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Abstract
Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for 
clinical and scientific studies. In recent years, a number of novel deep learning architectures have been published reporting 
superior performance, or even human-level accuracy, compared to previous approaches on public mitochondria segmenta-
tion datasets. Unfortunately, many of these publications make neither the code nor the full training details public, leading 
to reproducibility issues and dubious model comparisons. Thus, following a recent code of best practices in the field, we 
present an extensive study of the state-of-the-art architectures and compare them to different variations of U-Net-like models 
for this task. To unveil the impact of architectural novelties, a common set of pre- and post-processing operations has been 
implemented and tested with each approach. Moreover, an exhaustive sweep of hyperparameters has been performed, running 
each configuration multiple times to measure their stability. Using this methodology, we found very stable architectures and 
training configurations that consistently obtain state-of-the-art results in the well-known EPFL Hippocampus mitochondria 
segmentation dataset and outperform all previous works on two other available datasets: Lucchi++ and Kasthuri++. The 
code and its documentation are publicly available at https:// github. com/ danif ranco/ EM_ Image_ Segme ntati on.
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Introduction

Recent imaging methods in electron microscopy (EM) 
allow scientists to identify subcellular organelles such as  
vesicles or mitochondria with nano-scale precision. Mito- 
chondria play an important role in some crucial functions 

in the cell, such as energy production, signaling, differen-
tiation, cell growth and death (Tait & Green, 2012). For 
that reason, the automated and accurate segmentation of 
mitochondria is especially relevant for basic research in 
neuroscience, but in clinical studies as well, since their 
number and morphology are related to severe diseases 
such as cancer (De Moura et al., 2010; Fulda et al., 2010; 
Wallace, 2012), Parkinson (Poole et al., 2008) or Alzhei-
mer disease (De Moura et al., 2010).

In the past decade, advances in computer vision, espe-
cially those based on deep learning (DL), have helped sci-
entists to automatically quantify the size and morphology 
of cells and organelles in microscopy images (Moen et al., 
2019; Meijering, 2020). However, with an increasing num-
ber of DL-based bioimage segmentation publications every 
year, there is a lack of enough benchmarks for different 
image modalities and segmentation problems to compare 
state-of-the-art methods under the same conditions. Moreo-
ver, DL methods are usually too data-specialized, mak-
ing it difficult to identify those approaches that perform 
well on datasets different from those they have been tested 
on (Isensee et al., 2021). On top of that, many of such 
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approaches are published without their supporting code 
and image data, leading to major reproducibility and relia-
bility problems. Such issues have not gone unnoticed. They 
have become the main target even for recently proposed 
challenges (https:// paper swith code. com/ rc2020) where the 
machine learning community aims at reproducing the com-
putational experiments and verifying the empirical results 
already published at top venues.

As pointed out by recent works (Bello et al., 2021; Isensee 
et al., 2021), while many publications insist on presenting 
architectural novelties, the overall performance of a network 
depends substantially on its corresponding pre-processing, 
training, inference and post-processing strategies. Even 
though such choices play a critical role in the final results, 
very often they tend to be omitted in the method descriptions 
and their comparisons with competing approaches. Another 
issue inherent to the use of deep learning architectures (and 
frequently not discussed in publications) is the sometimes 
not negligible variability of the results produced by different 
executions of the same architecture and training configu-
ration. Despite programmatically setting all initial random 
seeds, the non-deterministic nature of the graphical process-
ing units (GPUs) introduces variations from execution to 
execution, resulting in slightly different performances. This 
variability is usually not taken into account when presenting 
results, although it could be crucial to select models, train-
ing, and inference strategies that repeatedly lead to stable 
results.

In the particular task of mitochondria segmentation, the 
de facto benchmark dataset adopted by the community is the 
EPFL Hippocampus dataset (Lucchi et al., 2011) (hereafter 
referred to as Lucchi dataset). Published in 2011, it contains 
two image volumes (training and test) of the same size, and 
their respective semantic segmentation labels are both pub-
lic. As the reference in the field for a decade, many methods 
have been published proposing solutions for this dataset. 
Unfortunately, most of them suffer from the aforementioned 
problems, forcing other scientists to code their own versions 
of the published algorithms, often knowing too few details 
about their original implementations, training, and inference 
methodologies.

To address these deficiencies in the field, we first re-
implemented the top-performing DL architectures for the 
Lucchi dataset following the descriptions of their original 
publications. After our own modifications, an extensive 
hyperparameter search, and multiple runs of the same con-
figuration, some of these methods occasionally achieved 
their claimed results. Next, we compared the performance of 
state-of-the-art biomedical semantic segmentation architec-
tures in the same dataset, evaluated under the same training 
and inference framework. In particular, we focused on the 
stability of the resulting metric values after several execu-
tions of the same configuration and scrutinized the impact 

of different popular post-processing and output reconstruc-
tion methods. Finally, based on our findings, we propose 
light encoder-decoder architectures that consistently lead to 
robust state-of-the-art results in Lucchi as well as in other 
public mitochondria segmentation datasets.

In brief, our main contributions are as follows: 

1. We performed a thorough study on the reproducibil-
ity and stability of the top-performing DL segmenta-
tion methods published for the Lucchi dataset, expos-
ing major issues to consistently achieve their claimed 
results.

2. We made a comprehensive comparison of the perfor-
mance of the most popular deep learning architectures 
for biomedical segmentation using the Lucchi dataset, 
and show their stability under the same training and 
post-processing conditions.

3. We propose different variations of light-weight encoder-
decoder architectures, together with a training/inference 
workflow, that lead to stable and robust results across 
mitochondria segmentation datasets.

Related Work

In the last decade, DL approaches have become domi-
nant in the most common target applications of com-
puter vision  (Garcia-Garcia et  al., 2018; Minaee et  al., 
2021) including semantic segmentation for biomedical 
images  (Haque & Neubert, 2020; Litjens et  al., 2017). 
Semantic segmentation aims at associating each pixel in an 
image to a class label. The first steps towards resolving this 
problem using DL were taken by means of fully convolution 
networks (FCNs) (Long et al., 2015). More specifically, fully 
connected layers were replaced by convolutional layers in 
some classic networks (Krizhevsky et al., 2012; Simonyan 
& Zisserman, 2014; Szegedy et al., 2015) and information 
from intermediate layers was fused to upsample the feature 
maps encoded by the network, producing a pixel-wise classi-
fication. This idea of encoding the image through a convolu-
tional neural network (CNN), outputting a vector feature map 
(also called bottleneck), and recovering its original spatial 
shape in a decoding path was further extended in subsequent 
works (Noh et al., 2015; Ronneberger et al., 2015; Milletari 
et al., 2016; Jégou et al., 2017; Badrinarayanan et al., 2017; 
Chaurasia & Culurciello, 2017). A major breakthrough was 
the U-Net (Ronneberger et al., 2015), which extended the 
encoding and decoding idea by making an upsampling path 
with up-convolutions after the bottleneck to recover the origi-
nal image size. In addition, the authors proposed skip con-
nections between the contracting and the expanding path, 
allowing the upsampling path to recover fine-grained details. 
The U-Net is the baseline of numerous approaches due to 
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its success in multiple biomedical applications (Zhou et al., 
2018; Schlemper et al., 2019; Roy et al., 2018; Arganda-
Carreras et al., 2015; Gu et al., 2019; Buhmann et al., 2018; 
Ibtehaz & Rahman, 2020; Zhuang, 2018; Jin et al., 2019).

In the specific case of mitochondria segmentation, early 
works attempting to segment the Lucchi dataset (Lucchi 
et al., 2011) leveraged traditional image processing and 
machine learning techniques (Lucchi et al., 2012, 2013, 
2014a, b). In their last two works, Lucchi et al. (2014a, b) 
proposed alternative methodologies to segment mitochon-
dria on their own dataset explicitly modeling their mem-
branes. From those results, Casser et al. (2020) inferred 
a Jaccard index or intersection over union (IoU) lower 
bound value of 0.895 in the test set. The IoU is a com-
mon way of measuring the overlapping area between the 
ground truth and the produced segmentation with values 
that range from 0 to 1, where 1 represents a perfect match 
(see “Experimental setup”).

More modern approaches made use of DL architectures 
to segment the Lucchi dataset. For instance, Oztel et al. 
(2017) trained a CNN with four convolutional layers to clas-
sify 32 × 32 pixel patches extracted from the training data 
into mitochondria and background. After that, they fed the 
network with the full test images to simulate a sliding win-
dow process and applied three consecutive post-processing 
methods: 1) spurious detection to remove small false blobs, 
2) marker-controlled watershed transform (Meyer, 1994) for 
border refinement, and 3) median filtering to smooth labels 
along the z-axis. This way, they reported an IoU value of 
0.907 in the test set, which is the highest value to date. Liu 
et al. (2018) used instead a modified Mask R-CNN (He et al.,  
2017) to detect and segment mitochondria. As post-processing  
methods they performed: 1) a morphological opening to 
eliminate small regions and smooth large ones, 2) a multi-
layer fusion operation to exploit 3D mitochondria informa-
tion, and 3) a size-based filtering to remove tiny segments 
that have an IoU score below a given threshold. As a result, 
they reported an IoU value of 0.849 in the test set. Cheng 
and Varshney (2017) applied both a 2D and a 3D version 
of an asymmetric U-Net-like network. They introduced the 
stochastic downsampling method, an operation they named 
feature level augmentation. More specifically, on that down-
sampling layer, they subdivided the image into fixed square 
regions and picked random rows and columns inside them 
to select the pixels/voxels that will constitute the downsam-
pled output. Moreover, they implemented factorized con-
volutions (Szegedy et al., 2016) instead of classical ones to 
drastically reduce the number of network parameters. As 
their best result, they reported an IoU value of 0.889 in the 
test set using their 3D network. Xiao et al. (2018) employed 
a variant of a 3D U-Net model with residual blocks. In the 
decoder of the network, they included two auxiliary outputs 
to address the vanishing gradient issue. Their final output 

is the result of the ensemble prediction of the 16 possible 
3D variations (using flips and axis rotations) per each 3D 
subvolume. They reported an IoU value of 0.900 in the test 
set. In a more recent work, Casser et al. (2020) presented 
a light version of a 2D U-Net aiming to achieve real-time 
segmentation and reported an IoU value of 0.890 applying 
median Z-filtering as post-processing method.

Methods

Although architectural modifications of a basic U-Net to per-
form biomedical segmentation are continuously published, it 
is usually unclear if their claimed superiority is only due to an 
incomplete optimization of the basic network for the task at 
hand (Isensee et al., 2021; Bello et al., 2021). We hypothesize 
that, on top of answering that question, a full optimization 
can also lead to lightweight models that constantly produce 
stable and robust results across datasets. To prove it, we 
explored basic U-Net configurations together with popular 
architectural tweaks such as residual connections (He et al., 
2016a) or attention gates (Schlemper et al., 2019). Addi-
tionally, to disentangle the impact of each training choice, 
all configurations are run several times and their results are 
shown in the context of different post-processing and output 
reconstruction methods.

Proposed Networks

Building upon the state of the art, we have explored differ-
ent lightweight U-Net-like architectures in 2D and 3D. The 
general scheme is represented in Fig. 1, where our basic and 
Attention U-Net models use convolutional blocks as process-
ing blocks (two 3 × 3 convolutional layers, Fig. 2a) and our 
Residual U-Net is formed by full pre-activation (He et al., 
2016b) residual blocks (two 3 × 3 convolutional layers with 
a shortcut, Fig. 2b). Both basic and Residual U-Net use con-
catenation as feature merge operation while our Attention 
U-Net introduces there an attention gate (Schlemper et al., 
2019). Based on a thorough hyperparameter exploration (see 
supplementary material), we found the following optimal 
configuration for each architecture:

– Basic U-Net. In 2D, it is a four-level U-Net with 16 filters 
in the initial level that get doubled on each level, drop-
out in each block (from 0.1 up to 0.3 in the bottleneck 
and reversely, from 0.3 to 0.1 in the upsampling layers), 
ELU activation functions and transposed convolutions 
to perform the upsampling in the decoder. In 3D, the 
architecture is very similar, but using 3 levels, with 28, 
36, 48 and 64 (in the bottleneck) 3D filters on each layer.

– Residual U-Net. In 2D, this network is identical to our 
best basic U-Net architecture but swapping each convo-
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lutional block by a residual block (He et al., 2016a). For 
the 3D residual approach, we achieved our best results 
going one level deeper than the non-residual 3D network 
and 28, 36, 48, 64 and 80 (bottleneck) filters per level.

– Attention U-Net. These networks are the same as Basic 
U-Net but incorporating attention gates (Schlemper et al., 
2019) in the features passed by the skip connections 
(Fig. 3). Such attention mechanism emphasizes salient 
feature maps that are in charge of the class decision and 
suppress irrelevant ones endowing the network with the 
ability to focus on relevant regions of the image.

Post‑Processing

As the network outputs are pixel-wise predictions, it is 
common practice to apply basic post-processing methods to 
improve the results. We experimented with three techniques 
and studied their impact in the final segmentation result:

– Test-time data augmentation. Inference is applied on 
the multiples of 90◦ rotations and flipped versions of each 
image. Consequently, eight versions are created in 2D 
and 16 versions in 3D. Finally, the individual transforma-

tions are undone and the results are averaged into a final 
prediction for an ensemble effect.

– Blending overlapped patches. When networks work 
on image patches, the final prediction is reconstructed 
as a mosaic of the patches predictions. The presence of 
jagged predictions on the borders of the output patches 
are a recurrent problem (Fig. 4) that can be mitigated by 
creating overlapping patches and smoothly blending the 
resulting predictions using a second order spline window 
function. Due to its computational cost, we only experi-
mented with this technique in 2D.

– Median Z-filtering. A simple median filter along the 
Z-axis (Casser et al., 2020; Oztel et al., 2017) can be used 
to correct label predictions in consecutive image slices.

Output Reconstruction

During the training of deep networks, the input images are 
commonly divided into patches due to GPU memory limita-
tions. Later, those patches need to be merged back together 
to form the final output at full-image size. In some publi-
cations, the authors specify clearly the way they infer and 
merge their predictions (Xiao et al., 2018), while in oth-
ers this process is not described (Cheng & Varshney, 2017; 
Oztel et al., 2017; Casser et al., 2020), hindering a direct 
comparison between methods’ performance. Following the 
code of good practices to show deep learning-based results 
proposed by Dodge et al. (2019), all results presented in this 
paper state the reconstruction strategy used. Namely, the 
implemented options are as follows: 

1. Per patch. The metric value corresponds to the average 
value over all patches.

2. Per image (with 50% overlap). The patches are merged 
together using 50% of overlap and the metric value is the 
average overall reconstructed images.

Fig. 1  Graphical representa-
tion of the proposed network 
architectures. Depending 
on the model of choice, the 
processing blocks can be either 
simply convolutional or residual 
blocks, while the feature merge 
operations may imply a single 
concatenation or an additional 
attention gate

downsampling

skip connection

upsampling
feature merge

operation

processing block

Input
image

Output
image

conv3x3 ELU dropout
conv3x3, ELU
conv3x3, ELU, dropout

(a)

conv3x3, ELU, dropout

conv3x3 AddELU

, , p

(b)

Fig. 2  Types of processing blocks. Convolutional blocks (a) are used 
in the U-Net and Attention U-Net architectures, and residual blocks 
(b) are used in the Residual U-Net
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3. Full image. Inference is applied on the full-sized 
images. The metric value is the average over all images. 
This strategy is not always feasible, since it depends on 
the input image size and the available GPU memory.

Experimental Results

To test our hypothesis and focusing on model reproduc-
ibility and stability, we conducted a thorough study on the 
top-performing segmentation methods recently published 
in the Lucchi dataset. Additionally, we introduce our own 
solutions, compare them with state-of-the-art approaches in 

biomedical semantic segmentation and test them in other 
public datasets. In all our experiments, we present average 
scores obtained running the same configuration 10 times 
(hereafter referred as a run) together with the corresponding 
standard deviation.

Datasets

All the experiments performed in this work are based on the 
following publicly available datasets:

EPFL Hippocampus or Lucchi dataset (Lucchi et al., 
2011). The original volume represents a 5 × 5 × 5 �m section 
of the CA1 hippocampus region of a mouse brain, with an 
isotropic resolution of 5 × 5 × 5 nm per voxel. The volume 
of 2048 × 1536 × 1065 voxels was acquired using focused 
ion beam scanning electron microscopy (FIB-SEM). The 
mitochondria of two subvolumes formed by 165 images of 
1024 × 768 pixels were manually labeled by experts (Fig. 5 
(red)), and are commonly used as training and test data.

Lucchi++ dataset (Casser et al., 2020). This is a version 
of the Lucchi dataset after two neuroscientists and a senior 
biologist re-labeled mitochondria by fixing misclassifica-
tions and boundary inconsistencies.

Kasthuri++ dataset  (Casser et al., 2020). This is a 
re-labeling of the dataset by Kasthuri et al. (2015) (Fig. 5 
(blue)). The volume corresponds to a part of the soma-
tosensory cortex of an adult mouse and was acquired using 
serial section electron microscopy (ssEM). The train and 
test volume dimensions are 85 × 1463 × 1613 voxels and 
75 × 1334 × 1553 voxels respectively, with an anisotropic 
resolution of 3 × 3 × 30 nm per voxel.
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Fig. 3  Proposed 2D Attention U-Net architecture. Example with three downsampling levels and a detailed description of the attention gates used 
in the skip connections

Fig. 4  Border effect in output image reconstruction. From left to 
right: output image reconstructed from patches with visible jagged 
predictions; and output image reconstructed using both the blending 
and ensemble techniques. Blue and red boxes show zoomed areas on 
both images
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Experimental Setup

Evaluation metrics. We evaluate our methods using the Jac-
card index of the positive class or foreground IoU, defined as 
IoU

F
= TP∕(TP + FP + FN) where TP are the true positives, 

FP the false positives and FN are the false negatives. As a 
convention, the positive class is foreground and the negative 
class is background. The background IoU is defined likewise 
by swapping the positive and negative classes. To obtain 
these values, the probability image returned by the network 
is binarized using a threshold value of 0.5. Nevertheless, to 
compare our results with other related works we also define 
the overall IoU as IoU

O
= (IoU

F
+ IoU

B
)∕2 where IoU

F
 and 

IoU
B
 are the foreground and background IoU, respectively. 

Notice the high proportion of background pixels typically 
inflates the overall IoU score, resulting in greater values than 
the foreground IoU.

Training setup and data augmentation. To find the 
best solutions, we made an exhaustive search of hyperpa-
rameters and training configurations, exploring different 
loss functions, optimizers, learning rates, batch sizes, and 
data augmentation techniques. We explored as well the use 
of different input patch sizes, their selection method (ran-
dom or systematic), and the discarding of image patches 
with low foreground class information (Oztel et al., 2017). 
When selecting a random patch, we define a probability 
map to choose patches with a higher probability of contain-
ing mitochondria, therefore addressing the class imbalance 
problem. Finally, we have also studied the effect of selecting 
the validation set as either consecutive training images or 
at random. Here we describe the best training configura-
tion found. However, the details of our exhaustive search are 
available in the supplementary material. In particular, for the 
2D networks, we minimize the binary cross-entropy (BCE) 
loss using the Stochastic Gradient Descent (SGD) optimizer, 

0.99 momentum and no decay, with a learning rate of 0.002, 
a batch size value of 6 and using a patch size 256 × 256 
pixels. The validation set is formed by 10% of the training 
images selected at random. We use a GeForce GTX 1080 
GPU card to train the network for 360 epochs, completing 
an epoch when all training data is explored, with a patience 
established at 100 epochs monitoring the validation loss and 
picking up the model that performs best in the validation 
set. Moreover, we apply on-the-fly data augmentation (DA) 
with random rotations and vertical and horizontal flips. For 
the 3D networks, the same hyperparameters as the 2D are 
used but we employ elastic transformations as well (in 2D 
we did not observe an improvement), using a patch size of 
80 × 80 × 80 voxels .

Experiments on Lucchi Dataset

Reproducing Top State‑Of‑The‑Art Methods

We aimed at reproducing the state-of-the-art deep learning-
based methods that report top performance in the Lucchi 
dataset published by Cheng and Varshney (2017), Casser 
et al. (2020), Xiao et al. (2018) and Oztel et al. (2017). Only 
the code by Casser et al. (2020) is publicly available, so we 
plugged their network architecture into our training work-
flow. The code from the rest of the methods was unsuccess-
fully requested to their corresponding authors.

In all cases, a first implementation attempt was made fol-
lowing the methodology and exact parameters described in 
each publication. When finding missing information, we pro-
ceeded using the most common practice in the field. In addi-
tion, following the same procedure we use for our own mod-
els, we modified the original configuration (i.e., architecture 
and training workflow) aiming at improving the results and 
their stability (full details available in the supplementary 
material). These configurations are hereafter referred to as 
original and modified respectively. A systematic search of 
the best hyperparameters and training configurations was 
performed and the results are shown in Table 6.

The original 2D network configuration by Cheng and 
Varshney (2017) produces results with high standard devia-
tion, probably due to the high learning rate employed (0.05), 
even though it is reduced when reaching the 50% and 75% of 
total epochs. Our modified configuration differs in the opti-
mizer used (Adam instead of SGD) and learning rate (fixed to 
0.0001). Additionally, we performed extra DA with random 
rotations, removed the dropout layers, reduced the number of 
epochs and extracted 12 random patches per training image 
instead of just one. Without post-processing (none is used in 
the original publication), the foreground IoU value reported 
(0.865) can only be reached through our modified configura-
tion and by taking the maximum values of the 50% overlap 
or full image reconstruction strategies. Even better values 

Fig. 5  Sample images from public mitochondria datasets. From left 
to right: Lucchi and Kasthuri++ data sample with their correspond-
ing binary mask. Blue and red boxes show zoomed areas on both 
images
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can be obtained thanks to post-processing. The 3D approach 
of the same authors, Cheng and Varshney (2017), produces 
IoU values close to 0 in its original form, since using the 
proposed learning rate (0.1), the network gets easily trapped 
in local minima. Moreover, the subvolume shape adopted, 
128 × 128 × 96 pixels , makes train/validation data splitting 
difficult, so we train the network until convergence with no 
validation data. Our modified configuration produces better 
results but far from the reported ones and highly unstable 
(0.800 in its best run vs the reported 0.889).

The original configuration proposed by Casser et al. 
(2020) reaches high IoU values with low standard deviation 
as well. We modified it by selecting two random patches 
per training image instead of one and using a probability 
map to prioritize patches having mitochondria pixels in the 
center, which leads to more stable results. The maximum 
value was obtained by applying Z-filtering to the predictions 
over full test images, measuring 0.870 of foreground IoU. 
In the original code, the authors optimized the training by 
using the test set as validation set, which could explain their 
better reported value.

The work presented by Xiao et  al. (2018) provided a 
detailed explanation of their training procedure, architecture 
and output reconstruction strategy. Thus, the only modifica-
tion we made is the use of elastic transformations in DA. As 
it is shown in Table 1, this change improves substantially the 
results obtained. They merge the predictions with overlap and 
ensemble, so to be fair, the maximum value of patch merging 
using 50% overlap and ensemble predictions should be used for 
comparison. They reported 0.900 of foreground IoU compared 
to the maximum 0.880 achieved by our modified version.

Finally, the original configuration proposed by Oztel 
et al. (2017) produces very low foreground IoU values. We 
reproduced their model and tried modifying their network by 
adding more non-linearities (ReLU), changing the dropout 
values or the feature maps used, but the results obtained 
are far from those presented by the authors. The number 
of parameters in the original network compared with other 
state-of-the-art approaches is also relatively low (0.14M). 
Furthermore, we implemented their post-processing pipe-
line, whose results are presented in Table 2. We adapted it to 
specifically improve the segmentation made by the proposed 
network. Although the final metric value increased by a large 
margin, our results are far from their reported IoU.

The instructions to reproduce all models can be found at our  
official documentation site: https:// em- image- segme ntati on. 
readt hedocs. io/ en/ latest/ manus cripts/ stable_ mitoc hondr ia. html. 
In addition, the details of each experiment can be found in the 
supplementary material, with a link to the template that repro-
duces its results.

Proposed Networks Vs. State‑Of‑The‑Art Networks 
for Semantic Segmentation

Here, we introduce the performance of our proposed archi-
tectures together with a study in-depth of the main state-
of-the-art semantic segmentation networks for natural and 
biomedical images. Namely, FCN 8/32 (Long et al., 2015), 
MultiResUNet (Ibtehaz & Rahman, 2020), MNet (Fu et al., 
2018), Tiramisu (Jégou et al., 2017), U-Net++ (Zhou et al., 
2018), 3D Vanilla U-Net  (Çiçek et al., 2016) and nnU-
Net (Isensee et al., 2021). All implementations have been 
obtained or ported from their official sites and all networks 
have been optimized under the same conditions: same train-
ing and validation partitions, DA, optimizers and learning 
rate ranges (see supplementary material). The case of the 
nnU-Net is special since it is designed to optimize the whole 
segmentation pipeline. For a fair comparison, we extracted 
the optimal architecture found following the nnU-Net regular 
processing and plugged it into our own workflow.

All 2D networks use an input patch size of 256 × 256 
pixels, while 3D networks use 80 × 80 × 80 voxels subvol-
umes to exploit the isotropic resolution of the Lucchi data-
set. The results from the best configuration found for each 
network are shown in Table 3. Notice the 3D networks do 
not have results using full image reconstructions due to 
GPU memory limitations, as the whole dataset should be 
fed to the network. Similarly, blending estimation was not 
implemented in 3D networks given their computational 
cost.

Performance of state-of-the-art biomedical segmenta-
tion networks. The results of Tiramisu (Jégou et al., 2017), 
MNet  (Fu et al., 2018), nnU-Net  (Isensee et al., 2021), 
MultiResUNet (Ibtehaz & Rahman, 2020) and 3D Vanilla 
U-Net (Çiçek et al., 2016) are below 0.880 of foreground 
IoU even when using output reconstructions with 50% of 
overlap and post-processing techniques such as ensemble 

Table 2  Foreground IoU results by the original and modified configurations of (Oztel et al., 2017) using their consecutive post-processing meth-
ods, i.e., Spurious Detection is applied over Full Images, then they are passed through Watershed, and finally through Z-filtering

Full Image Spurious Detection Watershed Z-Filtering

Original 0.425±0.080 0.426±0.091 0.540±0.100 0.573±0.106
Modified 0.451±0.042 0.449±0.067 0.562±0.057 0.599±0.067
Maximum 0.500 0.539 0.619 0.683
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predictions or Z-filtering. On top of these networks, the 
U-Net++ achieved the best results, scoring 0.881 ± 0.004 of 
foreground IoU. The 3D Vanilla U-Net, nnU-Net, U-Net++ 
and MNet seem to produce stable results (low standard 
deviation), while Tiramisu and MultiResUNet have larger 
variability within their results. Besides that, the difference in 
their number of trainable parameters is remarkable. The 3D 
Vanilla U-Net, nnU-Net and U-Net++ models have between 
2× and 5× more parameters than the other state-of-the-art 
approaches. Concerning the FCN networks (Long et al., 
2015), the FCN32 reports low IoU values while the FCN8 
achieves results comparable with our best 2D U-Net configu-
ration. Nevertheless, the number of trainable parameters in 
FCN8 is 50.38M compared to less than 2M in our proposed 
2D models.

Performance of our proposed networks. Regarding our 
proposed approaches (“Proposed networks”), the best val-
ues were obtained with the 2D U-Net and its version with 
attention gates: 0.888 ± 0.002 and 0.890 ± 0.002 applying 
test-time data augmentation and Z-filtering post-processing 
respectively. Our 3D networks do not reach the perfor-
mance obtained with 2D versions. This may be explained 
by inspecting mitochondria labels in 3D, we observed they 
frequently lose shape continuity through slices, penalizing 
the learning capacity of 3D networks (see Fig. S2.2).

Remarkably, our 3D networks have three times fewer 
training parameters than our 2D approaches, leading to more 
computationally efficient models. To complete the overview 
of the state-of-the-art networks and architectures, we experi-
mented with Squeeze-and-Excitation (SE) blocks (Hu et al., 
2018) in our proposed 2D and 3D models. These blocks 
perform dynamic channel-wise feature recalibration by 
squeeze and excite operations. The Squeeze operation con-
sists of collecting global spatial information into a channel 
descriptor using global average pooling. After that, features 
are recalibrated by the excite operation, which emphasizes 
channel-wise features with a simple gating mechanism based 
on a ReLU and a Sigmoid activation. Their best results are 
obtained with SE blocks everywhere except the bottleneck, 
as suggested by Roy et al. (2018). Nevertheless, we experi-
mented as well with inserting SE blocks after every convolu-
tional layer. As shown in Table 3, these blocks do not imply 
a boost in performance in this case.

A full description of the configurations tested can be 
found in Section S3 (supplementary material).

Comparison with Reported Results

We have summarized in Table 4 the reported results of the 
top-performing published methods, together with those 
of state-of-the-art approaches and our proposed networks. 
All reproduced values correspond to the best configuration 
found, i.e., using the optimal pre-processing, architecture, 

output reconstruction, and post-processing strategies for 
each method. The availability of original code, including 
that of the present paper, is also indicated. Notice the gap 
between the averaged IoU and the reported values increases 
with the standard deviation, underling the importance of 
finding stable configurations so as not to depend on a large 
computation budget (Dodge et al., 2019).

Our proposed 2D U-Net and Attention U-Net models, 
together with the FCN8 model reached the highest repro-
ducible foreground IoU score with a value of 0.893. In par-
ticular, the 2D Attention U-Net achieved a slightly higher 
average score in a very consistent manner. Best values were 
obtained using blending and ensemble for output reconstruc-
tion and Z-filtering as post-processing (see Fig. S1.1 for an 
example of some of the proposed networks’ predictions). As 
opposed to other approaches, the standard deviation of our 
results is consistently low, guaranteeing good performance 
and reducing the number of experiments needed to reach 
optimal segmentation.

As expected, the lack of code associated with a publi-
cation enormously hinders the reproduction of the claimed 
results. Interestingly, in the case of the 2D approach by 
Cheng and Varshney (2017), our implementation improved 
over their published results, stressing the benefits of optimiz-
ing the whole segmentation workflow. Notice there are two 
table entries for results with nnU-Net (Isensee et al., 2021): 
one using their entire training framework, and one plugging 
the best architecture found by their framework into ours.

Ablation Study

To investigate the relevance of each component in our pro-
posed networks, we performed an ablation study of our 2D 
U-Net baseline architecture. We compared six ablated versions 
with incremental changes: 1) a baseline four-level 2D U-Net 
model containing ReLU activations, Glorot uniform kernel 
initialization (Glorot & Bengio, 2010), 16 feature maps in 
the first level of the network that are doubled on each level, 
and no regularization or DA; 2) the baseline with basic DA 
(random rotations and horizontal and vertical flips); 3) add-
ing batch normalization 4) adding dropout as regularization 
method; 5) using ELU as activation function ( � = 1 ); 6) using 
He normal (He et al., 2015) as kernel initialization; 7) adding 
attention gates (Schlemper et al., 2019) in the skip connections.

The evaluation results on the Lucchi dataset for each case 
are shown in Table 5. Notice the IoU values vary signifi-
cantly if they are provided by patch or by reconstructing the 
final output, highlighting once more the need of specify-
ing the framework chosen when presenting the results. The 
use of DA together with dropout clearly outperforms the 
baseline architecture by a large margin. Batch normalization 
decreases the performance, so it was not included in succes-
sive models. In the same way, the usage of ELU improves 

446 Neuroinformatics (2022) 20:437–450



1 3

over the use of ReLU activation functions. Conversely, 
changing the kernel initialization from Glorot uniform to 
He normal has marginal effects in the final result, so either 
can be used. Finally, introducing attention in the skip con-
nections, as suggested by Schlemper et al. (2019), helped 
increasing the network performance and maintaining results 
stability.

A comprehensive study on how the different IoU values 
of the ablation results relate to the segmented size and shape 
of the reconstructed mitochondria is presented in Section S4 
(supplementary material).

Results on Lucchi++ and Kasthuri++

To test how well the best solutions found for Lucchi would 
generalize in other datasets, we applied the same configu-
rations to Lucchi++ and Kasthuri++ and compared their 
performance with that reported by Casser et al. (2020). In 
Table 6, we can see our models outperform all previously 
reported results by a large margin. Since these datasets cor-
rected the mitochondria label continuity through the slices, 
the best performance is obtained with 3D networks. This 
supports the hypothesis that the Lucchi dataset labeling 
inconsistencies hinder the learning capacity of the 3D net-
works, which are usually expected to perform better than 2D 
networks in such a context (Wolf et al., 2018). Moreover, 
the Kasthuri++ dataset is anisotropic (lower resolution in 
the z-axis). Therefore, we modified our proposed 3D net-
works by removing the z-axis downsampling in their pooling 

Table 4  Reported vs. reproduced scores in the Lucchi dataset. The 
Reported values correspond to the scores claimed by authors of each 
publication or the maximum score obtained by us. The Reproduced 

values refer to the maximum, mean and standard deviation obtained 
while reproducing each corresponding method. Best scores of each 
column are presented in bold

Foreground IoU Overall IoU

Description Implementation Code Reported Reproduced Reported Reproduced

FCN 32 Ours using (Dai et al., 2016) ✓ 0.688 0.688 (0.680±0.006) 0.835 0.835 (0.831±0.003)
MultiResUNet Ours using (Ibtehaz & Rahman, 2020) ✓ 0.847 0.847 (0.824±0.010) 0.919 0.919 (0.902±0.007)
2D CNN (Cheng & Varshney, 2017) 0.865 0.883 (0.871±0.008) - 0.938 (0.932±0.004)
3D Vanilla U-Net Ours using (Çiçek et al., 2016) ✓ 0.866 0.866 (0.857±0.006) 0.929 0.929 (0.924±0.003)
Tiramisu Ours using (Jégou et al., 2017) ✓ 0.872 0.872 (0.857±0.017) 0.932 0.932 (0.924±0.009)
2D U-Net (Casser et al., 2020) ✓ 0.878 0.865 (0.853±0.015) 0.935 0.930 (0.922±0.007)
3D SE U-Net Ours ✓ 0.879 0.879 (0.874±0.007) 0.936 0.936 (0.933±0.004)
3D Attention U-Net Ours ✓ 0.880 0.880 (0.876±0.003) 0.936 0.936 (0.934±0.002)
nnU-Net framework (Isensee et al., 2021) ✓ 0.882 - 0.938 -
MNet Ours using (Fu et al., 2018) ✓ 0.883 0.883 (0.874±0.007) 0.938 0.938 (0.929±0.004)
2D Residual U-Net Ours ✓ 0.885 0.885 (0.880±0.004) 0.939 0.939 (0.937±0.002)
3D U-Net Ours ✓ 0.885 0.885 (0.878±0.004) 0.939 0.939 (0.935±0.002)
nnU-Net Ours using (Isensee et al., 2021) ✓ 0.888 0.888 (0.881±0.005) 0.941 0.941 (0.937±0.003)
3D Residual U-Net Ours ✓ 0.888 0.888 (0.883±0.002) 0.941 0.941 (0.938±0.001)
2D SE U-Net Ours ✓ 0.888 0.888 (0.882±0.003) 0.941 0.941 (0.937±0.002)
U-Net++ Ours using (Zhou et al., 2018) ✓ 0.888 0.888 (0.884±0.003) 0.941 0.941 (0.938±0.001)
3D CNN (Cheng & Varshney, 2017) 0.889 0.800 (0.738±0.034) - 0.894 (0.860±0.018)
2D U-Net+Z-filtering (Casser et al., 2020) ✓ 0.890 0.870 (0.858±0.015) 0.942 0.931 (0.925±0.007)
FCN 8 Ours using (Dai et al., 2016) ✓ 0.893 0.893 (0.888±0.002) 0.943 0.943 (0.941±0.001)
2D U-Net Ours ✓ 0.893 0.893 (0.888±0.002) 0.942 0.942 (0.941±0.001)
2D Attention U-Net Ours ✓ 0.893 0.893 (0.890±0.002) 0.943 0.943 (0.942±0.001)
3D U-Net (Xiao et al., 2018) 0.900 0.881 (0.875±0.003) - 0.937 (0.934±0.002)
CNN+3 Post-proc. (Oztel et al., 2017) 0.907 0.683 (0.599±0.067) - 0.800 (0.757±0.106)

Table 5  Ablation study of our full 2D model. From the top to the bot-
tom, on each row, incremental modifications are applied based on the 
previous configuration, except batch normalization, which was dis-
carded as it decreases the performance

Foreground IoU

Method Per Patch 50% Overlap Full Image

Baseline - 2D U-Net 0.725±0.020 0.748±0.027 0.739±0.002
+ DA 0.859±0.007 0.872±0.003 0.871±0.004
(+ Batch norm.) 0.856±0.005 0.864±0.004 0.869±0.002
+ Dropout 0.870±0.003 0.880±0.002 0.881±0.002
+ ELU activation 0.873±0.003 0.880±0.001 0.881±0.002
+ He initializer 0.873±0.003 0.880±0.002 0.881±0.003
+ Attention Gates 0.875±0.003 0.882±0.003 0.884±0.002
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operations and using shallower architectures (three levels 
instead of four).

Conclusion

By a complete experimental study of state-of-the-art DL 
models with modern training workflows, we have revealed 
significant problems of reproducibility in the domain of 
mitochondria segmentation in EM data. Moreover, by dis-
entangling the effects of novel architectures from those of 
the training choices (i.e., pre-processing, data augmentation, 
output reconstruction, and post-processing strategies) over 
a set of multiple executions of the same configurations, we 
have found stable lightweight models that consistently lead 
to state-of-the-art results on the existing public datasets.

Have novel methods reached human performance? To 
answer that question, Casser et al. (2020) compared the results 
of human annotators in the Lucchi dataset, producing a fore-
ground IoU value of 0.884. This would suggest that many of 
the models presented in Table 4 outperform indeed humans 
in this task. Nevertheless, all methods fall short of the 0.907 
threshold for foreground IoU red reported by Oztel et al. 
(2017), which could be due to the annotation inconsistencies 
discussed in “Proposed networks vs. state-of-the-art networks 
for semantic segmentation”. To investigate further, we cre-
ated two slightly different versions of the mitochondria ground 
truth labels by 1-pixel morphological dilation and erosion. 
The foreground IoU value of the resulting labels against the 

original ground truth was 0.885 (dilatation) and 0.904 (ero-
sion). Thus, this enforces the idea that the dataset is not pixel-
level accurate, so it could be argued that all the methods with 
IoU values within a range of 0.009 or less can be considered 
to have similar performance. The same experiment was done 
with the ground truth labels of Lucchi++ (foreground IoU: 
0.898, 0.919) and Kasthuri++ (foreground IoU: 0.927, 0.922). 
Indeed, even the average score of many of our models outper-
form those values (Table 6). This suggests the performance on 
all three datasets has probably saturated, as new architectures 
and training frameworks cannot improve beyond the limits 
inherent to semantic segmentation and the size of the datasets.

In closing, we believe further progress in mitochondria 
segmentation in EM will require (1) larger and more com-
plex datasets (Wei et al., 2020), and (2) the adoption of a 
reproducibility checklist or set of best practices (Dodge 
et al., 2019) to report more comprehensive results and allow 
robust future comparisons.
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Table 6  Results obtained in the Lucchi++ and Kasthuri++ datasets. All our model scores correspond to optimal architectures found in Lucchi

(*) 0% overlap output reconstruction, blended ensemble and z-filtering post-processing
(a) 50% overlap output reconstruction and ensemble post-processing

Foreground IoU Overall IoU

Dataset Description Author Maximum (mean±std) Maximum (mean±std)

Lucchi++ 2D U-Net Casser et al. (2020) 0.888 - 0.940 -
2D U-Net+Z Filtering Casser et al. (2020) 0.900 - 0.946 -
2D Residual U-Net (*) Ours 0.908 0.904±0.004 0.943 0.948±0.002
2D U-Net (*) Ours 0.916 0.911±0.006 0.955 0.952±0.003
2D Attention U-Net (*) Ours 0.919 0.914±0.003 0.956 0.954±0.001
3D U-Net (a) Ours 0.923 0.915±0.007 0.958 0.954±0.004
3D Attention U-Net (a) Ours 0.923 0.912±0.008 0.959 0.953±0.004
3D Residual U-Net (a) Ours 0.926 0.919±0.005 0.960 0.957±0.003

Kasthuri++ 2D U-Net Casser et al. (2020) 0.845 - 0.920 -
2D U-Net+Z Filtering Casser et al. (2020) 0.846 - 0.920 -
2D Residual U-Net (a) Ours 0.908 0.906±0.001 0.953 0.950±0.001
2D Attention U-Net (a) Ours 0.915 0.913±0.001 0.956 0.954±0.001
2D U-Net (a) Ours 0.916 0.913±0.002 0.955 0.954±0.001
3D U-Net (a) Ours 0.934 0.932±0.001 0.965 0.965±0.001
3D Residual U-Net (a) Ours 0.934 0.933±0.001 0.966 0.966±0.000
3D Attention U-Net (a) Ours 0.937 0.934±0.001 0.967 0.966±0.001
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