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Abstract: Piezoelectric actuators (PEA) are high-precision devices used in applications requiring mi-
crometric displacements. However, PEAs present non-linearity phenomena that introduce drawbacks
at high precision applications. One of these phenomena is hysteresis, which considerably reduces
their performance. The introduction of appropriate control strategies may improve the accuracy of
the PEAs. This paper presents a high precision control scheme to be used at PEAs based on the model-
based predictive control (MPC) scheme. In this work, the model used to feed the MPC controller has
been achieved by means of artificial neural networks (ANN). This approach simplifies the obtaining
of the model, since the achievement of a precise mathematical model that reproduces the dynamics
of the PEA is a complex task. The presented approach has been embedded over the dSPACE control
platform and has been tested over a commercial PEA, supplied by Thorlabs, conducting experiments
to demonstrate improvements of the MPC. In addition, the results of the MPC controller have been
compared with a proportional-integral-derivative (PID) controller. The experimental results show
that the MPC control strategy achieves higher accuracy at high precision PEA applications such as
tracking periodic reference signals and sudden reference change.

Keywords: piezoelectric actuators; hysteresis; control systems; neural networks; model predictive
controller (MPC)

1. Introduction

Piezoelectric actuators (PEA) are positioning systems that achieve a mechanical dis-
placement from an applied voltage. They have been widely used in the field of micro-
and nano-positioning applications due to their high displacement resolution [1] (around
one micrometer) and high actuation force [2] (usually in the range of several hundred
newtons). In addition, these systems offer not only high-speed response, but also show
high stiffness. A further advantage is their size, which is an asset due to the downsizing
trend in actuators today [3].

Due to these benefits, PEAs may be used at a vast number of applications such as
energy recovery [4], computer components [5], motor design [6], machine tools [7], and
micro-drones [8]. Furthermore, in the last few years, PEAs have been the subject of study
for several medical uses, such as needle positioning for complex injections [9], micro
grippers [10], and drug delivery systems [11].

Regardless the benefits of PEAs, the performance of these actuators downgrades due
to undesirable non linear effects that appear in piezoelectric materials such as vibration
dynamics [12], creep [13], and hysteresis. Vibration dynamics, on the one hand, are
caused by the input voltage excitation that operates the equivalent mechanical system,
although this should be considered when the input frequency reaches the resonance of
the PEA [14]. Creep, on the other hand, is produced by the polarization that remains in
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time during the actuation in a quasi-static situation [15]. Finally, hysteresis is provoked
by the non-linear nature of the piezoelectric effect, which combines mechanical actions
and electric fields [16]: The material poles have arbitrary orientations that align when a
voltage is applied, but the release of this action gives way to a different direction [17].
Therefore, it is known to be a memory effect, since it depends on the previous history of
the piezoelectrical material [18].

Hysteresis is one of the most important and studied effects in PEAs, since the error
can reach up to 22% [19], which is a significant value when high precision is required in
guidance systems. Furthermore, this phenomenon cannot be disregarded since it not only
affects a desired position but also it can yield the system to the instability [20].

As above-mentioned, piezoelectric actuators need to overcome the impacts of non-
linear hysteresis to achieve high-precision positioning, but they also need to cope with
the uncertainties of the model. For that reason, it is necessary to implement appropriate
compensation designs that minimize the nonlinear hysteresis [21].

The design of models that reproduce the nonlinear characteristics of PEAs is the basis
of improving the behavior using feedforwarding control techniques. Several modeling
methods have been proposed for this purpose. In the case of hysteresis, modeling has
been done using two alternative methods: rate-independent and rate-dependent. The only
factor affecting the model output in the rate-independent method is the amplitude of the
input voltage. The major benefit of these models is that they are easy to identify and
simple to implement [22,23]. Within this method, three different model theories can be
distinguished: (1) the theory of dynamic modeling, which is represented mathematically
by a collection of differential equations. Some model examples include the Jiles–Atherton
model [24], the Duhem model [25], the Bouc–Wen model [26], the Backlash-Like model [27],
the Maxwell model [28], and the approximated Polynomial model [29]; (2) the operator
modeling theory, including Prandtl–Ishlinskii (PI) [30], Krasnoselskii–Pokrovskii (KP) [31],
and Preisach [32] models; (3) the intelligent modeling theory. This approach models systems
with hysteresis based on the concept of the computational intelligence [33]. This kind of
models are based entirely on data-driven methodologies and have rather simple shapes.
Fuzzy models [34], autoregressive-moving-average (ARMA) [35], machine learning based
models [36], and neural network-based models [37,38] are a few examples. The latter type
of modeling will be the one implemented in this research.

These models provide good approximations for hysteresis when the frequency of the
input signals is low. However, when the frequency rises, it becomes increasingly clear
how the model differs from the actual behavior of the PEA. This happens because these
models do not consider the rate-dependent behavior of the hysteresis. As a consequence,
the performance of PEAs in open-loop systems can be significantly reduced, and they
may even push the closed-loop system toward instability. In fact, some research works
show the strong dependency between the hystereis behavior of the PEAs against the
input rate [39]. Moreover, the first two ways for modeling PEAs typically use complex
structures, which require high computing costs, and require the incorporation of additional
creep and dynamic models [40].The second class of hysteresis models, the so-called rate-
dependent models, have been used to investigate this type of behavior. The output of these
models depends on the frequency and amplitude of the input signal. Models such as the
rate-dependent PI [41], rate-dependent Preisach model, and modified rate-dependent PI
(MPI) are examples of this class [42]. Despite the fact that these models accurately depict
hysteresis behavior, they are frequently complex. This makes it challenging to identify
model parameters and design controllers capable of compensating the hysteresis [22].
However, rate-dependent intelligent modeling has also been developed using machine
learning [36], neural networks [43], or fuzzy systems [44]. A new approach for modeling
the hysteresis of the PEAs has been made possible by means of these intelligent approaches,
which have demonstrated significant gains in terms of modeling accuracy.

Numerous control methods are offered for PEAs positioning based on the use of
models. Frequently, they are used as inversion-based models. Thus, an inverse model for
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the hysteresis may be used in order to achieve a feedforward controller to compensate this
phenomenon. Feedback techniques are then employed to cope with its dynamics, external
disturbances, as well as other minor nonlinearities. For example, in reference [45], the
authors created a PID controller with a feedforward compensator, based on the numerical
inverse Preisach model, achieving a maximum error of 20 µm. Other researchers [46] used
the Bouc–Wen and the Dahl model as feedforward with a PI controller, achieving a RMS
value of 0.157 µm and 0.146 µm, respectively.

A non-linear method called sliding mode control (SMC) uses a discontinuity to drive
the system over a sliding surface [47]. The key benefit of this approach is the ability to
withstand uncertainty and outside shocks. The authors of Ref. [48] applied the traditional
SMC in PEAs for force control obtaining appropriate results when sine signals were used
as references. In a study by Chouza et al. [49], a similar methodology was used to build
an SMC-based PID surface in a commercial PEA. In this work, several reference signals
were tested, including the ramp, constants values, and sine wave signals. The sine waves
indicated an inaccuracy of about 5%, despite advances in the reduction of the error when the
ramp and constant references were used. However, it was determined from the background
analysis that the chattering caused by the discontinuous characteristic is the primary
drawback of the SMC technique. This is an unintended consequence since it causes the
actuator to wear down faster and lose more energy [50].

Other works analyze the implementation of different control schemes. For example,
the researchers in Ref. [51] make use of robust control techniques alongside fuzzy logic to
learn the models of the actuators and mitigate the hysteresis. Their approach achieves an
accuracy with a margin of error of 0.18 µm. The authors of Ref. [21] proposed a hybrid
nonlinear robust control design that integrates a feedback linearization control method and
a robust compensator, also achieving a 1 µm accuracy.

However, in the case of high-speed and high-frequency motion, conventional con-
trollers are unable to meet the requirements for high-precision control, as they suffer from
the limited bandwidth due to the presence of highly resonant frequencies. Modern intelli-
gent control techniques have therefore drawn attention due to their improved performance.
In particular, the Model predictive control (MPC) scheme is an example of an intelligent
technique widely used in practical applications that efficiently reduces disturbances and
demonstrates the needed robustness [1]. Based on model input, a nonlinear model forecasts
the future displacement of the PEA, and the actual control signal applied to the PEA is
calculated in accordance with the expected displacement [37]. MPC often uses a series of
expected future outputs over a specific prediction horizon for optimization, which necessi-
tates running the model more than once, incrementing the computing load. Linearizing
the prediction model is a common technique used to ease calculations [52]. The MPC has a
reasonable performance on the tracking control for different frequency signals when neural
networks [37] or fuzzy model [53] are used.

Based on the state of the art literature, this work presents how the hysteresis behavior
of one PEA at a specific frequency has been modeled by means of an artificial neural
network. A rate-independent model could be created, but this approach requires large
amounts of data in order to train an optimal neural network over a wide bandwidth.

The required data for the ANN is extracted from a commercial PEA developed by
Thorlabs. Then, based on that ANN model, a MPC controller is introduced because of its
high performance with different nonlinear models. This approach was tested in real time
over the same commercial PEA supplied by Thorlabs, obtaining a maximum error in the
tracking of a triangular and sinusoidal signal of 0.05 µm, values lower than those obtained
by the authors of Refs. [49,51]. The authors of Ref. [49] used a Sliding Mode-Based Robust
Control and tried to track a sinusoidal reference wave, where a maximum error of 0.2 µm
was achieved. This same maximum error was achieved by the authors of Ref. [51] using a
robust fuzzy control scheme.
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Other articles such as [37,40] show a control scheme similar to the one presented in
this work but with significant differences. Both papers model the hysteresis of the PEA
using a neural network and then make the feedback control using a MPC scheme.

The authors of [40] made use of a neural network to model the hysteresis of the PEA.
However, their approach employed a second neural network for implementing an ANN
based feed forward control aimed at improving the performance of the MPC. In this sense,
the computational cost of this control scheme is considerably higher than the proposed
control scheme. In addition, the tracking performance of this control scheme is comparable
to our approach in percentage but not in range. Actually, authors in [40] report a tracking
error below 4nm for a displacement of 3 µm (tracking error of 0.13 %), whereas in our
approach the tracking error is below 50 nm for a much longer displacement, 38 µm (tracking
error of 0.13%).

Moreover, the difference in the tracking error obtained at different frequencies in the
reference signal is relatively smaller in our proposal, achieving a more robust approach
under frequency variations.

In the case of paper [37], two neural networks were also used, one to model hysteresis
and one to model the dynamics. In this case, the output of the hysteresis sub-model was
an equivalent mechanical force that acted as input in the dynamic sub-model, whose
output produced the actual displacement of the PEAs. The network that modeled the
dynamics was trained at various frequencies such as 1, 10, 50, 100 and 200 Hz. Thus, the
amount of data required for training the ANN (and therefore the computational cost of the
algorithm) is larger than that used in our approach. This rate independent ANN, together
with the fact of having two ANN, requires a higher computational cost, making more
difficult its implementation over low-cost real time processors. Moreover, the sample time
used for the real time implementation of this control scheme is 0.05 ms, which is a very
small value for a high computational control schemes like the proposed one. The authors
implement their algorithm over a computer using the Matlab Real-Time Windows Target.
Unfortunately, they do specify the processor used, so it is not possible to compare with our
real time implementation.

Obviously, considering the small sample time used (0.05 ms versus 1 ms), and the
small displacement of the PEA (9 µm) the tracking results are better, but the computational
cost may introduce severe difficulties at implementation time. In addition, in this paper
the authors have only presented experiments with sinusoidal references, whereas in our
work different types of references are presented, namely triangular, sinusoidal and step
references. Using a unique type of reference makes more difficult to reach conclusions
about the robustness of this control scheme under different types of references.

The structure of this paper is organized as follows: Section 2 provides an overview of
the hardware that was used in the research, a brief description of the hysteresis, and an
explanation about how the HW block works. Section 3 describes the artificial neural
networks designed for modeling the hysteresis behavior regarding its architecture. Section 4
shows the two different controllers that have been implemented: a MPC (Section 4.1) and
a PI (Section 4.2) are compared. Section 5 presents the results of both the training of the
network in Section 5.1 and the results of the tracking of a reference signal using the two
controllers mentioned above in Section 5.2.

2. Materials and Methods
2.1. Hardware Description

The main hardware use in the research was based on the Thorlabs (Newton, NJ,
USA) PK4FYC2 PEA.This PEA is a stack actuator that has several piezoelectric chips stuck
with epoxy and glass beads. Its dimension is 7.3 × 7.3 × 36 mm. The nominal maximum
displacement is of 38.5 µm with a drive voltage between 0 and 150 V. The resonant frequency
of the PEA is 34 kHz and the maximum error caused by the hysteresis according to the
manufacturer is of 15%. To achieve better resolution in measuring the displacement, this
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device uses the resistance variation of four strain gauges, attached to it, arranged forming a
Wheatstone bridge. The maximum blocking force that can support this PEA is of 1000 N.

The signal acquisition and generator controller used was a dSPACE board, specifically
the DSP1104. This board allows inputs and outputs in the range of 0–10 V and is capable of
running in real-time interface (RTI). The board was connected via PCI peripheral interface
to a PC with an Intel 64 2.8 GHz microprocessor and 32 GB of memory. The PEA signals
passed through a Thorlabs AMP002 pre-amplifier that gives a signal of 0–2 V. Next, a
measurement cube reader Thorlabs KSG101 transformed this signal to equal the DSP board
range of 0–10 V. Control Signal passed through the Thorlabs KPZ101 driver that transforms
the controller 0–10 V signal to 0–150 V. Table 1 summarizes the technical details of the
hardware used in the research.

Table 1. Thorlabs hardware technical details.

PEA PK4FYC2 Values Units

Dimensions 7.3 × 7.3 × 36 mm
Impedance at Resonant Frequency 7.3 × 7.3 × 36 mm
Capacitance 7.3 × 7.3 × 36 mm
Operating Temperature 7.3 × 7.3 × 36 mm
Maximum displacement 38.5 µm
Blocking force 1000 N
Resonant frequency 34 kHz
Maximum error 15 %

Driver Cube KPZ101

Output driving voltage for PEA 150 V
Input driving voltage 0–10 V
Maximum output bandwidth 1 kHz

Reader Cube KSG101

Output range 0–10 V
Resolution 1 ηm

Pre-Amplifier AMP002

Output range 0–2 V

The control structure was designed in Simulink by MathWorks and implemented
into the embedded hardware through dSPACE real-time interface. In Simulink, the Deep
Learning and Model Predictive Control Toolboxes were used to design the PEA model
and the MPC controller, respectively. All the data acquisition, supervision, and tuning
were done with the graphical user interface Control Desk, part of the dSPACE software
package. Posterior data treatment and process was done with Matlab by MathWorks.
The sample rate used was of 1 kHz since it suits the relationship between the hardware
limitations and control needs. Figure 1 show a schematic description of the hardware and
software workflow.

Figure 1. Hardware and software workflow.
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2.2. Hysteresis Description

Hysteresis phenomenon is the main reason of the non-linearities of PEAs. The hys-
teresis graph can be obtained using periodical signals such as sines and triangular wave
signals and plotting the registered displacement versus the input voltage. In this study the
triangular wave signal is used to obtain the hysteresis. The election of this signal is justified
since a triangular wave signal is a more complex source due to the high harmonics that
compose it and the sharp slope changes on the ends.

Figure 2 shows the hysteresis that appears with periods of 10 s. The signal was
referenced to zero before measuring with 0 V at the input. All the curves in the Figure show
a strong non-linearity. The first ascent starts at zero, reaching the upper limit. This path is
only traversed the first time, in subsequent cycles the paths converge to a hysteresis curve
from the upper boundary to the lower convergence point. The lower convergence point is
offset from the origin, so that after the first cycle it is impossible to reach displacements
below this point. The asymmetry between ascent and descent makes it difficult to obtain
an accurate mathematical model of the piezoelectric.
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Figure 2. Hysteresis graph description of the commercial Piezoelectric Actuator (PEA).

3. PEA System Modeling with ANN

In PEA, hysteresis and rate-dependent dynamic properties are the key nonlinear
characteristics that need to be modeled. Hysteresis, as previously established, is a type
of memory phenomenon that links the displacement of PEA to states and signals from
the past. ANNs offer several benefits, such as self-learning and simplicity, and are ideal
to train one hysteresis curve. Input, hidden, and output are the three mathematically
related layers that must be included in an algorithm to be considered an ANN [54]. This
biological idea is derived on brain neurons’ capacity to identify, pick up on, and modify
behavior based on prior experiences (also known as neuroplasticity) [55]. Because of
this, nonlinear dynamic systems can be approximated using these attributes based on the
mathematical formulation [56]. Nevertheless, the rate-dependent dynamic is a difficult
feature to implement in an ANN due to the large amount of data needed to know the
different hysteresis formed over a large bandwidth. Therefore, the ANN will be subject to a
single frequency and frequencies contiguous to this one, thus maintaining its simplicity
and low computational cost.

In this research, the ANN is a self created one that is used as an approximator for NARX
representation. As will be discussed later, the network will provide the PEA displacement,
which will be fed back to the network to know its direction of displacement. Therefore,
the network needs previous states to conclude the next displacement. This fact can be
described by the following Equation (1)
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ŷ(k) = f [y(k− 1), y(k− 2), . . . , y(k− ny), u(k− 1), u(k− 2), . . . , u(k− nu)] (1)

where y(i) and u(i) indicate the displacement and control signal respectively of the PEA
at i operating point. Integers ny and nu are the sizes of historical memory of y(i) and u(i),
respectively. This indicates that we are dealing with a NARX model, where the next value
of the dependent output signal is regressed on previous values of the output signal and
previous values of an independent (exogenous) input signal as shown in Figure 3. It should
be noted that the output of the NARX network it is considered to be an estimate of the
output of the PEA dynamic system that we are trying to model. The output could be fed
back to the input of the ANN as part of the parallel NARX architecture. Because the true
output is available during the network training process, a series parallel architecture could
be created using the true output rather than feeding back the estimated output, as shown
in Figure 3, where Tapped Delay Line (TDL) blocks are used to represent the delayed signal
value. This has two advantages: The input to the ANN is more precise and the resulting
network has a purely feedforward architecture, so static back propagation can be used
for training.

Figure 3. NARX series parallel type-model structure.

In order to improve the performance of MPC, a number of predicted outputs
[ŷ(k + 1), . . . , ŷ(k + np)] inside the prediction horizon np are required at instant k. Usually,
the model successfully outputs them when past predictions are included in historical
states, that means, using ŷ(k + i) as y(k + i) when predicting ŷ(k + i + 1). This repetitive
process is expensive computationally so the Equation (1) is changed to produce all np
future predictions at once as shown in the following Equation (2):

[ŷ(k + 1), . . . , ŷ(k + np)] = f [y(k), y(k− 1), . . . , y(k− ny), u(k + np − 1), . . . u(k), . . . u(k− nu)] (2)

Here [u(k + np − 1), . . . u(k) are the output signals of the controller. This model works
well when the prediction horizon is small; otherwise, the predictive accuracy may decrease.
Having considered the NARX model, the ANN that approximates it must be described.
In this research, as mentioned above, the ANN and its architecture is a self created one
and tries to model the PEA dynamic at 0.1 Hz. The architecture of the ANN consists
of the linking of an input layer, three hidden layers, and an output layer as shown in
Figure 4. The input layer is fed with two data: the voltage applied to the PEA and the
derivative of the displacement signal that will indicate on which of the two hysteresis
curves the displacement is currently located. The hidden layers, meanwhile, are made
up of two fully connected layers and one Long Short-Term Memory (LSTM) layer. Based
on the optimization procedure by means of simulations, the amounts of neurons for this
layer were determined on a range from 90 to 120 for the LSTM layer and 195 to 220 for
the fully connected layer. The optimal number of neurons for each layer are as follows:
100 for LSTM and 200 for the fully connected layer. Finally, for the output layer it we chose
a regression output layer, from which the displacement is obtained.
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Figure 4. Standard ANN scheme with multiple hidden layers for two inputs and one output.

4. Control Structure

In this research, two control architectures have been designed and implemented to
test their efficiency and compare them afterwards. First, a basic PID control is implemented
and tuned, trying to achieve the best possible tracking. The second control, on the other
hand, is carried out by means of an MPC, based on the model created by ANN.

The two controllers are designed and tuned based on trial and error basis using the
created ANN as a plant in MATLAB simulations. In this way, the obtained controllers can
be extracted to do the actual control of the PEA and see their performance.

4.1. Model Predictive Control

Model predictive control (MPC) is an ideal control method that minimizes a cost
function for a constrained dynamical system over a finite, prediction horizon.

Model predictive controller uses a model of the plant to predict the evolution of
the system over a finite time steps and solve an optimization problem to calculate the
control vector that minimized a certain cost function as shown in Figure 5. The prediction
horizon determines the time steps in the future to look at. Control horizon specifies
the number of control action to predict; over this horizon control actions are taken as
constants. The optimization problem tries to minimize a cost function using quadratic
equations through quadratic programming (QP). This cost function weights both the control
actions and the tracking error according to the values given. After the optimal value is
calculated, the first control action is applied, and subsequent control actions are discarded
and recalculated at the next instant. Constrains are applied to ensure that the calculated
control actions do not exceed the physical limits of the system. The system model used to
make predictions can be expressed in different forms such as differential equations, state
spaces, transfer functions, discrete difference equations. or derived from ANNs.

The cost function used in the MPC is shown in Equation (3), where Jy is the cost
function of the reference tracking error (4) and Jε is the cost function of the constraints
penalties (5). The cost function can be complemented; for example, it can be added a term
to penalize high control output changes between time steps. However, in this research the
authors did not implement such terms to prioritize reference tracking as the focus element:

J(zk) = Jy(zk) + Jε(zk) (3)

Equation (4) expresses the tracking error cost function as the sum of the square of
the differences between the reference and the predicted output weighted for all the steps
from the instant to the prediction horizon. The importance of this error in the cost function
increases as a function of the assigned weight, so that the higher the weight, the more
aggressive controllers are obtained, at the cost of greater control efforts:
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Jy(zk) =
p

∑
i=1
{wi[r(k + i|k)− y(k + i|k)]}2 (4)

p refers to the prediction horizon, wi is the weight of the tracking error, r(k + i|k) is the
reference in i steps in the future, and y(k + i|k) is the analogue in the future prediction.

Figure 5. Discrete MPC operating scheme.

Equation (5) enunciate the cost function of the constrain limit. In practice, constraint
violations might be unavoidable. Soft constraints allow a feasible QP solution under such
conditions. This cost function depends of the constraint violation penalty weight:

Jε(zk) = ρεε
2
k (5)

where ρε is the constraint violation penalty weight and εk the slack variable at control
interval k.

As shown in Figure 6, in the proposed control scheme, the MPC uses the plant created
by the ANN as a model to optimize the cost function and send a control signal to the real
PEA plant. The network is fed by the reference and the displacement derivative is provided
by feedback from the PEA plant. Due to this internal model in the controller, the MPC
sends the optimal control signal to follow the reference provided.

Figure 6. Model Predictive Control (MPC) control scheme.

The MPC has been adequately tuned in order to obtain the optimal design parameters.
These parameters are shown in Table 2, where the restriction of the input voltage can be
highlighted. You would expect the controller to give a signal from 0 to 150 V but due to
the hardware used, where the dSPACE board only supports 0–10 V, the controller output
must be limited to the range imposed by the board. It is also through hardware, specifically
the Thorlabs KPZ101 driver, that the controller 0–10 V signal is transformed into a 0–150 V
signal that feeds the PEA. Finally, a sampling time for the control signal of 0.001 s has
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been chosen. Although a higher sample time would have a lower computational cost,
the performance realized by a controller has been found to be lower.

Table 2. MPC controller’s design parameters.

Parameters Values Units

Sample Time 0.001 s
Prediction Horizon 6 time steps

Control Horizon 1 time steps
Output restriction 0–10 V

4.2. PID

In order to compare the MPC controller’s performance, a simple and classic approach
based on feedback structure is used with a PID controller (Figure 7). This controller is
known in advance to perform worse than the MPC, due to the lack of predictability that
the PID has. However, the PID is tuned as best as possible using the PID tuner app
from MATLAB in order to achieve the best performance (the PID parameters are shown
in Table 3).

For the experiment, the standard PID Equation (6) is integrated into the SIMULINK canvas.

u(k) = Kpe(k) + ki

k

∑
n=1

e(i)∆t + Kd[e(k)− e(k− 1)] (6)

Table 3. Design parameters for the PID.

Constant Value

Kp 0.0515
Ki 27.9564
Kd 0

Figure 7. Simple proportional-integral-derivative (PID) on the feedback control scheme.

5. Results
5.1. NN Training Results

The training of the ANN was undertaken with data recorded form the sine/triangle
input signal described in Section 2.2, which has an amplitude of 150 V and 10 s of a period.
As mentioned above in Section 3, the acquired data for training is made up of the input
voltage, the displacement and the displacement derivative. A record of 20 s of data was
handled and divided in 70/20/10 proportions for training, evaluation, and testing; further
details are specified in Table 4. In regards to the hardware used for iteration, a cutting-edge
work station, model Dell Precision 3640, was employed with a 0.001 s sample time and
configured with parallel calculation activated in 7 cores.

Figure 8 shows 700 of the 6000 iterations that have been used to train the network,
in order to better observe the initial iterations. In it, it can be seen that the RMSE value
drops drastically in the first 150 iterations and then slowly decreases over the following
iterations. Due to this fact, it may seem that the network does not need 6000 iterations to
be trained, but the network slowly keeps improving and predicting better. After all the
training the RMSE value remains at 0.0289—an acceptable result. This fact is reflected in
the predictions done by the ANN where the results show an optimal hysteresis model
compared to the real PEA data, as shown in Figure 9. Worse predictions are observed at
the extremes of hysteresis (at the change of displacement direction), near the maximum
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displacement value of 38 µm as shown in Figure 9. Nevertheless, these errors have absolute
values around 0.15 µm as seen in Figure 10—an acceptable error. Leaving these two areas
aside, the error remains constant throughout the hysteresis, fluctuating between 0 and
0.05 µm.

Table 4. ANN specifications.

Parameters Values

Data Points 20.000
Training/Validation/Test 70/20/10%

Iterations 6000
Epochs 400

Mini Batch Size 1300 data points
Initial Learn Rate 0.01

Validation frequency 24 iterations
Solver sgdm

Gradient Threshold Method absolute-value

Moreover, the maximum error in all predictions is 0.178 µm and in total a percentage
error of 0.158% is obtained. These result can be compared with the ones obtained by the
authors of Ref. [57], who obtained maximum modeling errors of 0.35 µm for a NARX and
0.24 micro for a LSTM-NN network.
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Figure 8. Neural Network training process RMSE.

5.2. Reference Tracking Results

The two control structures presented have been embedded in the dSPACE hardware
described in Section 2.1, where the experiments have been performed. The signals chosen
for the reference are a triangular signal with the maximum possible amplitude (maximum
PEA displacement), an identical signal at 1 Hz with a smaller amplitude, a sinusoidal signal
at 0.1 Hz and a 15 µm amplitude step signal. In this way, it is be possible to observe the
performance of the controllers in different situations. In addition, due to the change of
frequency in the signals, the validity of the ANN for a different frequency can be observed.
It should be noted that the signal with the possible maximum amplitude goes from 1.4 to
38 µm, instead of from 0 to 38 µm. This is because after the first cycle the PEA displacement
does not go below 1.4 µm as explained in Section 2.2.

In this section, the two controller tracking performances are contrasted, indicating the
references and the displacement achieved with the two controllers. In addition, the errors
produced in the two cases are compared in all experiments. For a better comparison, error
indicators are used as shown in Table 5 below. On the one hand, it is proposed to use
the Integral Absolute Error (IAE) and Mean Integral Absolute Error (MIAE), which will
indicate the quality of the control in absolute and relative terms, respectively. On the other
hand, the Root Mean Square Error (RMSE) and Relative Root Mean Square Error (RRMSE)
indicators are used to further compare the control results. In Table 5, the terms ei and ri
correspond to the error and the reference in sample i and datasamples indicates the amount
of samples used for the calculation of IAE.
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PEA displacement), an identical signal at 1 Hz with a smaller amplitude, a sinusoidal signal
at 0.1 Hz and a 15 µm amplitude step signal. In this way, it is be possible to observe the
performance of the controllers in different situations. In addition, due to the change of
frequency in the signals, the validity of the ANN for a different frequency can be observed.
It should be noted that the signal with the possible maximum amplitude goes from 1.4 to
38 µm, instead of from 0 to 38 µm. This is because after the first cycle the PEA displacement
does not go below 1.4 µm as explained in Section 2.2.
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Table 5. Tracking performance indicators’ equations.

Indicator Equation

Integral Absolute Error IAE = ∑N
i=1 |ei |∆t

Mean Integral Absolute Error MIAE = IAE/datasamples

Root Mean Aquare Error RMSE =
√

1/N ∑N
i=1(ei)2

Relative Root Mean Square error RRMSE =
√

∑N
i=1(ei)2/ ∑N

i=1(ri)100%

For the triangular signal with maximum amplitude, as shown in Figure 11, the two con-
trollers perform acceptable tracking. However, if we enlarge the image, as in Figure 12, we



Sensors 2023, 23, 1690 13 of 26

can see the differences between the two controllers: The MPC shows a higher performance
than the PID. The zoom, moreover, is made in the area of greatest error, in the peaks of the
triangular signal, where the abrupt change in the reference occurs and therefore, where it is
more difficult to perform a precise control. Thus, the performance of the PID in that section
is even worse than when the reference is in its straight section. However, the MPC, due to
its predictive capability, keeps its tracking capability unchanged throughout the experiment.
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Tracking results of PID and MPC for a triangular reference signal at 0.1 Hz.
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Figure 11. Tracking results of PID and MPC for a triangular reference signal at 0.1 Hz.
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Figure 12. Zoom of tracking results in 0.1 Hz triangular signal peak.

All these facts can be confirmed by observing Figure 13, where the errors produced in
each type of control are compared. As mentioned above, for the PID case the maximum
errors occur at the extremes of the hysteresis (maximum and minimum displacement),
which due to the frequency of the reference signal occur every 5 s. These have values
around 0.17 µm for the upper peaks and around 0.1 µm for the lower peaks, all in absolute
terms. therefore, the error in the upper peaks is bigger than in the lower peaks. In addition,
at these points of maximum error, due to the change in slope, aggressive behavior is
produced where the error reverses its sign into a similar absolute value.

In the case of the MPC, as mentioned above, the error remains constant at less than
1 µm in absolute terms. In the peaks, the change of sign in the error can also be ob-
served, but there is no difference between the upper and lower peaks. After observing
the performance of the two controllers it can be concluded that the MPC performs bet-
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ter control compared to the PID, being able to keep the error constant even with abrupt
displacement changes.
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Figure 13. Error of tracking of the PID and MPC for a 0.1 Hz triangular reference.

For a 0.1 Hz sinusoidal signal as reference, the amplitude is reduced to avoid the peaks
of the hysteresis where the control is more difficult to achieve. Therefore, the signal goes
from 4 to 26 µm, as shown in Figure 14.

As in the previous experiment, the tracking of the reference signal is generally very
good for both controllers, as shown in Figure 14. However, the result in this experiment is
even better: because the maximum values of the signal do not reach the hysteresis peaks,
the control at these points by the MPC and the PID are good. Furthermore, because the
signal is sinusoidal and does not show abrupt changes in directional changes, the control
is further improved. Figure 15 shows a zoom in of the previous Figure 14, where the
difference between the performance of the MPC and the PID can be seen. It is shown
that the the two controllers track well the reference in the extreme of the sinusoidal wave,
although the PID shows a worst performance in the ups and downs of the sinusoidal wave.
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Figure 14. Tracking results of PID and MPC for a sinusoidal reference signal at 0.1 Hz.

All these facts can be checked by looking at Figure 16, which shows the tracking error
obtained by each of the controllers. The MPC does an exceptional work of keeping its error
constant at all times below 0.05 µm. The PID on the other hand, as expected, shows a larger
error that fluctuates beyond 0.05 µm. It is interesting to note that in this case, the PID shows
the smallest errors when the signal approaches its maximum values as opposed to the
previous experiment. This is because in the extremes of the sinusoidal wave the changes in
displacement are slower and the PID has time to reduce the tracking error. In the ups and
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downs of the sinusoidal wave, however, the derivative is bigger and the PID is not able to
follow the signal correctly.
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Figure 15. Zoom of tracking results of PID and MPC for a 0.1 Hz sinusoidal reference.
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Figure 16. Error of tracking of the PID and MPC for a 0.1 Hz sinusoidal reference.

For the next experiment, a triangular signal with twice the frequency and lower
amplitude was used. The signal ranges from 1.4 to 20 µm at a frequency of 0.2 Hz. Thus,
the signal does not reach the high values of the hysteresis curve. Therefore, it is expected to
perform better at the high values of this new reference signal than in the first experiment.
In addition, the chosen frequency is not the one used to train the ANN, and the MPC has
been tuned according to the ANN model, so the results may be worse.

Figure 17 shows the tracking performance of the MPC and PID when following
the described triangular reference. Overall, the two controllers again show acceptable
performance. To observe in detail the tracking results in the maximum values of the signals
it has to be observed the Figure 18 where the MPC shows again a better performance
against the PID due to its prediction capabilities.

However, it is in Figure 19 where the differences between the two controllers can really
be seen. The MPC shows an error very similar to that seen in the first experiment with the
0.1 Hz triangular signal. This is because the MPC is not affected much by the high values of
the hysteresis curve, so even though the signal is easier to control, the MPC shows almost
identical performance. The PID, otherwise, is affected by the amplitude change in the
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signal: compared to the first experiment, the error displayed by the PID is lower at the high
values of the reference signal, because it does not approach the high values of the hysteresis
curve. In second 5, on the other hand, when the displacement is at the lower peak of the
high values of the hysteresis, the error is very similar to that seen in experiment 1.
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Figure 17. Tracking results of PID and MPC for a triangular reference signal at 0.2 Hz.
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Figure 18. Zoom of tracking results in 0.2 Hz triangular signal peak.
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Figure 19. Error of tracking of the PID and MPC for a 0.2 Hz triangular reference.
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With respect to the signal frequency, the difference in signal period is not observed
to significantly affect the performance of the controllers. This fact indicates that for a
reference signal with a frequency around the frequency chosen for the ANN training
input, the designed controllers operate correctly. It is true that it cannot be known what
frequency range is feasible to maintain the performance of the tuned controllers at 0.1 Hz,
because this fact depends on the hysteresis variation versus the frequency variation of
each PEA. However, it should be noted that the proposed control scheme can be used for
other frequencies and hysteresis because, as it has been pointed out in the experimental
validation, if the frequency does not change too much (from 0.1 Hz to 0.2 Hz as discussed
in the experiments) the results are good, but for big changes in the frequency, the control
performance decays.In order to show this fact and to analyze the robustness of the system,
some tests have been carried out at different frequencies, further away from the frequency
at which the ANN was trained. Table 6 shows the maximum error and RMSE of the
tracking of a sinusoidal function with the maximum amplitude of the PEA for frequencies
of 0.5 Hz (Figures 20 and 21), 1 Hz (Figures 22 and 23) and 2 Hz (Figures 24 and 25). These
results show, as expected, that the further we move away from the training frequency, the
worse results are. Both the maximum error and the RMSE were analyzed. This is due to
the fact that the shape of the hysteresis differs more from the reference used as training
frequency. Therefore, the approximation made by the network is less accurate. In this sense,
if the frequencies are too far, and especially for the higher frequencies, the neural network
would have to be trained again with the new data to achieve an accurate model for those
frequencies. Tests also demonstrate that with a reference signal of smaller amplitude, the
tracking error of the reference is reduced, as shown in Figures 26 and 27 for the 2 Hz case
with full and reduced amplitude of 9 µm.
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Figure 20. Tracking results of the MPC for a 0.5 Hz sinusoidal reference.

For the last experiment, a step reference signal was used. This step goes from
15 to 30 µm so it has a 15 µm of amplitude. This type of reference can show the per-
formance of the controllers for an instantaneous change of reference with high values,
the most difficult type of reference with which to achieve good performance of controllers.

In Figure 28 and the zoom in seen in Figure 29, the result of the tracking of the
two controllers is shown. Up to the arrival of the step the tracking is obviously perfect,
but as soon as the reference change occurs the controllers try to adapt quickly but do not
manage to reach the reference until 0.02 s later. After reaching the reference, the controllers
start to differentiate: both show an overshoot, which in the case of the PID is worse as
it reaches 36 µm compared to 33.6 µm for the MPC. However, the MPC, when trying to
track the reference again, shows an undershoot, unlike the PID, which, although it takes
longer, shows a much smaller undershoot. For this reason, the MPC, which behaves more
aggressively, manages to stabilize the signal at the reference before the PID.
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Figure 21. Error of tracking of the MPC for a 0.5 Hz sinusoidal reference.
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Figure 22. Tracking results of the MPC for a 1 Hz sinusoidal reference.
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Figure 23. Error of tracking of the MPC for a 1 Hz sinusoidal reference.
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Figure 24. Tracking results of the MPC for a 2 Hz sinusoidal reference of full amplitude.
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Figure 25. Error of tracking of the MPC for a 2 Hz sinusoidal reference of full amplitude.
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Figure 26. Tracking results of the MPC for a 2 Hz sinusoidal reference of reduced amplitude.
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Figure 27. Error of tracking of the MPC for a 2 Hz sinusoidal reference of reduced amplitude.

Table 6. Tracking error for sinusoidal reference far from trained frecuency.

Reference Maximum Error (µm) RMSE

Sinusoidal 0.5 Hz 0.1277 0.0888
Sinusoidal 1 Hz 0.2146 0.1327
Sinusoidal 2 Hz 0.3872 0.2638
Sinusoidal 2 Hz (9 µm amplitude) 0.1177 0.0512
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Figure 28. Tracking results of PID and MPC for a step reference signal.

In order to observe the differences between the two controllers, the tracking errors of
the two controllers have been compared in Figure 30. As shown in the previous figures,
the error in the reference change is the same for both until the desired value is exceeded,
showing an initial error equal to the amplitude of the step signal. After overshooting the
reference the first time, the MPC shows errors of 3.7 µm in absolute values compared
to 7 µm for the PID. Later, the MPC, with its aggressive control, quickly returns to the
reference, again generating an undershoot, reaching an error of 1.5 µm. Even so, the error
obtained is lower than the one shown by the PID at that moment because its initial error is
higher and it takes longer to return to the reference. Furthermore, as shown in Figure 31,
the MPC takes 0.1 s less to stabilize on the reference signal. It should be noted that it could
be due to the reduced overshoots in the response of both controllers; however, they would
be slower in response.
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Figure 29. Zoom in of the tracking results in the reference change.
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Figure 30. Error of tracking of the PID and MPC for a step reference.
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Figure 31. Zoom of error of tracking of the PID and MPC for a step reference.

As mentioned at the beginning of this section, indicators are used to numerically
obtain the control results achieved, so that the information obtained from the previous
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Figures can be contrasted and the two controllers can be better compared. The following
Table 7 shows all the indicators values for all the signals and for each controller. It should
be noted that these are error indicators; so, the lower the value, the better the tracking
obtained by the controller.

Overall, it can be concluded, based on the percentages in the Difference column, which
indicate the percentage improvement of a controller with respect to the controller with the worst
performance, that the designed MPC greatly outperforms the PID controller: all indicators
show a difference of at least 187% (with the exception of the case of the step discussed below),
even reaching an improvement of 374%. This fact coincides with the results obtained from the
previous Figures, where the MPC shows a better performance in all the experiments. It also
coincides with the signals in which the maximum and minimum percentage values have been
obtained. The RMSE for the sinusoidal signal shows the lowest improvement of the MPC with
187%, because the sine does not reach the peaks of the hysteresis due to its reduced amplitude
and also does not show the abrupt changes that are found in a triangular signal. Therefore
the PID can perform better control, approaching the performance of the MPC. On the other
hand, when the signal is triangular and the amplitude is the maximum, as is the case with the
0.1 Hz triangular signal, the MPC far outperforms the PID, as shown in the IAE indicator for
the 0.1 Hz triangular signal, which shows an improvement of 374%. For the case of step as a
reference, the values stand out compared to the other references. The improvements obtained
in all the indicators by the MPC with respect to the PID are not so remarkable, reaching only
28% of improvement. This is because the step signal is a single instantaneous change to which
the controllers adapt quickly, having the rest of the time a static reference. In this way, both
controllers present a similar performance in the steady state.

Table 7. Error comparison between MPC and PID with different source signals.

Reference
IAE

MPC PID Difference

Triangular 0.1 Hz 0.4151 1.9710 374.83%

Sinusoidal 0.1 Hz 0.4220 1.3546 221.00%

Triangular 0.2 Hz 0.2634 1.1567 339.14%

Step 0.3343 0.4290 28.328%

Reference
IAE MEAN

MPC PID Difference

Triangular 0.1 Hz 1.4847 × 10−5 7.0218 × 10−5 372.94%

Sinusoidal 0.1 Hz 1.1682 × 10−5 3.7308 × 10−5 219.36%

Triangular 0.2 Hz 1.3546 × 10−5 6.0525 × 10−5 346.81%

Step 8.3727 × 10−5 1.0743 × 10−4 28.3099%

Reference
RMSE

MPC PID Difference

Triangular 0.1 Hz 0.0179 0.0731 308.40%

Sinusoidal 0.1 Hz 0.0147 0.0422 187.07%

Triangular 0.2 Hz 0.0167 0.0624 273.65%

Step 0.8248 0.8812 6.8381%

Reference
RRMSE

MPC PID Difference

Triangular 0.1 Hz 0.4009 1.6500 311.56%

Sinusoidal 0.1 Hz 0.3692 1.0778 191.92%

Triangular 0.2 Hz 0.5073 1.8869 271.94%

Step 17.3952 18.5835 6.83%
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The indicators in the table not only serve to compare the performance of two con-
trollers, but also to compare the same controller for different reference signals. In the case
of the MPC, if the RMSE indicator is observed, it is concluded that the worst performance
is for the 0.1 Hz triangular signal, followed by the 0.2 Hz triangular signal and culminating
with the best performance for the sinusoidal signal. As mentioned above, the triangular
signals show abrupt changes in the peaks, which added to the maximum amplitude for the
0.1 Hz triangular signal, makes control difficult. For the 0.2 Hz triangular signal, the control
is better since the amplitude does not reach the upper end of the hysteresis curve so the
MPC can perform better tracking. The sinusoidal signal, finally, neither has the maximum
possible amplitude nor shows sharp changes, so the MPC can obtain the best performance.

6. Conclusions

Piezoelectric actuators have nonlinear effects such as hysteresis, creep, and a rate de-
pendent dynamics, which are challenging problems for achieving an accurate displacement
tracking control. Among other non-linearities, hysteresis is the key characteristic that need
to be modeled. This article presents the use of ANNs, based on a NARX model, aimed at
modeling the hysteresis dynamics of PEAs. This approach moves away from complex math-
ematical models for modeling hysteresis, yielding a very accurate model. This model has
been compared experimentally against a commercial PEA and the prediction errors were
limited to 0.5 µm. This ANN, trained to model the hysteresis behavior at 0.1 Hz, served as
a model for an MPC controller, due to its good performance to build nonlinear models.

Once the MPC is designed and tuned, it was implemented over the dSPACE control
platform over a commercial PEA, supplied by Thorlabs, to experimentally analyze the
performance of the control scheme. Different reference signals were used to test the
performance of the controller. The obtained results were compared against a PID controller,
which is the most common control policy used. The experiments carried out showed that
the MPC control scheme obtains better performance at tracking operations.

Experiments show that, even at different reference signals, the MPC controller always
obtains better control results and can be up to 370% better when using performance
indicators such as IAE. It has also been concluded that the trained neural network, created
for frequencies of 0.1 Hz, may be used as a model for higher frequencies, up to at least twice
the frequency. However, the ANN would provide lower performance at higher frequencies,
and should be retrained for the new desired frequencies.

For future experiments, we intend to compare the performance of the presented
approach with other control schemes. In addition, the exact limits of frequencies that the
neural network has before being an inaccurate model will be observed. From this, it could
be considered to create a frequency-independent network that can model the hysteresis of
the PEAs at any frequency. However, it should be noted that the new ANN will require a
higher computational cost.
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