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Abstract. We consider a generalisation of the Basilica group to all odd
primes: the p-Basilica groups acting on the p-adic tree. We show that
the p-Basilica groups have the p-congruence subgroup property but not
the congruence subgroup property nor the weak congruence subgroup
property. This provides the first examples of weakly branch groups with
such properties. In addition, the p-Basilica groups give the first exam-
ples of weakly branch, but not branch, groups which are super strongly
fractal. We compute the orders of the congruence quotients of these
groups, which enable us to determine the Hausdorff dimensions of the
p-Basilica groups. Lastly, we show that the p-Basilica groups do not pos-
sess maximal subgroups of infinite index and that they have infinitely
many non-normal maximal subgroups.
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1. Introduction

Let p be a prime and let T be the p-adic tree. Groups acting on p-adic trees
have been well studied over the past decades, owing to their nice structure,
their importance in the theory of just infinite groups, and the fact that many
such groups have exotic properties; see [6] for a good introduction. Lots of
the interesting examples of such groups share one common property: that of
being branch or weakly branch, where branchness is a measure of how close
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the structure of the group resembles the structure of the full automorphism
group of the tree T ; see Sect. 2 for precise definitions.

An example of such a group is the Basilica group. This group acts on the
binary tree, is weakly branch but not branch, is torsion-free, is of exponen-
tial growth, is generated by a finite automaton, and is not subexponentially
amenable [22]. The Basilica group is generated by two elements, a and b,
which are recursively defined as follows:

a = (1, b) and b = (1, a)σ,

where σ is the cyclic permutation (1 2), which swaps the two maximal sub-
trees, and the notation (x, y) indicates the independent actions on the re-
spective maximal subtrees, for x and y automorphisms of the binary tree.
The Basilica group is also the iterated monodromy group of the complex
polynomial z2 − 1, and is a notable example in Nekrashevych’s theory which
links automata groups to complex dynamics; see [27, Section 6.12.1]. Further-
more, the Julia set of z2 − 1, which is the set of accumulation points of the
backward iterations of an arbitrary point in the complex plane under z2 − 1,
can be approximated by a sequence of finite Schreier graphs obtained by the
action of the Basilica group at each level of the binary tree; see [12], where
all limits of finite Schreier graphs of the Basilica group were classified up to
isomorphism. The Basilica group has also been studied in other contexts in
group theory, for example in [13] it has been proved that the Basilica group
has no nontrivial Engel elements.

In this paper, we are interested in a natural generalisation of the Basilica
group, which we call the p-Basilica group, that acts on the p-adic tree, for p
any prime. Such a group G is generated by the following 2 elements:

a = (1, p−1. . . , 1, b) and b = (1, p−1. . . , 1, a)σ,

where σ is the cyclic permutation (1 2 · · · p). Clearly the 2-Basilica group
coincides with the Basilica group. This generalisation of the Basilica group
mirrors Sidki and Silva’s generalisation of the Brunner–Sidki–Vieira group;
see [32] and [11]. A different generalisation of the Basilica group to the p-adic
tree, with p generators, was first investigated by Sasse in her Master thesis
[30], and Sasse’s work has been recently developed further by Petschick and
Rajeev [29]. As seen below, our 2-generator p-Basilica groups, also known
in [29] as Basilica groups of level 2, are more similar to the Basilica group.
The generalisations of the Basilica groups considered by Sasse, Petschick and
Rajeev include the Basilica groups of levels strictly greater than 2, and they
differ more significantly from the Basilica group.

We prove the following in Sects. 3 and 4; see Theorem 3.3, Theorem 3.5
and Lemma 4.10.

Theorem A. Let G be a p-Basilica group, for p a prime. Then G is not
branch, but it is weakly regular branch over G′. Furthermore:

(i) G/G′ ∼= Z × Z.
(ii) G′/γ3(G) ∼= Z.
(iii) G′/G′′ ∼= Z

2p−1.
(iv) γ3(G)/G′′ ∼= Z

2p−2.
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Additionally in Sects. 3 and 4 we establish other basic properties of the
p-Basilica groups G, such as being torsion-free (Theorem 3.6), contracting
(Theorem 3.8), just non-solvable (Corollary 4.3), and having its automor-
phism group Aut(G) equal the normaliser of G in Aut(T ) (Corollary 4.6). We
also show that the groups are super strongly fractal (Theorem 4.5), which
means for any n ∈ N, the projection of the nth level stabiliser StG(n) at any
nth level vertex is the whole of G; see Section 2 for the precise definition.
This yields the first examples of finitely generated weakly branch, but not
branch, groups that are super strongly fractal.

Now, one of the main properties concerning the p-Basilica groups that
we investigate is the congruence subgroup property, where we say that G ≤
Aut(T ) has the congruence subgroup property if every finite-index subgroup
of G contains a level stabiliser StG(n) for some n ∈ N. Equivalently, the
group G has the congruence subgroup property if the profinite completion
of G equals its closure in Aut(T ).

Garrido and Uria-Albizuri [19] introduced a weaker version of the con-
gruence subgroup property: a group G ≤ Aut(T ) is said to have the p-
congruence subgroup property if every normal subgroup of p-power index
contains some level stabiliser. In [19], examples of weakly branch, but not
branch, groups with the p-congruence subgroup property and not the con-
gruence subgroup property were provided. For p odd, their examples were
the Grigorchuk–Gupta–Sidki (GGS-)groups defined by the constant vector,
and for p = 2, their example was the Basilica group. In Sect. 5, we extend
this result to p-Basilica groups, for all odd primes p:

Theorem B. Let G be a p-Basilica group, for p a prime. Then G has the p-
congruence subgroup property but not the congruence subgroup property nor
the weak congruence subgroup property.

We recall that a group G ≤ Aut(T ) has the weak congruence subgroup property
if every finite-index subgroup contains the derived subgroup of some level
stabiliser; cf. [31]. The p-Basilica groups are the first examples of weakly
regular branch groups with the p-congruence subgroup property but not the
weak congruence subgroup property.

In Subsect. 5.2, we compute the orders of the congruence quotients
G/StG(n) for all n ∈ N, for a p-Basilica group G. This enables us to com-
pute the Hausdorff dimension of the closure of the p-Basilica group G in the
group Γ of p-adic automorphisms of T . We recall that

Γ ∼= lim←−
n∈N

Cp � n· · · � Cp

is a Sylow pro-p subgroup of Aut(T ) corresponding to the p-cycle (1 2 · · · p).
For a subgroup G of Γ, the Hausdorff dimension of the closure of G in Γ is
given by

hdimΓ(G) = lim
n→∞

log |G : StG(n)|
log |Γ : StΓ(n)| ∈ [0, 1], (1.1)
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where lim represents the lower limit. The Hausdorff dimension of G is a
measure of how dense G is in Γ. This concept was first applied by Abercrom-
bie [1] and by Barnea and Shalev [2] in the more general setting of profinite
groups. We note that the Hausdorff dimension of the closures of several promi-
nent weakly branch groups, such as the first [20] and second [28] Grigorchuk
groups, the siblings of the first Grigorchuk group [35], the GGS-groups [15],
the branch path groups [14], and generalisations of the Hanoi tower groups
[33], have been computed.

Theorem C. Let G be a p-Basilica group, for p a prime. Then

(i) The orders of the congruence quotients of G are given by

logp |G : StG(n)| =

{
pn−1 + pn−3 + · · · + p3 + p + n

2 for n even,

pn−1 + pn−3 + · · · + p4 + p2 + n+1
2 for n odd.

(ii) The Hausdorff dimension of the closure of G in Γ is

hdimΓ(G) =
p

p + 1
.

In Sect. 6, we give a recursive presentation, a so-called L-presentation,
for the p-Basilica groups (Proposition 6.3), plus we show that the p-Basilica
groups are amenable but not elementary subexponentially amenable
(Lemma 6.2), and have exponential growth (Theorem 6.1); we refer to Sect. 6
for the definitions. To the best of our knowledge, the only other infinite family
of weakly branch groups that are amenable but not elementary subexponen-
tially amenable is the family of p-generator Basilica groups acting on the
p-adic tree; see [30].

Francoeur [17, Thm. 4.28] proved that the Basilica group does not pos-
sess maximal subgroups of infinite index, thus providing the first example of
a weakly branch but not branch group without maximal subgroups of infi-
nite index. Also, the Basilica group has non-normal maximal subgroups [16,
Cor. 8.3.2]. In Subsect. 6.3, we extend these results to p-Basilica groups for
all primes p, likewise giving another infinite family of weakly branch groups
with such properties. Note that the first infinite family of weakly branch, but
not branch, groups without maximal subgroups of infinite index was given
by Francoeur and Thillaisundaram in [18], namely the GGS-groups defined
by the constant vector.

Theorem D. Let G be a p-Basilica group, for p a prime. Then all maximal
subgroups of G have finite index, and G has infinitely many non-normal max-
imal subgroups.

Notation. Throughout, we use left-normed commutators, for example,
[x, y, z] = [[x, y], z]. For a group G, a subgroup H ≤ G and g ∈ G, we write
[H, g] = 〈[h, g] | h ∈ H〉. Also if N � G then we write g ≡N h to mean that
the images of g and h in G/N coincide. For G a group and p a prime, we write
Wp(G) for the wreath product of G with a cyclic group of order p.
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2. Preliminaries

2.1. The Group Aut(T )

Let p be a prime and let T be the p-adic tree, i.e. the rooted tree having
p descendants at every vertex. If we choose an alphabet X with p letters,
T can be represented as the graph whose vertices are the elements of the
free monoid X∗, the root is the empty word ∅, and w is a descendant of u
provided that w = ux with x ∈ X.

For a given vertex u, the set of vertices uv with v ∈ X∗ are said to
succeed u. They form a tree Tu rooted at u, which is isomorphic to T . We
denote by |u| the length of u as a word. For every n ∈ N ∪ {0}, the set Ln of
all words of length n is called the nth layer of the tree.

Automorphisms of T as a graph form a group Aut(T ) under composi-
tion. Let u be a vertex of T and let f ∈ Aut(T ). We use exponential notation
for images of automorphisms and, more generally, permutations. Thus the
image of u under f ∈ Aut(T ) is uf . Note that automorphisms leave each
layer invariant, so uf and u belong to the same layer. The label of f at u is
the permutation f(u) of the alphabet X defined by the rule

(ux)f = ufxf(u), for every x ∈ X.

The portrait of f is the set of all labels of f , and there is a one-to-one
correspondence between automorphisms of T and portraits. The support of
f is the set of vertices with non-trivial label. We say that f is rooted if the
support is contained in the root, and f is directed if the support is infinite
and consists only of descendants of a given infinite path starting at the root.

In a similar way, the section fu of f at u is the automorphism of T
defined by

(uv)f = ufvfu , for every v ∈ X∗.

For all f, g ∈ Aut(T ) and u, v ∈ X∗, we have (fu)v = fuv, (fg)u = fuguf ,

(fg)ug = (gu)−1 fu guf . (2.1)

2.2. Subgroups of Aut(T )

For a vertex u of T , the vertex stabiliser St(u) is the subgroup consisting of
all automorphisms of T fixing u. The map ψu : f �→ fu is a homomorphism
from St(u) onto Aut(T ). For every n ∈ N, the nth level stabiliser is

St(n) =
⋂

u∈Ln

St(u).

Then St(n) is a normal subgroup of Aut(T ) and Aut(T ) is isomorphic to the
inverse limit of the finite groups Aut(T )/St(n). Hence Aut(T ) is a profinite
group with {St(n)}n∈N as a basis of neighbourhoods of the identity. For every
n ∈ N, we have an isomorphism

ψn : St(n) −→ Aut(T ) × pn

· · · × Aut(T )
f �−→ (fu)u∈Ln

.
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The map ψ1 can be extended to an isomorphism

ψ : Aut(T ) −→ Aut(T ) � Sym(X)
f �−→ ψ1(f) τ,

where τ is the label of f at the root. Thus we can define automorphisms of
Aut(T ) by giving their image under ψ.

Let Sym(X) be the symmetric group over the alphabet X. If σ ∈
Sym(X) is a fixed p-cycle, we can obtain a Sylow pro-p subgroup Γ(σ) of
Aut(T ) by considering all automorphisms whose portrait only contains la-
bels from 〈σ〉; that is,

Γ(σ) =
{
f ∈ Aut(T ) | f(u) ∈ 〈σ〉 for all u ∈ X∗} ∼= lim←−

n∈N

Cp � n· · · � Cp.

As mentioned in the introduction, we also write Γ = Γ
(
(1 2 · · · p)

)
.

Now let G be a subgroup of Aut(T ). We write StG(u) = St(u) ∩ G
and StG(n) = St(n) ∩ G. The latter is a normal subgroup of G and we set
Gn = G/StG(n), which is called the nth congruence quotient of G. We say
that G is

• Level-transitive if it acts transitively on Ln for every n ∈ N.
• Self-similar if all sections of elements of G at all vertices belong to G.
• Fractal if it is self-similar and ψu(StG(u)) = G for every vertex u of the

tree.
• Super strongly fractal if it is self-similar and ψu(StG(n)) = G for every

u ∈ Ln and every n ∈ N.

Note that if G is self-similar then ψn(StG(n)) ⊆ G × pn

· · · × G for all n, and
if furthermore G is contained in a Sylow pro-p subgroup Γ(σ) then ψ(G) ⊆
G � 〈σ〉 = Wp(G). The nth congruence quotient of Γ(σ) is isomorphic to the
iterated wreath product of n copies of Cp and Γ(σ) is the inverse limit of
these finite p-groups.

The rigid vertex stabiliser RistG(u) of a vertex u in G is the subgroup
consisting of all automorphisms in G that fix all vertices outside Tu. Then
for every n ∈ N we define the rigid nth level stabiliser as

RistG(n) = 〈RistG(u) | u ∈ Ln〉 =
∏

u∈Ln

RistG(u) � G.

If G is level-transitive we say that G is a branch group if |G : RistG(n)| < ∞
for all n ∈ N, and that it is weakly branch if RistG(n) �= 1 for all n. If G is
level-transitive and self-similar, and K × · · · × K ⊆ ψ(K) for some K ≤ G,
we say that G is regular branch over K if |G : K| < ∞ and that G is weakly
regular branch over K if K �= 1. Observe that being (weakly) regular branch
implies being (weakly) branch.

2.3. p-Basilica Groups

Let X = {x1, . . . , xp} and let Γ be the Sylow pro-p subgroup of Aut(T )
corresponding to the p-cycle σ = (x1 x2 · · · xp). The p-Basilica group is the
subgroup G of Γ generated by the automorphisms a and b given by

ψ(a) = (1, . . . , 1, b) and ψ(b) = (1, . . . , 1, a)σ.
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(a) (b)

Figure 1. The portrait of the generators of a p-Basilica group

Figure 2. The 3-Basilica automaton

Note that the 2-Basilica group is the well-known Basilica group mentioned
in the introduction. The portraits of a and b are described in Fig. 1.

We recall that an automorphism f ∈ Aut(T ) is called bounded if the
sets {w ∈ Xn | fw �= 1} have uniformly bounded cardinalities over all n. A
group G ≤ Aut(T ) is said to be a bounded automata group if G is finitely
generated, self-similar and every element g ∈ G is bounded and finite state
(i.e. the set {gv | v ∈ X∗} is finite). For every prime p the p-Basilica group is
a group generated by a finite bounded automaton with set of states {Id; a; b}.
In Fig. 2, there is the generating automaton in the case p = 3.

We remark that being an automata group, for any prime p, the p-Basilica
group has solvable word problem, [27, Prop. 2.13.8].

3. First Properties

In this section, we prove some basic properties of the p-Basilica groups. We
start with the following elementary but essential result.

Lemma 3.1. Let G be a p-Basilica group, for a prime p. Then G is fractal
and level-transitive.

Proof. By [36, Lem. 2.7], it suffices to show that G acts transitively on the
first layer and that ψx(StG(x)) = G for some x ∈ X (see also [21, Sec. 3]).
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This is straightforward since b acts transitively on the first layer and since
ψ(a) = (1, . . . , 1, b) and ψ(bp) = (a, . . . , a). �

Next we consider the stabilisers in G of the first two layers. Recall that
Gn = G/StG(n), and for convenience, we set A = 〈a〉G and B = 〈b〉G.

Lemma 3.2. Let G be a p-Basilica group, for a prime p. Then:

(i) StG(1) = A〈bp〉 = 〈a, ab, . . . , abp−1
, bp〉 and G1 = 〈b StG(1)〉 ∼= Cp.

(ii) G2
∼= Cp � Cp is a p-group of maximal class of order pp+1.

Proof. (i) Observe that a ∈ StG(1), and that bn ∈ StG(1) if and only if p | n.
Since StG(1) � G we get A〈bp〉 ≤ StG(1). Note that A〈bp〉 is normal in
G since G/A is cyclic. As a consequence, the inclusion A〈bp〉 ≤ StG(1) is
an equality, since G/A〈bp〉 has order p and StG(1) is a proper subgroup
of G.

(ii) Since ψ(bp) = (a, . . . , a) and a ∈ StG(1), we have bp ∈ StG(2). By (i), if
we consider G2 = G/StG(2), and we denote an element in the quotient
using the bar notation in G2, we have

StG2(1) = 〈a, a b, . . . , a b
p−1〉.

Since a has order p in G2 and the tuples
ψ(a) = (1, . . . , 1, b) and ψ(abi

) = (1, i−1. . . , 1, a−1ba, 1, . . . , 1), for 1 ≤ i ≤ p − 1,

commute with each other, StG2(1) is elementary abelian of order pp.
Thus |G2| = pp+1. To complete the proof, observe that since G ≤ Γ, the
quotient G2 = G/StG(2) embeds in Γ2 = Γ/StΓ(2) ∼= Cp � Cp, and that
the latter is a p-group of maximal class of order pp+1. �

Our next goal is to study the abelianisation of G. In the remainder, let
A = 〈a〉G and B = 〈b〉G as before. Since G = 〈a, b〉, we have A = 〈a〉G′,
B = 〈b〉G′, and G = AB. Observe that ψ(a) = (1, . . . , 1, b) and G being
self-similar imply

ψ(A) ⊆ B × · · · × B. (3.1)

On the other hand, the map π : Wp(G) → G/G′ sending (g1, . . . , gp)σi to
g1 · · · gpG

′ is clearly a group homomorphism. Since ψ(b) = (1, . . . , 1, a)σ, it
follows that

(π ◦ ψ)(B) ⊆ A/G′. (3.2)

Theorem 3.3. Let G be a p-Basilica group, for a prime p. Then:
(i) G/A = 〈bA〉 and G/B = 〈aB〉 are infinite cyclic. In particular, the

elements a and b have infinite order in G.
(ii) G/G′ = 〈aG′〉 × 〈bG′〉 ∼= Z × Z.
(iii) A ∩ B = G′.

Proof. Since G/G′ = A/G′ · B/G′, with A/G′ = 〈aG′〉 and B/G′ = 〈bG′〉,
both (ii) and (iii) follow immediately from (i).

We prove that G/A and G/B are infinite simultaneously. Assume for a
contradiction that, for some n ∈ N, we have either an ∈ B or bn ∈ A, and let
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us choose n as small as possible. If bn ∈ A ⊆ StG(1) then n = pm for some
m, and consequently,

ψ(bn) = (am, . . . , am) ∈ ψ(A) ⊆ B × · · · × B,

by (3.1). Hence, am ∈ B, which is impossible since m < n. On the other
hand, if an ∈ B then

bnG′ = (π ◦ ψ)(an) ∈ (π ◦ ψ)(B) ⊆ A/G′

by (3.2). Thus, bn ∈ A, which we just proved is not the case. This completes
the proof. �

Next we study rigid stabilisers and the branch structure of G. To this
purpose, the following result is very useful. It is given in [15, Prop. 2.18] for
GGS-groups, but the same proof works more generally for level-transitive
fractal groups. We state this general version here for the convenience of the
reader.

Lemma 3.4. Let G be a level-transitive fractal subgroup of Aut(T ), and let
L and N be two normal subgroups of G. Suppose that L = 〈S〉G and that
(1, . . . , 1, s, 1, . . . , 1) ∈ ψ(N) for every s ∈ S, where s appears always at the
same position in the tuple. Then L × · · · × L ⊆ ψ(N).

Theorem 3.5. Let G be a p-Basilica group, for a prime p. Then
(i) RistG(1) = A with ψ(A) = B × · · · × B. In particular, the group G is

not branch.
(ii) ψ(StG(1)′) = G′ × · · · × G′. As a consequence, the group G is weakly

regular branch over G′.

Proof. (i) We already know from (3.1) that ψ(A) ⊆ B × · · · × B, and the
reverse inclusion follows from Lemma 3.4, since ψ(a) = (1, . . . , 1, b).
Hence A ≤ RistG(1) ≤ StG(1) = A〈bp〉 and so RistG(1) = A〈bpn〉 for
some n. Since

ψ(A〈bpn〉) = (B × · · · × B)〈(an, . . . , an)〉
and a has infinite order modulo B by Theorem 3.3(i), it follows from
the definition of the rigid stabiliser that n = 0. Hence RistG(1) = A,
which has infinite index in G, so G is not branch.

(ii) The inclusion ⊆ is clear. For the reverse inclusion, observe that
ψ([bp, a]) = (1, . . . , 1, [a, b]). Since G′ = 〈[a, b]〉G, the result follows from
Lemma 3.4.

�

Theorem 3.6. Let G be a self-similar subgroup of Aut(T ) and suppose that
there exists a torsion-free quotient G/N with N ≤ StG(1). Then G is torsion-
free. In particular, the p-Basilica groups are torsion-free.

Proof. For every n ∈ N ∪ {0}, let Pn stand for the set of torsion elements in
St G(n)\St G(n + 1). Then our goal is to prove that these sets are all empty.
By way of contradiction, suppose that Pn �= ∅ for some n, which we choose
as small as possible.
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Since G/N is torsion-free and N ≤ StG(1), it is clear that n ≥ 1. Let
g ∈ Pn be a torsion element. If ψ(g) = (g1, . . . , gp) then some gi belongs
to StG(n − 1)\StG(n) and, of course, the element gi is of finite order. So
gi ∈ Pn−1, which is a contradiction.

The case of the p-Basilica groups follows from Theorem 3.3, since G′ ≤
StG(1). �

Next we prove that the p-Basilica groups are contracting. Let us briefly
recall this concept. If G is an arbitrary group generated by a finite symmetric
subset S (i.e. a set for which S = S−1), then for every g ∈ G,

|g| = min{n ≥ 0 | g = s1 · · · sn, for s1, . . . , sn ∈ S}
is called the length of g with respect to S. Now assume that G is a self-similar
subgroup of Aut(T ). Then for every g ∈ G and every n ∈ N ∪ {0} we define

�n(g) = max{|gu| | u ∈ Ln}.

From the rule (gh)u = guhug we get that the function �n is subadditive, i.e.
that

�n(gh) ≤ �n(g) + �n(h) for every g, h ∈ G, (3.3)

and from (g−1)u = (gug−1 )−1, that

�n(g−1) = �n(g) for every g ∈ G.

If there exist λ < 1 and C,L ∈ N such that

�n(g) ≤ λ|g| + C, for every n > L and every g ∈ G,

then we say that the group G is contracting with respect to S. There are
several equivalent definitions of contracting groups, the one that we give is
due to [27].

The following lemma is straightforward, but very useful in proving that
a subgroup of Aut(T ) is contracting.

Lemma 3.7. Let G = 〈S〉 be a self-similar subgroup of Aut(T ), where S is
symmetric and suppose that �1(s) ≤ 1 for all s ∈ S. Then �n(g) ≤ �n−1(g)
for every n ∈ N and g ∈ G.

Proof. Observe that the condition �1(s) ≤ 1 for all s ∈ S, together with (3.3),
imply that �1(g) ≤ |g| for every g ∈ G. Now let u ∈ Ln and write u = vx
with v ∈ Ln−1 and x ∈ X. Then for every g ∈ G we have

|gu| = |(gv)x| ≤ �1(gv) ≤ |gv| ≤ �n−1(g),

and the result follows. �

Observe that the condition �1(s) ≤ 1 for all s ∈ S is satisfied by the set
of generators S = {a, b, a−1, b−1} in a p-Basilica group.

Theorem 3.8. For p a prime, the p-Basilica group G is contracting with re-
spect to the set of generators S = {a, b, a−1, b−1}, with λ = 2

3 and C = L = 1.
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Proof. By Lemma 3.7, it suffices to prove that

�2(g) ≤ 2
3
|g| + 1, for every g ∈ G. (3.4)

Assume that we know that �2(h) ≤ 2 for every h ∈ G of length 3. Then we
write |g| = 3j + k with k ∈ {0, 1, 2} and g = h1 · · · hjf with |h1| = · · · =
|hj | = 3 and |f | = k, and (3.4) immediately follows from the subadditivity of
�2.

Let us then consider an arbitrary element h ∈ G of length 3 and prove
that �2(h) ≤ 2. An easy calculation shows that �1(g) ≤ 1 for g ∈ {b2, ba, ba−1}
and, as a consequence, �2(g) ≤ 1 for every g of length 2 other than a−1b and
b−1a. Now one of the elements h or h−1, call it h∗, does not contain a−1b or
b−1a as a prefix. If we write h∗ = gs with g of length 2, then

�2(h) = �2(h∗) ≤ �2(g) + �2(s) ≤ 2,

which completes the proof. �

4. Commutator Subgroup Structure

In Sect. 3, we determined the abelianisation of a p-Basilica group G and
proved that G is weakly regular branch over G′. Now we study further prop-
erties of G′ and of other subgroups obtained by taking commutators, and
obtain some consequences.

In the following we will denote by C and D the following subgroups of
G × p· · · × G:

C = {(bi1 , . . . , bip) | i1 + · · · + ip = 0},

D = {(g1, . . . , gp) ∈ G′ × · · · × G′ | g1 · · · gp ∈ γ3(G)}.

Since b is of infinite order, the subgroup C is a free abelian group of rank
p − 1 generated by the elements

ci = (1, . . . , 1, b−1, b, 1, i. . ., 1), for i ∈ {0, 1, . . . , p − 2}. (4.1)

Note further that for all i ∈ {0, . . . , p − 2} we have

ci = ψ([b−1, a]b
−i

). (4.2)

Also since

c0c1 · · · cp−2 = (b−1, 1, p−2. . . , 1, b), (4.3)

it is clear that C is normalised by σ in the wreath product Wp(G).
We start our study of commutators by identifying the images of G′,

γ3(G) and G′′ under ψ, where γ3(G) denotes the third term of the lower
central series, and G′′ the second term of the derived series.

Theorem 4.1. Let G be a p-Basilica group, for p a prime. The following hold:
(i) ψ(G′) = (G′ × · · · × G′) � C.
(ii) ψ(G′′) = γ3(G) × · · · × γ3(G).
(iii) ψ(γ3(G)) = 〈y0, . . . , yp−2〉 � D, where y0 = c−p

0 ([a, b−1], 1, . . . , 1) and
yi = ci−1c

−1
i for 1 ≤ i ≤ p − 2.



275 Page 12 of 28 E. Di Domenico et al. MJOM

Proof. (i) One inclusion is clear, taking into account that G is weakly reg-
ular branch over G′, together with (4.2). For the reverse inclusion, ob-
serve that G′ = 〈[b−1, a]〉G implies ψ(G′) ≤ 〈c0〉Wp(G). Now in the
wreath product Wp(G) the subgroup G′ × · · · × G′ is normal, the el-
ement σ normalises C and [C,G × · · · × G] ≤ G′ × · · · × G′. Hence,
(G′ × · · · × G′)C � Wp(G). Since c0 ∈ C, the desired inclusion follows.

Finally, since b has infinite order modulo G′ by Theorem 3.3(ii),
we observe that the intersection of G′ × · · · × G′ and C is trivial, and
so their product is semidirect.

(ii) We first show that γ3(G) × · · · × γ3(G) ≤ ψ(G′′). On the one hand, a
straightforward computation shows that [b, a, a] = 1, and then γ3(G) =
〈[b, a, b]〉G. Now since G is weakly regular branch over G′, we have
(1, . . . , 1, [b, a]) ∈ ψ(G′), and on the other hand (1, . . . , 1, b−1, b) = c0 ∈
ψ(G′). Hence, (1, . . . , 1, [b, a, b]) ∈ ψ(G′′) and the desired inclusion fol-
lows from Lemma 3.4.

To show the other inclusion, it is sufficient to prove that
ψ(G′)/(γ3(G) × · · · × γ3(G)) is abelian. This is obvious from the ex-
pression for ψ(G′) obtained in (i).

(iii) We have γ3(G) = [G′, a][G′, b]G′′ and consequently γ3(G) = [G′, b]G′′

since ψ(a) = (1, . . . , 1, b) clearly centralises ψ(G′) = (G′ × · · · × G′)C
modulo ψ(G′′) = γ3(G) × · · · × γ3(G).
Hence ψ(γ3(G)) = [ψ(G′), ψ(b)](γ3(G)×· · ·×γ3(G)). Next consider the

following subgroup of ψ(γ3(G)),

[G′ × · · · × G′, ψ(b)](γ3(G) × · · · × γ3(G))
= [G′ × · · · × G′, σ](γ3(G) × · · · × γ3(G)),

and observe that it corresponds to the commutator subgroup of the wreath
product Wp(G′/γ3(G)), i.e. with the elements of the base group whose
component-wise product is 1 in G′/γ3(G). Hence this subgroup coincides
with D and we have ψ(γ3(G)) = [ψ(G′), ψ(b)]D.

Now the factor group ψ(G′)/D is the direct product of the cyclic sub-
groups generated by c0, . . . , cp−2 and by z = ([b, a], 1, . . . , 1). It is clear that
[ci, ψ(b)] = yi for 1 ≤ i ≤ p − 2, that

[c0, ψ(b)] = c−1
0 (b, 1, . . . , 1, b−1)z = c−2

0 c−1
1 · · · c−1

p−3c
−1
p−2z,

using (4.3), and that [z, ψ(b)] ∈ D. Hence,

ψ(γ3(G)) = 〈y1, . . . , yp−2, c
−2
0 c−1

1 · · · c−1
p−3c

−1
p−2z〉D.

Since

c−2
0 c−1

1 · · · c−1
p−3c

−1
p−2y

−1
p−2y

−2
p−3 · · · y−(p−2)

1 = c−p
0 ,

the result follows. �

Corollary 4.2. Let G be a p-Basilica group, for p a prime. Then the centraliser
of G′ in G, and hence the centre of G, is trivial.

Proof. Suppose that g ∈ CG(G′) and let ψ(g) = (g1, . . . , gp)σk. Since g com-
mutes with [bp, a] and ψ([bp, a]) = (1, . . . , 1, [a, b]), it follows that p | k. Hence
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g ∈ StG(1). In view of Theorem 4.1(i), all components gi also centralise G′

and consequently belong to StG(1). Repeating this process yields g ∈ StG(n)
for every n ∈ N, and so g = 1. �

For a group property P, recall that a group H is just non-P if H does
not have property P but every proper quotient of H has P.

Corollary 4.3. For a prime p, a p-Basilica group is just non-solvable.

Proof. Using Theorem 3.5, it suffices to show by [22, Lem. 10] that G′/StG(1)′

is solvable. Now from Theorem 3.5(ii) and Theorem 4.1(i) it is immediate that
G′/StG(1)′ ∼= C is abelian. �

Next we give important information about the congruence quotient Gn:
the orders of the images of a and b, and the structure of its abelianisation.
In the remainder, let β(n) = �n/2�.
Theorem 4.4. Let G be a p-Basilica group, for a prime p. Then, for every
n ∈ N, we have:
(i) The orders of a and b modulo StG(n) are pβ(n−1) and pβ(n), respectively.
(ii) We have |Gn : G′

n| = pn and Gn/G′
n

∼= Cpβ(n−1) ×Cpβ(n) , where the first
factor corresponds to a and the second to b.

Proof. First of all, we prove by induction on n ≥ 0 the following result: that
if n is even then

bpn/2 ∈ StG(n)\G′ StG(n + 1), (4.4)

and that if n is odd then

ap(n−1)/2 ∈ StG(n)\G′ StG(n + 1). (4.5)

Note that this already implies (i), and furthermore that the orders of the
images of a and b in Gn/G′

n are pβ(n−1) and pβ(n), respectively.
The result is obvious for n = 0. Now we suppose it holds for n−1. If n =

2m+1 is odd, we have ψ(apm

) = (1, . . . , 1, bpm

), and since bpm ∈ StG(n−1) by
induction hypothesis, we get apm ∈ StG(n). Assume, by way of contradiction,
that apm ∈ G′ StG(n + 1). By applying ψ and taking Theorem 4.1(i) into
account, we get

ψ(apm

) = (1, . . . , 1, bpm

) ∈ (G′ StG(n) × · · · × G′ StG(n))C.

Thus, for some i1, . . . , ip summing up to 0, we have

(bi1 , . . . , bip−1 , bip+pm

) ∈ G′ StG(n) × · · · × G′ StG(n).

By multiplying together all components, we get bpm ∈ G′ StG(n), contrary to
the induction hypothesis.

Let us now consider the case when n = 2m is even. Note that ψ(bpm

) =
(apm−1

, . . . , apm−1
). Since apm−1 ∈ StG(n−1), we get bpm ∈ StG(n). As before,

suppose that bpm ∈ G′ StG(n + 1). Applying ψ as above and looking at the
first component, we get

biapm−1 ∈ G′ StG(n) (4.6)
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for some integer i. Hence bi ∈ G′ StG(n − 1). Since by induction bpm−1 �∈
G′ StG(n−1), necessarily pm divides i. Then by (4.6) we obtain that apm−1 ∈
G′ StG(n), contrary to the induction hypothesis.

We now prove (ii). The abelian group Gn/G′
n is generated by the images

of a and b, of orders pβ(n−1) and pβ(n), respectively. Hence, |Gn : G′
n| ≤

pβ(n−1)+β(n) = pn, and all assertions in (ii) immediately follow if we show
that |Gn : G′

n| ≥ pn. To this purpose, observe that (4.4) and (4.5) imply that
the difference |G′ StG(n) : G′ StG(n + 1)| is non-trivial for every n. Thus,

|Gn : G′
n| = |G : G′ StG(n)| =

n−1∏
i=0

|G′ StG(i) : G′ StG(i + 1)| ≥ pn,

as desired. �

Now we can give a stronger form of Lemma 3.1.

Theorem 4.5. A p-Basilica group G, for p a prime, is super strongly fractal.

Proof. Let un = xp
n. . .xp for every n ∈ N. Since G is level-transitive, it suffices

to show that ψun
(StG(n)) = G for all n. Since

ψu2n−1(b
pn

)=a, ψu2n−1(a
pn−1

)=b, ψu2n
(bpn

)=b, and ψu2n
(apn

) = a,

the result follows from Theorem 4.4. �

The above result gives the first examples of weakly branch, but not
branch, groups that are super strongly fractal; cf. [34, Prop. 3.11] and [36,
Prop. 4.3].

For the following result, recall that a group G ≤ Aut(T ) is saturated if
for any n ∈ N there exists a subgroup Hn ≤ StG(n) that is characteristic
in G and ψv(Hn) acts level-transitively on Tv for all vertices v ∈ Ln. If G is
level-transitive and super strongly fractal, then it suffices to show this last
property for a single vertex u ∈ Ln, since if we write v = ug with g ∈ G then
by (2.1) we have

ψv(Hn) = ψug (Hg
n) = ψu(Hn)gu = ψu(Hn),

where the last equality follows from ψu(Hn) � ψu(StG(n)) = G, since G is
super strongly fractal.

Corollary 4.6. Let G be a p-Basilica group for a prime p. Then Aut(G) =
NAut(T )(G).

Proof. From [25, Prop. 7.5] it suffices to show that G is saturated. We set
H0 = G, H1 = G′, and Hn = [Hn−1,H

p
n−2] for all n ≥ 2, which are char-

acteristic subgroups of G. Note that Hn ≤ StG(n) for every n ∈ N, since
the quotient of two consecutive level stabilisers in G is an elementary abelian
p-group. Indeed, notice that

StΓ(n − 1)/StΓ(n) ∼= Cp × pn−1

· · · × Cp,

and since StG(n) = StΓ(n) ∩ G and StG(n − 1)/StG(n) embeds in StΓ(n −
1)/StΓ(n), it follows that StG(n)/StG(n − 1) is elementary abelian.
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Set un = xp
n. . .xp for every n ∈ N. As explained above, we only need to

show that ψun
(Hn) acts level-transitively on T . This will follow if we prove

that ψun−1(Hn) = G′, since ψ([b−1, a]) = (1, . . . , 1, b−1, b), with b acting
transitively on the first level vertices, and since G′ × · · · × G′ ≤ ψ(G′).

Let us then prove that ψun−1(Hn) = G′ for every n ∈ N. We use induc-
tion on n, the case n = 1 being obvious. Assume now that n ≥ 2. Clearly we
only have to show that G′ ≤ ψun−1(Hn). Observe first that b ∈ ψun−1(Hn−1)
by the induction hypothesis. Since also b ∈ ψun−2(Hn−2) (here we need to
use that H0 = G if n = 2) and ψ(bp) = (a, . . . , a), we have a ∈ ψun−1(H

p
n−2).

Consequently [b, a] ∈ ψun−1([Hn−1,H
p
n−2]) = ψun−1(Hn). Since G′ = 〈[b, a]〉G

and ψun−1(Hn) � G, the proof is complete. �

Examples of other groups acting on rooted trees with automorphism
group equal to its normaliser in Aut(T ) are the Grigorchuk group and the
Brunner–Sidki–Vieira group [25], and the branch multi-EGS groups [34].

Next we generalise Theorem 3.5(ii) and give a relation between rigid
stabilisers and level stabilisers.

Theorem 4.7. Let G be a p-Basilica group, for a prime p. Then the following
hold:

(i) ψn(StG(n)′) = G′ × pn

· · · × G′ for every n ∈ N.
(ii) RistG(n) = StG(n)′ for every n ≥ 2.

Proof. (i) Since G is self-similar, the inclusion ⊆ is obvious. For the reverse
inclusion, a direct calculation shows that

(1, pn−1. . . , 1, [b, a]) =

{
ψn([bpn/2

, apn/2
]) if n is even,

ψn([ap(n−1)/2
, bp(n+1)/2

]) if n is odd.
(4.7)

By Theorem 4.4, it follows that (1, pn−1. . . , 1, [b, a]) ∈ ψn(StG(n)′). Now
the result follows from Lemma 3.4.

(ii) It suffices to show that ψn(RistG(n)) = G′ × pn

· · · × G′ for every n ≥ 2.
For n = 2 we have

ψ(RistG(2)) ⊆ (RistG(1) × p· · · × RistG(1)) ∩ ψ(RistG(1))

= (A × p· · · × A) ∩ (B × p· · · × B)

= G′ × p· · · × G′,

using first Theorem 3.5 and then Theorem 3.3(iii). Hence,

ψ2(RistG(2)) ⊆ ψ(G′) × p· · · × ψ(G′)

= (G′ × p· · · × G′)C × p· · · × (G′ × p· · · × G′)C, (4.8)

by Theorem 4.1. Now since G is weakly regular branch over G′, we have

G′ × p2

· · · × G′ ⊆ ψ2(RistG(2)).

If this inclusion is strict then we may assume without loss of generality
that some element (bm, . . .) with m �= 0 belongs to ψ2(RistG(2)). By the
definition of rigid stabiliser, it follows that (bm, 1, . . . , 1) ∈ ψ2(RistG(2)),
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which is contrary to (4.8). This proves the case n = 2. The general case
follows in a similar fashion by induction on n. �

We close this section by determining the structure of the quotients
G′/γ3(G), G′/G′′, and γ3(G)/G′′, which is key for Sect. 5. We need a couple
of lemmas.

Lemma 4.8. Let G be a p-Basilica group, for a prime p. For every n ∈ N, we
have

ψ(StG′(n)) =
(

StG′(n − 1) × · · · × StG′(n − 1)
)

Cpβ(n−1)
.

Proof. The inclusion ⊇ is obvious from Theorem 4.1(i) and Theorem 4.4(i).
For the other direction, let g ∈ StG′(n) and write ψ(g) = (w1, . . . , wp)
(bi1 , . . . , bip), where the first factor is in G′×· · ·×G′ and the second is in C. Fix
an index j ∈ {1, . . . , p}. Since wjb

ij ∈ StG(n−1) we have bij ∈ G′ StG(n−1),
and then pβ(n−1) divides ij by Theorem 4.4. Thus, bij ∈ StG(n − 1) and it
follows that also wj ∈ StG(n − 1). This proves the result. �

Lemma 4.9. Let G be a p-Basilica group, for p a prime. Then the order of
[a, b] modulo γ3(G) StG′(n) is at least pβ(n−1) for every n ∈ N.

Proof. Since [a, b] and [a, b−1] are inverse conjugate, we prove the result for
the order of [a, b−1]. We use induction on n. The result is obvious if n = 1, so
we suppose that n ≥ 2. If [a, b−1]p

m ∈ γ3(G) StG′(n), we want to show that
m ≥ β(n − 1). By way of contradiction, we assume that m < β(n − 1). By
applying ψ to [a, b−1]p

m

and using Theorem 4.1(iii) and Lemma 4.8, we get

c−pm

0 = ydgc, (4.9)

where y = yk0
0 · · · ykp−2

p−2 for some k0, . . . , kp−2 ∈ Z, d ∈ D, g ∈ StG′(n − 1) ×
· · · × StG′(n − 1), and c ∈ Cpβ(n−1)

. If we reduce (4.9) modulo G′ × · · · × G′

and use that y0 reduces to c−p
0 , we get

c pm−pk0+k1
0 c−k1+k2

1 · · · c−kp−3+kp−2
p−3 c

−kp−2
p−2 ∈ Cpβ(n−1)

. (4.10)

Since c0, . . . , cp−2 form a basis for the free abelian group C, it follows that
all exponents in (4.10) are divisible by pβ(n−1) and, as a consequence, so is
pm − pk0. Since m < β(n − 1), it follows that the p-part of pk0 is pm. Now
since B = 〈b〉G′ is abelian modulo γ3(G), the map

τ : B × · · · × B −→ B/γ3(G)
(g1, . . . , gp) �−→ g1 · · · gpγ3(G)

is a group homomorphism. Observe that both C and D lie in the kernel of τ ,
and that τ(y0) = [a, b−1]γ3(G). Hence, by applying τ to (4.9), we get

[a, b−1]k0 ∈ γ3(G) StG′(n − 1).

Since the p-part of k0 is pm−1, by the induction hypothesis we have m − 1 ≥
β(n − 2), and so m ≥ β(n − 2) + 1 ≥ β(n − 1), contrary to our assumption.
This completes the proof. �

Theorem 4.10. Let G be a p-Basilica group, for p a prime. Then
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(i) G′/γ3(G) ∼= Z.
(ii) G′/G′′ ∼= Z

2p−1.
(iii) γ3(G)/G′′ ∼= Z

2p−2.

Proof. (i) We observe that G′/γ3(G) is cyclic and generated by the image
of [a, b]. From Lemma 4.9, the order of [a, b] tends to infinity modulo
γ3(G) StG′(n) as n goes to infinity. Hence the statement immediately
follows.

(ii) The result follows from (i) and from Theorem 4.1 since we have

G′

G′′
∼= ψ(G′)

ψ(G′′)
∼=

(
G′

γ3(G)
× p· · · × G′

γ3(G)

)
× C

∼= Z × p· · · × Z × Z
p−1.

This completes the proof since (iii) is a straightforward consequence of
(i) and (ii). �

We recall the integral Heisenberg group H3(Z), which is the 2-generated
group of 3×3 upper unitriangular matrices with integral entries, and has the
presentation 〈x, y, z | z = [x, y], xz = zx, yz = zy〉.
Corollary 4.11. Let G be a p-Basilica group, for p a prime. Then G/γ3(G) is
isomorphic to the integral Heisenberg group H3(Z).

Proof. The proof is analogous to [19, Prop. 23] or to [17, Prop. 4.8], where it
was proved for the case p = 2, using different approaches. �

As noted in [17, Cor. 4.9], the previous result yields an alternative proof
that the p-Basilica groups are not branch. As every proper quotient of a
branch group is virtually abelian and the integral Heisenberg group is not
virtually abelian, the result follows.

5. Congruence Subgroup Properties and Hausdorff Dimension

5.1. Congruence Subgroup Properties

Let G be a p-Basilica group, for p a prime. Since G/G′ ∼= Z×Z, the group G
does not have the congruence subgroup property as all quotients of G by
level stabilisers are p-groups. In this subsection we show that G has the p-
congruence subgroup property (p-CSP for short) but not the weak congruence
subgroup property.

We recall that if G is a subgroup of Aut(T ) and N � G, we say that
G/N has the p- congruence subgroup property (or that G has the p-congruence
subgroup property modulo N) if every J � G, such that G/J is a finite p-group
and N ≤ J , contains some level stabiliser of G. According to [19, Lem. 6], if
N ≤ M are two normal subgroups of G such that both G/M and M/N have
the p-CSP then also G/N has the p-CSP.

We need a couple of lemmas before proving that the p-Basilica groups
have the p-CSP.
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Lemma 5.1. Let N and G be subgroups of Aut(T ) with N � G and G/N free
abelian of rank r, for some r ∈ N. Suppose that, for large enough n ∈ N, we
have

G/N StG(n) ∼= Cpλ1(n) × · · · × Cpλr(n) , (5.1)

with limn→∞ λi(n) = ∞ for 1 ≤ i ≤ r. Then G/N has the p-CSP.

Proof. Let N ≤ J � G, where |G : J | = pm, for some m ∈ N. Then Gpm ≤ J .
Now choose an integer n such that λi(n) ≥ m for 1 ≤ i ≤ r. By (5.1), for
large enough n we have

|G/N StG(n) : (G/N StG(n))pm | = prm = |G/N : (G/N)pm |,
which implies N StG(n)Gpm

= NGpm

, since by the third isomorphism theo-
rem,

G/N StG(n)
(G/N StG(n))pm =

G/N StG(n)
N StG(n)Gpm/N StG(n)

∼= G
N StG(n)Gpm

and
G/N

(G/N)pm =
G/N

NGpm/N
∼= G

NGpm .

Hence, StG(n) ≤ NGpm ≤ J , and G/N has the p-CSP. �

The following lemma is a slight generalisation of [19, Thm. 1], which
corresponds to the case when N is chosen so that L ≤ K ′, and its proof is
very similar. For convenience, we include the proof below.

Lemma 5.2. Let G be a subgroup of Aut(T ) that is weakly regular branch over
a normal subgroup K. Let N be a normal subgroup of G such that:
(i) K ′ ≤ N ≤ K.
(ii) If L = ψ−1(N × · · · × N) then G/N , N/L, and N/K ′ have the p-CSP.
Then G has the p-CSP.

Proof. Set Lm = ψ−1
m (N × pm

· · ·×N) for every m ∈ N. Note that Lm � G, since
G is self-similar and N � G. We will prove by induction on m that G/Lm has
the p-CSP. Since L1 = L and both G/N and N/L have the p-CSP, the result
is true for m = 1. Now we suppose that the result holds for m and we will
show it for m + 1. Observe that it suffices to prove that Lm/Lm+1 has the
p-CSP. Recall that

ψm(Lm) = N × pm

· · · × N

and

ψm(Lm+1) = L × pm

· · · × L,

so ψm induces an isomorphism between Lm/Lm+1 and N/L × pm

· · · × N/L.
Since

ψm(StLm
(n)) = StN (n − m) × pm

· · · × StN (n − m) for every n ≥ m,
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and N/L has the p-CSP, it follows that

N/L × pm

· · · × N/L ∼= (N × pm

· · · × N)/(L × pm

· · · × L) ∼= Lm/Lm+1

has the p-CSP.
To conclude that G has the p-CSP, let J � G be such that G/J is a finite

p-group. Since G is level-transitive, we have RistG(m)′ ≤ J for some m ∈ N

by [19, Lem. 4]. Define the subgroup Km ≤ RistG(m) by the condition

ψm(Km) = K × pm

· · · × K.

Since K ′ ≤ N it follows that K ′
m ≤ Lm. Now taking into account that N/K ′

has the p-CSP, the same argument as in the first paragraph of the proof yields
that Lm/K ′

m has the p-CSP as well. Thus G/K ′
m has the p-CSP for every

m ∈ N. Since K ′
m ≤ RistG(m) ≤ J , this proves that J contains some level

stabiliser in G, and consequently G has the p-CSP. �

Theorem 5.3. Let G be a p-Basilica group, for a prime p. Then G has the
p-CSP.

Proof. We apply Lemma 5.2 with K = N = G′. Thus if L = ψ−1(G′×· · ·×G′)
then it suffices to prove that G/G′, G′/L and L/G′′ have the p-CSP. Note
that then also G′/G′′ has the p-CSP.

First of all, the factor group G/G′ has the p-CSP by Lemma 5.1, since
G/G′ StG(n) ∼= Cpβ(n−1) × Cpβ(n) with β(n) = �n/2�, according to Theo-
rem 4.4(ii).

Next we deal with G′/L, which is free abelian of rank p − 1 by Theo-
rem 4.1(i). By Lemma 4.8, we have ψ(LStG′(n)) = (G′ × · · · × G′)Cpβ(n−1)

and consequently G′/LStG′(n) ∼= C/Cpβ(n−1)
. Hence, this case also follows

from Lemma 5.1.
Let us finally consider the case of L/G′′. We have

L/G′′ ∼= (G′ × · · · × G′)/(γ3(G) × · · · × γ3(G)) ∼= Z
p.

Since

ψ(G′′ StL(n)) = γ3(G) StG′(n − 1) × · · · × γ3(G) StG′(n − 1),

it follows that

L/G′′ StL(n) ∼= G′/(γ3(G) StG′(n − 1)) × · · · × G′/(γ3(G) StG′(n − 1)),

and we can once again apply Lemma 5.1, by taking into account Lemma 4.9.
�

We note that in [29, Thm. 1.10] it was shown that s-generator Basilica
groups, for s > 2, have the p-CSP. It is worth mentioning that there are
key structural differences between these groups and the p-Basilica groups;
compare [29, Thm. 1.9].

Now we complete the proof of Theorem B. Recall that a group G ≤
Aut(T ) has the weak congruence subgroup property if every finite-index sub-
group contains the derived subgroup of some level stabiliser.
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Theorem 5.4. Let G be a p-Basilica group, for a prime p. Then G does not
have the weak congruence subgroup property.

Proof. Let q �= p be a prime, and let N = 〈aq, bq, [a, b]q〉γ3(G), which is
normal and of finite index in G. By Corollary 4.11, we have G/N ∼= H3(q).
We claim that StG(n)′ �≤ N for every odd n, which is enough to prove the
theorem. Arguing by way of contradiction, since by Theorem 4.7 we have

ψn(StG(n)′) = G′ × pn

· · · × G′, and according to (4.7)

ψn([ap(n−1)/2
, bp(n+1)/2

]) = (1, pn−1. . . , 1, [b, a]) ∈ G′ × pn

· · · × G′

for odd n, it follows that [ap(n−1)/2
, bp(n+1)/2

] ∈ N . As γ3(G) ≤ N , we get
[a, b]p

n ∈ N . Since also [a, b]q ∈ N , we conclude that [a, b] ∈ N . This contra-
dicts the fact that G/N ∼= H3(q). �

5.2. Hausdorff Dimension

In this subsection, we determine the orders of the congruence quotients of
the p-Basilica groups, and we compute their Hausdorff dimensions. That is,
we prove Theorem C, which for convenience we recall here.
Theorem C. Let G be a p-Basilica group, for p a prime. Then:

(i) The orders of the congruence quotients of G are given by

logp |G : StG(n)| =

{
pn−1 + pn−3 + · · · + p3 + p + n

2 for n even,

pn−1 + pn−3 + · · · + p4 + p2 + n+1
2 for n odd.

(ii) The Hausdorff dimension of the closure of G in Γ is

hdimΓ(G) =
p

p + 1
.

Proof. (i) We argue by induction on n. The case n = 1 is clear, so we
assume n ≥ 2. Write n = 2m + e, with e = 0 or 1. We need to establish
that

logp |G : StG(n)| =
pn+1 − p1+e

p2 − 1
+ m + e.

Note that, by Theorem 4.4,

|G : StG(n)| = |G : G′ StG(n)| |G′ StG(n) : StG(n)|
= pn |G′ : StG′(n)|

and that |G′ : StG′(n)| coincides with

|ψ(G′) : ψ(StG′(n))|
= |(G′ × p· · · × G′)C : (StG′(n − 1) × p· · · × StG′(n − 1))Cpβ(n−1) |
= p(p−1)β(n−1) |G′ : StG′(n − 1)|p
= p(p−1)β(n−1)−p(n−1) |G : StG(n − 1)|p,
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where we have used Lemma 4.8 and the fact that C is free abelian of
rank p − 1. Here β(n − 1) = �(n − 1)/2� as before. Thus,

logp |G : StG(n)|
= p logp |G : StG(n − 1)| + (p − 1)(β(n − 1) − n + 1) + 1

= p logp |G : StG(n − 1)| − (p − 1)(m + e − 1) + 1,

since β(n − 1) = m. Now the result follows from the induction hypoth-
esis.

(ii) To get the Hausdorff dimension of G in Γ, we just need to take into
account formula (1.1) and the fact that

logp |Γ : StΓ(n)| = 1 + p + · · · + pn−1 =
pn − 1
p − 1

.

�

We remark that the Hausdorff dimension of the Basilica group was given
by Bartholdi in [4]. Also the Hausdorff dimensions of the generalised Basilica
groups were computed in [29, Thm. 1.7] using a very different approach.

6. Further Properties

6.1. Growth and Amenability

Before proving the main results of this subsection, we need some preliminary
definitions, namely the notions of growth of groups and amenability.

Let G be a group generated by a finite symmetric subset S. The length
function on G is a metric on G and therefore one can define the ball of radius
n:

B(n) = {g ∈ G : |g| ≤ n}.

We say that the map γ : N0 −→ [0,∞) where γ(n) = |B(n)|, is the growth
function of G.

If we consider two growth functions γ1, γ2, we say that γ2 dominates
γ1 and we write γ1 � γ2 if there exist C,α > 0 such that γ1(n) ≤ Cγ2(αn)
for every n ∈ N. If γ1 � γ2 and γ2 � γ1, we write γ1 ∼ γ2. It is easy to see
that this is an equivalence relation. Notice also that all growth functions of
a finitely generated group are equivalent.

If γ(n) � na for some a ∈ N, we say that G has polynomial growth.
Instead G is said to have exponential growth if limn→∞ γ(n)1/n > 1 (notice
that such a limit always exists). Finally γ(n) has intermediate growth if γ(n)
is equivalent to neither of the above. Notice that it is also common to say
that a group G has subexponential growth if limn→∞ γ(n)1/n = 1, or equiva-
lently, if γ(n) = ef(n) for some (increasing) function f : N −→ R

+ satisfying
limn→∞ f(n)/n = 0.

Next, we say that a group G is amenable if there is a finitely additive
left-invariant measure μ on the subsets of G such that μ(G) = 1. We denote
the class of amenable groups by AG. The class EG of elementary amenable
groups is the smallest class of groups containing all abelian groups and finite
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groups and closed under quotients, subgroups, extensions and direct unions.
We have EG ⊆ AG, and this inclusion is strict. Furthermore the class SG of
elementary subexponentially amenable groups is the smallest class of groups
which contains all groups of subexponential growth and is closed under taking
subgroups, quotients, extensions, and direct unions. Of course, the class SG
contains the class EG.

In the following we determine the growth of a p-Basilica group G,
for p an odd prime, and we prove that G is amenable but not elementary
subexponentially amenable. The corresponding versions of Theorem 6.1 and
Lemma 6.2 for p = 2 were proved in [22, Lem. 4 and Prop. 4] and in [24,
Cor. 9], respectively.

Theorem 6.1. Let G = 〈a, b〉 be a p-Basilica group, for p an odd prime. Then
the semigroup generated by a and b is free. Consequently, the group G is of
exponential growth.

Proof. Let u and v be two different words representing the same element in
the semigroup generated by a and b, and with ρ = max(|u|, |v|) minimal. We
note that |u|b ≡p |v|b, where |u|b denotes the b-length in u, which is equivalent
to the number of occurrences of b in u. A direct check shows that ρ ≥ 4.

Suppose first that u contains no b’s. Therefore, we have u = ai =
ψ−1((1, . . . , 1, bi)), for some i ∈ N. Since |v|b is a non-zero multiple of p,
one deduces that v1 is a non-empty word, where ψ(v) = (v1, . . . , vp). Indeed,
every component of ψ(v) contains an a. Certainly |v1| < ρ, and this contra-
dicts the minimality of ρ. So the number of occurrences of b in u is at least
one.

Suppose that both |u|b ≡p |v|b ≡p 1. Apart from the possibilities amb,
for m ∈ N, all sections of u and v will have length strictly less than |u|
and |v|, respectively. To not contradict the minimality of ρ, we must have
u = am1b = ψ−1((1, . . . , 1, bm1a)σ) and v = am2b = ψ−1((1, . . . , 1, bm2a)σ)
for some m1,m2 ∈ N. However, as noted above, all sections of bm1a and bm2a
decrease in length. Hence, |u|b ≡p |v|b ≡p k for k > 1. Now in this case, all
sections of u and v have length strictly smaller than u and v respectively.
This again contradicts the minimality of ρ, and the proof is complete. �

Lemma 6.2. For p a prime, the p-Basilica group G is amenable but not ele-
mentary subexponentially amenable. In particular it is not elementary amenable.

Proof. For p = 2, the result follows from [22, Prop. 13] and [9]. Hence we
assume that p is odd. Since the p-Basilica group G is a bounded automata
group, from [7] it follows that G is amenable. So it suffices to show that
G is not elementary subexponentially amenable. Since G is weakly regular
branch over G′, from [24, Cor. 3] the result follows provided that ψu(StG′(u))
contains G for some vertex u. We observe that

ψ([b−1, a]p) = (1, p−2. . . , 1, b−p, bp) and ψ([a, bp]) = (1, p−1. . . , 1, [b, a]),

thus ψu([b−1, a]p) = a and ψu([a, bp]) = b, where u = xpxp. This completes
the proof. �
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6.2. An L-Presentation

For an alphabet S, we denote by FS the free group on S. A group G has
an L-presentation, also called endomorphic presentation, if there exists an
alphabet S, sets Q and R of reduced words in FS , and a set Φ of group
homomorphisms φ : FS → FS such that G is isomorphic to a group with the
following presentation: 〈

S | Q ∪
⋃

φ∈Φ∗
φ(R)

〉
,

where Φ∗ is the monoid generated by Φ; that is, the closure of {1}∪Φ under
composition.

An L-presentation is finite if S, Q, R are finite and Φ = {φ} consists
of just one element. Finite L-presentations have been computed for the first
Grigorchuk group [26], the Brunner–Sidki–Vieira group [11], the Grigorchuk
supergroup [5], the Fabrykowski–Gupta group [3], the Gupta–Sidki 3-group
[3], and the twisted twin of the Grigorchuk group [8].

An L-presentation for the Basilica group is given in [22], and this L-
presentation is not finite, since the corresponding set Φ consists of more than
one element. This is also the case for the L-presentations of the p-generator
Basilica groups acting on the p-adic tree and generalised Basilica groups; see
[30] and [29] respectively.

Following the strategy in [22, Sec. 4], one can easily check that the
p-Basilica groups have the following L-presentation.

Theorem 6.3. Let G be a p-Basilica group, for a prime p. The group G has
the presentation

G =
〈
a, b | ξk

(
θm([a, abl

])
)

= 1 for k,m ∈ N ∪ {0} and l ∈ {1, . . . , p − 1}〉,
where

ξ : a �→ bp and θ : a �→ abp+1

b �→ a b �→ b

are endomorphisms of F{a,b}.

6.3. Virtually Nilpotent Quotients and Maximal Subgroups

In this final subsection, we study nilpotency and virtual nilpotency of quo-
tients of a p-Basilica group G, and we prove Theorem D about maximal
subgroups of G. The following lemma will be useful for both purposes.

Lemma 6.4. Let G be a p-Basilica group, for a prime p. Then G has a proper
quotient isomorphic to Wp(Z).

Proof. Let L = ψ−1(G′ ×· · ·×G′). We have G = A〈b〉, and on the other hand
ψ(A) = B × · · · × B by Theorem 3.5(i). Hence ψ induces an isomorphism
between G/L and the semidirect product (B/G′ × · · · × B/G′) � 〈ψ(b)〉.
Observe that ψ(b) = (1, . . . , 1, a)σ acts as σ on the direct product of p copies
of B/G′, and that ψ(bp) = (a, . . . , a) acts trivially. If we set N = L〈bp〉
then it is clear that N � G and that G/N ∼= Wp(Z), since B/G′ ∼= Z by
Theorem 3.3(ii). �
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Recall from Corollary 4.3 that the p-Basilica groups are just non-solvable.
In [16, Sec. 8.3] it was shown that the Basilica group is not just non-nilpotent.
On the other hand, by [16, Lem. 8.3.5 and Prop. 8.3.6], all proper quotients
of the Basilica group are virtually nilpotent. We extend these results to the
p-Basilica groups for all primes p.

Theorem 6.5. Let G be a p-Basilica group, for a prime p. Then:

(i) The group G is not just non-nilpotent.
(ii) Every proper quotient of G is virtually nilpotent, but G itself is not

virtually nilpotent.

Proof. (i) By Lemma 6.4, the group G has a proper quotient isomorphic to
Wp(Z). By the main result in [10], this wreath product is not nilpotent.
Hence, G is not just non-nilpotent.

(ii) From Theorem 4.1(ii), the map ψ induces an embedding of G/G′′ into
the wreath product Wp(G/γ3(G)). Since the latter is virtually nilpotent,
the quotient G/G′′ is also.

Now since G is weakly regular branch over G′ and G/G′′ is virtu-
ally nilpotent, it follows that every proper quotient of G is also virtu-
ally nilpotent by [17, Thm. 4.10]. On the other hand, the group G is
not virtually nilpotent by Gromov’s celebrated theorem [23], in light of
Theorem 6.1. �

Let us now consider the maximal subgroups of G. We first prove that G
does not possess maximal subgroups of infinite index. The proof is analogous
to that of [17, Sec. 4.4], however with a necessary change to the end of [17,
Prop. 4.27]. Due to the proof being so similar, we refer the reader to [17,
Sec. 4.4], and only record here the part that needs to be changed.

Recall that a subgroup H of a group G is prodense if HN = G for all
non-trivial normal subgroups N of G. Since a maximal subgroup of infinite
index is a proper prodense subgroup, it suffices to show that there are no
proper prodense subgroups in a p-Basilica group G. For H a proper prodense
subgroup of G, by [17, Lem. 3.1 and Thm. 3.2], for all vertices u ∈ T , the
subgroup ψu(StH(u)) is a proper prodense subgroup of G. We consider a
prodense subgroup H of G, and seek a vertex u such that ψu(StH(u)) = G,
which then proves the theorem.

As in [17, Prop. 4.27], there is a vertex v such that either ab, b−1a ∈
ψv(StH(v)) or ba, b−1a ∈ ψv(StH(v)). In the former case, we obtain a2 ∈
ψv(StH(v)). Since p is an odd prime, it follows that b−1ap ∈ ψv(StH(v)). Now
ψ((b−1ap)p) = (a−1bp, . . . , a−1bp) and ψ(a−1bp) = (a, . . . , a, b−1a). There-
fore, for u = vx1x1, we have either a, ab ∈ ψu(StH(u)) or a, ba ∈ ψu(StH(u)),
and we are done. In the latter case, we have ba, b−1a ∈ ψv(StH(v)), and so
b2 ∈ ψv(StH(v)). As before, we obtain bpa = ψ−1((a, . . . , a, ab)) ∈ ψv(StH(v)).
Setting u = vx1, we see that a, ba ∈ ψu(StH(u)) and the result follows.

We conclude by showing the existence of non-normal maximal subgroups
in the p-Basilica groups.
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Proposition 6.6. Let G be a p-Basilica group, for p an odd prime. Then for
every prime q such that p divides q−1, the group G has a non-normal subgroup
of index q.

Proof. By Lemma 6.4, the group G has a quotient isomorphic to Wp(Z),
and so also a quotient isomorphic to Wp(Z/qZ). Thus it suffices to find a
non-normal subgroup of index q in the latter group.

Let V = Z/qZ × · · · × Z/qZ be the base group of Wp(Z/qZ). The char-
acteristic polynomial corresponding to the action of σ on V is Xp − 1, which
by the condition that p divides q −1, has p different roots in Z/qZ. Let λ �= 1
be one of these roots, and let U = 〈u〉 be the eigenspace of λ in V . Then we
can write V = U × K for a suitable subgroup K. If we set H = K〈σ〉 then
H has index q in Wp(Z/qZ). At the same time, H is not a normal subgroup
of Wp(Z/qZ), since otherwise [u, σ] = uλ−1 �= 1 belongs to U ∩ H = 1. �

Observe that there are actually infinitely many non-normal maximal
subgroups in a p-Basilica group, due to Dirichlet’s theorem about primes in
arithmetic progressions.

We conclude by remarking that some of the results (except those related
to the p-CSP) of this paper carry through to the more general m-Basilica
groups, for m ∈ Z≥2. For this reason, we restrict ourselves to consider only
prime numbers. As already pointed out in the introduction, we refer the
reader for more generalisations of the Basilica group to [29, Sec. 5-8].
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