
experience used with the others. The optimistic has been the most difficult to program,
and the hardest to debug.



 



Chapter 6

Performance results

In the previous chapter we have presented a model of message router,

along with five parallel simulators able to work with it. This chapter

presents the experiments that have been executed with those simulators,

with the aim of characterizing how the parameters of the model, the

synchronization strategy, the ways of organizing the simulator and the

characteristics of the target multicomputer influence the achieved

performance. An analysis of the results allows us to select suitable

combinations of algorithms and machines to efficiently carry out

simulations of message passing networks.
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6.1 Introduction

In the previous chapter, after introducing some work by other researchers using
PDES as a system evaluation tool, we thoroughly described a model of a message
passing network that is of interest for our research in massively parallel computers.
Then we outlined the five simulators we implemented to simulate our model in three
different multicomputers. These simulators are:

• CMB-DA in the Supernode, the Paragon and a NOW with MPI.
• TW in the Paragon.
• SPED in the Paragon.

A sequential, event-driven simulator capable to run in the three multicomputers has
also been implemented. Its execution times will serve as the reference point for the
computation of speedup values.

In this chapter we present the results obtained after performing a set of experiments
with the parallel simulators, whose purpose was to get an insight into their behavior
under different conditions: ways of organizing the LPs, parameters of the model and
characteristics of the host multicomputer. As mentioned in Chapter 4, we are more
interested in the behavior of the simulators than in getting useful information about the
model. The reason in this case is that we already have an extensive set of data about the
model, obtained with a sequential simulator and compiled in [Arru93]. What we want
now is to show how some approaches to PDES are effectively useful for this particular
domain of application: the evaluation of interconnection networks for parallel systems.

The presentation of the experiments is organized according to the synchronization
mechanism: first CMB-DA, then TW and, finally, SPED. An analysis of the
performance of each simulator is done after showing the obtained results. A final
section is devoted to a series of overall conclusions.
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6.2 Experiments with CMB-DA

In this section we present the results obtained after running a collection of
experiments using the three implementations of CMB-DA. We start with the Supernode
version, then the Paragon version and, finally, the MPI version running on a NOW. We
made different experiments varying parameters of the model (network size, message
length and load) as well as parameters of the simulator (number of PEs, grain size of the
LPs, use of lookahead information). Most of the times identical sets of parameters have
been used with the three simulators, but some experiments have been specifically
designed to stress some characteristics of one particular simulator.

The obtained results are represented in the form of collections of speedup curves.
Note that speedups have been calculated after running a sequential, event-driven
simulator with the same set of model parameters.

The ideal of obtaining a speedup figure identical to the number of PEs used in the
simulator can be considered, from the beginning, impossible to achieve. There are some
overheads in any CMB-DA simulation which prevents things to be that way. A
characterization of the sources of overhead follows.

Let us suppose that the sequential simulation of a certain model, with a certain set of
input parameters, requires E  events. Let us further suppose that the cost (measured in
terms of execution time) of simulating each event, considering event consumption plus
event manipulation (including calendar insertion and extraction) is a fixed value Te  (i.e.,
it does not depend on the class of event). The cost of the sequential simulator is, thus,
Ts = E ×Te . Even when not all the events have the same cost, the value Ts could be

computed as the total execution time of the sequential simulator.
Now we compute the cost of CMB-DA running on P processing elements:

• Performing a CMB-DA simulation, the same set of E events is executed, with the
same individual cost Te . Note that this is a simplifying assumption. The total
number of events could be bigger in CMB-DA, as it is in the case we are
considering: PERMISSION events are required in the parallel simulators, but not
in the sequential simulator. On the other hand, some management costs might be
reduced in CMB-DA, because event calendars are shorter. This difference in
management costs can be minimized using a reasonable data structure (such as a
heap) to implement event calendars. At any rate, let us consider that the cost of
simulating the set of events is still Ts .
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• In any parallel simulator messages are needed to carry events scheduled at one LP
for another; a certain amount of time is needed to encapsulate an event into a
message, send the message, receive it and extract the event from the message. Let
us make Tc  the total time spent by the LPs in message manipulation.

• A CMB-DA simulator needs to interchange null messages to avoid deadlocks. Let
us say that the time required for null message manipulation is Tn .

• Finally, LPs in CMB-DA spend a certain amount of time blocked, awaiting
increments in the acceptance horizon which might allow some messages to be
consumed. In some cases this time is negligible, because as soon as a LP blocks
the CPU can be assigned to another LP; this is the case when the grain size of the
LPs is not maximum. However, even in this case there is a cost in the form of
context switching. Being one way or the other, let us say that the time spent by
LPs being blocked is Tb .

Thus, assuming a perfect load balance, the time required for a CMB-DA simulation
is Tp  = ((Ts+Tc+Tn+Tb)/P). The speedup can now be computed as (Ts/Tp), which is
always less than P.

While Ts and Tc are fixed costs, present in any parallel simulation, Tn  and Tb  are
specific of CMB-DA, and can vary in different ways, depending on many factors. In the
following sections we will try to characterize those factors. Note that these two
overheads are tightly interrelated. Since null messages are sent just before LPs block,
the higher the number of blockings, the higher the number of required null messages.

6.2.1 Description and results in the Supernode

In this section we present the results of seven experiments performed with the
Supernode version of CMB-DA. An analysis of the results is done in the next section.
Tables 6.1 to 6.4 summarize the parameters used in the experiments. The first three
parameters of Table 6.1 (network size, message length and load) are related to the
model, while the next three (number of processing elements, grain size and use of
lookahead information) are related to the way the simulator is organized. The obtained
results, in the form of speedup curves, are plotted in Figures 6.1, 6.2 and 6.3.
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1S 2S 3S 4S 5S 6S 7S
Network size 16×16 16×16 16×16 16×16 32×32 32×32 24×24

(25×25)
Message length 4 4 32 32 4 32 4

Load 5—90 5—90 5—90 5—90 5—90 5—90 50
Number of PEs 4 16 4 16 16 16 4— 25

Grain size Max., int.,
min. (see
Table 6.2)

Max., int.,
min. (see
Table 6.3)

Max., int.,
min. (see
Table 6.2)

Max., int.,
min. (see
Table 6.3)

Int. (see
Table 6.4)

Int. (see
Table 6.4)

Int.

Lookahead See Table
6.2

No See Table
6.2

Yes
(16minL)

No No No

Results Fig. 6.1 Fig. 6.1 Fig. 6.1 Fig. 6.1 Fig. 6.2 Fig. 6.2 Fig. 6.3

Table 6.1. Experiments performed with CMB-DA in the Supernode.

LPs per Transp. Routers per LP lookahead
4Max 1 64 no
4ih 4 16 no
4il 16 4 no

4min 64 1 no
4minL 64 1 yes

Table 6.2. Values of the parameters grain size and lookahead for
experiments 1S  and 3S .

LPs per Transp. Routers per LP
16Max 1 16

16i 4 4
16min 16 1

Table 6.3. Values of the parameter grain size for experiments 2S and 4S.

LPs per Transp. Routers per LP
ih 4 16
il 16 4

Table 6.4. Values of the parameter grain size for experiments 5S and 6S.

Before analyzing the results, let us describe the purpose of these experiments.
Experiments 1S—4S deal with a relatively small model of 16×16 routers, with message

length 4 or 32, and running in 4 or 16 transputers. With these experiments we wanted to
confirm the results summarized in Chapter 4, obtained with a toy model. In particular, it
was our intention to test the following hypothesis:

1 The simulator scales well, i.e., the speedup with 16 transputers is better than the
speedup with 4 transputers. This should be confirmed by comparing 1S  with 2S,
and 3S  with 4S .
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2 Results are better with 4-flit messages than with 32-flit messages. With the same
level of load, 4-flit messages means al least 8 times more simulation events than
32-flit messages. Execution times should be longer for both the sequential and the
CMB-DA simulators, but the latter will have more opportunities to self-
synchronize without null messages, reducing the synchronization overhead. This
should be confirmed by comparing 1S  with 3S  and 2S  with 4S .

3 Performance improves when the load increases. Again, the higher the load the
larger the number of events managed by the simulator, giving more
synchronization opportunities. This should be confirmed by all the experiments.

Additionally, we wanted to test the impact that the different alternatives of grain size
have on the performance, and the effect of extracting lookahead information from the
model.

Experiments 5S  and 6S  work with a model four times larger than that used in the
previous set. We wanted to confirm that the simulator performance improves with the
imposed workload. In this case we do not use a synthetic workload: the way of giving
more work to a LP is mapping onto it a larger number of routers.

Experiment 7S is a scalability test. The same model is run in 4, 9, 16 and 25
transputers. As we will see, simulator performance strongly depends on the grain size of
the LPs. Sometimes there exist a wide range of grain size alternatives, while in others
cases there are only two: maximum and minimum. In Figure 6.3 we only show the
curves for the grain size alternative which gives better results, which is always an
intermediate value. An exception is the 25-transputer case, where the model has been
slightly increased to allow a balanced partitioning, and no intermediate grain size is
possible—so the maximum has been used.
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Figure 6.1. Results of experiments 1S—4S. Simulation of a network of 16×16 routers.
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6.2.2 Analysis of the results in the Supernode

After showing the experimental results, we proceed to analyze the effect that each
parameter of the model or of the simulator has in the execution time. When convenient,
several parameters are grouped and studied together.
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6.2.2.1 Network size, message length and load

Just looking at the set of figures as a whole, it is clear that the following parameters
of the model have a significant impact on the execution time of the simulation: load,
message length and network size. The best situation (for CMB-DA) arises with large
and highly loaded systems that interchange short messages. Interestingly enough, this is
the worst possible scenario for the sequential simulator. When the model has the
opposite characteristics, the performance (speedup) is not brilliant, but the actual
execution time is not very long.

The reason for this behavior can be found in the way LPs synchronize in a CMB-DA
simulator. All the mentioned parameters affect the number of “useful” messages (i.e.,
non-null messages) managed by the simulator. An increment in the number of these
messages means that the LPs have more opportunities to synchronize, while doing
useful computation. Null messages are needed less often, as LPs do not block
frequently. We can say that there is a high degree of “natural” synchronization. When
there are only a few useful messages to process, LPs block often, and null messages are
needed to maintain the LPs’ clocks updated. Then LPs spend most of their (real) time
blocked or processing null messages, i.e., synchronizing, instead of making progress.

6.2.2.2 Grain size

The experiments described in Chapter 4 suggested that the performance of CMB-DA
running on a network of transputers, a system with high communication overheads
[Izu94], would increase with the grain size of the LPs. This way, the
computation/communication ratio would be more balanced. If, looking at the results of
the first four experiments, we compare maximum vs. minimum grain size, we can see
that coarse grain simulation is more effective than fine grain simulation for low and
medium loads, because a small number of LPs synchronizing with null messages results
in lower overhead.

If now we compare with the intermediate grain size alternatives, it is clear that these
are the best for intermediate and high loads. Only for very low loaded systems
maximum grain size gives, sometimes, better performance than intermediate values.
This behavior can be explained analyzing the time used for synchronization in the
simulator:

• With maximum grain size, a LP can evolve autonomously most of the time, due to
the big number of interactions between the routers assigned to that particular LP.
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Nevertheless, sometimes the LP has to co-ordinate with the others, and this leads
the LP to send null messages and then block. This behavior is extremely
inefficient because, as the LP is the only user of the transputer, if it blocks, the
freed CPU power is wasted.

• With minimum grain size, there is no problem if a LP blocks: plenty of others are
awaiting to get the CPU. Here the problem is that, the bigger the number of LPs,
the bigger the number of null messages needed to keep the system synchronized
and, what makes things even worse, as every fine-grain LP has very little work to
do, they block very often.

• With intermediate values of grain size it is possible to find a balance: there are
few LPs, each one with enough work to do, so null messages are not needed very
often. In addition to that, as several LPs share a transputer, the probability of
wasting CPU time decreases.

As a conclusion, we can confirm that, in general, coarse grain simulations are faster
than fine-grain simulations. However, it is even more efficient to use intermediate grain
sizes, sharing a processor among several LPs, in order to avoid idle processors and
make the maximum usage of the available CPU power. This is especially true for the
transputer, where communication operations are blocking and context switches are quite
fast.

6.2.2.3 Lookahead

From the description of how lookahead is computed, it should be clear that a LP
might obtain large lookahead values when:

• messages are long and
• the LP has recently interacted with its neighbors.

The first point can be clearly observed comparing experiments 1S and 3S: while for
4-flit messages curves 4min and 4minL (minimum grain size, with and without using
lookahead information, respectively) give nearly the same results, when the length is 32
flits 4minL is clearly better than 4min. The second point can be seen in experiments 3S
and 4S: in highly loaded systems, the LPs interact often and, if they have to block, the
computation of the timestamp of the null messages can take advantage of the
knowledge of which ports have recently sent header flits. At any rate, as lookahead only
can be effectively exploited for minimum grain size, and this is not the best situation for
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this implementation of CMB-DA, we do not see any advantage of using the lookahead
information provided by this particular model.

6.2.2.4 Number of processing elements

From the complete set of experiments, and especially from experiment 7S , it can be
seen that the performance of the parallel simulator scales well with the number of
processors, although not linearly. There are, though, some factors that can help to
understand why the speedup gain is not perfectly linear:

• Our way of distributing the workload among processors and processes, using
squares, does not always allow to find the optimum grain size value. For example,
the 25×25 network of experiment 7S , when simulated over 5×5 processors, only
allows for maximum or minimum grain size; each processor must simulate 5×5

routers, and 5 is a prime number, which means that no intermediate alternatives
are possible.

• The processors used in our experiments were not all identical. In most cases, T805
transputers running at 30 MHz were used but, as only 14 processors of this kind
were available, in those experiments involving 16 or 25 processors some 20 MHz
T800 were used. Those processors are a bottleneck, imposing their rhythm to the
others; for this reason the resulting speedups are not as good as they should be.

• As the problem size does not increase with the number of resources, the
processors are not fully utilized. When the number of processors (and of LPs)
increases, the probability of having a blocked LP increases too, so some
processing power is wasted and more null messages are needed. To confirm this
assertion, we have represented in Figure 6.4 the ratio of useful messages to total
messages managed by the simulator in experiment 7S . Note how this ratio reduces
when the number of processors is increased.

Note also that the chosen set of parameters for experiment 7S  does not constitute the
best possible scenario for the parallel simulator, neither the worst for the sequential one.
With a higher load the results would be more favorable to the parallel simulator.
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6.2.3 Description and results in the Paragon

In this section we will use the Paragon implementations of CMB-DA to evaluate the
behavior of this algorithm in this particular machine. The performed experiments are
summarized in Table 6.5, while the results are shown in Figures 6.5, 6.6 and 6.7.
Experiments 1P through 7P are basically the same that those run in the Supernode
(1S—7S). In 7P it has been possible to run the 24×24 model using up to 64 Paragon

PEs. Experiment 8P is another scalability test specially re-designed to make a better use
of the larger number of processing elements available in the Paragon: a large model of
90×90 routers is simulated, using 4, 9, 25, 36, 81 and 100 processing elements.

As previously mentioned, the Paragon implementation of CMB-DA only allows a
class of mapping of routers onto LPs: maximum grain size. This means that only one
LP runs in each Paragon PE, simulating a group of routers. A consequence of this
restriction is that no effort is done to exploit the lookahead potential of the model.

For experiments 1P through 7P simulations ran for 4000 cycles. For experiment 8P
this number was reduced to 1000. It should be noticed that some of these experiments
are not well dimensioned for the Paragon. Execution times are very short (less than 3
seconds in some cases) and, therefore, a minimum variation in the time measurement
provided by the system can result in a significant variation of speedup, so trends are
considered more significant than actual values.
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1P 2P 3P 4P 5P 6P 7P 8P
Network size 16×16 16×16 16×16 16×16 32×32 32×32 24×24 90×90

Message length 4 4 32 32 4 32 4 4
Load 5—90 5—90 5—90 5—90 5—90 5—90 50 50

Number of PEs 4 16 4 16 16 16 4—64 4—100
Grain size Max. Max. Max. Max. Max. Max. Max. Max.

Look-ahead No No No No No No No No
Results Fig. 6.5 Fig. 6.5 Fig. 6.5 Fig. 6.5 Fig. 6.6 Fig. 6.6 Fig. 6.7 Fig. 6.7

Table 6.5. Experiments performed with CMB-DA in the Paragon.

6.2.4 Analysis of the results in the Paragon

Most of the conclusions drawn from the Supernode experiments apply to the Paragon
too, except for the discussions about grain size and the use of lookahead information,
which cannot be applied here. Summarizing, it can be said that the best performance is
obtained with large, highly loaded models managing short messages. These scenarios
are a challenge for sequential simulators, while CMB-DA distributes the load quite
evenly. According to the characterization of the overheads that we did when introducing
the experiments, the obtained speedups cannot be equal to the number of used
processors, but they are not too far.

Comparing Paragon and Supernode results, speedup figures are better for the
Paragon. Compare, for example, experiments 5S  and 5 P , which are equal for both
machines; the peak speedup in the Supernode is slightly less than 8, while in the
Paragon is very close to 12. Scalability tests 7S  and 7P are also equal for 4, 9 and 16
processors; in the last case, the Supernode implementation obtains a speedup of 4.55,
while the Paragon reaches 10.

The reason of this performance difference can be found in:

• the architectural dissimilarities between both machines, and
• the differences in the design of the LPs.
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Figure 6.5. Results of experiments 1P—4P. Simulation of a network of 16×16 routers.
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Figure 6.7. Results of experiments 7P  and 8P, the scalability tests, with CMB-DA.

We should remember that in the Paragon all message manipulations are done by a
network of hardware message routers plus a second processor in each node (the
message co-processor), freeing the computing node of most of the overheads of
message handling. In the Supernode, however, there is neither hardware routing, nor
message co-processors, and each transputer has to divide its time between computation
and (software) message handling.
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Another architectural difference comes from the fact that in the Paragon all the PEs
are identical, while in the Supernode a mixture of 20 MHz and 30 MHz transputers are
used in some experiments. Since the reference point (the execution time of the
sequential simulator) was taken using a 30 MHz transputer, the reported speedups for
the Supernode are not as good as they should be.

Regarding the design of the LPs, in the Paragon case they have a monolithic
structure, while in the Supernode they are divided into three L-processes. This
arrangement in the Supernode was necessary to avoid communication deadlocks, but
there is a price to pay. Those L-processes communicate mostly via internal channels.
Therefore, messages are copied from memory to memory several times in their life
cycle. Let us count how many times a message is copied from process to process since
the moment it is generated at a LP until it is consumed at another (in a different
transputer):

• A message is generated at the simulator process of the source LP.
• The simulator process passes the message to the output process (internal copy).
• The output process passes the message to a local channel multiplexer (internal

copy).
• The channel multiplexer passes the message to its peer at a neighboring transputer

(external copy).
• The channel multiplexer at the destination transputer passes the message to the

input process in the destination LP (internal copy).
• The input process will eventually pass the message to the simulator process, when

it is its turn to be consumed (internal copy).

All these steps (4 internal copies plus one external copy) are managed by the PEs,
i.e., the transputers. In the case of the Paragon, due to the monolithic design of the LPs,
no internal copies are necessary and, as just said, hardware support exists for making
external copies.

Regarding experiments 7P  and 8P, the scalability tests, Figure 6.7 shows that CMB-
DA scales well, the plots being nearly straight lines. The event density is high enough to
keep all the PEs busy most of the time, even for a large number of PEs. The efficiency
achieved in experiment 8P is higher than that of 7P. As an example, for the case of 36
processors the speedups are 24.3 and 21 respectively. The larger workload assigned to
the LPs in 8P  makes them achieve higher performance. Figure 6.8 characterize one of
the behavioral differences for both experiments; the number of null messages needed to
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keep the simulator synchronized in 8P  is very low, less than a 1% for the case of 4, 9
and 25 PEs, about 3% for 81 PEs and less than 4% for 100 PEs. In contrast, this
proportion rises to nearly a 40% for 7P in 64 processors. The number of null messages
is directly related to the required synchronization effort, but null messages are not the
only source of overhead; if many null messages are being sent, this is because LPs are
blocking very often, spending time awaiting for incoming messages to increase the
acceptance horizon (to allow simulation to progress). Figure 6.9 has been obtained after
running both experiments with an instrumented version of CMB-DA which allows to
monitor the way PEs use their time. Total execution time has been divided into three
components:

Tsim: time spent executing events, inserting messages in the event calendar and in
the input queues, and sending messages to other LPs. This is the time the LP
devotes to advance in the simulation.

Trec: time spent receiving messages from other LPs. This includes receiving useful
as well as null messages. As the receive() operation is blocking, i.e., prevents the
LP to advance until a message is received, this time can be considered mainly
synchronization effort.

Thn: time spent performing other synchronization tasks, namely:
- Sending null messages. This includes computing if a null message is

necessary or not, plus the actual action of sending a necessary null
message.

- Computing, at each step of the simulator main loop, the message
acceptance horizon.

The conclusion drawn from Figure 6.9 is clear: if the workload assigned to a LP
(and, thus, to a PE) is low, the PE spends too much time synchronizing instead of
executing events. In the case of 7P  in 64 PEs, each PE simulates 3×3 routers and the

achieved proportion of effective simulation time is 55%. In contrast, for 8P  in 100 PEs,
each PE simulating 9×9 routers (9 times larger that in 7P), CMB-DA achieves a 75%

efficiency. The 62% effective simulation time in 7P with 36 PEs versus the 83% in 8P
with the same number of processors justifies the previously remarked speedup
difference.
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Figure 6.9. Distribution of total execution time among simulation and synchronization for
experiments 7P (left) and 8P  (right) using CMB-DA.

Thn = time spent computing the acceptance horizon and sending null messages; Trec =
time spent receiving messages (including null messages);

Tsim = time spent executing events and sending non-null messages.
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6.2.5 Description and results in the NOW

The number of Sun workstations available to experiment with the MPICH
implementation of MPI was very limited, just 5, but from the experience gained with
the Supernode and the Paragon, speedups over 2 might be expected with the CMB-DA
simulator running in 4 workstations. We made the experiments described in Table 6.6 to
confirm this hypothesis.

1M 3M 5M 6M 8M
Network size 16×16 16×16 32×32 32×32 90×90

Message length 4 32 4 32 4
Load 5—90 5—90 5—90 5—90 5—90

Number of PEs 4 4 4 4 4
Grain size Max. Max. Max. Max. Max.
Lookahead No No No No No

Results Fig. 6.10 Fig. 6.10 Fig. 6.10 Fig. 6.10 Fig. 6.10

Table 6.6. Experiments performed with MPI in a network of workstations.
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Note that experiment 8M is no longer a scalability test, because of the few available
workstations. The other experiments are similar to their counterparts in the Supernode
and the Paragon, to ease comparisons. The results (speedup curves) are all plotted in
Figure 6.10.

It is easy to observe how the performance improves when:

• Problem size is increased: compare 1M  (16×16), 5M (32×32) and 8M  (90×90).

• Message length is reduced: compare 1M (4 flits) with 3M (32 flits), or 5M with
6M.

• The load is increased. All curves show this.

This comes at not surprise after the experience with the Supernode and Paragon
implementations. The outstanding point is that the overall results are really poor. As the
programs are the same we used in the Paragon (except for minor details), we must find
the explanation of these figures in the characteristics of the computing system used in
the experiments.

The main difference between the Paragon or the Supernode and the NOW is the way
interprocess communication is achieved. In the three cases a message passing
mechanism is used for synchronization and communication, but in the Supernode and
the Paragon a high-speed special purpose interconnection network is used, while in the
network of workstations a general purpose Ethernet network, with the TCP/IP protocols
over it, provides the necessary connectivity. This means that communication in this
environment is relatively slow, because of:

• The peak data rate of Ethernet: 10 Mb/s. In the Supernode each transputer
provides 10 Mb/s per each  of its 4 links, while in the Paragon the interface
between a node and the communication network allows a processor to
send/receive information at 1400 Mb/s.

• The shared nature of Ethernet. The available data rate must be shared among all
the devices connected to the network, being or not part of the simulation
environment. In the Supernode the channels are used exclusively by the
transputers that work in a simulation. In the Paragon the interconnection network
is shared among all the simultaneous users, but as the network is able to move
information at 1600 Mb/s (i.e., faster than the generation rate of the nodes) and
the users work in clusters which do not overlap, the sharing effect is barely
noticeable.
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• The software overhead imposed by the use of several layers of protocols
(Ethernet, IP, TCP, MPI). The communication protocols used inside a
multicomputer are much simpler; in particular, there are not as many layers. As
layering means encapsulation, i.e., addition of control information, its effects are
worse for short messages than for long messages3 .

To compute with more accuracy the communication capabilities of these three
systems, instead of using the raw data offered by the manufacturers we ran a test where
four processors are arranged in a logical unidirectional ring (in the case of the
Transputer, the ring is also physical). The first processor in the ring sends messages of
various sizes to the following one, which simply executes a store-and-forward
procedure, sending the received messages to the next processor in the ring. When a
message arrives back to the first processor, it computes the real time that it took to
complete the ring, and using this time and the message size the data rate is computed.
Message sizes varying from 1 to 218 have been tested; the achieved data rates for those
message sizes are plotted in Figure 6.11. In all the cases it can be seen how the data rate
increases with the message size, until it stabilizes at a point not far from the theoretical
maximum.

Unfortunately, the actual messages managed by our simulators are very short: about
32 bytes. For this size the achieved data rate is far from the maximum in the case of the
Paragon and the NOW, although the Supernode offers a good rate. The achieved data
rate for 32-byte messages has been indicated in Figure 6.11 by means of a line cutting
the curves at the appropriate points. Table 6.7 also summarizes this information.

3 In this context we are speaking about real messages interchanged between processing elements,

not about simulated messages.
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multicomputer systems used in the experiments.

The conclusion is that the computation/communication ratio of the MPI system is not
as good as in the other two systems, unless the CPUs of the workstations were
proportionally slower, and this is not the case. A comparison of the raw computing
capabilities of each system has been done taking into consideration experiment 5 (5S,
5P and 5M), which has been performed for the 3 systems using the sequential as well as
the parallel simulators. Table 6.7 summarizes the execution times of the sequential
simulator running this experiment at load 90. A Sun SPARCstation 5 is slightly faster

than a Paragon processing element, and about 7 times faster than a T800 transputer (for
the kind of computation we are doing). In contrast, the data rate achieved using MPI
over Ethernet is more than 66 times smaller than that achieved using the Paragon
interconnection network, or a set of interconnected transputers. It is clear that the
computation/communication ratio is too biased towards the computation power.
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Computing system Data rate (Mb/s) for 32-
byte messages

Execution time of  the
sequential simulator

running experiment 5 at
load 90

Supernode 4 5597
Paragon 4 904

NOW with MPI 0.06 817

Table 6.7. Communication and computation abilities of the multicomputers used in the
experiments.

Our conclusion is that the communication demands of CMB-DA (in particular, the
need of a frequent interchange of short messages) make it unsuitable for this kind of
parallel computing platform. In other words, CMB-DA works specially well in fine-
grain parallel computers, while a network of workstations might be used efficiently only
for coarse grain problems.

6.3 Experiments with TW

In this section we discuss our experience with a TW implementation in the Paragon.
Preliminary tests done with TW with conservative time windows showed very poor
performance figures, much worse than expected after the experience reported in Chapter
4. We verified that the big size of the state to save before executing each event was
partially responsible for the poor results: the state of a LP is the combination of all the
state variables which represent the collection of routers assigned to that LP, plus a small
number of variables for statistics gathering. Obviously this is excessive, because an
event only modifies the state of one router, plus the statistics. This fact was what led us
to implement the incremental state saving optimization: every N events the full state is
saved, and in the remaining cases only the state of the affected router is saved. After
including this optimization the execution speed was doubled, but still very far from that
of the CMB-DA algorithm. In fact, for all the experiments, even the sequential
simulator was always much faster than TW.

From our experience, we consider that TW is not a suitable approach for the kind of
experiments we perform. The density of events is, in general, very high and, for this
reason, the probability of a straggler to appear is very high too. This leads to continuous
rollbacks in the LPs. It has been monitored that almost all the events executed in a
speculative way have to be undone. The result is that the simulator looses most of its
time doing the following “management” activities:
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• Storing state copies and antimessages.
• Traversing the input queue to locate events to annihilate, or to find the right place

to insert a straggler.
• Coast-forwarding to construct appropriate state versions.
• Sending and managing antimessages.
• Computing the global virtual time.

In the list of sources of overhead we do not include the insertion of future events in
the input queue, or the extraction of the next event to simulate, because those operation
must be done in any simulator. However, as many of those insertion/extraction
operations are speculative and have to be undone and done again, they also contribute to
the overall overhead.

In is interesting to observe that, despite the good deal of effort devoted to the
implementation of the TW simulator in a distributed memory environment, its
performance remains discouragingly low. This seems to be an exception to the
observations by Fujimoto in [Fuji90a], one of the most comprehensive evaluations of
TW: “thus far, the experience of researchers (with TW) has been that (situations where

most of the time is spent executing incorrect computations and rolling them back) are

seldom encountered in practice, and, when discovered, usually points to a correctable

flaw in the implementation rather than any fundamental flaw in the algorithm”. It
should be mentioned that these observations were made in the context of a shared
memory implementation of TW.

As also pointed out in [Fuji90a], state saving overhead seems to be in the origin of
this poor performance. Fujimoto concludes that “State-saving overhead limits the

effectiveness of TW to applications where the amount of computation required to

process an event can be made significantly larger than the cost of saving a state

vector.” This is not the case for this particular application: the cost of executing an
event is very low, while the state size is huge. Even when incremental state saving is
used the amount of data moved for state saving is several times larger than the data
moved to execute an event.

It can be concluded that TW is not a viable approach for the parallel computer and
the domain of models presented in this study. This must be said without implying that
TW is not viable in any context: many references can be found in the literature (some of
those are mentioned in Chapters 2, 4 and 5) that report successful application of this



6. Performance results 153

synchronization method, in different hardware platforms and with different problem
domains.

6.4 Experiments with SPED

After performing a series of experiments with the SPED simulator in the Paragon, it
was observed that it behaves very much like CMB-DA, with only a significant
difference: SPED degrades sooner when the load of the LPs is reduced. Figure 6.12
(left) shows the execution time of these two simulators when running experiment 7P
(see Table 6.5). The scale is logarithmic to better appreciate the differences. Figure 6.12
(right) shows the speedups achieved by both simulators as a function of the number of
PEs. In the same way, results for experiment 8P  are summarized in Figure 6.13.
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Figure 6.12. Execution times and speedups of SPED and CMB-DA running experiment 7P.
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Figure 6.13. Execution times and speedups of SPED and CMB-DA running experiment
8P.

Starting with 7P , we can see that SPED performs slightly better than CMB-DA for
small numbers of PEs. However, when the number of PEs increases (and, therefore, the
workload of each LP decreases) CMB-DA performs better than SPED. Figure 6.14
(left) shows the contribution of computation and synchronization to LP execution time
when running this experiment. Tsim  is the time devoted to simulate events and send
messages. Trec  is the time spent awaiting and receiving messages. Tbar is the time
spent barrier-synchronizing. The Figure is self-explanatory: the problem size of
experiment 7P  is large enough to keep 4 PEs busy most of the time but, when
distributed among 64 nodes, each node needs most of its time for synchronization
(60%), performing useful computation only a 40% of the time.

Experiment 8P works with a much larger simulated network (90×90 routers), which

imposes a higher workload to the LPs. The results shown in Figure 6.13 indicate that, in
this case, SPED performs slightly better than CMB-DA, even using 100 Paragon PEs.
Besides, both simulators scale equally well. For this size of model the workload is large
enough to keep all the LPs busy, performing useful computation most of the time and
minimizing the (relative) effort devoted to synchronization. This can be confirmed in
Figure 6.14 (right); see how LPs spend most of their time performing effective
simulation, even when the simulator is distributed among 100 PEs.

Although the effective simulation time of SPED executing 8P on 100 PEs is slightly
below 70%, this figure is over 75% for CMB-DA (see Figure 6.9). CMB-DA should,
therefore, perform better than SPED. However, this difference is only due to the way
both programs are instrumented. The synchronous nature of SPED allows for a more
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precise measure of the time spent in the different activities a LP performs at each
iteration. In CMB-DA the measurements are taken in a event-by-event basis, which
means a significantly higher number of calls to the function that gives the real time
clock value, and this affects the achieved accuracy.
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Figure 6.14. Distribution of total execution time among simulation and synchronization for
experiments 7P and 8P using SPED.

Tbar = time spent barrier-synchronizing; Trec = time spent receiving messages;
Tsim = time spent executing events and sending messages.

The number of barriers executed by the LPs was observed to be 4000 (1000) in all
the cases of 7P (8P), i.e., as many barriers as simulation cycles. The reason is simple:
the density of events is big enough to always have at least one event per cycle. Only for
some particular cases with small models and very low loads (less than 5) the number of
barriers was found to be lower than the number of cycles. Thus, we can conclude that,
in general, SPED behaves as a time-driven algorithm. In fact, some experiments have
been done with a parallel time driven algorithm, and the execution times were the same,
except for the mentioned very low-loaded cases.

A good characteristic of this simulator is that it obtains reasonable speedups using a
very simple algorithm, without the complicated memory management strategies of TW,
and without some of the restrictions of CMB (no cycles with zero timestamp
increment).
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6.5 Conclusions

In this chapter we have presented our experiences using three parallel discrete event
simulation strategies to study a model of a message passing network designed for its use
as the communication infrastructure of a multicomputer. The knowledge obtained from
previous experiments with a very simplistic model has been applied, when possible, to
the simulation of this, more realistic, model.

In general, we have confirmed our preliminary ideas about which characteristics of
the simulated model help to improve the performance of the conservative parallel
simulator. In order to take advantage of using CMB-DA, we need a model with a high
degree of internal communication, which allows the processes to remain synchronized
without needing null messages. For the model used in this study, this happens when
network size is large, load is high and messages are short. These three parameters have
the strongest influence on the performance of the simulator. It is interesting to observe
that the best scenario for the CMB-DA simulator is the worst for the sequential event-
driven simulator, a very convenient situation because speedups are best precisely when
they are most needed, and are poor only in cases where simulation runs are very short in
both the sequential and the parallel version.

If CMB-DA is running in a set of processes statically assigned to a set of processors,
it is important to use coarse grain processes, that is, to assign a significant amount of
work to each process. This way, less processes are used to run the model, and the
synchronization effort is reduced. This idea should not led us to the extreme of
assigning only one process to a processor, because if the process blocks, the processor
stays idle. So, if the host parallel computer allows it, more than one process should be
mapped onto each processor. We have seen how, in the Supernode, using intermediate
grain sizes always led to the best performance.

The knowledge of the behavior of the model may allow CMB-DA to exploit some
lookahead information, which helps maintaining a good performance when the
simulator has not useful work to do. Unfortunately, the lookahead ability of our network
of message routers is, in general, poor, particularly when a LP simulates a set of routers
instead of only one (that is, when the grain size is not minimum). It has shown more
advantageous to use intermediate or maximum grain sizes, even if that means to
renounce to exploit the lookahead of the model.

It has been noticed that the communication demands of CMB-DA are very strong,
making it unsuitable for environments such as a network of workstations, were
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communication costs are very high compared to computation costs. While the
performance achieved in two multicomputers, Supernode and Paragon, are reasonably
good (better in the latter than in the former), a collection of workstations in an Ethernet
network does not perform so well.

The experience with optimistic synchronization has been quite discouraging. The
performance of the tested TW implementation is very poor, even after introducing a
series of optimizations. The conclusion is that TW is not the right tool for the kind of
study presented here.

Finally, the experience with SPED, the synchronous parallel simulator, has been very
positive. It performs worse than CMB-DA only for very lowly loaded systems, being as
efficient as CMB-DA (or even more) for medium and highly loaded systems. It has the
additional advantage of a simpler implementation, and can be used in environments
were CMB-DA is not applicable because of the presence of loops with zero timestamp
increment.



 



Chapter 7

Conclusions and future work
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Throughout this dissertation we have made a study of techniques for parallel
simulation of discrete event systems, with special attention to the simulation of a
particular kind of systems: models of message routers for massively parallel computers.
We started reasoning the interest of this study: the need to accelerate simulations, and
the consideration of simulators as interesting applications for its implementation in
parallel computers.

The identification of causal dependencies among events allowed the relaxation of
some constraints that sequential simulators impose on the order events are simulated, in
such a way that several events can be processed in parallel, after splitting the simulator
into a collection of collaborating logical processes. However, a synchronization
mechanism must be added to guarantee that the collection of logical processes
progresses, as a whole, in an consistent way.

We have presented three different synchronization alternatives: synchronous,
conservative  and optimistic. SPED, CMB-DA and TW are particular realizations of
those alternatives, which have been implemented and tested, first to study a toy model
designed to analyze the general characteristics of each simulator, and then using a
model of a message router to test how well these simulators work with a real world
application.

Implementations of the three simulators have been performed in three different
multicomputing environments: a transputer based multicomputer, a Paragon and a
network of workstations. As the programming environments available for these
multicomputers are not identical, a study of their characteristics has been done,
identifying the differences that have an important impact on the way algorithms can be
implemented.

Given a model, three algorithms and three multicomputers, an exhaustive set of
experiments has been done, allowing us to discover how the execution times of
simulations depend on different characteristics of the synchronization algorithm, the
model under study and the target multicomputer.

The contributions of this work can be summarized in the following points:

1 A description of a collection of alternatives for parallel simulation of discrete
event systems, with an evaluation of them using a toy model designed as a stress
test. Similar evaluations can be found in the literature, most of them using shared
memory multiprocessors, which allowed the implementation of a variety of
optimizations. However, our work has been developed in distributed memory
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systems where message passing is the only means of communication and
synchronization.

2 A description of three different environments for parallel programming,
identifying those differences among them that have an impact on the
implementation of parallel algorithms. In this context, parallel simulation
algorithms can be considered a case study on parallel programming.

3 A detailed description of a model of message router, along with the way it can be
simulated using an event-driven approach. A description of this model using the C
programming language has been done, able to be used by any of the simulation
engines implemented as part of this work.

4 The implementation and analysis of five parallel simulators, using three different
synchronization mechanisms and three host multicomputing systems:

- CMB-DA in a transputer-based Supernode multicomputer
- CMB-DA in an Intel Paragon multicomputer
- CMB-DA in a network of Sun workstations with a MPI library
- TW in a Paragon
- SPED in a Paragon

Additionally, a sequential simulator has been implemented and tested in the three
machines, to use the obtained results as a reference point to compute speedups.

5 The design of an optimization on CMB-DA that allows a reduction on the number
of null messages used for synchronization: null messages are sent only when a
logical process is going to block and only if they have a positive impact on the

receiving LP. Additionally, null messages are not stored in the receiving LPs: the
only effect of the reception of a null message is an increment in the receiving
channel’s clock. With this optimization, the synchronization effort of the CMB-
DA simulator is notably reduced.

6 The introduction of the concept of grain size of LPs in a CMB-DA simulator,
when running in a distributed memory parallel system. The synchronization
mechanism of CMB-DA requires LPs to block frequently, while they await until it
is sure that advance is possible without causal risks. If only one LP is assigned to
each processing element, CPU power is wasted while the LP is blocked.
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Assigning several LPs of smaller size to each processing element (which means
that each LP simulates a smaller part of the system under study), the CPU can be
relinquished from a blocked LP and assigned to another, active one. However,
LP’s grain size should not be too small, because in that case the overall number of
LPs would be notably increased, and much more null messages would be needed
to keep the simulator synchronized. Unfortunately, certain operating system
support is needed to take advantage of this multi-LP per PE approach, in the way
of a scheduling mechanism that switches contexts as soon as a LP blocks, and
some parallel systems do not provide it.

7 The characterization of the event density of the simulated systems as an important
parameter to achieve good performance in CMB-DA and SPED simulators. In
CMB-DA, models with high event density achieve an optimum performance,
because the message interchange for event scheduling provide the LPs with the
necessary synchronization, and a negligible number of null messages are required.
In the same conditions, SPED performs equally well, because all the LPs have a
similar work to do between barriers, exploiting parallelism efficiently. If the
message density reduces, the performance also reduces, being SPED more
sensitive to this change.

8 The way of exploiting the lookahead ability of the model of message router used
for our experiments. Good levels of lookahead can be obtained in highly loaded
systems where messages are long, because the lookahead is proportional to the
message length and the frequency of interaction between routers. A minimum of
one cycle is always guaranteed. Unfortunately, when a LP simulates an aggregate
of routers instead of only one (and this is the case for grain size alternatives
different to minimum) the obtained lookahead values are too low for the
complexity of the involved computation. After a set of evaluations, it was shown
that it is more advantageous to use medium or maximum grain size LPs without
lookahead ability instead of minimum grain size LPs with lookahead ability.

9 A characterization of CMB-DA and SPED as highly scalable algorithms.
Provided a large enough model, an increasing number of PEs results in an
increase of performance. A problem size fitting the characteristics of the
multicomputer is needed, though, in order to keep the
computation/communication ratio properly balanced. The two multicomputers
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used in this work (Supernode and Paragon) provide a fast enough message
passing mechanism to exploit the parallelism available in the simulators. In
contrast, the network of workstations does not perform so well, because the
communication infrastructure (based on TCP/IP over Ethernet) is not fast enough.

10 The conclusion that TW is not a suitable approach to the parallel simulation of
the kind of models we are working with. The fine grain nature of the model, along
with the large size of the data structures that represent the state of a LP, make it
the worst possible scenario for TW. The implementation of some optimizations,
like conservative time windows and incremental state saving, improves the
performance of TW, but not enough to make this approach viable. We do not try,
however, to invalidate this synchronization mechanism: experiences by other
researchers confirm that, in different scenarios, it can be very effective.

11 Finally, we conclude that CMB-DA and SPED can be considered as suitable
approaches for the parallel simulation of message passing networks. The main
requirement is the availability a fast message passing mechanism, like those
offered by current multicomputers. The more demanding the model to study, the
higher the possibility of obtaining a good level of acceleration. Using 100
processors to simulate a considerably big model (8100 routers) speedups up to 70
have been obtained.

There are many ways to further extend the work presented here. The most appealing
one, given the interests of our research group, is to build an analysis tool for message
passing networks, based on a conservative or a synchronous parallel simulation engine.
The tool should be able to allow a researcher to describe the model under study, given a
collection of parameters such as network size, network topology, routing strategy, flow
control mechanism, message length, link width, etc. A description language or a graphic
environment should be designed to offer a way of providing this information in a user
friendly way. This tool would be even more useful if the simulation could be done at
several levels of detail:

• In a high-level simulation each node of the network could be considered as a
simple queue-server element. Simulations would be fast, and measurements like
overall network throughput could be obtained.
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• A medium-level simulation could be like that presented in Chapter 5: the main
elements which constitute a node could be identified and studied separately. The
simulation effort would be increased, but measurements like the usage of internal
queues could be provided by the simulator.

• A low-level  simulation could be done at the gate level, considering the actual
implementation of the elements which constitute a node. With this level of detail
not only the design, but also the implementation of the nodes could be tested, at
the cost of a slow simulation. For this case the availability of a parallel simulation
engine would be specially convenient.

In relation to the SPED simulator, the current implementation follows a SPMD
programming model. It would be very interesting to implement a version for SIMD
machines (as the CM-2 or the MasPar) in order to test its behavior using several
thousands of processing elements, instead of a few tens.

This study has, fundamentally, an empirical basis. An analytical study of the way the
different characteristics of models, simulators and target multicomputers affect the
execution time of simulators should be of great interest. The difficult part is that the
spectrum of parameters to consider is quite large; several studies have been done in this
direction, but most of them make a series of simplifying assumptions which limit its
applicability.
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A.1 Introduction

In this appendix we present the three computer systems used for our research in
parallel simulation. Our first work was made using a Supernode, a transputer-based
multicomputer at the Facultad de Informática of the Universidad del País Vasco /
Euskal Herriko Unibertsitatea. This machine allowed us to practice with parallel
programming, and to develop the core of most of the simulators. Then the research
continued in another multicomputer, an Intel Paragon system at the Purdue University
Computing Center. This machine is bigger, faster and easier to deal with, compared to
the Supernode. Finally, as the use of clusters of workstations is becoming more and
more popular as a platform for parallel programming, we also made some experiments
using an implementation of MPI over a collection of Sun SPARCstations connected to
the Engineering Computer Network, also at Purdue University.

A separate section is devoted to each system: Supernode, Paragon and MPI in a
network of workstations. We give a description of the configuration of each system, the
programming environment available at each platform and the libraries used to build the
actual programs. Our intention is neither to give a tutorial on programming in each
environment (although some of the information could be helpful for a researcher
interested in using any of these systems), nor to evaluate one system against the others.
However some differences between the systems are remarked, specially when they have
an impact on the way parallel algorithms are implemented.

To finish this introduction, the author wants to acknowledge all the support received
by the personnel at these locations:

• Centro de Cálculo de la Facultad de Informática de la UPV/EHU, for their help
installing and maintaining the Supernode and the other computers at this location,
and for providing the means to access these systems even from the other side of
the Atlantic Ocean.

• Purdue University Computing Center  (Research Computing Division) for their
invaluable help using the Paragon. Most of the information about this machine has
been obtained through the personnel at the Advanced Applications Group of this
division of the PUCC.
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• Parallel Processing Laboratory  of the School of Electrical and Computer
Engineering, at Purdue University, for allowing us to use the network of
workstations described in this appendix.

• Engineering Computer Network  at Purdue University, for providing our everyday
computing support at Purdue, including the means to remain connected to the
UPV/EHU and to the rest of the world.

A.2 The Supernode system

In many of the experiments presented throughout this dissertation we have used a
Parsys Supernode SN-100, a multicomputer with 34 Inmos transputers of the T800
family as processing elements [Pars89, Inmo89b]. The interconnection network of the
transputers in the Supernode is not static: one of the most salient characteristics of this
machine is that all the transputers are connected to a collection of switches which allow
a dynamic configuration of the interconnection network in a nearly arbitrary way,
obeying these two limitations:

- Each transputer has 4 links: 0 or North, 1 or East, 2 or West and 3 or South
(NEWS ordering).

- The switches only allow connections N-S and E-W.

The T800 transputer is a microcomputer in one chip, composed of the following
elements: a 32 bit RISC processor, 4 KB of local memory, a floating-point unit, an
external memory interface and a communication subsystem. All these elements are
connected by means of an internal 32-bit wide bus. The communication subsystem
controls 4 serial links which allow a transputer to communicate with the external world
or with other transputers. The data rate of the links can be selected among various
values, being 10 Mb/s the one used in our machine.

Our Supernode also has an Ethernet adapter to connect it to SPRINet (the corporate
network of the UPV/EHU, which is part of the Internet) and a SCSI adapter controlling
two storage devices: a hard-disk and an Hexabyte tape. A personal computer is
connected to the Supernode for booting and diagnosis purposes.

The operating system that controls the Supernode is Idris, the Parsys version of Unix.
There are two alternatives to design and run parallel applications in the Supernode:
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• The user can decide to design parallel applications using the traditional Unix
interfaces for distributed programming: sockets or RPCs. To operate this way,
each transputer has to house a complete copy of Idris, and a set of links
connecting the transputers has to be defined and kept fixed, because the definition
of that topology is needed by Idris to route the messages from a process to
another. In addition to the AF_UNIX and the AF_INET address domains, an
AF_TLINK domain is provided, to use a simplified protocol (instead of TCP/IP)
over the transputer links to communicate pairs of processes. All the transputers
have access to the I/O capabilities through simplified versions of the Internet
protocols, adapted to run over the AF_TLINK domain. In particular, a network
file system is implemented, FPS (derived from NFS), to allow file system access
to all the transputers without the SCSI adapter. An advantage of this way of
working is that most applications designed run in a network of workstations can
be easily adapted to run in a network of Idris transputers.

• The user can decide to ignore the inter-process communication provided by Idris,
using raw transputers (that is, with no O.S. support) and a separate development
tool, like Inmos C, Inmos Occam or 3L Parallel C. At least one node has to run
Idris to manage I/O. This way of working is much more efficient: more memory is
available (a copy of Idris uses more than 2 MB of memory) and the
communication capacity provided by the transputer links can be used without all
the overhead that the Idris communication impose. However, the development
environment is much more limited, and the application is not portable outside the
transputer environment. An additional disadvantage is that a raw processor cannot
be used by more than one user at a time, making the system of poor utility in a
multi-user environment.

The usual approach is to find a balance between the extremes: some of the
transputers are arranged in an Idris network, while the others form a pool of raw
transputers. Our particular arrangement is shown in Figure A.1. There are 5 Idris
transputers, named 1 to 5, connected in a ring fashion. These are T805 transputers, with
a 30 MHz clock and the amount of external memory indicated in the Figure. The first
one has a built-in SCSI adapter, and its four links are connected to the boot PC, an
Ethernet board and transputers 2 and 3. Note that all the links of transputer 1 are used,
while the other four transputers have free links.
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The 29 remaining transputers form the raw transputer pool. There are 14 T805 at 30
MHz with 4 MB of external memory, and 15 T800 at 20 MHz with 2 MB of external
memory. The peak performance for the 30 MHz T805 is 30 Mips and 4.3 Mflops, while
for the 20 MHz T800 is 20 Mips and 2.2 Mflops.

1
(16M)

2
(8M)

3
(8M)

SCSI

29 raw transputers

Boot
PC

Ether-
net

4
(4M)

5
(4M)

5 Idris transputers

Figure A.1. Classes of processors in the Supernode system.

The external view of the system is as follows: a user can log in any of the Idris
transputers (each one has a different IP address) and program and run Unix applications
using, if desired, the AF_TLINK domain for interprocess communication.
Alternatively, one of the 4 Idris nodes with free links can be used as a front-end to
prepare and run programs in a network of raw transputers. To do so, a special tool is
provided: nm. Nm is able to:

1 manage domains of raw transputers, that is, groups of transputers assigned to a
user, and

2 program the Supernode switches to arrange the links of the transputers in the
domain in the way the user wants (obeying the limitations stated before). One link
of one raw processor must be connected to the Idris front-end. The directly-
connected transputer is the root transputer , and the link is the boot link.

Figure A.2 shows a feasible scenario: one user is working in the Idris node 2, using it
as a front-end to execute raw-transputer applications. Using nm, the user has gotten a
domain (number 10) with 9 transputers, and has arranged them as a 3x3 mesh.
Simultaneously, another user working at Idris node 5 has 8 transputers arranged as a
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ring in domain 14. As several raw transputers remain in the pool, and two Idris nodes
are still available, up to two more users could comfortably work with networks of raw
transputers. Note that other users could be using the Idris processors to run Unix
applications, in one or several nodes.

1
(16M)

2
(8M)

3
(8M)

4
(4M)

5
(4M)Domain 10

Domain 14

root

root

Figure A.2. Two domains of raw transputers arranged to run two separate applications.

The root transputer in a domain is the only one (unless special software arrangements
are done) with access to the I/O capabilities of the Supernode. While an application is
running in the raw transputer network, a program called iserver runs in the front-end
Idris processor, and offers a complete set of I/O services through a special protocol over
the boot link.

Programs are edited in the Idris front-end, where a set of tools are used to compile
and execute applications. Those tools run in the root transputer: the Idris processor
boots the tools into the root transputer, sends the input files through the boot link and
stores in the file system the output files received through the link. For each tool, a script
is provided so the user does not have to worry about where the tool runs, once a domain
with a transputer connected to the front-end is set up.

As mentioned before, there are several alternatives for programming networks of raw
transputers. We have used the Inmos C toolset, a collection of tools which provide an
ANSI C development environment, enriched with libraries to efficiently program the
transputers [Inmo90]. The main tools are listed in Table A.1, while the file extensions
used by those tools are enumerated in Table A.2.
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Tool Description
icc ANSI C compiler with concurrency support. Generates object code for

many specific transputer targets.
icconf Configurer. Creates configuration binary files from configuration

descriptions.
icollect Code collector. Creates bootable files from linked units or configuration

binary files.
idebug Network debugger. Provides post-mortem and interactive debugging of

transputer programs.
idump Memory dumper. Saves the image of a program onto disk, to allow post-

mortem debugging.
ilink Linker. Prepares linked units from sets of object files and libraries.

Table A.1. Main tools of the Inmos C Toolset.

Extension File contents
.c C source file.
.h C header file.
.cfs Configuration description source file.
.tco Object file. Created by icc.
.cfb Configuration binary file. Created by icconf.
.lku Linked unit. Created by ilink.
.lib Library file.
.lnk Linker indirect file. Command file for ilink.
.btl Bootable code file.

Table A.2. File extensions used by the Inmos C Toolset.

In addition to the Inmos C toolset, the programmer has most of the Unix application
development tools available. Those include several editors, grep, make, etc., which run
in the front-end Idris processor.

A.2.1 Preparing a parallel application to run in a network of raw
transputers

The programmer has to prepare a collection of .c and .h files and a .cfs file. The .c
and .h files contain the code of the application. The .cfs file is a description of the
hardware/software that constitute the application. The steps that have to be done to
obtain an executable application are depicted in Figure A.3.
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Figure A.3. Preparing an executable application in the Supernode.

A parallel application consists of a series of processes which run in one or more
transputers. From the point of view of the programmer, two different classes of
processes can be used: heavy-weight processes (H-processes) and light-weight
processes (L-processes). From the point of view of the transputer, there is not such a
difference. A H-process is a C program (with a main() function) which has to be
compiled and linked to form a linked unit (.lku). All the H-processes constituting a
parallel application are created when a .btl file is booted onto a network of transputers.
A L-process has to be created at run time and put to run by a H-process, or by another
L-process. Two H-processes can communicate only passing messages through channels,
and can be mapped onto the same or different transputers. A L-process can
communicate with its parent process (H or L) or with sibling processes using channels,
and also by means of shared data structures, and runs in the same node where its parent
is. If channels are used, they must be explicitly created. If shared memory is used,
semaphores are usually needed to avoid race conditions.

When a programmer designs an application as a set of processes, a careful decision
has to be made in order to determine which ones will be H-processes and which others
will be L-processes. In general, when it is sure that two processes will always be
allocated in the same node, L-processes can be used. H-processes allows an application
to be designed to run in an arbitrary network of transputers, without any recompilation.
The processes will be mapped onto the same or different transputers, and connected
trough internal channels or external links, at the configuration step. Therefore, a design
based on H-processes is more flexible, although it prevents any kind of shared memory-
based communication.

The configuration file is a key piece of the application. It is a complete description of
(1) the hardware where the application is going to run, (2) the software modules which
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constitute the application and (3) the mapping or projection of the software onto the
hardware.

The hardware description includes the number of transputers, class (T212, T414,
T800, etc.) and memory size of each one, and external link connections. At this point, it
should be noted that it is only a description: the user is the final responsible for building
the described network, using the Supernode nm tool.

The software description includes all the H-processes which form the application,
with their input parameters. If a parameter has to be changed, the application needs to
be reconfigured (but not recompiled). This description also includes all the channel
connections between H-processes.

The final part tells in which .lku files the H-processes can be found, and how to map
those processes onto the available transputers. It is also possible to indicate how to map
logical channels onto physical links, but it is normally safer to let the configurer make
the right decisions. Note that, although the H-processes may use many logical channels,
when they have to be mapped onto the raw transputer network some restrictions have to
be obeyed: (1) physical links can be simultaneously assigned to a maximum of two
logical channels, one in each direction; (2) direct communication is only possible
between H-processes in the same transputer (through an internal channel) or in
neighboring transputers (through an external link); and (3) there are only 4 external
links per transputer. The point is that it is not always possible to map a given software
description onto a given hardware. Sometimes the programmer has to develop
additional H-process to implement software multiplexers (to share channels among
several processes), relays (to allow the communication between two processes allocated
onto two non-neighbor transputers) or, in the most general case, software routers. It
should be clear that those elements only appear to circumvent the limitations of the
hardware/software platform that is being used, without being part of the application
itself, and they are not required when the application is mapped onto a single transputer.

Figures A.4 and A.5 illustrate the previous concepts. Figure A.4a shows an
application structured in a master/slave fashion. There is a master process (m ) which
sends tasks to any of its four slaves (s1 , s2, s3  and s4). The master is the only process
connected to iserver (isv), so the slaves cannot use file or terminal I/O; this is a very
common arrangement. Communication channels are unidirectional. For this reason, two
logical channels are commonly set up to provide full communication between a pair of
processes, one in each direction. Arrow heads are not shown for the sake of clarity in
the drawings.
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Figure A.4b shows a hardware network of 4 transputers: an Idris transputer which
acts as the front-end (fe), a root transputer connected to the front-end (r) and two worker
transputers (w1 and w2). This network has to be constructed using the nm tool to get a
domain, include 3 transputers from the pool into the domain and arrange the
connections the way depicted. The hardware description part of the configuration source
file has to be aligned with the constructed network; otherwise the application will not be
able to be booted and run.

fe r

w1

w2m

s3 s4s1 s2

isv

(a) (b)

Figure A.4. Mapping an application onto a network of transputers.
(a) Example application. (b) Example network of transputers.

Next, processes and channels must be mapped onto the available transputers and
links. Clearly, iserver will be running in the front-end transputer. The master will be
mapped onto the root transputer, and the slaves will be distributed between the two
worker transputers: s1  and s2  onto w1, and s3  and s4  onto w2.

Finally, channels connecting processes have to be mapped onto internal channels or
external links. Each external link can support two channels, one in each direction. The
communication between the front-end and the master presents no problem. Channels m
↔ s1 and m ↔ s2  are easy to map too, because there are two physical links connecting

transputers r and w1. However, only one link joins transputers r and w2, while two pairs
of channels are needed. To circumvent this limitation, the programmer has to develop a
pair of multiplexer processes, x1 and x2 . These multiplexers allow several logical
channels to share the physical link, of course without mixing up information belonging
to different logical channels. The final mapping is shown in Figure A.5.
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Figure A.5. A mapping of the application of Figure A.4a onto the network of Figure A.4b.

A.2.2 Running an application

When a .btl file containing an application ready to run has been obtained following
the steps previously described, the actual way of executing the application is quite
simple. The first step is to obtain a raw-transputer domain with the needed number of
transputers, configuring the links in the way needed by the application; this has to be
done using nm. The network has to be connected to an Idris transputer, through a boot
link. Then the application can be put to run simply using the iserver tool, giving the
name of the application file as a parameter. Iserver runs in the Idris processor, and boots
the application through the boot link. This application is able to distribute itself along
the available links, to put to work each H-process in its right place. Once the application
has been booted, iserver keeps in its place, ready to satisfy I/O commands.

It should be mentioned that all the Inmos C tools, except iserver, are effectively .btl
files. For example, when the programmer invokes icc in the Idris transputer, this
command actually invokes a script that executes iserver, giving icc.btl as the application
to boot. The compiler executes in a raw transputer, so before using any tool a domain
with at least one raw transputer connected to the Idris front-end must be set up.
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A.2.3 Libraries

In this section we describe the libraries that are part of the Inmos C Toolset, which
allow to program parallel applications for networks of raw transputers using the C
programming language.

A.2.3.1 The channel library (<channel.h>)

The channel library provides the basic mechanisms for interprocess communication.
Processes can communicate by means of an interchange of messages through logical,
unidirectional channels. The configurer has the ability to map a logical channel that
joins two H-processes onto an external transputer link, or onto an internal channel (a
word in the transputer memory). Additionally, it is also possible to create
(ChanAlloc()), initialize (ChanInit()) and then use internal channels for communication
between processes with a common ancestor.

The most important characteristics of channel communication functions is that they
are blocking and synchronous: the collaboration of two symmetric parts is essential to
succeed. When a process executes ChanIn(), it blocks until another process executes
ChanOut() on the same channel. The two involved processes are allowed to continue
only after the message is copied from the writer to the reader. Similar timing is
applicable if first a process uses ChanOut() and later another process uses ChanIn().

This way of working makes applications extremely deadlock-prone. The programmer
has to be very careful when organizing input and output parts of the program, and very
often auxiliary processes and user-managed buffer space are needed to keep things
working.

Channel *ChanAlloc (void);

void ChanInit (Channel *c);

void ChanIn (Channel *c, void *cp, int count);

void ChanOut (Channel *c, void *cp, int count);

A.2.3.2 The process library (<process.h>)

This library is a collection of functions to manage processes in one transputer. The
transputer is especially designed to run several processes concurrently. It includes a
built-in scheduler, able to manage two levels or priority (high and low); for each level a
separate list of active processes is kept. High priority processes are scheduled in FIFO
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order, and run until completion or until they block for communication. Low priority
processes are scheduled only when the high priority ready queue is empty, in a round-
robin fashion, until termination, communication block or end of quantum. Context
switches are very efficient, because processes are descheduled only at certain points
where minimum state saving is necessary.

A process can create new L-processes and put them to run. Firstly, a Process data
structure has to be allocated and initialized (ProcAlloc()), to do things as important as
assigning a stack to the new process (space is taken from the heap), selecting the
function that the new process will execute when started and passing a set of parameters
to this function.

Once the Process structure is initialized, there are several functions to put a process
to run. The simplest one is ProcRun(), which spawns a new processes to run
concurrently with the calling process, whereas ProcPar() spawns a collection of
processes which will run concurrently but blocks the calling process (the parent) until
all the newly created processes (the children) terminate. In both cases, the priority of the
children is the same as that of the parent. Other functions are available to explicitly
indicate the priority of the new processes. A process can discover its own priority with
ProcGetPriority().

Process *ProcAlloc (void (*func)(), int sp, int nparam, …);

void ProcPar (Process *p1, …);

void ProcPriPar (Process *phigh, Process *plow);

void ProcRun (Process *p);

void ProcRunHigh (Process *p);

void ProcRunLow (Process *p);

int ProcGetPriority (void);

It is also possible for a process to block for a given time with ProcWait() or until a
specified time is reached with ProcAfter(). These two functions are related to the
transputer built-in timer, whose value can be obtained with ProcTime().

void ProcAfter (int time);

int ProcWait (int time);

int ProcTime (void);
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There is in this library a set of functions related more to communication than to
process management. Those are the ProcAlt(), ProcSkipAlt() and ProcTimerAlt()
functions. ProcAlt() allows a process to block until input is ready, but checking several
channels simultaneously. The result is an index indicating a ready channel: a ChanIn()
operation can be immediately done on that channel without blocking.

If it is not desirable for the process to block until any of the channels have
information to read, ProcSkipAlt() allows for a test on all the channels, but without
blocking: this function immediately returns the value (-1) if no channel is ready for
input.

The last function, ProcTimerAlt() falls in the middle: it blocks the process but only
for a maximum time, specified as a parameter. This function can return the index of a
ready channel before the timer expires, or the value (-1) after timing out.

int ProcAlt (Channel *c1, …);

int ProcSkipAlt (Channel *c1, …);

int ProcTimerAlt (int time, Channel *c1, …);

A.2.3.3 The semaphore library (<semaphor.h>)

When two or more processes are running in the same transputer, and all of them have
a common ancestor (which must be a H-process), they share the same memory space,
including the heap, keeping private only their stacks. This shared memory space can be
efficiently used for interprocess communication, as an alternative to channels.
Nevertheless, a mechanism has to be used to avoid race conditions when accessing
shared data structures. The semaphore library provides a set of functions for working
with semaphores, which allow the implementation of mutual exclusion sections, as well
as other ways of process synchronization.

The key data structure is the Semaphore. A Semaphore can be statically allocated in
the global memory (or in the stack, but this is not common) or dynamically allocated in
the heap (SemAlloc()) and then initialized (SemInit()) with the appropriate value,
typically 1 for mutual exclusion.

Semaphore *SemAlloc(int value);

void SemInit (Semaphore *sem, int value);

void SemSignal (Semaphore *sem);

void SemWait (Semaphore *sem);
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A.2.3.4 The input/output libraries (<stdio.h>)

When a program is booted from the front-end Idris transputer, that transputer runs a
program called iserver, acting as an input/output provider. Many functions in <stdio.h>
are implemented by means of a dialog with iserver. As only one channel is available to
communicate with this server, only one H-process (and its children) can execute I/O
functions. Nevertheless, it is possible to use a software multiplexer in such a way that
several H-processes are connected (trough internal or external channels) to one
multiplexer which, in turn, is connected to iserver. One of those H-processes can be
another multiplexer connected to more H-processes. The conclusion is that it is quite
simple to use I/O in one process running in the root transputer, but it is not so simple
when processes in other transputers need to access files or interact with a terminal.

Not all the functions in <stdio.h> need to contact with iserver. In fact, there are two
versions of the I/O library: complete and reduced. The programmer has to be careful
when linking programs: if I/O functions are used, the complete library has to be linked.
Otherwise, the reduced will be enough. If the complete version is used, the programmer
has to define two logical channels (one for input and one for output) connecting the
process directly to iserver or to a  I/O multiplexer.

A.2.3.5 Other libraries and functions

Programmers can use all the standard C libraries: <string.h>, <stdlib.h>, <time.h>,
<math.h>, <ctype.h>, etc. An additional library, defined in <misc.h> provide several
hard to classify functions.

The most commonly used function in <misc.h> is get_param(). The mechanism that
a H-process has to use to obtain the parameters assigned during the configuration is not
that of the Unix operating system: there are not variables such as “int argc” and “char
**argv”. The process needs to invoke get_param() to read each parameter, making the
appropriate type cast (because, unlike Unix, parameters need not be strings).

void *get_param (int n);

The rest of the functions in this library deal with several ways of stopping programs,
or are designed to allow an interaction between a process and the debugger.
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A.3 The Paragon

In this section we provide an introduction to the Purdue Paragon. After a brief
description of the Paragon hardware, we focus on the way parallel applications are
programmed and run. The information in this section has been obtained mainly from
[PUCC95, Inte93].

A.3.1 Paragon XP/S 10 configuration and hardware description

The Purdue Paragon XP/S Model 10 (galaxy.cc.purdue.edu) is an Intel parallel
supercomputer with 140 compute nodes, 1 boot and service node, 4 service nodes, 13
I/O nodes, 3 HiPPI/network nodes, and 1 Ethernet node. Compute nodes, service nodes,
two of the three HiPPI nodes, and the boot node have 32 MB of DRAM each. The 13
I/O nodes, one HiPPI node, and the Ethernet node have 16 MB each. Five additional
128 MB compute nodes are also installed, but by the time of this writing they were not
available for general use.

The Paragon is organized as a rectangular mesh of 12x16 node slots, not all of them
used. Figure A.6 shows how the service and I/O nodes use the peripheral columns, plus
some slots of the first two rows. The 140 compute nodes are all contiguous, structured
as a 10x14 rectangle surrounded (except for the bottom) by the other classes of nodes or
by empty slots.

    +-------------------------+
   0| - - - - - - - - - - - B |
  12| H - - - H - - - - - - E |
  24| I * * * * * * * * * * S |
  36| - * * * * * * * * * * S |
  48| I * * * * * * * * * * I |   B: Boot and service
  60| - * * * * * * * * * * S |   H: HiPPI
  72| I * * * * * * * * * * I |   E: Ethernet
  84| - * * * * * * * * * * S |   I: SCSI I/O
  96| I * * * * * * * * * * I |   S: Service
 108| C * * * * * * * * * * C |   *: Compute
 120| I * * * * * * * * * * I |   C: 128 MB node
 132| C * * * * * * * * * * - |   -: Empty slot
 144| I * * * * * * * * * * I |
 156| C * * * * * * * * * * H |
 168| I * * * * * * * * * * - |
 180| C * * * * * * * * * * I |
    +-------------------------+

Figure A.6. Configuration of the Purdue Paragon.
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Each Paragon node is powered by an Intel i860 XP microprocessor operating at 50
MHz, providing a theoretical peak floating-point double-precision performance of 75
Mflops per node. Single precision performance is 100 Mflops per node. This i860 XP
microprocessor is called the application processor. Each i860 XP includes a 16 KB
instruction cache and a 16 KB data cache. Peak memory-to-processor bandwidth is 400
MB/second; peak cache-to-processor bandwidth is 1.2 GB/second.

There is no shared memory in the Paragon XP/S. Each node’s memory is local and
data is shared between nodes by passing messages. At each compute node, 7 MB are
required for the operating system, OSF/1, and 1 MB (the default value) is reserved for
inter-node message buffers, leaving 24 MB for the application program. If desired, the
message buffer size can be changed by the user.

As shown in the previous Figure, the nodes of the Paragon are connected in a two-
dimensional rectangular mesh with each node connected only to its nearest neighbors
on the mesh. The transmission of messages is carried out by an independent routing
system of custom-designed Mesh Routing Chips (MRCs), one for each node. These
chips route messages between any two nodes on the mesh at up to 200 MB/second, full
duplex. Completing the interconnect is the Network Interface Controller (NIC), a
custom VLSI chip which provides a full-bandwidth, pipelined interface between each
node’s MRC and memory. Each NIC permits simultaneous in-bound and out-bound
communication at 175 MB/second.

Each node contains a second i860 XP, called the message co-processor, which is
dedicated to handling message passing operations: it is not available for user
applications. This processor handles message protocol processing for the application
program, freeing the application processor to continue with numeric computation while
messages are transmitted and received. The message co-processor is also used to
implement efficient global operations such as synchronization, broadcasting, and global
reduction calculations (e.g., global sum).

Paragon disk storage is provided by 14 RAID (Redundant Array of Inexpensive
Disks) units connected to 13 I/O nodes and the boot and service node. Each unit
consists of five disks and is connected to a node via an 8-bit wide SCSI-1 interface
capable of transferring 5 MB/second. Each RAID unit has a formatted storage capacity
of 4.8 GB.

The HiPPI and Ethernet nodes provide connectivity with other machines of the
Purdue University Computing Center.
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A.3.2 Distributed OSF/1 operating system

The Paragon operating system is a distributed version of the Open Software
Foundation’s OSF/1. It complies with the POSIX, AT&T System V.3, Berkeley 4.3bsd,
and X/Open’s XPG3 standards. NX/2 libraries provide compatibility with Intel’s iPSC
family of parallel processors. The operating system is fully and transparently distributed
across the system’s nodes. A MACH 3.0-based microkernel resides in each node.

A.3.3 Partitions

The nodes of the Paragon are organized in groups, called partitions. The naming
system for partitions parallels the standard Unix file tree naming system. A period (‘.’)
is used as the separator of partition name components. Just as ‘/’ is the root of a Unix
file system, ‘.’ is the root of the partition tree.

A.3.3.1 The Service partition

The service partition of nodes is the partition in which the user’s shell, OSF/1
commands, and non-parallel programs run. The name of the service partition is
“.service”.

When a user logs into the Paragon, a shell is started in a node in the service partition;
when he or she executes a command, the command runs in a node in the service
partition. Note that the command does not necessarily run in the same node as the shell;
the system starts each new process in the least busy service node.

A.3.3.2 The Compute partition

The compute partition is the partition in which parallel applications run. The name of
the compute partition is “.compute”. When a user executes a parallel application, one
process, called the controlling or proxy process, runs in the service partition; the other
processes of the application run in sub-partitions of the compute partition.

The compute partition in the Purdue Paragon is logically sub-divided into two sub-
partitions, one for interactive, development work and the other for batch production
runs (submitted via NQS).

A.3.4 Program development

In this section the available tools (and machines) for programming Paragon
applications are presented.
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A.3.4.1 The cross-development facility

While it is possible to do all phases of program development in the Paragon, the
Computing Center strongly discourages this style of use. It is far from the most efficient
way to use the Paragon, because it adds unnecessary overhead to the Paragon’s nodes
and distracts them from their primary computational duties. Instead, the Paragon users
are encouraged to take advantage of a Sun support host, named helios.cc.purdue.edu (a
four CPU Sun S690MP, running Solaris 2.3), where the compilers, linkers, and libraries
for Paragon OSF/1 are available. It is possible to read Paragon manual pages, edit files,
compile and link Paragon programs in helios.cc—freeing the Paragon’s nodes for
computational tasks. The helios.cc file systems are mounted via NFS on the Paragon,
allowing the Paragon to access programs developed in helios.cc.

A.3.4.2 Application development tools

C and Fortran cross-compilers and an i860 XP cross-assembler are available in
helios.cc. The names and descriptions of these program development tools are listed in
Table A.3.

Tool Description
ar860 manages object code libraries
as860 assembles i860 source code
cpp860 preprocesses C programs
dump860 dumps object files
icc compiles C programs
if77 compiles Fortran programs
ld860 links object files
nm860 displays symbol table (name list) information
size860 displays section sizes of object files
strip860 strips symbol information from object files

Table A.3. Development tools available in the Paragon and in the support host.

All these tools are also available at the Paragon, plus ipd, an interactive parallel
debugger which also provides post-mortem debugging capabilities.

In this work we have used only the C programming language, so no further reference
to Fortran will be made.

A.3.4.3 Creating a parallel program

The C header file <nx.h> must be included in all Paragon C programs. This file
contains definitions and declarations needed by Paragon OSF/1 C system calls,



184 An empirical evaluation of techniques for parallel simulation of message passing networks

including those of the NX parallel programming library. The main functions defined in
this file will be described later in this chapter.

To compile a parallel application that runs in a compute sub-partition, the icc
compiler is used, including the “-nx” switch in the compile command. For example, the
command “icc -nx -o myprog myprog.c” uses the C cross-compiler to compile
“myprog.c” into a parallel program called myprog. When myprog is put to run, it uses
one or more nodes in a compute sub-partition. In contrast, the command “icc -o myprog
myprog.c” creates a serial program that uses a single node in the service partition.
Programs compiled with the “-nx” switch are classified as parallel applications and run
in a compute sub-partition, even if they use only one node. Programs compiled without
“-nx” are classified as single node applications and run in a single node in the service
partition. Other compiler switches, such as “-I” (add directory to include file search
path), and “-l” (search archived library), work as expected in OSF/1—i.e., like in other
Unix implementations.

If the programmer wants a higher degree of control over the application, it is possible
to create a controlling program for a parallel application, and then specify many aspects
of the application (programs to run in each node, priority, etc.) from inside the
controlling process, instead of from the command line. In this case, the programmer has
to provide a controlling program, overriding the one automatically included when using
the “-nx” switch. To do so, the “-lnx” switch has to be used instead.

A.3.4.4 Running parallel programs

During development time a large development sub-partition of the compute partition,
named “.compute.OPEN” is available on a first-come first-served basis. The user must
acquire a sub-partition of “.compute.OPEN” using a tool called psh. Once a partition
has been set up, when the user wants to run a parallel application in, say, four Paragon
nodes, the following command must be typed from a galaxy.cc window: “myprog -sz 4
[<input] [>output] [&]”.

The Paragon operating system uses the first four available nodes in the development
sub-partition, moving across the columns of a 2-dimensional array. If “-sz” switch is not
used, then by default the program runs in the number of nodes specified in the user’s
NX_DFLT_SIZE environment variable. If the number of requested nodes is not
available, an error message is displayed.

As mentioned before, when an application is successfully started, a controlling
process is created in one of the service nodes, while the application itself runs in a set of
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compute nodes. The controlling process is able to make a series of start-up operations,
which the user selects with command-line switches. Some interesting ones are:

-sz  size  or -sz  hXw: the first possibility specifies the number of nodes needed for the
application. The second one specifies a rectangular, contiguous node set in which
to run the application (height ×  width).

-on  nodespec: usually an application is loaded into all the nodes. With this option, it
is possible to load it only into certain nodes. This is useful when an application
consists of several different programs.

-pkt packet_size: sets the maximum packet size for message passing operations.
Messages longer than the packet size are segmented when sent across the
network.

-mbf  memory_buffer: sets the total memory (in bytes) allocated for message buffers
in each process.

A.3.4.5 Process management commands

OSF/1 contains the usual process management commands. Two particularly
interesting ones are ps and kill, which work like in any Unix system. When a user
invokes ps, a list of running processes is displayed. Controlling processes of running
parallel applications are included in the list, but the application processes themselves
are not. The kill command can be used to terminate an application controlling process,
terminating at the same time all the processes belonging to the application.

The command pspart displays a list of the applications running in the compute
partition, giving, among other information, the number of nodes used by each
application. This command can be used to see the status of a user’s application, or
simply to check what is going in the Paragon. Another useful command is showpart,
which produces a graphic representation of a partition, indicating (if the appropriate
option is selected) the status (free, busy) of each node.

A.3.4.6 Production jobs in the Paragon. NQS

Some of the Purdue Paragon nodes are reserved for batch jobs, which are managed
by the Intel NQS queuing system. Jobs for running under NQS can be submitted at any
time, using the command qsub. The user must specify the queue (-q queue), a maximum
wall clock running time (optional, -lT HH:MM:SS) and the program to submit,
typically a shell script. Other available NQS commands are qstat, which displays the
status of the NQS queues, and qdel, which deletes jobs from NQS queues.
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A.3.5 The NX library <nx.h>

The NX library offers a wide set of functions to program parallel applications in the
Paragon. Functions can be divided into the following groups: process characteristics,
sending and receiving messages, global operations, control of application execution,
partition management, floating-point control, Touchstone Delta compatibility, selection
of I/O modes, file manipulation, extended arithmetic, Pthreads, mutexes, condition
variables and others.

As this library contains many functions (about 200), we will concentrate on those
somehow related to this work.

A.3.5.1 Process characteristics

Each Paragon process can be identified by a node number and a process type (ptype).
These two numbers are needed for the message manipulation functions. Functions
mynode() and myptype() return the node number and the ptype of the calling process
respectively.

A controlling process does not have a known ptype, but it can be set up using
setptype(). After that, messages can be sent to the controller, whose node number can be
obtained with myhost().

An additional function of this group, numnodes(), returns the number of processors
allocated to the application, not including the processor where the controlling process is
running.
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long mynode (void);

long numnodes (void);

long myptype (void);

long setptype (long ptype);

long myhost (void);

A.3.5.2 Synchronous send and receive

The two main functions for synchronously sending and receiving messages are
csend() and crecv(). In this context, synchronous means that the process using one of
these functions waits until the operation is finished. Note that the Intel definition of
synchronous  (asynchronous) corresponds to what we called blocking  (nonblocking) in
Chapter 3. After successful completion, the buffer containing the outgoing message can
be safely reused (in the case of csend()), or a new incoming message is stored in the
buffer (in the case of crecv()).

There is a clear difference in semantics between the transputer and the Paragon
message passing functions: in the transputer a send and a receive are simultaneously
needed to realize a communication. In the Paragon, crecv() effectively blocks a process
until information is available, but csend() only blocks the calling process for a short
period, while the message is sent to its destination or, most commonly, stored in a
system buffer. Therefore, the end of a csend() does not mean that the message has
already been received, it only means that the message buffer can be reused.

Another difference is that the communication is not done through channels, but
addressing the destination process giving a <node, ptype> pair. Additionally, a message
type has to be given when sending a message. This feature is commonly used to
distinguish among different classes of information managed by the processes. A
receiver can specify which message type is willing to accept, or just accept any type
and, if desired, obtain the type (and other information) of a received message using the
info…() functions, which will be described later.

While communication through channels only offers pair-wise information
interchange, with this addressing scheme it is possible to realize multicast operations,
using the gsendx() function.

void csend (long type, char *buf, long count, long node, long

ptype);

void crecv (long typesel, char *buf, long count);
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void gsendx (long type, char *buf, long count, long nodes[], long

nodecount);

A.3.5.3 Asynchronous send and receive

Isend() and irecv() are asynchronous (meaning nonblocking) versions of csend() a
crecv(). These functions request a send/receive operation and return control to the
calling process immediately, before the operation is completed. A message
identification is returned, which allows the process to ask about the status of the
request.

Using a previously obtained message identification, msgdone() allows to determine
whether the send or receive operations have completed—and then the allocated message
buffers can be safely used. Msgwait() blocks the process until completion of the
operation identified by the message identification given as its parameter. The effect is
the same as performing a synchronous call, but some operations might have been done
between the moment the operation was requested and the moment the process blocks
for termination, allowing the user to overlap communication with computation.

long isend (long type, char *buf, long count, long node, long

ptype);

long irecv (long typesel, char *buf, long count);

long msgdone (long mid);

long msgwait (long mid);

A.3.5.4 Global operations

A set of g...() functions in the NX library perform operations that use data from every
node in the application. Each node contributes to the operation with a piece of data, the
operation is performed on the whole collection of data, and then a copy of the result of
the operation is broadcasted to all the nodes.

These operations are synchronizing: if any node in an application makes one of these
calls, it blocks until every other node in the application has made the same call. In the
simplest case, gsync(), this synchronization is the only operation performed by the call.
One process at each node in the application must make the call, and all the processes
that make the call must have the same process type.

Global operations are implemented using dynamic algorithm selection for maximum
performance. The system considers several ways of exchanging the needed information



A. Parallel systems used in this work 189

between the nodes, and selects the one that minimizes the time required to perform the
global operation given the size and shape of the application.

Each global operation name begins with “g” and ends with the name of the
operation. Some operations have several versions, which operate on different data
types; for these calls, the data type is indicated by the second letter of the call’s name
(“l” for logical, “i” for integer, “s” for single-precision floating point, or “d” for double-
precision floating point). For example, gdsum() performs a double-precision global sum
and gilow() computes an integer global minimum. Most of the functions have three
parameters: the data used for the computation, the size (number of components: the data
can be a vector) and an auxiliary storage area. Gsync() does not need any parameter.

A.3.5.5 Other functions for managing messages

Cprobe() blocks the calling process until a message matching the specified message
type arrives. After regaining control, the process can receive the message without
blocking. Iprobe() simply checks if a message is available, that is, it is stored at the
node, but it has not been read yet.

Immediately after a message has been received, or while it is pending awaiting to be
read, the following functions can be used to obtain information about the message:
infocount() to obtain its size in bytes; infonode() to obtain the node number of the
sender; infoptype() to obtain the ptype of the sender; and infotype() to obtain the
message type.

void cprobe (long typesel);

long iprobe (long typesel);

long infocount (void);

long infonode (void);

long infoptype (void);

long infotype (void);

A.3.5.6 Controlling application execution

As explained before, an application consisting of several processes, identical or
different, can be loaded and run controlling all its characteristics from the command
line. Additionally, it is also possible to write a controlling program that sets the
application characteristics inside the program. To do so, the program has to be compiled
with the -lnx option of icc, and needs to include a call to either nx_initve() or
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nx_initve_rect(). These two functions allocate a group of processors to run an
application. The main difference between them is that nx_initve_rect() requests the
allocation of a rectangular network of contiguous processors, while nx_initve() only
asks for a given number of processors. Both fail if the request cannot be satisfied—that
is, not enough nodes are free, or it is impossible to allocate the desired rectangle. The
last two arguments of these functions allow the processing of the set-up arguments,
which can be given when invoking the application from the shell (-sz, -on, -pkt or
-mbf). The appropriate operations are done, and the arguments are removed from argv.

Once a group of nodes has been allocated, programs can be loaded. Nx_fork() makes
copies of the controlling process in the specified nodes, assigning a specified ptype to
all the newly created processes. Alternatively, nx_loadve() loads a program in the
specified nodes, again assigning them a ptype. After the controller has put several
processes to run, it can choose to block until all them finish, using nx_waitall().

Several processes can be loaded in the same processor, sharing it. The process
scheduling policy is round robin, with a 10 milliseconds quantum. A process does not
abandon the CPU when it is blocked awaiting a message operation to conclude: it
simply stays idle until either completion of the operation or end of quantum. For this
reason, allocating several processes to one processor with the purpose of having one
using the CPU while others are blocked in input operations does not work in the
Paragon. This behavior clearly differs from the way processes and communication are
managed in the transputer.

long nx_initve (char *partition, long size, char *account, long

*argc, char *argv[]);

long nx_initve_rect (char *partition, long anchor, long rows, long

cols, char *account, long *argc, char *argv[]);

long nx_fork (long node_list[], long numnodes, long ptype, long

pid_list[]);

long nx_loadve (long node_list[], long numnodes, long ptype, long

pid_list[], char *pathname, char *argv[], char *envp[]);

long nx_waitall (void);
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A.4 MPI in a network of workstations

MPI stands for Message Passing Interface. The goal of MPI, simply stated, is to
develop a widely used standard for writing message passing programs. The interface
should establish a practical, portable, efficient, and flexible standard for message
passing [MPI94]. Over the last ten years, substantial progress has been made in casting
significant applications in this paradigm. Each vendor has implemented its own variant.
More recently, several systems have demonstrated that a message passing system can be
efficiently and portably implemented. The purpose of MPI is to define both the syntax
and semantics of a core of library routines that will be useful to a wide range of users
and efficiently implementable on a wide range of computers.

In designing MPI, the MPI Forum sought to make use of the most attractive features
of a number of existing message passing systems, rather than selecting one of them and
adopting it as the standard. Thus, MPI has been strongly influenced by work at the IBM
T. J. Watson Research Center, Intel’s NX/2, Express, nCUBE’s Vertex, p4, and
PARMACS. Other important contributions have come from Zipcode, Chimp, PVM,
Chameleon, and PICL.

The main advantages of establishing a message passing standard are portability and
ease-of-use. In a distributed memory communication environment, in which the higher
level routines and/or abstractions are built upon lower level message passing routines,
the benefits of standardization are particularly apparent. Furthermore, the definition of a
message passing standard provides vendors with a clearly defined base set of routines
which they can implement efficiently, or in some cases provide hardware support for,
thereby enhancing scalability.

The efforts of the MPI Forum have not stopped yet. MPI suffers from some serious
limitations, which can make researchers reluctant to use it. Some of those limitations
have been identified, and an effort to develop MPI2 is now in progress. The following
items are considered as possible areas of expansion:

• I/O
• Active messages
• Process startup
• Dynamic process control
• Remote store/access
• Fortran 90 and C++ language bindings
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• Graphics
• Real-time support
• Other enhancements

Some of the available implementations of MPI already include some of these
enhancements, but clearly stating that they are not part of the current standard.

Several implementations of MPI have been made freely available. One of those is
MPICH, developed by Argonne National Laboratory and Mississippi State University
[Brid95]. MPICH is supported on a variety of parallel computers and workstation
networks. Parallel computers that are supported include: IBM SP1, SP2 (using various
communication options), TMC CM-5, Intel Paragon, IPSC860, Touchstone Delta,
Ncube2, Meiko CS-2, Kendall Square KSR-1 and KSR-2, SGI and Sun
Multiprocessors. Supported workstations include: Sun4 family running SunOS or
Solaris, Hewlett-Packard, DEC 3000 and Alpha, IBM RS/6000 family, SGI, Intel 386-
or 486-based PC clones running the LINUX or FreeBSD OS.

Other available implementations are:

• Edinburgh Parallel Computing Centre CHIMP implementation.
• Mississippi State University UNIFY implementation.
• Ohio Supercomputer Center LAM implementation.
• University of Nebraska at Omaha WinMPI implementation.

A.4.1 MPI programs

The current MPI specification includes bindings for the Fortran 77 and C
programming languages. MPI2 will probably include bindings for Fortran 90 and C++.
We will only discuss the C binding.

All MPI programs must include the header file “mpi.h”, where the definitions,
macros and function prototypes necessary for compiling the programs can be found.
Before using any other MPI function, a program must invoke MPI_Init(), to do all the
necessary set-up operations. After finishing (but before exiting) the function
MPI_Finalize() must be called for cleaning up.

int MPI_Init (int argc, char ***argv);

int MPI_Finalize ();
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After the initialization, functions are available for point to point communication,
collective communication and several environment management functions. In the
following sections we give a description of the functions which are relevant for our
work.

A.4.2 Point to point communication

MPI offers two communication models, blocking  and nonblocking, and four
communication modes: basic , synchronous , buffered  and ready. In the blocking
communication model, read and write operations are done in one step. Returning from a
read means that a message has been received; returning from a write means that the
message has been sent, but not necessarily that it has been received. In the nonblocking
communication model operations are done in two steps: first the read or receive is
posted, meaning that the corresponding function returns without completing the
operation. A separate call must be done to actually complete the operation. With
suitable hardware, this nonblocking model allows an overlapping of communication
with computation, and may also avoid system buffering. Note that the NX library of the
Paragon also offers these communication models, although the names used by Intel are
different: synchronous for blocking, asynchronous for nonblocking.

For each communication model, four different send functions, one per
communication mode, and one receive function are provided. The four blocking send
operations are:

Basic send: MPI_Send() completes when the message data and envelope have been
safely stored away so that the sender is free to access and overwrite the send
buffer. The message might be copied directly into the matching receive buffer, or
it might be copied into a temporary system buffer. This semantics is close to that
of the Paragon.

Buffered send: MPI_Bsend() completes immediately after storing the message in a
local buffer, managed by the user. Its completion never depends on the occurrence
of a matching receive.

Synchronous  send: MPI_Ssend() only completes when a matching receive has been
posted and the message interchange has been completed. This semantics is close
to that of the Transputer.

Ready  send: MPI_Rsend() can be started only if a matching receive has been already
posted. Otherwise the operation is erroneous and its outcome is undefined.
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All four blocking send operations take the same arguments. The prototype of
MPI_Send() is as follows:

int MPI_Send (void *buf, int count, MPI_Datatype datatype, int

dest, int tag, MPI_Comm comm);

The blocking receive operation can match any of the send modes, and returns only
after the receive buffer contains the newly received message.

int MPI_Recv (void *buf, int count, MPI_Datatype datatype, int

src, int tag, MPI_Comm comm)

For the nonblocking model of communication, the functions MPI_Isend(),
MPI_Ibsend(), MPI_Issend(), MPI_Irsend() and MPI_Irecv() are available to start an
operation. Several forms of MPI_Wait() allow a process to block until a previously
started operation (or set of operations) has been completed. Alternatively, a
nonblocking test of completion can be done using MPI_Test(). A non-committed posted
operation can be canceled with MPI_Cancel().

It is also possible to check if messages are pending to be received. MPI_Probe() is
blocking, i.e., blocks the caller if no message is ready, until one is received.
MPI_Iprobe() is just a nonblocking test. In either case, the message is not actually
received until a receive operation is done.

A.4.3 Collective communication

Collective communication is defined as communication that involves a group of
processes. All collective operations are global and blocking, that is, in order to perform
an operation all the members of a group must call it, and control returns when it has
been completed. In many cases a root process is mentioned. Any process in a group can
be the root of an operation, but it is necessary that all the members agree in defining
which process is the root. The collective communication functions provided by MPI
are:

• Barrier synchronization across all group members: MPI_Barrier(). The call returns
only after all group members have entered the call.
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• Broadcast from one member to all members of a group. MPI_Bcast(). The process
with rank root sends the information. All the processes in the group receive a copy
(root included).

• Gather data from all group members to one member. MPI_Gather(). The root
process receive a collection of messages (one per member of the group) and stores
them in rank order.

• Scatter data from one member to all members of a group. MPI_Scatter(). Inverse
of gather: the root process distributes a vector of values among all the members of
the group (including itself), in rank order.

• A variation on Gather where all members of the group receive the result.
MPI_Allgather(). All the members of the group receive a copy of the vector that
results of the gather operation.

• Scatter/Gather data from all members to all members of a group (also called
complete exchange or all-to-all). MPI_Alltoall(). An extension of
MPI_Allgather() to the case where each process sends distinct data to each of the
receivers. The jth block sent from process i is received by process j, and is placed
in the ith block of the reception vector.

• Global reduction operations such as sum, max, min, or user-defined functions,
where the result is returned to all group members (MPI_Allreduce()) and a
variation where the result is returned to only one member (MPI_Reduce()). The
elements that are reduced may be vectors.

• A combined reduction and scatter operation. MPI_Reduce_scatter(). First a
reduction is done, and then the result (a vector) is scattered along the processes in
the group.

• Scan across all members of a group (also called prefix). MPI_Scan(). The
operation returns, in the receive buffer of process i, the reduction of the values in
the send buffer of processes 0..i (inclusive).

A.4.4 Communicators

The objective of communicators is to facilitate the construction of libraries easy to
integrate in user programs. For example, if a library for matrix operations is done for a
machine such as the Paragon with NX, that library would use a series of tags (message
types, using Intel’s notation) to label the messages. A programmer that wants to use the
library must avoid the use of the same tags, because conflicts might appear. Obviously,
this is not a desirable situation, and the introduction of the communicator concept helps
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to avoid it. Another situation where communicators help is the realization of global
operations: those operations can be restricted to a subset of the processes, simply by
defining a communicator that only include the appropriate processes.

An intra-communicator can be defined as a collection of processes that can send
messages to each other and engage in collective operations. A particular intra-
communicator, MPI_COMM_WORLD, includes all the processes in an application.
Inter-communicators are used for sending messages between processes in different
intra-communicators. A minimal intra-communicator is composed of a group and a
context. A group is an ordered set of processes. Each process in a group is associated
with an integer rank. Ranks are contiguous and start from zero. A context is a property
of communicators that allows partitioning of the communication space. A message sent
in one context cannot be received in another context. Furthermore, where permitted,
collective operations are independent of pending point-to-point operations, because they
form part of different contexts.

MPI includes a series of operations for  the management of communicators and
groups. Contexts are not explicitly managed: they appear only as part of the realization
of communicators. Two commonly used functions related to groups are
MPI_Group_size(), which informs about the number of processes in a group, and
MPI_Group_rank(), which tells a process about its rank in a group (provided that the
process belongs to it). The discussion of the remaining functions falls out of the scope
of this dissertation.

A.4.5 Data types

One of the parameters of send and receive operations is the type of the data units
being transmitted (other being the number of units transmitted). Both sender and
receiver must agree in the specified data type. A series of constants are defined to
choose the appropriate data type. Table A.4 lists the data types available for the C
binding (a different one is defined for the Fortran binding).
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MPI data type C data type
MPI_CHAR signed char
MPI_SHORT signed short it
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

Table A.4. MPI data types (C binding).

The last two types do not correspond to any C data type. A value of type MPI_BYTE
consists of an octet, which is uninterpreted and different from a character.
MPI_PACKED is used to interchange blocks of non-contiguous data items which have
been packed into a contiguous buffer.

One of the goals of MPI is to support parallel computation across heterogeneous
environments. This might require data conversions, to adjust between the different data
representation formats of the communicating machines. In this context, the data type
information is essential to perform the appropriate data conversions. The MPI_BYTE
data type can be used to transfer data without any conversion.

MPI also offers mechanisms to send/receive data structures more complex than
sequences of simple objects. Derived data types can be defined, and then objects of
those types can be transmitted, performing the necessary data conversions. Again,
explaining those mechanisms falls out of the scope of this work.

A.4.6 The MPICH implementation of MPI

MPICH 1.0.8 has been installed in a network of 5 Sun SPARCstation 5 workstations
at the Parallel Processing Laboratory of the School of Electrical and Computer
Engineering, Purdue University.

This implementation includes:

• A configuration program which sets up MPICH for running in a particular
computing environment. In this case, a network of Sun workstations running
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Solaris. Once the environment has been configured, a Makefile is provided to
build the rest of the elements of this list.

• A library with all the MPI functions. In the case of our particular environment,
this library is based on p4, which is also included in the MPICH installation, and
uses TCP/IP as the communication means. Other alternatives are possible; for
example, the MPI library can be built over Intel’s NX library if the target machine
is a Paragon.

• A library with extensions to MPI, not yet standardized. All the functions in this
library carry the prefix MPE. The components of this library are:

- A set of routines for creating log files, which can be used for program
profiling; a tool called wrappergen and a collection of makefiles are
available to help profiling programs.

- A shared display parallel X graphics library. This library can be used to
create real-time program animations.

- Routines for sequentializing a section of code: processes execute that
section in rank order, instead of doing it in parallel.

- Debugger setup routines.
• Upshot, a program to analyze log files created with the MPE profiling functions.
• Mpirun, a tool for starting parallel programs in a way independent of the target

machine. A series of switches determine some of the characteristics of the
application to run, such as the number of processes that will be put to run (mpirun
-np number_of_processes  application).

• A collection of manuals and other documentation.

When launching an application in this particular environment, mpirun checks a
configuration file called machines.solaris, where a list of available workstations can be
found. It is assumed that all the machines of the list have the same view of the file
system, which usually means that NFS is in use. Mpirun tries to launch, using the Unix
tool rsh, as many processes as required, one per entry in the machines.solaris file. This
means that it is possible to launch more processes than machines are available, simply
by repeating machine names in the machines file.

The previous discussion about using mpirun works well for SPMD applications, and
for homogeneous systems where all the workstations can find executable files in the
same locations. However, it is possible to overcome these limitations using the -p4pg
switch of mpirun. In this case, an application configuration file must be given as a
parameter, being the format of its lines as follows:
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hostname  number_of_processes  pahtname_of_executable  login

Hostname  is the name of a workstation to use. Number_of_processes  indicates how
many processes must be launched in that machine; this option is only valid when shared
memory multicomputers are being used, otherwise the strategy of repeating machine
names must be used. The pahtname_of_executable indicates where the executable of the
process to run in the corresponding machine is. The last parameter, a login name, is
optional, and can be used to comply with the security procedures of rsh.
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