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Abstract Efficient resource use is a very important issue in wireless sensor networks and decentral-

ized IoT-based systems. In this context, a smooth pathfinding mechanism can achieve this goal.

However, since this problem is a Non-deterministic Polynomial-time (NP-hard) problem type,

metaheuristic algorithms can be used. This article proposes two new energy-efficient routing meth-

ods based on Incremental Grey Wolf Optimization (I-GWO) and Expanded Grey Wolf Optimiza-

tion (Ex-GWO) algorithms to find optimal paths. Moreover, in this study, a general architecture

has been proposed, making it possible for many different metaheuristic algorithms to work in an

adaptive manner as well as these algorithms. In the proposed methods, a new fitness function is

defined to determine the next hop based on some parameters such as residual energy, traffic, dis-

tance, buffer size and hop size. These parameters are important measurements in subsequent node

selections. The main purpose of these methods is to minimize traffic, improve fault tolerance in

related systems, and increase reliability and lifetime. The two metaheuristic algorithms mentioned

above are used to find the best values for these parameters. The suggested methods find the best

path of any length for the path between any source and destination node. In this study, no ready

dataset was used, and the established network and system were run in the simulation environment.

As a result, the optimal path has been discovered in terms of the minimum cost of the best paths

obtained by the proposed methods. These methods can be very useful in decentralized peer-to-
versity,
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peer and distributed systems. The metrics for performance evaluation and comparisons are i) net-

work lifetime, ii) the alive node ratio in the network, iii) the packet delivery ratio and lost data pack-

ets, iv) routing overhead, v) throughput, and vi) convergence behavior. According to the results, the

proposed methods generally choose the most suitable and efficient ways with minimum cost. These

methods are compared with Genetic Algorithm Based Routing (GAR), Artificial Bee Colony Based

routing (ABCbased), Multi-Agent Protocol based on Ant Colony Optimization (MAP-ACO), and

Wireless Sensor Networks based on Grey Wolf optimizer. (GWO-WSN) algorithms. The simula-

tion results show that the proposed methods outperform the others.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Wireless Sensor Networks (WSNs) are one of the subcate-
gories of ad-hoc networks and consist of many distributed sen-
sor nodes. These nodes can also be used in systems comprising

of the Internet of Things (IoT). One of the advantages of these
nodes is their ease of assembly in difficult environments. WSNs
can be used in a vast variety of application areas, such as traf-

fic monitoring [1,2], agriculture [3,4], automobiles [5], health
monitoring [6], etc. There are also many application areas in
IoT, such as the Internet of Drones [7,8], Internet of Food

[9], Internet of Medical-Things [10], Industrial IoT (IIoT)
[11], and autonomous vehicles [12]. Moreover, WSNs and
IoT systems can also collaborate as a single system [13–17].
It can be used widely, especially in decentralized IoT architec-

tures [18,19].
In scenarios, where there are internet availability issues, or

when low cost is desirable, problems can occur in an IoT sys-

tem with classical centralized architectures. Furthermore, in
this architecture, a large part of the load falls on the server-
side cloud system. Some methods are proposed for this, such

as fog/edge compute nodes. Another recommendation to trou-
bleshoot this architecture is blockchain technology. A decen-
tralized architectural design can be more efficient and is used
extensively in application areas. Therefore, decentralized dis-

tributed architectures can be employed as a solution. We define
these systems as Decentralized IoT (DIoT) systems. WSNs are
generally designed in a decentralized form. Therefore, DIoT

and WSN are similar in architectural aspects. One important
issue in these structures is finding a suitable, optimal, and effi-
cient path for data communication between nodes. To achieve

this goal, this study proposes two efficient methods that are
inspired by metaheuristic algorithms. The proposed methods
can, both, find the optimal paths with efficient resource usage,

and provide features such as scalability and fault tolerance. A
sample system with the hybrid architecture of DIoT and WSN
technologies is shown in Fig. 1.

Each sensor node or IoT device can send its data packets to

Base Station (BS) via single-hop or multi-hop model. In a
decentralized distributed structure, multi-hop methods are fre-
quently employed. The BS collects all data packets and trans-

mits them to a server (possibly a cloud) for data analysis and
end-user access [20]. As sensor nodes work in collaboration,
it is necessary to have an efficient data transfer method. These

nodes suffer from a limited power battery, bandwidth, compu-
tational capacity, and memory space. Therefore, performing
the complex computations, in each sensor node, is a challeng-

ing task. Furthermore, recharging is mostly impossible due to
physical constraints, such as the location of the nodes. At the

same time, changing the batteries is not possible, as these sen-
sors use one-time batteries. The main issue in WSN and IoT
systems is increasing the network lifetime. It is worth noting

that resource management and network topology has an
important role to play in network lifetime and availability
[21]. Since network lifetime deals directly with sensor nodes’
remaining battery level, energy consumption is a vital factor

in these systems, making energy-one of the most important
resources. However, while focusing on this goal, it is also
essential to efficiently consume the other necessary resources.

Therefore, the methods proposed uses the resources in a bal-
anced manner. Unsurprisingly, efficient resource consumption,
such as that of energy, increases the life of the network and, as

such, the system [22,23].
In WSN and DIoT systems, one of the most important

challenges is efficient resource consumption such as energy

[24,25]. Techniques to find the optimal paths, in an energy-
efficient manner, are of vital importance. To tackle this prob-
lem, numerous multi-purpose routing solutions have been
introduced in the literature but finding and proposing a gen-

eral routing technique that preserves the integrity, connectiv-
ity, and inclusiveness of the network is a very costly and
complicated process. In addition, finding the most efficient

route among many possible paths, in a wide and complex net-
work demands further processing. Moreover, it is not easy to
find appropriate, effective coefficients for the relevant routing

parameters. In addition, analytical solutions to such problems
are difficult to find. In fact, these problems are categorized
under Non-deterministic Polynomial-time (NP-hard) problems
[26–28]. Therefore, it is fitting to use metaheuristic algorithms

to solve it. However, when these algorithms are implemented
in the entire routing process, they tend to cause additional
overhead in the system and result in inefficient usage of some

of the system’s resources.
In this study, a generic system architecture is proposed, and

this architecture can easily perform routing without incurring

any additional cost, integrating with many different meta-
heuristic algorithms. Since the proposed model is comprehen-
sive, it will be able to work well by including various

algorithms for many purposes. In this study, we discussed
our performance metrics as follows. i) network lifetime, ii)
the alive node ratio in the network, iii) the packet delivery ratio
and lost data packets, iv) routing overhead, v) throughput, and

vi) convergence behavior.
This paper proposes two new energy-efficient methods

based on the Incremental Grey Wolf Optimization (I-GWO)

and Expanded Grey Wolf Optimization (Ex-GWO) algorithms

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Sample architecture for DIoT and WSN [19].

Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO 341
to help find optimal paths in DIoT and WSN systems. In the
GWO algorithm [29], swarming is controlled by the leader of
the group, which helps to get the optimum solution for a

defined problem. It can outperform other metaheuristic algo-
rithms thanks to its hierarchy group working mechanism and
balanced transitions between exploration and exploitation

phases. These wolves can exhibit a successful mechanism
because they have an extremely dominant hierarchy. In addi-
tion, this algorithm does not require additional cost in finding
the optimal solutions in line with the simple working mecha-

nism and parameters. In other words, the GWO algorithm
works simply with a small number of parameters, preserving
the random principle. Thanks to these features, it has suitable

behavior in the exploration and exploitation phases which are
effective in finding the optimal solution. Additionally, it only
requires one vector of position, which decreases the memory

demand. On the other hand, other metaheuristic methods suf-
fer from computational overload and time inefficiency in their
approach to the optimum answer. Therefore, thanks to the

characteristics of the GWO algorithm, it can be used to find
solutions to different complex and real problems. In this
regard, the GWO algorithm may be more likely to be success-
ful than other metaheuristic methods in this type of problem

on various parameters due to its working mechanism. There-
fore, the GWO variants may be more likely to be successful
than other metaheuristic methods in this type of problem on

various parameters due to its working mechanism.
The I-GWO finds solutions much more quickly, owing to

its exploitation feature and fast convergence rate in non-

complex environments, whereas Ex-GWO, due to its structure,
is deemed successful in complex and large-scale systems.
Hence, an appropriate choice can be made for different needs
and systems. In this context, the routing methods proposed in

this paper suggest the most appropriate model for various net-
works using these two algorithms. In these algorithms, swarm-
ing is controlled by the leader of the group, which helps to get

the optimum solution for a defined problem. As a result, these
algorithms are useful in decreasing network complexity and
increasing the efficiency of resources used in pathfinding.
Besides, these algorithms are used to present low-cost paths

among the various probable paths. The proposed pathfinding
methods, which use the metaheuristic algorithms, are named
energy-efficient routing based on I-GWO (EERI-GWO) and

energy-efficient routing based on Ex-GWO (EEREx-GWO).
The proposed methods try to find paths that are most suitable
and most efficient with minimum costs. The other features and

contributions of the proposed methods are:

1) A generic system architecture is proposed that combines

the metaheuristic and network model. Due to this, the
architecture is adaptable in various systems and for
numerous purposes. Furthermore, many metaheuristic
algorithms can be readily applied in these systems.

2) In order to increase the pathfinding efficiency, meta-
heuristic algorithms are used to discover the most
appropriate coefficients for each parameter of the

defined fitness function.
3) A novel and comprehensive fitness function is defined

with an emphasis on balancing trade-offs between

important parameters. This function concerns with five
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parameters (distance between nodes, BS-hop, valid-

traffic, energy consumption, and buffer capacity), and
a tradeoff between related parameters.

4) Finding the best routes between the nodes means that

less energy is consumed in the network. This results in
increased network resilience and lifetime.

5) The global knowledge and processing of the network are
performed at the BS, which have abundant resources.

The rest of this paper is organized as follows. In the next
section, research that deals with finding a route using meta-

heuristic methods, present in literature, is described. In the
third section, the proposed metaheuristic algorithms are briefly
explained. In the fourth section, the proposed methods are

detailed. In the fifth section, simulation results and analyses
are provided. Conclusion and future works are given in the last
section.

2. Related works

In general, metaheuristic algorithms can arrive at optimal solu-

tions for real-world problems at a low cost. In the literature,
there are several widely used classifications of metaheuristic-
based algorithms [30]: nature-inspired vs non-nature-inspired
algorithms, population-based vs single point search algo-

rithms, dynamic vs static objective functions, single vs various
neighborhood structures, and memory-less vs memory-
independent algorithms [30]. One of the most popular discus-

sions and classifications is the population-based and single-
point search category. The improvement of a single-based
solution is achieved by iterations, while the optimization of a

population-based solution is achieved through a set of solu-
tions. Another important area is nature-and non-nature-
inspired classification. Recent research shows that nature-
inspired algorithms are a trend and perform quite well at solv-

ing a wide variety of problems. Methods in this category are
defined into four main categories [29]. They are evolution-
based, Swarm-Intelligence (SI)-based, physics-based, and

human-based [31,32] approaches.
This study focuses on the problem of finding the best route.

Studies in lately years prefer SI methods because they generally

outperform other methods in solving problems, particularly in
pathfinding problems. SI methods are generally nature-
inspired and are based on a herd or collective social behavior

and community mindset. There are many studies in this cate-
gory in the literature [33–36] showcasing that SI-based meth-
ods can solve complex problems more efficiently. These
algorithms consist of a group of simple particles and homoge-

neous members that interact with each other as well as their
environment. Their agents try to find the best solutions that
cooperate in the local search area and benefit from the collec-

tive effort of all the agents involved. In this study, the use of SI
methods in WSN and IoT to find optimal paths is discussed
[37–39].

Ant Colony Optimization (ACO) is one of the most fre-
quent metaheuristic algorithms that is used in the systems dis-
cussed. Authors in [40] proposed a routing method for a
distributed multi hop-based system using the ACO algorithm

for reliable data communication. The next hops on the path
are based on sensor nodes with high energy levels. However,
it is not considered very successful in energy efficiency because
it does not work in a fair and balanced manner. The main rea-
son for this is that the fitness function used does not use suffi-
cient parameters. Researchers in [41] investigated a new

pheromone update mechanism in the ACO algorithm and used
it to achieve energy efficiency of WSNs. The authors discuss
two energy measures. In next node selection for routing, sensor

nodes closer to the target are more likely to be selected. They
also use four control parameters in the probabilistic decision
function. Since it does not use memory efficiently, it cannot

be very successful in showing efficient performance in the gen-
eral analysis. Authors in [42] proposed a new routing algo-
rithm based on ACO algorithm to achieve balanced energy
consumption on each network sensor node beside the choice

of the path with minimal cost. In their work, called IEMACO,
they make route discovery based on a number of factors: the
convergence speed of the routing algorithm, the probability

of transition, and the remaining life of the nodes. Position
and speed information predicts the remaining lifetime of the
link. The most obvious shortcoming of this study is the usage

of the memory method. In [43], the authors have proposed a
dynamic energy threshold strategy different from the multi-
path approaches, so-called ACOHCM. It has some advantages

such as network topology, searching the optimal path, and net-
work load balancing. In the ACOHCM, initially hop counting
mechanism is applied. The hop count for the sink (BS) is 0.
The number of hops of other nodes is incremented by one

depending on their neighbors. When the topology of the net-
work changes, the hop counting mechanism is run again. So,
the hop counts should be updated at different time intervals.

Finally, an energy threshold strategy is used that is applied
to each node. The authors of [44] proposed a dynamic
decision-making system based on ACO algorithm for con-

nected cars in IoT systems. They used artificial ants to control
the dynamics of connected vehicles in traffic flow and for
autonomous calculations. An ant colony optimization-based

routing protocol for multi-agents is presented in this paper
that manages network resources effectively in real-time [19].
In addition to finding the next destination of ants, the pro-
posed method is also used to manage pheromone updates

and evaporation rates. Several key parameters are taken into
account when determining the next destination under various
conditions, including energy remaining, buffer size, traffic rate,

and distance. In terms of network lifetime and energy con-
sumption, simulation results of the proposed method have
remarkable performance. An ant colony optimization-based

routing protocol for multi-agents is presented in this paper
that manages network resources effectively in real-time [45].
In addition to finding the next destination of ants, the pro-
posed method is also used to manage pheromone updates

and evaporation rates. Several key parameters are taken into
account when determining the next destination under various
conditions, including energy remaining, buffer size, traffic rate,

and distance. In terms of network lifetime and energy con-
sumption, simulation results of the proposed method have
remarkable performance.

Apart from ACO, the Genetic Algorithm (GA) is another
technique also recommended in such systems. In [46], it was
proposed to combine simulated annealing with genetic algo-

rithms in order to achieve optimal performance. There has
been a comparison of the observed results in terms of the aver-
age residual energy, the network lifespan, and the packet trans-
port between the BS and sink, with that of a GA-based
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approach. Gupta et al [47] proposed an energy-efficient algo-
rithm to minimize the energy consumption in each round
based on GA. The proposed method attempts to reduce the

total distance traveled by data in the system. In this study, a
Directed Acyclic Graph (DAG) model was used and the chro-
mosome representation, as well as a crossover method, were

proposed. In their strategy, they also emphasized the mini-
mization of the total path length. This study, which is ambi-
tious in terms of energy efficiency, is used in comparison

with the proposed methods in our study. IoT has been added
to Clustered-Based Routing (CBR) for Information-Centric
WSNs (ICWSNs) in a protocol known as CBR-ICWSN, which
enables CBR for these networks [48]. There are two phases to

this paper, which include the choice of a Cluster Head (CH)
and the determination of the optimal route. Thus, by employ-
ing a Black Widow Optimization (BWO) method in order to

choose an optimal set of CHs, an optimal set of CHs is
selected. It is interesting to note that the authors in this paper
used a different algorithm to find the optimal route. CBR-

ICWSN is a routing protocol that is based on Oppositional
ABC (OABC) and can be used to select routing routes more
efficiently.

The artificial Bee Colony (ABC) algorithm is yet another
metaheuristic method used in such systems. Authors in [49]
have proposed a new clustering routing method based on
an ABC algorithm for cluster formation. Their main goal

is to reduce energy consumption and exploit low-power clus-
ters. They are concerned about the trade-off between energy
consumption and the quality of the communication link

within clusters. Authors in [50] propose a method based
on the Grey Wolf Optimizer (GWO) algorithm to solve
the energy problem in WSNs. They attempt to handle the

problem of finding the correct position of unknown nodes
in the network. Based on their results, their GWO-based
method is better than Partial Swarm Optimization (PSO)

and Modified Bat Algorithm (MBA) algorithms in the con-
vergence and success rate. In [51] researchers have proposed
a new routing algorithm in a hierarchical structure using the
GWO algorithm. It avoids the energy hole by balancing the

load on the nodes nearer to BS and cluster head nodes. The
new fitness function, proposed in their work, takes into
account the total distance and the total number of hops.

This fitness function is solely used to help the wolves. One
shortcoming of this study is that it does not focus suffi-
ciently enough on the effective parameter. Without taking

into account necessary and sufficient parameters, the results
obtained from the fitness function can be, at best, of very
limited use in real-world cases. In contrast, the fitness func-
tion proposed in our study is general and multi-purpose and

can also be easily adapted to many metaheuristic algorithms.
It is worth mentioning that the architecture proposed is the
leading reason for this adaptability.

In another study, the authors proposed a meta-heuristic
artificial intelligence approach based on grey wolf social
behavior to minimize the energy consumption of WSNs from

the livestock industry [52]. In order to determine an algo-
rithm’s performance, energy level, grid size, transmission
range, and direction of transmission were used as factors. A

metaheuristic-driven, energy-aware routing scheme (IMD-
EACBR) is proposed in [53]. The IMD-EACBR model aims
for maximum energy usage and lifetime. IMD-EACBR
employs an improved Archimedes optimization algorithm-
based clustering (IAOAC) technique to cluster head selection.
Furthermore, the TLBO-MHR technique is applied for opti-
mum route selection using teaching–learning-based optimiza-

tion (TLBO). Simulated outcomes reveal improvements in
dead node proportions, network lifespan, energy consumption,
packet delivery ratio (PDR), and latency. A novel clustering

and routing method is presented in this paper in an effort to
enhance system efficiency [54]. In order to optimize it, it relies
mostly on genetic algorithms as well as equilibrium optimiza-

tion. Using genetic algorithms, a first phase is carried out that
clusters the sensor nodes based on their features. As a result,
the best cluster heads are selected to improve system stability.
The purpose of this work is to reduce the energy consumption

of WSN networks by improving the clustering algorithm and
the equilibrium optimization algorithm used for selecting the
optimal path between cluster heads and base stations. Conse-

quently, the proposed method has been obtained to be the
most energy-efficient, have a longer network lifespan, and deli-
ver more packages than other methods. This study aims to

develop an energy-efficient cluster routing protocol that can
be applied to wireless sensor networks [55]. In the first step
of the cluster head selection process, we used the Honey Bad-

ger Algorithm to select cluster heads. In order to find the opti-
mal cluster head among all sensors, the Honey Badger
Algorithm is used. This algorithm takes into account factors
including distance to the base station, residual energy, distance

to its neighbors, node degree, and centrality. It then selects the
optimal cluster head. A fuzzy Firebug Swarm Optimization
algorithm is used to perform the routing between the cluster

heads and the base stations. This method offers a reduction
in the amount of end-to-end delay, an increase in the number
of packets that are delivered, a higher throughput, and a

reduction in the number of packets lost, which are all factors
that affect how much energy is consumed by the network.

In another study in the literature, a hybrid optimization

algorithm is proposed to propose a new energy-aware CH
selection framework in WSNs through hierarchical routing
[56]. As well as energy and distance, delay, and Quality of Ser-
vice (QoS) are considered when selecting the CH. It is pro-

posed to develop a hybrid algorithm that combines the
principles of Sea Lion Optimization (SLnO) and Particle
Swarm Optimization (PSO) to select the optimal CH. The per-

formance of the adopted method is compared with other tradi-
tional models using a variety of metrics. Compared to other
conventional methods, the proposed algorithm has higher nor-

malized energy. In this paper, the chaotic fuzzy grasshopper is
applied to optimizing routing on the Internet of Things, focus-
ing in particular on the sleep-wake schedules of nodes, which
are an essential part of the routing [57]. During the evaluation

of the efficiency of the proposed method, the following three
criteria were utilized: the remaining energy, the network life,
and the coverage rate of the network. It has been determined

that the results are based on two different scenarios that have
been analyzed. Consequently, the proposed method performs

better than the base method in all scenarios and is more effec-

tive for all criteria of comparison than the base method.
The use of metaheuristic methods has become very popular

in IoT and WSN systems, especially in recent years. In this

paper, two methods to find optimal paths in DIoT and WSN
applications are provided using two metaheuristic algorithms
(I-GWO and Ex-GWO). These methods can be applied in both
DIoT and WSNs.
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3. I-GWO and Ex-GWO algorithms

This section briefly describes two metaheuristic algorithms
used in the methods proposed in this paper. The Grey wolf

optimizer (GWO) algorithm is inspired by grey wolves in their
natural habitat [29]. Alpha (a), beta (b), delta (d), and omega
(x) are the four types of wolves found in a pack. These wolves

have different responsibilities in the pack. Alpha Wolf is the
leader of the pack. Beta wolves are the co-leaders of the alpha
wolf. The third level of hierarchy in the pack is that of delta
wolves. The remaining wolves which are not part of the upper

level of the hierarchy are omega wolves. Encircling, hunting,
and attacking are the three main attributes of the wolves.

Incremental Grey Wolf Optimizer (I-GWO) algorithm,

used in the first pathfinding method of this paper, is an
upgraded version of the GWO [36]. In the I-GWO algorithm,
the leader encircles the prey (Eq. (1)), hunts it and finally (Eq.

(2)), attacks the prey based on the A
!

value. If |A|less than1, a
wolf is attacking its prey, otherwise, it’s busy finding other
prey. The second wolf on the pack follows the leaders’ position

and updates its own position to attack the prey. Generally, the
nth wolf in the pack updates its own position based on the n-1
wolf before it (Eq. (3)). Eq. (4), 5, and 6 are the control mech-

anisms to avoid trapping in local optima and to balance move-
ments between exploration and exploitation phases.

Da
�! ¼ Ca

�! � Xa
�!� X

!��� ��� ð1Þ

X1

�! ¼ X
!

a � A1

�! � Da
�! ð2Þ

Xn
�!

tþ 1ð Þ ¼ 1

n� 1

Xn�1

i¼1
Xi tð Þ ; n ¼ 2; 3; � � � m ð3Þ

A
!¼ 2 a!� r1!� a! ð4Þ

C
!¼ 2 � r2! ð5Þ

a!¼ 2 1� t2

T2

� �
ð6Þ

Additionally, in both I-GWO and Ex-GWO, a! is linearly
decreased from 2 to 0 over the course of iterations, and is

obtained using Eq. (6) and (12), respectively. The effect of a!
is on the range of motion, directing the algorithm in finding
the solution and is used to get closer to the solution range.

Random vectors r1
! and r2

! lie in the range [0, 1]. A
!
, and C

!
are coefficient vectors that lead to encircling the prey [29,33–
35]. These parameters control the tradeoff between exploration
and exploitation phases. Due to this, wolves do not always go

in the same direction. In all variants, whenever A
*

is less than 1,

the wolves in the pack attack to hunt, otherwise, they try to

find the prey. X
!

is the position vector of the prey, whereas

Xi
!

is the position vector of the grey wolf, and Di
�!

is a vector

that depends on the location of the target. Where i � {a, b,
d}. Moreover, t is current iteration and T is maximum iteration
numbers.

The other metaheuristic algorithm used in this paper is the

Expanded Grey Wolf Optimizer (Ex-GWO) [36] algorithm.
The hunting mechanism of the Ex-GWO is uses a technique
dissimilar to one used in I-GWO and GWO algorithms. Encir-
cling of the prey is performed using the first wolf in the pack
(Eq. (7)). The fourth wolf in the pack updates its position
based on the first three wolves before it. Generally, the nth wolf

in the pack updates its own position based on the first wolf in
the pack as well as the wolves before it (Eq. (8) and (9)). In Ex-
GWO the attacking mechanism ensures that the prey does not

escape. The coefficients a, A, and C are calculated using Eq.
(10), 11, and 12.

Da
�! ¼ Ca

�! � Xa
�!� X

!��� ���
Db
�! ¼ Cb

�! � Xb
�!� X

!��� ���
Dd
�! ¼ Cd

�! � Xd
�!� X

!��� ��� ð7Þ

X1

�! ¼ X
!

a � A1

�! � Da
�!

X2

�! ¼ X
!

b � A2

�! � Db
�!

X3
�! ¼ X

!
d � A3

�! � Dd
�! ð8Þ

Xn
�!

tþ 1ð Þ ¼ 1

n� 1

Xn�1

i¼1
Xi tð Þ ; n ¼ 4; 5; � � � m ð9Þ

A
!¼ 2 a!� r1!� a! ð10Þ

C
!¼ 2 � r2! ð11Þ

a!¼ 2 1� t

T

� �
ð12Þ

I-GWO algorithm is based on the leader wolfs’ behavior.

Other wolves in the pack update their own position based on
all the wolves selected afore themselves. In the Ex-GWO algo-
rithm, the nth wolf updates its own position relevant to the
prey according to their immediate successor and the first three

wolves. In [36], it is proved that the performance of I-GWO
and Ex-GWO algorithms is better than GWO. On the other
hand, I-GWO tries to find solutions much quickly due to its

exploitation feature and its fast convergence rate, and Ex-
GWO, owing to its structure, is likely to be successful in com-
plex and large-scale systems.

4. Proposed pathfinding methods

The used metaheuristic algorithms are a natural match for the

problem suit and exhibit a balanced behavior, as such, they
have been used in this paper as the problem-solving methodol-
ogy. As explained in the literature section, many metaheuristic-

based algorithms have been used for similar systems. It is
known that metaheuristic-based methods do not guarantee to
find optimal solutions, but they try to find the solutions close
to the optima, providing more efficient execution time and

CPU power consumption in time and space complexities. Each
of the proposed metaheuristic methods in the literature has its
advantages along with its shortcomings. This study focuses on

broader parameters in proposing comprehensive and accurate
methods to be used in WSN and DIoT. Accordingly, a new fit-
ness function has been defined. The defined fitness function is

used to calculate the cost of each path in the network and
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includes residual energy, traffic status, buffer rate, BS-hop, and
neighbor list of each node as formulated in Eq. (13). BS-hop
indicates the hop counts of each node to BS. In this study,

BS is assumed to be the destination node. The BS node does
not look only at the distance or number of hops of each node
relative to itself to find the most suitable path (between each

node and itself) but also focuses on other effective parameters
that are defined in the new fitness function. It takes into
account the dynamic resources of the nodes in the system and

the variable parameters of the network. For this purpose, a
new fitness function is defined. The paths between the source
and destination nodes are selected according to hop values
and passed through the fitness function. The sum of the best fit-

ness values for each hop will be the candidate for the best route
(Eq.14.). Subsequently, the minimum value among candidates
is chosen as the best path between the two relevant nodes for

each hop count (Eq.15). At this stage, the lowest-cost path is
chosen for each hop count (step 2). Step 3 selects the best path
with the minimum cost among all hop sizes (Eq.16). At the

same time, as mentioned before, one of the most important
issues discussed in these systems is energy saving. In this sec-
tion, the new energy-efficient routing methods based on the

two metaheuristic algorithms, EERI-GWO and EEREx-GWO,
are introduced. They can aid in modeling useful solution mod-
els in the pathfinding of wide and complex networks (especially
in decentralized architecture). These methods focus on the crit-

ical features of sensor nodes in pathfinding. As aforementioned,
pathfinding and routing are NP-hard problems in the complex
distributed and Peer-to-Peer (P2P) structures such as WSN and

DIoT. Therefore, these proposed methods can provide a good
solution for finding optimal paths in the entire search space. In
short, they find the optimal path from the sets of possible paths

in multiple hops.
4.1. Proposed architecture

In this subsection, some definitions and design factors of the
proposed methods have been summarized along with the
description of the proposed methods. Sensor nodes (IoT
devices) are deployed randomly in the network, and different

paths are created between any pair of source and destination
nodes. The metaheuristic algorithms used in this paper belong
to the SI category and are population-based. A general archi-

tecture is suggested for the relevant metaheuristic algorithms
to work harmoniously with the proposed methods. Thanks to
this architecture, the algorithms used can be easily adapted to

the relevant system. Furthermore, it should be noted that other
metaheuristic methods are also able to easily use such systems.
The conceptual schema of the proposed architecture is pre-
sented in Fig. 2.

In this architecture, the search space is considered as a
matrix where the rows represent the number of search agents,
and the columns signify the coefficient numbers. In the simula-

tion of I-GWO and Ex-GWO, the number of search agents is
assumed to be equal to the number of grey wolves in the pack.
Moreover, the coefficient numbers, which are used as the

dimension of the problem, are assumed to be four and their
values are obtained using Eq. (13). The fitness function,
defined earlier, is used to calculate the cost of each path. In

addition, all the coefficients used in the proposed methods
are updated at every round of the network based on meta-
heuristic algorithms. When the number of hops between two
nodes is one, they are already single-hop and are direct neigh-
bors, so there is no need to specify a route. The problem arises

with multi-hop structures. In these cases, there may be paths of
various lengths between the two nodes. There may be interme-
diate nodes between source and destination when the hop

counts are more than one. In the proposed architecture, best
route for any hops of paths is found considering Eq. (14)
and (15), and the best among them is chosen using Eq. (16).

Therefore, the best path between two intermediate nodes is
obtained, along with the calculation of the final best path cost
between source and destination. The fitness function is given
by Eq. (13), which calculates the cost between two nodes i

and j.

Costi;j ¼ c1di;j
� 	þ c2Hj

� 	þ c2
ValidTraffic

Ti;j

� �

þ c3
Einitial

Ej

:
Buffer Capacity

Bj

� �
ð13Þ

Where di,j is distance between nodes i and j. Ej indicates the
residual energy of the node j, and Hj is hops count of node j to
BS. Ti,j is the traffic status between nodes i and j. Bj indicates

the buffer rate of the nodes j. ValidTraffic, BufferCapacity, and
Einitial are common variables that are used for each node. The
values of these three variables are their maximum values at

each node and they are related to node hardware properties.
Furthermore, c1, c2, c3, c4 are three control parameters, with
values between 0 and 1 where c1 + c2 + c3 + c4 = 1 and

c1 < c2 < c3 < c4. These control parameters are calculated
by metaheuristic algorithms (I-GWO and Ex-GWO). The coef-
ficients updates are done at each round of the network. It is

worth mentioning that the network rounds term is different
with metaheuristic iterations. This difference is described in
the subsequent subsection.

4.2. The network rounds and metaheuristic iterations

In the actual application of sensor networks and IoT, the net-
work round and metaheuristic algorithms iteration work sepa-

rately. In the network considerations, the rounds and
iterations should be handled separately. Each round of the net-
work occurs in certain time periods. In the proposed methods,

a time interval between each round of the network is consid-
ered. If the round and iterations work together, it causes an
overload on the network. Metaheuristic algorithms try to find

the best solutions. At the same time, there is no specific time to
reach the solution, as such, the pathfinding operation is done
in the BS. After that, over a period of time, data packet trans-
fer is completed between the target (destination) and the

source. The concept of iteration is an expression used widely
in metaheuristic methods. Each iteration tries to approach
the solution based on the results obtained in the previous iter-

ation. Both the number of iterations and the number of net-
work rounds depend on the system design. In this paper,
these parameters are defined and quantified. Furthermore,

they are described in the simulation section.

4.3. Pathfinding mechanism

In the proposed methods, the metaheuristic algorithms used
help in finding the best path with a minimum cost between



Fig. 2 Conceptual schema of the proposed architecture in finding optimal paths.

346 A. Seyyedabbasi et al.
the source and destination (BS) node. There are paths with
various numbers of hops as seen in the first step of Fig. 2. In
this step, the cost of the path for all intermediate nodes
between the source and destination nodes is calculated utilizing

Eq. (13). The most optimized coefficient values of each param-
eter in this equation are obtained from metaheuristic algo-
rithms, as described in the previous subsection. In the second

step, the algorithm calculates costs for the candidate path
applying Eq. (14) and then selects the path with the minimum
cost as the best path for each hop count using Eq. (15). This

procedure is applied for all hop counts. Indeed, this process
is performed for all paths with different sizes. Naturally, the
best candidate path is chosen among the paths of the same
length. In the end, as indicated in step 3 of Fig. 2, the algo-

rithm selects the minimum cost path from the obtained candi-
date paths, as an optimal solution between these nodes (source
and destination) based on Eq. (16). In other words, the optimal

path is chosen among the best paths of different lengths. The
proposed methods attempt to select the paths that are the most
convenient and efficient routes with the minimum costs.

CostCondidateS;D ¼
Xj¼n

i¼1

costi;j ð14Þ

CosthS;D ¼ MinðCostCondidateS;D Þ 8h�HopCount ð15Þ
CostS;D ¼ Min CosthS;D

� �
ð16Þ

Where CostCondidateS;D is shows the total cost between nodes i

and j. This process is calculated separately for each hop count.

The shortest path found for each hop is considered CosthS;D.

After finding the shortest path for all hops, one shortest path
among all is accepted as the final answer and it is called
CostS;D. This process is described in Fig. 3 with a schematic

example.
For instance, the hop size in the first round of the network

may be different from hop sizes in subsequent rounds. At the
same time, the hop sizes in different rounds may vary from
each other. In this study, the destination node is assumed to

be the BS, and therefore, the costs between each sensor node
and BS are calculated. Here, in the path, the packet is also
passed just once from each sensor node. In the end, BS chooses

the minimum cost path using Eq. (16). Finally, the BS broad-
casts selected optimal paths to source nodes. For example, if
the candidate path between node 4 and BS is N4, N61, N98,
N43, and BS, then, first of all, the cost of tuples (N4, N61),

(N61, N98), (N98, N43), and (N43, BS) is calculated from
Eq.13. An example of candidate paths with sample costs are
represented in Table 1. The sum of each tuple value is calcu-

lated through Eq.14, which is the cost of each individual path.
After all candidate paths for each hop count have been calcu-



Fig. 3 A working mechanism of proposed method in pathfinding.

Table 1 Template candidate paths cost at the end of each

iteration.

Candidate paths Sample values

Path 1 0.78

Path 2 1.36

..

. ..
.

Path n n
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lated, their minimum is selected as best, by means of Eq.15. In
the end, only one of the best paths for all hops is obtained

according to Eq.16. This example is schematically represented
in Fig. 3.

A hand-shaking method for checking the availability of

next-hop is performed. On a default network, each node’s
information is considered to be recorded in the BS, as outlined
in Table 2. This information is obtained by a request data

packet that is sent to sensor nodes via BS in the initialization
phase of the network. Residual energy, traffic status, buffer
size, distance to the BS, and neighbor list are stored in the
BS. The decisions in finding the optimum path are made using

metaheuristic algorithms by BS, which have unlimited energy
sources. Note that balanced behavior is required between these
five parameters. The remaining energy level and the remaining

buffer size are desired to be high, whereas the network traffic
and the distances are desired to be low. The methods proposed
and detailed earlier, handle the balancing requirement.

As mentioned, the optimal paths are obtained in the BS.
For this, as previously emphasized, I-GWO and Ex-GWO
methods are used to find the optimized coefficients of the
defined parameters. The BS node has a table regarding nodes’

information. In this table, some basic information such as
residual energy, traffic status, buffer rate, BS-hop and neigh-
bor list of each node is stored. Each sensor node also holds
a table, which is called the routing table, that includes a neigh-

bors list, distance to neighbors, distance to BS, and BS-hop.
The relevant routing table is presented in Table 3.

4.4. Definition of data packet frames

Data packets are used for communication between system
nodes. These packets have various suitable formats that are

defined in these devices. However, they can be customized to
optimize the use of resources. Efficient system resource utiliza-
tion can be ensured with the definition of the appropriate

packet template and dynamic structure, according to the sys-
tem needs. The use of custom data packets is also helpful in
finding paths. In this study, two general types of data packet
frames are defined. As mentioned before, in the initialization

phase of the network, BS broadcasts a message to request glo-
bal information about the sensor devices. This information is
obtained by a request data packet broadcasted to nodes via

BS, as depicted in Fig. 4(a). In response, the sensor nodes
transmit the relevant information (residual energy, traffic situ-
ation, buffer rate, BS-hop, and neighbor list) to BS. The for-

mats of the sensor node’s response packet are also shown in
Fig. 4(b) along with different fields defined in these packets.

The TTL field is intended to prevent the occupation of net-
work traffic. A deadline value is defined for each packet. Each

node reduces the TTL value by one for each packet received.
The initial value of this field varies depending on the type of
application. Owing to the source and destination addresses

filed, each node can be applied to multiple sources and destina-
tion scenarios at the same time as parallel and concurrent
models because it knows which nodes are source and which

is destination. Due to the nature of the proposed methods, par-
allel and concurrent models are naturally supported. This fea-
ture is very important in the proposed methods, and it offers

the opportunity to work in many parallel and concurrent
application areas.



Table 2 Stored information of each node in the sink/BS: as a sample.

Node ID Energy Traffic Buffer BS-hop Neighbors list

i 0.5 1 1 4 j, k

j 0.4 0.8 1 3 i, k

Table 3 Routing table for each node (sample node: i).

Neighbor lists Distance Distance to BS BS-hop

i – 18 4

j 15 12 3
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This global information helps BS in finding the optimal
path from the source to the destination node. Related pro-

cesses are performed by the BS node with an unlimited energy
supply. The BS finds the minimum cost of the path, so the sen-
sor node is also aware of the routing path. In this way, BS

broadcasts a packet containing the source and destination
ID, as well as all nodes on the selected path as illustrated in
Fig. 5. The seq field is used to control and avoid duplicate

packets. This field may be ignored, when needed, depending
on the definition of the problem. Each sensor node first checks
the seq frame. Using this field helps the node decide to discard
a packet in its entirety if it has received this packet earlier. It

guarantees efficient consumption of node resources such as
its batteries. Consider the index of nodes (N54, N17, N87)
written between Source ID and BS in the Path field of

Fig. 5. In this example, the optimal path between Source ID
and BS passes through N54, N17 and N87 respectively.
Options field can be custom-defined to meet the needs that

may arise depending on the situation in various applications
and architectural areas.

In this study, the definition of the five parameters used in
response packet frames is explained. They are also used in

the relevant fitness function. The residual energy of each node
is the remaining battery level of the sensor node. This param-
eter is defined by the Joule metric. Traffic status is obtained

using the valid traffic divided by traffic between nodes i and
j. The valid traffic is defined in network assumptions of the
simulation section. Buffer size (ratio) is also calculated by

the buffer capacity of each node divided by the node j’s current
buffer size. BS-hop is calculated by each node when getting a
broadcasting message based on the distance between the sensor

node and BS. Besides, each node should find the neighbors’ list
using handshaking protocol. These parameters depend on the
Fig. 4 Data packet fram
physical and electronic properties of the devices used in the
real-world scenario.

The flowchart and the pseudocode of the proposed methods
are presented in Algorithm 1 and Fig. 6, respectively. The next
section discusses the network model and simulation parame-

ters. Simulation and comparison results are also detailed.

Algorithm 1: The proposed routing algorithms

Input: sensor nodes local information

Output: minimum cost path

while (r < network round)

//Base station broadcasts a message to get local information of

sensor nodes (Fig. 4.a)

//Sensor nodes send their local information to base station (Fig. 4.

b)

while (h <= max hop count)

// Metaheuristic algorithms (I-GWO and Ex-GWO) initialize the

search space for hop count h

while (i < max iteration) //initialize a, A, C

calculate x(t + 1) according to Eq.3 for I-GWO and Eq.9 for Ex-

GWO // finding coefficient values

calculate cost of each path according to Eq.13

i++

end

calculate the path cost for each hop count Eq.14

select the candidate path with minimum cost for each hop count

Eq.15

h++

end

select the best path with minimum cost for current round among

candidate paths Eq.16

r++

end
4.5. Robustness and fault tolerance feature

The main goal of this study is to increase the availability and

lifetime of the network while reducing the traffic rate and
increasing fault tolerance as well as packet delivery rate. In
general, robustness and fault tolerance are important issues
es used to find paths.



Fig. 5 Data packet frames after pathfinding that is transmitted

by BS to source nodes.
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in the WSN and IoT systems. Using the proposed method, all

the aforementioned objectives have been achieved. Further-
more, an additional measure is required to ensure fault toler-
ance. This measure is provided with the proposed Eq. (17)
and is included in the relevant methods. One of the difficulties

encountered in routing algorithms is to withstand the failures
that may arise in sensor nodes or networks. For example, when
any node on the selected path becomes unavailable (such as

battery depletion), data communication in the system should
not be interrupted, traffic should slow seamlessly, and similar
faults should be tolerated by the method. In the proposed

methods, in such cases, an alternative neighbor node comes
into play, taking the load of the disabled node and finding a
Fig. 6 Flowchart of th
new substitute path. This feature is provided to ensure that
the system finds paths with minimum cost. An example of this
mechanism is shown in Fig. 7. A node, i, requests to send a

data packet to another node j. When node j becomes unavail-
able, node i looks up the routing table it holds and chooses a
neighbor (node k) with minimum hop size to the BS. Hence,

node i calculates the cost between itself and k and adds the cost
in the Options frame of the data packet using Eq. (17). This
will be used in the round currently in the network. Because,

as the network moves to a new tour, a path will be rediscov-
ered from the beginning. Besides when a small number of
nodes fail, the average number of nodes and the proportion
of nodes that may be connected to the BS remains relatively

stable, which implies the network’s stability regardless of node
failures.

CostCondidateS;D ¼
Xj¼n

i¼1

Costi;j þ
Xk¼n�j

i¼1

Costi;k ð17Þ
4.6. Other features

The proposed methods are suitable to be used in parallel and
concurrent applications. In these methods, the most appropri-
ate and efficient paths can be found between multiple sources
and destination nodes concurrently or in parallel (depending

on the needs of the problem and application area). Achieving
e proposed methods.



Fig. 7 Fault tolerance in proposed methods.

Table 4 Input parameters for routing algorithm.

Parameters Values

Network Size 100*100 m2

Number of nodes 100

Base station location 50*50 m

Data packet size 4000 bits

e0 0.5 J

efs 10 pj/bit/m2

emp 0.0013 pj/bit/m4

eelec(TX, RX) 50n j/bit

Data Aggregation Energy cost 50n j/bit
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this goal can become easier with the proposed abstractly com-
prehensive architecture. It is possible to achieve results rapidly,
particularly when the intermediate nodes are not common in

different source and destination nodes. Due to this feature,
the proposed approach can perform surpassingly in multi-
objective and Pareto-based problems. In multi-objective prob-
lems, the concept of optimum, which has several objective

functions, changes because these problems try to find good
compromises (or exchanges) instead of a single solution, as
in global optimization. It should be noted that the methods

proposed in this paper is conceivably an apt solution for
large-scale networks. As the system size expands, it becomes
even more compatible and provides good performance when

compared to other methods. Due to this feature, systems such
as IoT of big data (e.g., smart cities) can offer useful solutions.
The computational complexity of both metaheuristic methods

proposed is O(n2). In the hunting mechanism of these algo-
rithms, the I-GWO is faster than the Ex-GWO. I-GWOs’ time
complexity success in the result is due to its choice of exactly-
one wolf as an alpha wolf (best solution). Ex-GWO uses

swarm intelligence in the pack to update the wolves’ position,
and as such is relatively slow.

5. Simulation, comparison and results

This section describes the simulation configuration of the pro-
posed methods implemented using MATLAB on a computer

with a Core i7-5500 U 2.4 processor and 8 GB of RAM. In
the proposed methods, energy-efficient routing methods have
been implemented using two metaheuristic-based algorithms

(EERI-GWO and EEREx-GWO).
5.1. Simulation settings

The network model used in this method is flat and the nodes

are randomly deployed in a 100x100m2 area. The proposed
methods are compared with MAP-ACO [19], GAR [47], ABC-
based [49], and GWO-WSN [50]. The network input configura-

tion parameters are the same for all algorithms used. In
addition, BS is at the center of the network and all sensor
nodes have at least one neighbor. Each sensor can transfer

the data packet to the BS in one or multi-hops. The maximum
hop sizes to transfer a data packet from a node to the BS are
assumed to be four. All sensor nodes are homogeneous and
have the same initial energy level and communication range.

The network has 500 rounds where the duration time for each
round is 2 s. Additional details about the system are presented
in Table 4.
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Here the parameters of metaheuristic algorithms are
defined. The I-GWO and Ex-GWO have 30 search agents
(population size). a linearly decreases from 2 to 0. The A is a

value between [-2, 2], and the range for C is [2, 0]. Further-
more, the maximum iterations are 100. In GAR algorithm, ini-
tial population is considered to have 30 chromosomes. In the

crossover operation, 5 % of the best chromosomes are selected
by the tournament selection procedure. Likewise, maximum
number of iterations for the GAR algorithm is 100. In routing

algorithm, namely ABCbased routing algorithm, the popula-
tion size is fixed to be 30. The limit for neighborhood search
is 20. In addition, the iteration maximum size is 100. In the
MAP-ACO methods, the population size is 30 in 100 maxi-

mum iterations. a = 0.5, b = 0.5, c1 = 0.15, c2 = 0.20,
c3 = 0.25, c4 = 0.4, q = 0.5 and si,j (0) = 0.008. Finally,
in the GWO-WSN, number of search agents is assumed to

be 30 with 100 iterations.
The metrics for performance evaluation are i) network life-

time, ii) the alive node ratio in the network, iii) the packet

delivery ratio and lost data packets, iv) routing overhead, v)
throughput, and vi) convergence behavior. They clarify the
performance of the routing methods and are simulated to eval-

uate the network, based on defined input parameters. These
metrics are also used for evaluation and comparison purposes.
Finally, the performance sequences of all algorithms are pre-
sented in Table 5. The following section discusses the results

obtained.
Table 5 the obtained result for tests of nonparametric significance.

Algorithm EERI-GWO

Friedman Wilcox

MAP-ACO 1.5610E-02 1.5113E

ABCbased 1.1556E-01 3.0151E

GAR 4.0016E-01 1.9581E

GWO-WSN 3.0110E-01 2.1501E

Fig. 8 Network
5.2. Network lifetime

Fig. 8 presents the residual energy of the network during sim-
ulation rounds. This metric analyzes the remaining energy of
the network. The results obtained show that both algorithms

have nearly similar performance in energy consumption. But
the energy consumption of the routing method based on the
Ex-GWO algorithm is better compared to other methods.
The routing and data transfers in both proposed methods

are the same but, the metaheuristic structures are different.
In Fig. 8, the performance of the network lifetime of proposed
methods compared to other methods is presented in 500

rounds. As stated in Table 4, it is assumed that the energy of
each node is 0.5 J and the number of sensor nodes is 100 in
the network. Therefore, the total energy is evaluated over

50 J. Network connectivity and data are strongly based on
the residual energy of the sensor nodes. In addition, in flat-
based networks, energy level of each sensor affects the other.

In this type of network, there is no cluster schema to transfer
collected data from cluster heads to the BS. So, in a flat-based
network, any sensor nodes’ residual energy is important in net-
work performance. Using this parameter, lifetime of the entire

network is obtained. Related simulation results are presented
in Fig. 8. Evidently, from the results, all the energy of the
nodes based on the ABC algorithm is completely finished

before the 300th round, before the 350th round in the GAR
method, and before the 450th round in the GWO-WSN. In
EEREx-GWO

on Friedman Wilcoxon

-03 2.0145E-01 1.0196E-03

-01 2.1513E-01 2.7851E-01

-03 3.0191E-01 3.1541E-02

-02 2.2158E-01 3.9612E-02

lifetime ratio.
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addition, MAP-ACO continues until the 500th round but is
less than I-GWO and Ex-GWO based methods. In general, it
is found to be more successful in the network lifetime param-

eter using I-GWO and Ex-GWO based methods. In addition,
Ex-GWO based proposed method appears to provide the best
performance.

In order to analyze the accuracy and reliability of the
results obtained in this study, Friedman and Wilcoxon non-
parametric statistical significance nonparametric tests were

employed as a method of analyzing the significance of the
results. This is accomplished by running each algorithm 30
times with 100 iterations so that we can achieve the desired
result. As shown in Table 5, the p-values calculated with the

EERI-GWO and the EEREx-GWO can be summarized. Consider-
ing the results of the study, it seems that the I-GWO and Ex-
GWO algorithms perform statistically better than the other

algorithms used for this experimental design for a level of
0.05 than other algorithms with similar experimental
conditions.

5.3. Alive nodes number

Fig. 9 shows the number of alive nodes in each round of the

network for 100 nodes. The number of live nodes indicates
the number of nodes energized in the round. The nodes with
drained energy are so-called death nodes. The EERI-GWO

and EEREx-GWO methods also exhibit good performance in

improving energy consumption on the number of nodes alive.
This signifies that energy consumption in nodes is more bal-
anced than in the other four algorithms. It should be noted

that the network lifetime does not depend on the number of
nodes surviving. The main point is that there is a path from
the surviving nodes to the BS node.

5.4. Packet delivery

Fig. 10 represents the successful delivery packet ratio to eval-

uate the throughput between all algorithms. The throughput
of the network is analyzed by the number of successfully deliv-
ered packets to the BS. So, the packets received by all the
nodes can be summed to calculate the value. Indeed, the sum

of the successfully received data packets by the BS, divided
Fig. 9 Alive no
by the sum of all data packets gives this ratio. Packets that
have not been received successfully are considered to be lost.
As mentioned above, the total ratio of the two values must

be 1. In other words, the packet loss performance of the algo-
rithms is inversely proportional to the packet success rate. The
proposed methods have a considerably good packet delivery

rate compared to others. Based on the results obtained, it
can be stated, with confidence, that for the network lifetime
parameter and alive node ratio, EEREx-GWO is in the first rank

and EERI-GWO is in the second.

5.5. Routing overhead

Overhead is the number of resources used by every sensor node
in the network. It is considered as the amount of request and
reply packets for pathfinding and influences energy efficiency.
With the increase in the number of nodes, the overhead and

the number of transmissions increase. This parameter is calcu-
lated as a percentage. Based on the Fig. 11, results, EERI-GWO

and EEREx-GWO offered the best result, ranking first and sec-

ond, respectively. The main reason for this is the proposed
architecture. It has the least overhead rate, as the relevant
metaheuristic algorithms are used in our pathfinding mecha-

nisms efficiently and at a lesser cost. The reason why the EER-

I-GWO method is better than the other methods compared is
that the I-GWO depends solely on the alpha wolf. In the
500-node network, EERI-GWO has an overhead of 6.03 %

and EEREx-GWO is in second place with 7.18 %. In third place,
the GWO-WSN method has a rate of 11.14 %. Other methods
that follow are MAP-ACO, GAR, and ABCbased with

11.71 %, 12.42 %, and 13.53 % ratios, respectively.

5.6. Throughput

Throughput is defined as the number of packets delivered by
the BS node per unit of time. It is an important factor in mea-
suring the computational and time efficiency of a protocol.

The results, shown in Fig. 12, depict that the proposed routing
algorithms have better performance in the throughput param-
eter and their throughput values are higher than the other
algorithms. In the scenario used, the BS is at 50*50 of the net-

work. Furthermore, due to the spreading of sensors in the net-
des number.



Fig. 10 Packet delivery ratio.

Fig. 11 Routing overhead ratio.
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work, the efficiency of the proposed algorithms is significant.

The throughput value is calculated using various sensor num-
bers to evaluate the performance of the proposed algorithms.
Due to the decentralized structure of the sensor node in the
network, the number of packets delivered to the BS is of signif-

icant importance. In the comparison of throughput results,
EEREx-GWO showcases the best performance among the six
algorithms.

5.7. Convergence speed of the algorithm

The proposed routing algorithms in this paper benefit from

two metaheuristic algorithms as mentioned before. Meta-
heuristic algorithms solve the problem in stochastic search
space, as such the convergence analysis is of high significance.

It is also worth mentioning that in WSN and DIoT, while
designing routing protocols, it is important to find the appro-
priate path with low cost as the resources are limited. There-

fore, these algorithms must have a high convergence speed
and success rates to approach the best solution. The conver-
gence curve of the proposed algorithms and the others are
shown in Fig. 13. As presented in this figure, the I-GWO

and Ex-GWO-based routing algorithms have a greater conver-
gence curve, which causes a reduction in the computation time.
This figure shows the instantaneous remaining energy in the

network while each routing algorithm continues to run.
According to the data in the Table 4, the network has an
energy of 50 J in the first and the remaining energy will natu-

rally decrease as the iterations progress. In the proposed rout-
ing algorithms, the main process tries to find the optimal path,
in this way the high convergence speed caused a low computa-

tion cost. According to the simulation results obtained, the
convergence speed of the proposed algorithms is higher than
others. The best result is achieved using EEREx-GWO method.



Fig. 12 Throughput analysis.

Fig. 13 Convergence speed analysis.
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5.8. General comparison and discussion

In this study, simulations were investigated on 6 different

parameters and the results of each were shown. In addition,
in line with the results obtained, the methods used in each
parameter have their performances ranked from the best to
the worst (Table 6). As can be seen from the results obtained,

both of the proposed methods perform better. I-GWO tries to
find solutions more quickly thanks to its exploitation feature
and fast convergence rate, and Ex-GWO, due to its structure,

is likely to be successful in complex and large-scale systems. In
these algorithms, swarming is controlled by the leader of the
group, which helps to get the optimum solution for a defined

problem. Besides, benefiting from the defined fitness functions
and comprehensive architecture, these algorithms were made
easier to adapt to the proposed pathfinding methods and exhi-

bit efficient behavior. The third place, MAP-ACO, has per-
formed well, but because of the use of a metaheuristic

algorithm in all operations in its method, the performance in
the network, naturally, was limited. The main reason for this
is that the devices used have limited resources. However, in

the architecture of this study, metaheuristic algorithms used
were run only in the first part of the method and this causes
increased efficiency. In fourth place, GWO-WSN is listed.

GWO-WSN has not been very successful due to its non-
comprehensive fitness function. However, this method could
have had a more stable working mechanism due to its GWO

structure. When the performance analysis of the other two
methods is done, it is seen that they are not very successful.

6. Conclusion and future works

This work solved one of the main challenges in wireless sensor
networks and decentralized IoT systems by improving the



Table 6 Rank of algorithms performance (Summary).

Parameters EERI-GWO EEREx-GWO MAP-ACO GAR ABCbased GWO-WSN

Packet Delivery Rate 2 1 3 6 4 5

Alive Nodes Number 2 1 3 5 6 4

Network Lifetime Rate 2 1 3 5 6 4

Overhead 1 2 4 5 6 3

Throughput 2 1 3 5 6 4

Convergence 2 1 3 5 6 4
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energy consumption of the network. It finds the best route by
examining all available paths between any two nodes with a

proposed general architecture. Finding the best routes between
nodes results in less energy being consumed in the network,
thus efficient use of resources and increasing the overall life-

time of the system. Thanks to this architecture, many meta-
heuristic algorithms can work in an adaptive way, so it takes
the role of a multi-purpose general model and will provide con-

venience to researchers working in this field. In this study,
EERI-GWO and EEREx-GWO routing methods are proposed
using I-GWO and Ex-GWO algorithms as metaheuristic algo-
rithms. These two methods are energy efficient routing meth-

ods that try to find optimum paths. These methods provide
more efficient execution time and CPU power in time and
space complexities. The search space is considered as a matrix,

where the rows represent the number of search agents, and the
column signifies the coefficient numbers. These coefficients are
updated by the metaheuristics used.

This study focuses on broader parameters in proposing
more comprehensive and accurate methods in WSN and
DIoT. Accordingly, a new fitness function has been defined.
The defined fitness function is used to calculate the cost of each

path in the network and includes residual energy, traffic status,
buffer rate, BS-hop, and neighbor list of each node. The paths
between the two source and destination nodes are selected

according to hop values and passed through the fitness func-
tion. The sum of the best fitness values for each hop will be
the candidate for the best route. Subsequently, the minimum

value among candidates is chosen as the best path between
the two competing nodes. Each node acquires its best neighbor
from its routing table. Related network equations were

mapped in accordance with metaheuristic algorithms. The per-
formances of two metaheuristic algorithms used in the pro-
posed routing methods were evaluated on various
parameters. After iterations of metaheuristic algorithms, the

best solution is found as an optimal path for the network in
the current rounds. The routing operations are performed in
the BS. The results have displayed those proposed methods

have better performance than ABCbased, GAR, GWO-
WSN, and MAP-ACO methods. Furthermore, results show
that these two methods are more successful in finding the most

appropriate paths in these systems. According to the results of
this study, and other studies in the literature, it can be said
with confidence that swarm intelligence is stronger than parti-

cle intelligence in similar systems. The proposed methods in
this paper may be more suitable for a network of any scale.
In these methods, the most appropriate and efficient path
can be found between multiple sources and destination nodes

concurrently or in parallel (depending on the needs of the
problem and application area). In addition, the proposed
methods have better performance in terms of robustness and

fault tolerance factors. Apart from the pros and strengths of
the study, the shortcomings can be summarized as follows.

The shortcomings of this study are planned to be continued

and completed in future studies. In this study, no tests were
performed on a real system covering big data. In this study,
simulations were made using homogeneous sensor nodes.

However, heterogeneous sensor nodes were not used. This
study did not focus on the multi-objective and Pareto-based
problem. In future work, the proposed methods will be tested
on real testbeds with a large density of various devices for the

generation and analysis of big data. Similarly, the proposed
approach can perform more efficiently in multi-objective and
Pareto-based problems. Especially in parameters that have

trade-offs with each other (e.g., network connectivity and
energy consumption) can be applied. The proposed methods
will be used for solving many complex problems such as fea-

ture selection, complex electrical circuits, 3D path planning
in mobile robotics or connected vehicle networks, and opti-
mized node localization in the systems. It should be noted that
with the growth in IoT technology, most of the proposed path

planning methods focus on homogeneous sensor networks, but
IoT devices can greatly benefit from heterogeneous sensor
nodes. In this way, this work can help use heterogeneous sen-

sor nodes to support different IoT devices. Accordingly, the
proposed method can be easily applied to the wearable sensor
network, which has become extremely popular in the last

decade.
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