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Abstract: This research proposes an optimal robotic arm speed shape in neurological surgery to
minimise a cost functional that uses an adaptive scheme to determine the brain tissue force. Until now,
there have been no studies or theories on the shape of the robotic arm speed in such a context. The
authors have applied a robotic arm with optimal speed control in neurological surgery. The results
of this research are as follows: In this article, the authors propose a control scheme that minimises
a cost functional which depends on the position error, trajectory speed and brain tissue force. This
work allowed us to achieve an optimal speed shape or trajectory to reduce brain retraction damage
during surgery. The authors have reached two main conclusions. The first is that optimal control
techniques are very well suited for robotic control of neurological surgery. The second conclusion is
that several studies on functional cost parameters are needed to achieve the best trajectory speed of
the robotic arm. These studies could attempt to optimise the functional cost parameters and provide
a mechanical characterisation of brain tissue based on real data.
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1. Introduction

According to the authors of [1], an estimated 22.6 million patients suffer neurological
injuries each year, of which 13.8 million require surgery. According to the American
Association of Neurological Surgeons (AANS), approximately 50,000 neurosurgeries lasting
more than half an hour are performed annually in the United States alone. Furthermore,
research presented in [2] indicated that brain tissue begins to experience stress/tension a
quarter of an hour after the onset of retraction. In general, clinically significant postoperative
deficits occur in 3–9% of cases, although there is considerable variation depending on the
difficulty of the applied procedure [3,4]. An incidence of approximately 10% of retraction-
related complications has been recorded in in skull base surgery. These complications
include parenchymal haematomas, aphasia, hemiparesis and numbness. In addition, a
study of posterior circulation aneurysm surgery reported that 4% of patients suffered
retraction-induced brain injury [5]. In the case of pineal region tumours, two out of
twelve patients had permanent visual defects which the authors attributed to occipital lobe
retraction [6].

A study by Laha et al. [7] indicated that if the mean arterial pressure exceeds the
brain’s retraction pressure by less than 70 mmHg, the brain will be damaged. When this
difference is greater than 200 mmHg, the brain recovers completely. Other authors [8]
have proposed that regional cerebral blood flow (rCBF) should be greater than 10–13 mL
100 gm−1 min−1; otherwise, there is an imminent danger of ischaemic brain damage.

Minimally invasive surgery (MIS) is an alternative technique to conventional surgery
that allows surgical procedures to be performed without the need for large incisions [9]; one
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common tool used in this area is the steerable catheter, which has recently become the object
of considerable research interest [10]. The most notable benefits for patients associated with
this technique include fewer surgical complications and, depending on the case, a shorter
operating time, reduced postoperative pain, shorter hospital stay, faster recovery times,
less stress on the immune system and lower hospital costs [11,12]. One of the major areas
within MIS is minimally invasive robotic surgery (MIRS), which incorporates the use of
robotic systems to enhance the surgeon’s skills. The development of these surgical robots is
motivated by the desire to both systematise and improve the efficiency of the procedure by
providing information regarding actions performed in the operating room and to reduce
human physical limitations during surgery and other interventional procedures while
nonetheless retaining human control [2].

Sometimes, during intracranial procedures, to reach the damaged area to be treated,
the neurosurgeon must perform a manoeuvre called brain retraction. This manoeuvre
consists of retracting part of the brain to access deeper parts of the brain, as shown in
Figure 1. Similar techniques are applied in other settings, e.g., hernia repair [13].
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Figure 1. Brain retraction.

However, despite its being an essential practice for adequate tissue exposure, retraction
can result in brain contusions and/or infarctions [9,11,12,14]. According to the authors
of [2], the pressure exerted on the brain surface during retraction causes a variety of forms
of damage depending on the magnitude of the retraction, the time of execution and the site
of application. This pressure is transferred to the adjacent brain tissue, causing subsequent
deformation and partial or total closure of blood vessels, thereby disrupting the oxygen
supply to brain cells. The severity of brain damage depends on factors such as retractor
pressure distribution, geometry, physical properties and type of brain tissue, vascular
pressure and the duration of retraction [15].

However, these are not the only factors to be considered during retraction; gravity,
blood and cerebrospinal fluid loss, as well as certain anaesthetic agents, can cause a non-
rigid deformation of up to 20 mm in the shape of the brain during surgery [16–18], which,
coupled with variation in brain stiffness [16–23], makes it even more difficult to obtain
adequate and safe retraction.

Nowadays, surgical robots provide fundamental support to surgeons during a large
range of operations, principally in MIS [24]. Hoecklemann et al. [25] highlighted three
fundamental types of surgical robotic system capabilities: (1) teleoperated (master–slave)
systems, in which the robotic system is controlled from an operating console via a human–
machine interface and the robot executes the motion commands it receives (e.g., the da
Vinci robot); (2) image-guided systems, where the robot executes a pre-established surgical
plan in the pre-operative phase based on intraoperative geometric information acquired
by a navigation or tracking system; and (3) active guidance, where the surgeon manually
guides the robot to move surgical instruments to the desired position [16].
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Among surgical robots, the da Vinci robot is the current reference, although a great
deal of other surgical robotic equipment exists, depending on the area to be treated. In the
neurological field, the Robotised Stereotactic Assistant System (ROSA) is one of the most
popular robotic systems on the market today [26].

However, ROSA cannot perform all of the procedures that may be required during a
neurological intervention.

To protect the brain during prolonged surgery, a monitoring and/or control system is
necessary to ensure that certain safety requirements are met. Although there have been
numerous studies on the use of robotics in neurosurgery (for example, [27,28]), these have
not addressed brain retraction, and the vast majority of advances made in this field are
related to the development of the retractors themselves [29,30] or the development of
mechanical models and simulators aimed at training surgeons [22,31,32]. No studies or
technological developments have been described for the robotic control of brain retraction.

The main objective of this paper is to introduce a proposed control law to improve
robotic neurosurgery, i.e., by setting the brain extensor speed as a function of position
error and the force experience by the brain tissue. This paper also presents a theoretical
justification of the proposed technique.

2. Problem Settlement and Control Proposal

Generally, in neurosurgery practice, the brain retractor keeps the brain tissue suffi-
ciently retracted to be able to access the area where the lesion (tumour, stroke, etc.) is
located. When these retractors open brain tissue, they can induce ischaemic processes.
Such processes can generate clinically significant postoperative deficits and even death.
Therefore, there are two main objectives: to retract enough brain tissue and to minimise
ischaemic damage.

The first objective is to achieve access to a physical location, as defined by the physician;
this point is called xdesired. Brain retractors retract the brain tissue to the x position. The
second objective is to keep force F applied by the brain retractors as low as possible.

The dynamics of the robotic arm are not relevant, as the speeds of its trajectories are
lower that the bandwidth of the robotic arm. The robotic arm traces linear trajectories in
which the displacement is very small. Additionally, the robotic arm has its own control unit
that is capable of following the speed set point with a negligible margin of error. Finally,
the brain tissue forces are not big enough to generate relevant following errors in terms of
positioning, so the speed set point can be assumed to be the real brain tissue speed. The
dynamics of the robotic arm may be defined by Equation (1).

dx
dt

= u (1)

Brain tissue generates a reaction force when the retractors are opened by the robotic
arm. The authors have modelled this force using the hyperelastic response from the
Ogden model [33] (see Figure 2). Other approaches can be used to model the brain tissue
deformation force, e.g., [34], although they are too complex for control applications. Usually,
the system models applied in control applications must be as simple as possible in order to
give results in control sample time.
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α =
x + Linitial

Linitial
(2)

The force applied by the brain retractor depends on λ and time. These dependencies
are described in [33,35]. The force depends on the brain retractor contact surface (ap-
proximately 1 cm2) and the maximum pressure. The maximum pressure, i.e., Pressuremax,
can be found in [36]. In our study, this parameter was set to 500 Pa. The relationship
between the force applied by the brain retractors and the normalised force are given in
Equations (3) and (4).

F = Fmax·FNormalized(α, t) (3)

Fmax = A·Pressuremax (4)

3. Control Proposal

To prevent ischaemia and other damage during brain retraction, the authors propose
the application of a variational calculus-based control law. One of the most difficult things in
optimal control laws is to set a correct cost functional; therefore, the authors first performed
the following analysis.

3.1. Cost Functional Proposal

The authors propose that the position error should be included in this cost functional.
Another variable that must be in the cost functional is the brain force. This force is defined
in Equations (2)–(4). Finally, the brain retraction speed must be in this functional state.
Therefore, the authors could incorporate these all conditions in the following cost functional
proposal. Here, fcost is a function that was chosen for this section and λv is the speed
ponderation coefficient.

J =
∫ Tmax

0
fcost(xd − x, F(x))·dt + λv

∫ Tmax

0

.
x2·dt (5)

The authors imposed further boundary conditions. The first condition ensured that the
final position of the robotic brain retractor was the desired position. The second condition
was that the final speed had to be equal to zero. Finally, the third condition was that the
initial position of the robotic brain retractor was equal to zero.

x(Tmax) = xdesired (6)
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.
x(Tmax) = 0 (7)

x(0) = 0 (8)

We then applied the Euler–Lagrange equation and the transversal conditions in order
to fulfil Equation (6). Attention should be drawn to the fact that Tmax is not a constant value.
This aspect imposes a transversal condition.

J =
∫ Tmax

0
( fcost(xdesired − x, F(x)) + λv

.
x2
)·dt (9)

J =
∫ Tmax

0
G
(
x,

.
x
)
·dt (10)

To optimise Equation (5), the Euler–Lagrange equation must be applied. With the aim
of fulfilling Equation (6), a transversal condition has been proposed; see Equation (12).

∂G
(
x,

.
x
)

∂x
− d

dt

(
∂G
(
x,

.
x
)

∂
.
x

)
= 0 (11)

G
(
x,

.
x
)
− .

x·
∂G
(

x,
.
x
)

∂
.
x

∣∣∣∣∣
t=Tmax

= 0 (12)

Equations (11) and (12) can be defined as follows:

∂ fcost

∂x
− 2λv

..
x = 0 (13)

∂ fcost

∂x
− .

x·2λv
.
x
∣∣∣∣
t=Tmax

= 0 (14)

Equation (13) was used to define the control trajectory dynamics. Equation (14) defines
the transversal condition (see Equation (6)). Equation (15) shows that the optimal trajectory
fulfils the following differential equation.

..
x =

1
2λv

∂ fcost

∂x
(15)

The cost functional must fulfil other mathematical conditions. The G cost function
must be zero when x is in the initial position, because, in that case, the robot arm does
not cause any brain damage. In addition, the G function must be zero when x is at xdesired,
because the robotics arms must open up to this final position, despite the brain force not
being zero.

fcost(xdesired − x, F(x))|x=xdesired
= 0 (16)

fcost(xdesired − x, F(x))|x=0 = 0 (17)

Since the speed is zero in the final position, Equation (14) imposes that ∂ fcost
∂x is equal

to zero when the robot arm reaches the final position at the final time.

∂ fcost

∂x

∣∣∣∣
x=xdesired

= 0 (18)

The authors have proposed the following fcost function to fulfil Equations (16)–(18).
In order to justify the cost function, we considered the following two main objectives:

to retract enough brain tissue, i.e., the brain retractors reach their desired position, and
minimising ischaemic damage, i.e., applying as little force as possible with the brain
retractors.
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Taking these objectives into account, the authors have considered that the cost func-
tional must include the position error on the one hand and the brain force and brain
retraction speed on the other as part of the control law. The function defined this way
complies with the applied transversal conditions and Euler-Lagrange equation.

fcost = λF(xd − x)2·F2(x) + λerror(xd − x)2 (19)

3.2. Control Law Proposal

The authors propose control law Equation (20). This equation can be obtained from
Equations (15) and (19).

..
x =

(xd − x)
2λv

[
−2λF·F2(x)− 2λerror + 2λF(xd − x)·F(x)·∂F(x)

∂x

]
(20)

Equation (20) is a second-order differential equation, where the second derivative of
position depends on the x position only. Therefore, this dynamic imposes a speed with x as
an independent variable. Equation (21) describes the optimal speed shape. This equation
was obtained by multiplying the result of Equation (20) by the speed, after the integration
both sides.

v2

2
−

v2
0

2
=
∫ x

0

(xd − x)
2λv

[
−2λF·F2(x)− 2λerror + 2λF(xd − x)·F(x)·∂F(x)

∂x

]
·dx (21)

Equation (20) defines a speed function of x, defined as D(x). We once again note that
the final speed must be zero, and therefore, the initial speed is defined by G(xd). This
condition (see Equation (22)) implies that the force is known and constant. Nevertheless,
a more detailed analysis (see Equation (23)) shows that the robot depends only on the
position and force; the control system can measure these two variables.

D(x) =
∫ x

0

(xd − x)
2λv

[
−2λF·F2(x)− 2λerror + 2λF(xd − x)·F(x)·∂F(x)

∂x

]
·dx

D(x) =
λF(xd − x)2F2(x) + λerror(xd − x)2

2λv

v2

2
−

v2
0

2
= D(x)→=

v2
0

2
= D(xd) (22)

Therefore, the optimal speed may be determined as follows:

v(x) =

√
λF(xd − x)2F2(x) + λerror(xd − x)2

2λv
(23)

It is easy to see that D(xd) is zero. The authors conclude that the speed of the robotic
arm is a position- and force-dependent function.

4. System Setup and Results

The authors propose the following control scheme (see Figure 3). The robotic arm
speed is a proposed function (see Equation (23)) that depends on its position and force.
These dependencies allow the control to be more adaptive to the patient’s brain tissue force.
This control law has three arbitrary lambda coefficients which model the general behaviour
of the robotic arm speed. These three coefficients must be correctly defined to achieve the
correct speed shape. The relevant parameters and variables are shown in Tables 1 and 2.
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Figure 3. The proposed method as a control structure. This proposed technique is a
variational/calculus-based one.

The authors developed a control setup to verify the proposed control scheme (see
Figure 4). This brain retractor has force measurement units. As the skull imparts a large
rigidity to brain tissue, the next main objective was to develop a brain tissue model with
water flow tubes to achieve more realistic mechanical behaviour.

The control scheme proposal has three inputs: position set point, position and force
(see Figure 3). This control scheme only has one output: speed. This speed is the speed
set point for the robotic arm. We considered that the speed set point and the real speed
should be equal, because the robotic arm control loops were able to follow the trajectory
(the robotic arm had a very large bandwidth) very well.

We incorporated two sensors: a triaxial accelerometer sensor and a set of strain gauges.
The strain gauges measure the force applied to the brain tissue through mechanical defor-
mation. We positioned this sensor in the area that suffers from the greatest deformation.
The triaxial accelerometer served to measure the weight in order to compensate for gravity.
This sensor was position on the rear of the retractor.
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Figure 4. (a,b) robotised brain retraction in a 3D printed brain. (c,d) robotised brain retraction in a
pig’s brain. (e) Sensorised brain retractor calibration.

Table 1 presents the constants of the control system. We applied IS units; the most
important variables of the control proposal are shown in Table 2. In Table 1, there are
three important parameters: λerror, λF and λv. Brain surgeons use these parameters to
achieve correct trajectories. These parameters define the maximum speed, the maximum
acceleration and the maximum brain tissue force, respectively, as well as the trajectory
execution time (Tmax; see Equation (9)). Our application defines the remaining parameters.
The force model parameters are given in [28].
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Table 1. System and control parameters.

Parameter Name Definition Value with Units

Fmax Maximum force amplitude 0.05 N
A Brain retractor contact surface area 1 cm2

Pressuremax Maximum pressure in brain tissue 500 Pa
λerror square position setpoint error ponderation coefficient 10−4 m−2

λF square force term ponderation coefficient 1 N−2

λv square speed term ponderation coefficient 10−3 s2 m−2

xd Displacement set point 0.02 m
Linitial displaced brain tissue length m

System parameters.

Table 2. System and control variables.

Parameter Name Definition Units

α brain tissue stretch [-]
x brain tissue displacement m
v Robot arm speed or brain tissue speed m.s−1

F Applied force by brain retractors N
FNormalized(x, t) Normalised force [-]

System variables.

5. Results

Figures 5–8 present the dynamic behaviour of our proposed method. In Figure 5, we
show the robotic arm speed. There is a positive speed at position zero; movement starts,
and the speed increases until a maximum value is reached. This maximum depends on the
lambda parameters. In the current study, we set the lambda parameters in such a way as
to achieve the minimum values for the cost functional. The speed at the final position is
zero. It is important to note that the robotic arm speed is the output variable of the control
scheme. This speed is the robotic arm speed set point input. We considered that the real
speed and robotic arm speed were equal.
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time depends on the speed shape and on the associated lambda parameters.

Figure 7 shows acceleration over time, i.e., how the lambda parameter values change
the maximum acceleration values. In this case, the minimum values (the negative ones) are
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as important as the maximum values. These data allowed the authors to set appropriate
lambda parameter coefficients.

Figure 8 shows the robotic arm position over time. This shape of this curve illustrates
the general behaviour of our control system.

The data presented in Figures 5–8 allowed the authors to select the optimal lambda
parameters.

6. Conclusions

We have modelled an optimal control problem, where the most important contribution
can be seen from the problem settlement and the proposed cost function. It has been shown
that the proposed optimal speed shape makes a very important contribution in terms of
achieving the best speed shape. The functional proposed in this work (see Equations (9) and
(20)) and its optimal speed shape (see Equation (23)) comprise a very good control law that
allows the control speed to be adapted to the brain tissue force. The authors suggest that
more adaptive approaches could be proposed as deep reinforcement learning techniques;
such techniques could then be applied to our research to improve and adapt the control law.
Unfortunately, there is no good solution, as such techniques are real data-dependent. The
proposed method (see Equation (23)) has been shown to be a very good way to initialise
intelligent optimisation techniques.

In the future we will arbitrarily set the lambda coefficient values. These parameters
must be set to achieve good acceleration and trajectory execution times. We suggest that
these parameters should be set following maximum acceleration and trajectory execution
time criteria. Three parameters (λerror, λF and λv) may therefore be set in an arbitrary
way. We concluded that these parameters influence two main questions in the trajectory:
acceleration and execution time. In the authors’ opinion, the biggest limitation of the
proposed control scheme is the application of arbitrary values to λerror, λF and λv. With
this in mind, we expect that expertise on the part of surgeons can solve this problem.
These parameters can be automatically optimised with an optimisation algorithm like the
Nelder-Mead Simplex Method or Particle Swarm Optimisation. These algorithms are very
well suited to such trade off optimisation problems. The next step in our research is to
identify the best values for maximum speed, maximum acceleration and maximum brain
tissue force.
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