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Abstract: The definition of geostatistical domains is a stage in the estimation of mineral resources,
in which a sample resulting from a mining exploration process is divided into zones that show
homogeneity or minimal variation in the main element of interest or mineral grade, having geological
and spatial meaning. Its importance lies in the fact that the quality of the estimation techniques, and
therefore, the correct quantification of the mineral resource, will improve in geostatistically stationary
areas. The present study seeks to define geostatistical domains of estimation for a mineral grade,
using a non-traditional approach based on the k-prototype clustering algorithm. This algorithm is
based on the k-means paradigm of unsupervised machine learning, but it is exempt from the one-time
restriction on numeric data. The latter is especially convenient, as it allows the incorporation of
categorical variables such as geological attributes in the grouping. The case study corresponds to a
hydrothermal gold deposit of high sulfidation, located in the southern zone of Peru, where estimation
domains are defined from a historical record of data recovered from 131 diamond drill holes and
37 trenches. The characteristics directly involved were the gold grade (Au), silver grade (Ag), type of
hydrothermal alteration, and type of mineralization. The results obtained showed that clustering
with k-prototypes is an efficient approach and can be used as an alternative or complement to the
traditional methodology.

Keywords: clustering algorithms; homogeneity; stationarity; unsupervised machine learning

MSC: 86A32

1. Introduction

In the field of mineral resource estimation, it is common practice to identify volumes
that are spatially consistent, statistically similar, and geologically distinct from other vol-
umes around them. These are called estimation domains in the geostatistical literature [1],
and entail an improvement in the performance of estimation techniques. The geological
aspects of the deposit are usually the fundamental guidelines for the definition of estima-
tion domains. Attributes such as alteration, mineralization, and lithological aspects must
be considered [2]. Glacken and Snowden [3] state that a geological domain represents an
area or volume within which the characteristics of mineralization are more similar than
outside the domain. Other authors [1] are more specific and define geological domains as
the equivalent of geostatistically stationary zones.

In mineral resource modeling, the concept of stationarity is closely related to the
homogeneity of geological bodies, and simplifying the definition that authors give in [4],
it can be assumed that a phenomenon is stationary when it shows constant expected
values, covariance, and self-correlation structures at any given location in the studied area.
Estimation domains that do not adhere to the stationarity principle can lead to significant
bias in mineral grades and, therefore, erroneous estimates [5]. In this article, the concept
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of geostatistical domain is directly associated with the geological domain of estimation.
Thus, there will be no distinction in the term and in a simplified way, we will speak of
estimation domains.

The traditional methodology used to define estimation domains for mineral resources
is based on a combined study between geology and statistics, in which geological un-
derstanding and human intervention predominate. At a general level, the steps that this
methodology follows are:

• Selection of geological attributes that control mineral grade.
• Statistical analysis of the mineral grade for each category of each geological attribute.
• Combination of categories of each geological attribute by statistical similarity and

spatial soft contact. The latter is also known as the definition of geological units
(alteration, lithology, mineralization, etc.).

• Combination of geological attributes (units) by statistical similarity and spatial soft contact.
• Validation of the estimation domains at the geological, statistical, and geostatistical level.

Nevertheless, this methodology has some critical aspects. One of them is that it is slow,
since all the works must be carried out and checked by an acquaintance in the geology of
the mineral deposit. It is also subjective, since, from one expert to another, different criteria
and interpretations are manifested. Codes for reporting mineral resources are intended to
define minimum standards [6], and this opens the possibility of using multiple methods
as long as they can be supported. Further, the behavior of the mineral grade will not
necessarily be homogeneous; it will present stationarity and its spatial structure could be
interpreted in different ways. This occurs because domains depend closely on geological
attributes that will not necessarily be grouped by the characteristics mentioned above.

In this study, the implementation of a methodology based on unsupervised machine
learning is evaluated, through the use of a multivariate clustering algorithm. The main
objectives are to obtain a new alternative to define estimation domains that satisfies the
principles of geostatistical estimation, to reduce the time factor that is criticized for the
traditional methodology and to decrease the subjectivity of the traditional methods.

Clustering algorithms have been used since the 1960s, when Sokal et al. [7] intro-
duced the hierarchical agglomerative technique to work in the field of taxonomy, and
MacQueen [8] introduced the k-means algorithm. This approach may be especially appro-
priate for the definition of estimation domains, since it divides the data into groups based
on the relationships between the more relevant variables of the problem [9]. Automatic
grouping is an approach to analyze spatial data at a higher level of abstraction by grouping
according to their similarity into significant groups [10]. A collection of data is organized
into groups so that items within a group are more “similar” to each other than to data in the
other groups. Grouping is generally performed when no information is available about the
membership of data items in predefined classes. For this reason, it is traditionally consid-
ered part of unsupervised learning [11]. There are a wide variety of clustering approaches
for different applications and data sizes [12]. Some of these methods include hierarchical
clustering, partition clustering, mixture model clustering, neural network-based clustering,
fuzzy clustering, and graph clustering [12–14].

One of the most popular and widespread algorithms in automatic grouping is k-means,
which corresponds to a numeric, unsupervised, non-deterministic iterative method, which
is simple and very fast. Therefore, in many practical applications, the method has proven
to be a very effective way that can produce good clustering results [15]. Other authors [16]
used k-means clustering to identify geological domains in an iron ore deposit, based on
laboratory analysis data (Fe, SiO2, Al2O3, P, TiO2, and LOI).

In [17], the k-means method is used to define geo-metallurgical domains in an iron
deposit in northeastern Iran, using data from laboratory analysis (Fe, FeO, S), magnetic
susceptibility, and spatial coordinates (X, Y, Z). Moreira et al. [9] used k-means to define
estimation geological domains in a phosphate–titanium deposit, mainly using data from
laboratory analysis (P2O5, TiO2, and CaO), rock type, and alteration.
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However, k-means optimizes a cost function defined on the Euclidean distance mea-
sure between data points and means. Minimizing the cost function by calculating means
limits its use to numeric data [18]. This limitation affects categorical geological variables
that control the mineral grade, not being able to provide information on the grouping.
Given this problem, the categorical data can be transformed to continuous, assuming an
absolute knowledge of the associations of the categories of each geological attribute, which
is complex. Another option consists in carrying out the inverse process. That is, to trans-
form the continuous numeric variables of the mineral grades, to discrete ones, assuming
a significant loss of information; then, a grouping algorithm for categorical data is used
(such as k-modes [18]). However, none of the options are suitable.

Few clustering methods have been proposed in the literature to deal with mixed
data. Huang [18] proposed the first algorithm that is based on a combinatorial of k-
means and k-modes, which is known as k-prototypes. It makes possible to group mineral
grades and geological attributes together. The algorithm groups objects with numeric and
categorical attributes in a similar manner that k-means does. The object similarity measure
is derived from both numeric and categorical attributes. When applied to numeric data,
the algorithm is identical to k-means. Thus, an innovative fact of this manuscript is the
practical application of this k-prototype clustering approach to the domain of geostatistical
applications, as it has been usually applied to general big data cases.

When using unsupervised learning algorithms, the data are not labeled, so the correct
answer is not known a priori. In this case, the non-hierarchical grouping algorithms need to
be initialized indicating the number of groups as an input parameter. For the selection of the
optimal number of groups, two different heuristics are used herein: the Calinski–Harabasz
index [19] and the Silhouette coefficient [20].

The paper is organized as follows: in Section 2, the methodology is explained; in
Section 3, the case study is analyzed; finally, in Section 4, some conclusions are reported.

2. Methodology

The k-prototypes algorithm allows the use of both numeric and categorical data. Given
a data set of n objects, where mr are the numeric attributes and mc the categorical, the goal
of the k-prototypes is to find k clusters where the following objective function is minimized:

k

∑
l=1

n

∑
i=1

pild(xi, Ql), (1)

where pil is an element of the partition matrix Pn×k, satisfying 0 ≤ pil ≤ 1 and ∑k
l=1 yil = 1.

P is a hard partition if pil is a binary variable (pil ∈ {0, 1}) that indicates the membership
of the data xi in cluster l; otherwise, P is a fuzzy partition. Ql is the center or prototype of
cluster l and d(xi, Ql) is the distance measure defined as follows:

d(xi, Ql) =
mr

∑
j=1

(
xr

ij − qr
lj

)2
+ γl

mc

∑
j=1

δ
(

xc
ij, qc

lj

)
. (2)

xr
ij represent the values of the numeric attributes and xc

ij the values of the categorical
attributes for each data object i; qr

lj is the mean of the jth numeric attribute in a cluster l,
and qc

lj is the mode of the jth categorical attribute in cluster l; γl is a weight for categorical
attributes in a cluster l. Function δ, which is defined for categorical attributes, is:

δ(xc
ij, qc

lj) =

{
0, xc

ij 6= qc
lj,

1, xc
ij = qc

lj.
(3)

The main algorithm of the k-prototype method consists of calculating the distance
between data objects and group centers or prototypes (Q) using Equation (2). The method
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finishes when the updated group center coincides with the group center of the previous
iteration.

The k-prototype method results adequate for small and medium data sets. However,
it does not manage to treat mixed data sets on a large scale (millions of instances), due to
the high computational cost that it requires (a total of n · k distance calculations in each
iteration [21]). The general workflow followed herein consisted in: we performed an
exploratory data analysis (EDA), standardization of the data, application of the k-prototype
algorithm in 9 scenarios, selection of the optimal k and validation of the estimation domains.

The purpose of the EDA is the description of the geological attributes that control
the mineral grade, and the analysis of its behavior at a statistical and spatial level in each
category of attributes. It is possible to deduce if the mineral grade is grouped in a single
population or there are several independent populations. A requirement in automatic
grouping is that each of the characteristics have the same influence. The latter is solved by
data standardization. In this case, the z-score is used:

z =
x−m

s
, (4)

where z is the standardized value, x the original value, m the mean, and s is the standard
deviation of the original values. The result is a transformation, in which the same variance
stands for all the characteristics.

Subsequently, the k-prototype algorithm is executed in 9 different scenarios being k in
a range from 2 to 10. This is performed with the aim of selecting the optimal k, which is
consistent with the number of clusters in which the inertia within the group is minimal and
being groups distinguishable between them.

The first method used to select the optimal k is the Calinski–Harabasz index (CH) [19],
which relates the internal metrics of cohesion and separation. Cohesion is understood as
the closeness that the members must have within each group. It can be evaluated with the
sum of the squares within each group (SSW):

SSW =
n

∑
i=1

∑
x∈Ci

d2(x, mi), (5)

where k is the number of clusters, x is a sample, Ci is the ith cluster, mi is the centroid of the
cluster Ci, and d(x, mi) is the distance between x and mi.

On the other hand, the separation measures the dissimilarity that must exist between
groups. It can be expressed by the sum of squares between groups (SSB):

SSB =
k

∑
i=1

nid2(µ, mi), (6)

where ni is the number of elements in cluster ith, mi is the centroid of cluster ith and µ is
the mean of all the data points.

Finally, the CH index is expressed as follows:

CH =
SSB
SSW

· (n− k)
(k− 1)

, (7)

where k is the number of clusters and n the number of data points.
The process of selecting the optimal k can be arbitrary when only one method is used.

Therefore, a second method called the silhouette index (SH) [20] is used. This method
measures the separation distance between clusters, and it indicates how close each element
of a cluster is to elements in neighboring clusters. This distance is on the interval [−1, 1]. A
high positive value means good grouping. A value close to 0 indicates that the item is very
close to or on the decision boundary between two clusters. Negative values indicate that
the items may be assigned to the wrong group. The silhouette method calculates the mean
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of the silhouette coefficients of all the observations for different values of k. The optimal
number k is the one that maximizes the mean of the silhouette coefficients for a range of
k values.

Given a point xi, the coefficient of the silhouette is defined as:

sp(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
, (8)

where a(xi) is the mean distance between xi and all the points in the cluster Ci, and b(xi) is
the smallest distance between xi and the sample from the nearest cluster that is not part of
the cluster Ci.

The silhouette index of the whole grouping is given by the average of all sp(xi):

SH =
1
n

n

∑
i=1

sp(xi). (9)

Finally, the resulting groups, which are ultimately the estimation domains, must be
validated. Coombes [22] proposes a simple variance review approach based on grids as a
minimum requirement for the validation of estimation domains. However, in this study,
we use the semivariogram estimator additionally [23] to detect spatial dependence. The
following expression corresponds to the experimental semivariogram, which is an unbiased
estimator for the semivariogram:

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

(Z(xi + h)− Z(xi))
2, (10)

where Z is a variable of interest known in xi i = 1, . . . , n; N(h) is the number of pairs of
variables at distance h.

3. Case Study

The objective of this research is the validation of the k-prototype clustering method
for the definition of geostatistical estimation domains through an application case. The
available data set is the result of 131 diamond drill holes and 37 exploration trenches,
carried out with the purpose of identifying, characterizing, and evaluating a hydrothermal
gold deposit of high sulfidation, located in the province of Tacna, district of Palca, southern
Peru. Gold is the most important economic metal for which the estimation domains are
defined. The available variables are the following: gold grade (Au), silver grade (Ag), type
of alteration, and mineral zone.

In Figure 1, the complete process, from the selection of the variables, to the evaluation
of the domains can be seen. Regarding the exploratory data analysis: the 1st step has the
purpose of describing, relating, and cleaning the data coming from the drilling campaign
(composites). In step 2, those features, both numerical and categorical, that affect the defini-
tion of domains are selected. After that, in step 3, the numerical features are standardized.
In step 4, categorical features are converted into new binary type variables. In the 5th step,
the algorithm k-prototypes are applied in n scenarios. After that, the optimal number of
domains is selected (step 6). Finally, in step 7, it is evaluated if the domain is geostatistically
estimable, through a variogram. The algorithm k-prototypes is explained in Algorithm 1.
The input of the algorithm is the set of n data objects (x1, x2, . . . , xn), and the output is the
number of clusters k.
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1.- Exploratory Data Analisys
(EDA)

2.- Features selection

3.- Standardization of
numerical features

4.- One hot encoding applied
to categorical features

5.- k-prototypes applied
in n scenarios

6.- Optimal domain
number selection

7.- Geostatistical evalua-
tion of estimation domains

Figure 1. Sequence of the main stages of the method.

Algorithm 1 Algorithm to determine the number of clusters k

1: procedure k-PROTOTYPES(x1, x2, . . . , xn)

2: Select k initial prototypes (cluster centers) randomly from the data set

3: Attribute each data point in the data set to its closest cluster center according to

Equation (2)

4: Update the cluster centers position after each allocation

5: if the updated cluster centers are identical to the previous ones then

6: finish

7: else return to the beginning

8: end if

9: end procedure

Ag’s grade has both statistical correlation (76%) and apparent spatial similarity with
Au’s grade. The geological attributes that control mineral grade are the mineral zone and
the type of alteration (both categorical variables). The X, Y, and Z coordinates identify the
centroid of each composite.

The mineral zone is an attribute that is presented in three categories: oxides, mixed,
and sulfides. This attribute has a strong control over the mineral grade, and it is established
as restrictive for grouping. This means that in the estimation domains that are defined,
there cannot be a mixture of these zones. Thus, the clustering algorithm will be applied
independently in each of them. In Table 1, the descriptive statistics of Au (parts per million,
ppm) are presented, and in Figure 2 the isometric view of drill holes by mineral zones.

The behavior of the gold grade is inversely proportional to the depth of the deposit:
the deeper the deposit, the lower the Au grade. The mixed transition zone (M2) is the area
with less information and the most representative of the global average grade, while the
oxide (M1) and sulfide (M3) zones have a similar amount of data and they present more
extreme average Au grades; see Table 1. In Table 2, the contact analysis of Au is presented,
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where the following notation has been used: not applicable (NA), soft contact (SC), hard
contact (HC).

Table 1. Au statistics (ppm) by mineral zone.

Code Description Count Mean Std Min Q1 Q2 Q3 Max Kurt Skew

M1 Oxidation zone (OX) 922 0.33 0.32 0.00 0.12 0.24 0.44 2.22 6.83 2.21
M2 Mixed zone (MIX) 598 0.17 0.15 0.00 0.06 0.13 0.22 1.06 4.11 1.73
M3 Sulfide zone (SULF) 933 0.08 0.14 0.00 0.01 0.03 0.10 1.37 31.36 4.88

Figure 2. Isometric view of drill holes by mineral zone code.

Table 2. Contact analysis of Au (ppm) by mineral zone.

Code M1 M2 M3

M1 NA SC HD
M2 SC NA SC
M3 HD SC NA

In Figure 3, it is observed that the mineral zones have independent distributions based
on the gold grade; thus, they should be kept separate. The sulfide zone (M3) is the one
that slightly presents a greater amount of changes in the slope. Therefore, a priori, it is
an area that possibly should be divided into more groups of grades than M1 and M2,
where two areas can be distinguished in each of the groups. Au presents a high positive
asymmetry and kurtosis, describing an impoverished deposit, where the accumulation
of grades is concentrated in low values. In this type of distribution, it is not possible to
detect the existence of populations that coexist in a histogram. For this reason, a log-normal
transformation is applied to the Au grades (Figure 4). It is possible to observe at least two
populations that are very different in size per each mineral zone.

On the other hand, the type of alteration which is the second geological attribute and
that directly influences the work of the clustering algorithm, is presented in six categories;
see Table 3. In Figure 5, the isometric view of drill holes by type of alteration is presented,
and in Table 4, the contact analysis of Au by type of alteration is shown. The same notation
as in Table 2 has been used; and the case of no physical contact has been denoted by NC.
The coverage (A5) does not have enough samples to evaluate contact.

The predominant alteration in the deposit is the argillic type (A1 and A2), covering
the 72% of the sample. Then, in terms of abundance, silica follows (A4) covering the
16%, and finally chloritization (A3), vuggy (A6), and coverage (A5) being 6%, 5%, and
1%, respectively. Each of these categories maintains a control over the Au grade. See, for
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example, the mineral enrichment that occurs in A6 versus the mineral depletion of A3, in
Table 3. In Figure 6 the normal probability plot for each alteration can be seen.

Figure 3. Normal probability plot of gold grade by mineral zone.

Table 3. Au statistics (ppm) by type of alteration.

Code Description Count Mean Std Min Q1 Q2 Q3 Max Kurt Skew

A1 Advanced Argillic 702 0.30 0.22 0.00 0.15 0.24 0.40 1.58 4.47 1.73
A2 Intermediate Argillic 1061 0.09 0.16 0.00 0.01 0.04 0.11 1.44 20.48 3.93
A3 Chloritization 141 0.02 0.04 0.00 0.00 0.00 0.01 0.26 16.42 3.95
A4 Silica 394 0.17 0.13 0.00 0.09 0.13 0.20 0.87 5.79 2.06
A5 Coverage 32 0.18 0.11 0.01 0.11 0.17 0.25 0.36 −0.85 0.12
A6 Vuggy 123 0.72 0.48 0.06 0.40 0.57 0.93 2.22 0.73 1.09
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Figure 4. Simple log-normal Au grade histogram by mineral zone and type of alteration.

Figure 5. Isometric view of drill holes by type of alteration.
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Figure 6. Normal probability plot of gold grade by type of alteration.

Table 4. Contact analysis of Au (ppm) by type of alteration.

Code A1 A2 A3 A4 A5 A6

A1 NA SC NC SC – SC
A2 SC NA HC SC – HC
A3 NC HC NA NC – NC
A4 SC SC NC NA – NC
A5 – – – – NA –
A6 SC HC NC NC – NA

The numeric variables Au and Ag will contribute to the grouping, because, as men-
tioned above, they are similar in their spatial arrangement and have an apparent statistical
correlation, which would add weight in the definition of homogeneous domains for Au.
On the other hand, and unlike similar studies, the spatial coordinates X, Y, and Z will
not be included due to the fact that these would influence excessively a spatial grouping,
leaving the main variable of interest in the background and losing homogeneity by domain.

Au and Ag are variables that have different scale and variance. Therefore, they are
standardized for a correct contribution of information. The z-score transformation has been
applied, obtaining two transformed variables of mean 0 and variance 1. Regarding the two
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categorical variables, only the alteration will provide information in the grouping, which is
the one that has the greatest control over Au. The three categories of the mineral zone are
presented as independent scenarios where the grouping takes place.

The k-prototype algorithm is applied in nine different scenarios, ranging from k = 2 to
k = 10, for each of the mineral zones and using three variables: Au, Ag, and alteration. The
k scenarios are evaluated using the Calinski–Harabasz index and the silhouette coefficient,
see Figure 7.

Figure 7. Line graph for Calinski–Harabasz index and silhouette coefficient.

For oxidized and mixed minerals, both approaches have a higher score when k = 2. For
sulfides, k = 3 is presented as the best alternative. The latter is related to the populations
detected in this mineral zone in the descriptive stage. The method k-prototypes recom-
mends seven domains, as shown in Table 5: two domains for the mineral zone M1, the
other two domains for M2, and three domains for M3.

Table 5. Domains and relationship with categorical variables.

Mineral Zone Domain Alteration Observations

M1 D1 A1, A3, A4, A5, A6 741
D2 A1, A2, A4, A6 181

M2 D3 A1, A2, A3, A4, A5 461
D4 A1, A2, A4 137

M3
D5 A1, A2, A3, A4 837
D6 A1, A2, A4 69
D7 A1, A2, A4 27

This methodology favors the homogeneity of the variable of interest and the hetero-
geneity between domains, unlike the traditional methodology which does not mix, a priori,
alterations by mineral zone. Thus, a partial mixture between alterations is produced. In the
case of the mineral oxide zone (M1), alteration A3 and A5 are not part of the D2 domain.
This is because these type of alterations have a low concentration grade in Au. This is the
reason why within the oxides, the domain D1 represents the group of low grades, and D2
high grades.

The same situation occurs with mixed minerals (M2), where the D3 domain, the first
in its area, does not contain either A3 or A5 alterations (groups of low grades), and the
domain D3 domain has higher grades. In the case of sulfur minerals (M3), three domains
are defined. The smallest domain (D7) concentrates a group of high grades, similar to those
of the D2 domain of oxides, with the difference that D7 is a domain with poor information,
and in which the alterations A1 and A2 interact most, being the ones with the highest grade.
This fact demonstrates that the categorical variable alteration weighs in the grouping,
since it controls the behavior of Au and provides the geological character required in the
definition of domains. See the boxplot by estimation domain in Figure 8.
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Figure 8. Boxplot by estimation domain.

The domains D1–D6 present spatial continuity, which can be seen in the omnidirec-
tional semivariograms of Figures 9–14. They also have a local stationarity that is sufficient
to validate the use of the geostatistical model.

Figure 9. Drift and omnidirectional semivariogram domain D1.

As mentioned above, the D7 domain recommended by this methodology is question-
able, since it contains a very low amount of data corresponding to a mineral enrichment
in the sulfide zone. The algorithm detects this anomaly and it separates, which makes
difficult the variographic modeling, and therefore, the geostatistical estimation. This is
evidenced in Figure 15, where the drift graph and the omnidirectional semivariogram for
the aforementioned domain are presented. A solution to this problem is to incorporate the
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domain D7 into another one in the sulfide zone, omitting its information when making the
spatial continuity model.

Figure 10. Drift and omnidirectional semivariogram domain D2.

Figure 11. Drift and omnidirectional semivariogram domain D3.
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Figure 12. Drift and omnidirectional semivariogram domain D4.

Figure 13. Drift and omnidirectional semivariogram domain D5.
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Figure 14. Drift and omnidirectional semivariogram domain D6.

Figure 15. Drift and omnidirectional semivariogram domain D7.

4. Conclusions

In this study, the implementation of an unsupervised machine learning-based ap-
proach was evaluated using a multivariate clustering algorithm. The main goal of this
research was to implement and test successfully a previously non-applied alternative
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method to define the assessment domain that meets the principles of geostatistical assess-
ment. The traditional approach used to define the area of mineral estimation is based on
integrated geological and statistical studies, where geological understanding and human
intervention dominate. The traditional approach is relatively slow as its steps need to
be carried out and supervised using expert personnel. As well, the behavior of mineral
properties is not always uniform, it may present stationarity, so its spatial structure can be
interpreted in different ways, as geological domains are strongly dependent on geological
attributes. Thus, the aim of the initiative presented in this practical approach was to reduce
both the time factor for which traditional methods are criticized, and their subjectivity
compared to the traditional methods.

The automatic grouping approach presented herein has shown satisfactory results in
terms of time, resources used, and quality of results. The results obtained by the algorithm
k-prototypes are consistent with the exploratory data analysis, where information regarding
statistically independent populations for gold grade for each mineral zone is captured.
By being able to mix numeric and categorical variables, the grouping incorporates the
geological and spatial character from the attributes that maintain control over the mineral
grade. The suggested domains meet the requirements to be modeled geostatistically,
making it possible to advance in the estimation stage.

As limitation of the proposed initiative, we can say that this unsupervised automatic
grouping approach does not depend solely on the algorithm. It must also consider a
correct selection of variables, a preprocessing of these, the configuration of the initialization
parameters, the number of scenarios to be evaluated, the evaluation methods, and the
interpretation of the results weighing the geological sense with the sufficient degree of
stationarity. Therefore, the approach proposed in this study does not replace the traditional
methodology, but it is presented as a more efficient comparative alternative or complement
in terms of time and homogeneity by domains, at the expense of making the mixture of
categories by geological attribute more flexible.

The research has awakened the interest of Aingura IIoT for future developments in
this line, which is a company that designs Industrial Internet of Things (IIoT) solutions
for the industry. As suggested by practitioners from this company, further research will
be oriented to the improvement of the approach in terms of the aforementioned variable
selection, preprocessing, initialization and evaluation stages, to obtain a less technician-
dependent tool.
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