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Abstract. This Master Thesis has two distinct parts. The first one mod-
els an application of Graph Neural Networks (GNN) for the identifica-
tion of critical nodes in graphs that correspond to traffic networks. We
call critical nodes those that can compromise the traffic flow in some
subgraphs of the network. Specifically, the example data for the demon-
stration corresponds to the Vienna subway network, hence the linear
subgraphs correspond to the subway lines with intersections at some key
subway stations. Those critical nodes relative to a subway line compro-
mise the traffic flow at this line, therefore, we propose three GNN based
approaches for the identification of such critical nodes, reporting encour-
aging results. The second part of the Master Thesis illustrates the back-
ground research work on drone airspace management and a discussion of
how the reported results may have some relevance for this emerging dif-
ficult problem. The main idea is that the urban airspace for drones, that
may be carrying out delivery of either persons (aerotaxis) or goods, can
be structured along airways that mimic the existing network of streets.
The computational example explored in part one of the Master Thesis,
thus, becomes relevant for the development of intelligent drone airspace
management.

Keywords: Air traffic control · Aircraft navigation · Intelligent robots
· Critical node identification · Neural networks · Pattern recognition.

1 Introduction

Graph neural networks Graph neural networks (GNN) have been proposed in
several flavors aiming to cope with the processing of highly unstructured data
that are better represented by a graph [38]. GNNs have been successfully ap-
plied to tackle problems in computer vision, natural language processing, traf-
fic forecasting and control, recommender systems, and chemistry. Proposals for
GNN architectures have been derived from diverse research approaches, such as
convolutional based constructions, recursive neural networks, autoencoders, and
spatio-temporal architectures dealing with time varying graph structures. In this
Master Thesis we report computational experiments dealing with the identifica-
tion of critical nodes in graph representations of traffic networks. Critical nodes
are defined as the nodes that can severely influence the traffic flow over specific
subgraphs.
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Drones Applications of drones have augmented in the last decade, and their uses
have increased in number. Recently, the availability of relatively cheap hardware
has aroused the interest for aerial swarms where several flying robots collabo-
rate to achieve a collective task [11], [29]. Multi-drone systems are proposed for
a broad spectrum of missions including search and rescue [4], long-term monitor-
ing [40], sensor data collection [34], indoor navigation, environment exploration
[21], and cooperative grasping and transportation [22]. In the entertainment in-
dustry, some spectacular demonstrations of air effects have been achieved the
coordination of fleets of hundreds of drones that light up the night sky with
aerial shows, as Intel and Ehang have displayed.

Nonetheless, the initial point towards the deployment of such complex sys-
tems in real-world scenarios is simulation [31]. The development of algorithms
and applications for autonomous aerial vehicles requires the availability of a suit-
able simulation framework for rapid prototyping and simulation in reproducible
scenarios. This is desirable in all robotics fields, but it is especially relevant for
collective systems such as drone swarms, where errors can propagate through the
individuals and lead to catastrophic result. Moreover, having a tool that allows
the user to monitor that propagation and the path planning will give the user a
general overview of the current situation to plan ahead.

Long term motivation The work in the Master Thesis has been motivated by
the involvement of the student in an Elkartek project related to the design of
innovative air transport autonomous vehicles, i.e. drones for the transportation
of goods and people. Specifically, the student was involved in the study of air
traffic management, in order to have an appropriate distribution of multiple
aircrafts in the shared airspace [5] as proposed by the European Commission
due to the need of a separated space for Unmaned Aerial vehicles (UAV) and
other aerial vehicles, such as airliners. The computational experimental work
reported in this Master Thesis may be of future use in the control of urban air
spaces densely filled with drones carrying out independent but similar tasks,
such as deliveries of goods.

Contents of this Master Thesis: Section 2 provides an introductory review of
Graph Neural Networks (GNN) with motivation and some formal definitions.
Section 3 gives the definition of the target problem. Section 4 gives a short de-
scription of the data used for the computational experiments. Section 5 contains
the data preprocessing carried out. Section 6 describes the three architectures
that have been applied to the example graph data. Section 7 reports the results
of the proposed computational methods obtained over the experimental data.
Section 8 provides a view of the broad paradigm where the specific work carried
out in the Master Thesis is embedded. Section 9 briefly discusses a systematic
approach to create experimental settings. Section 10 gives our conclusions and
some ideas for future work.

https://www.intel.com/content/www/us/en/technology-innovation/intel-drone-light-shows.html
https://ehang.com/formation
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2 Graph Neural Networks: Motivation, definitions and
Applications

A graph data structure consists of a finite (and possibly mutable) set of vertices
(also called nodes or points), together with a set of unordered pairs of vertices,
for undirected graphs, or a set of ordered pairs, for directed graphs. These pairs
of vertices are known as edges (also called links or lines). For a directed graph
edges can also be called arrows or arcs. The vertices may be part of the graph
data structure, or may be external entities represented by integer indices or
references. A graph data structure may also associate to each edge some value,
such as a symbolic label or a numeric attribute (cost, capacity, length, etc.).
Recently, research about analyzing graphs with machine learning is receiving
more and more attention because of the great expressive power of graphs. As a
unique non-Euclidean data structure for machine learning, graph analysis focuses
on tasks such as node classification, link prediction, and clustering.

Many tasks require dealing with graph data containing valuable relational
information among elements. Some domains demand models that are able to
learn from graph input information (such as modeling physics systems, learn-
ing molecular fingerprints, predicting protein interface, and classifying diseases),
whereas others require learning from non-structural data in order to reasoning on
extracted graph, such texts and images, and reasoning on structures extracted
from signal data, like the dependency trees of sentences or the scene graphs
describing the content of images.

Graph neural networks (GNNs) are deep learning based methods that oper-
ate on graph domains. Due to their convincing performance, they have become
a widely applied graph analysis method recently. Deep neural networks (DNN),
specifically convolutional neural networks (CNN) have been widely used in many
computer vision and pattern recognition tasks. Following this success, some ap-
proaches have been proposed to generalize the convolution operation over graph
data. Overall, these methods can be categorized into spatial convolution and
spectral convolution approaches. Spatial approaches define the graph convolu-
tion operation directly as an operation over node neighborhoods.

For example, Duvenaud et al. [10] propose a convolutional neural network
that operates directly on graphs and provide an end-to-end feature learning for
graph data. Atwood and Towsley [1] propose Diffusion-Convolutional Neural
Networks (DCNNs) by employing a graph diffusion process to incorporate the
contextual information of node in graph node classification. Monti et al. [23]
present mixture model CNNs (MoNet) and provide a unified generalization of
CNN architectures on graphs. By designing an attention layer, Velickovic et al.
[6] present Graph Attention Networks (GAT) for semi-supervised learning.

On the other hand, spectral methods define the graph convolution operation
based on spectral representation of graphs. For example, [Bruna et al.] [7] define
the graph convolution in the Fourier domain based on the eigen-decomposition
of the graph Laplacian matrix. Defferrard et al. [9] propose to approximate the
spectral filters based on Chebyshev expansion of graph Laplacian to avoid the
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high computational complexity of eigen-decomposition. Kipf et al. [16] propose
a Graph Convolutional Network (GCN) for semi-supervised learning.

2.1 General design pipeline of GNNs

A graph is denoted as G = (V, E), where
∣∣V∣∣ = N is the number of nodes in

the graph and
∣∣E∣∣ = N ⌉ is the number of edges. Matrix A ∈ RN×N with non

zero entries corresponding to (un)directed edges is the adjacency matrix. For
graph representation learning description, hv and ov denote the hidden state
and output vector of node v.

As the first step in the design pipeline, it is important to find out the graph
structure in the application. There are two scenarios:

1. structural scenarios: the graph structure is explicit, such as in applications
on molecules, physical systems, knowledge graphs, and so on.

2. non-structural scenarios: graphs are implicit so that we have first to
extract the graph from the raw data, such as building a fully-connected
“word” graph for text or building a scene graph for an image.

After the graph is obtained, the ensuing design process steps attempt to find
an optimal GNN model to work on this specific graph. Therefore, we have to find
out the graph type and its scale. Graphs with complex types could provide more
information on nodes and their connections. Graphs are usually categorized as:

– Directed/Undirected Graphs. Edges in directed graphs are all directed from
one node to another, providing more information than undirected graphs.
Each edge in undirected graphs can also be regarded as the collection of two
directed edges.

– Homogeneous/Heterogeneous Graphs. Nodes and edges in homogeneous graphs
have the same types, while nodes and edges have different types in hetero-
geneous graphs. Typification of nodes and edges play important roles in
heterogeneous graphs and should be further considered.

– Static/Dynamic Graphs. When input features or the topology of the graph
vary with time, the graph is regarded as a dynamic graph. The time infor-
mation should be carefully considered in dynamic graphs.

Note these categories are orthogonal, which means these types can be combined,
e.g. one can deal with a dynamic directed heterogeneous graph. There are also
several other graph types designed for different tasks such as hypergraphs and
signed graphs. We will not enumerate all types here but the most important
idea is to consider the additional information provided by these graphs. Once
we specify the graph type, the additional information provided by these graph
types should be further considered in the design process.

Regarding graph scale, there is no clear classification criterion for “small”
and “large” graphs. The criterion is still changing with the development of com-
putation devices (e.g. the speed and memory of GPUs). When the adjacency
matrix or the graph Laplacian (space complexity is quadratic) cannot be stored
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and processed by the device, then we consider the graph as a large-scale graph,
requiring decomposition or sampling methods for its processing.

For graph learning tasks, there are usually three kinds of tasks:

– Node-level tasks focus on nodes, which include node classification, node re-
gression, node clustering, etc. Node classification tries to categorize nodes
into several classes, and node regression predicts a continuous value for each
node. Node clustering aims to partition the nodes into several disjoint groups,
where similar nodes should be in the same group.

– Edge-level tasks are edge classification and link prediction, which require
the model to classify edge types or predict whether there is an edge existing
between two given nodes.

– Graph-level tasks include graph classification, graph regression, and graph
matching, all of which need the model to learn graph representations.

From the perspective of supervision, we can also categorize graph learning tasks
into three different training settings:

– Supervised setting requires labeled data for training.
– Semi-supervised setting uses a small amount of labeled nodes and a large

amount of unlabeled nodes for training. In the test phase, the transductive
module predicts the labels of the given unlabeled nodes, while the induc-
tive module provides new unlabeled nodes from the same distribution to
enter the inference computations. Most node and edge classification tasks
are semi-supervised. Most recently, a mixed transductive-inductive scheme
is undertaken by Wang and Leskovec (2020) [36] and Rossi et al. (2018),
creating a new path towards a mixed setting.

– Unsupervised setting processes only unlabeled data aiming for the model to
find patterns (clusters) in data. Node clustering is a typical unsupervised
learning task.

Knowing the task type and the training setting, we can design a specific loss
function for the task. For example, for a node-level semi-supervised classification
task, the cross-entropy loss can be used for the labeled nodes in the training set.

A typical GNN model is usually built by combining the following operators:
The convolutional operator, recurrent operator, sampling module and skip con-
nection are used to process and propagate information in each layer. The pooling
module is added to extract high-level information by selective compression of the
data. These layers are usually stacked to obtain a hierarchy of representations.
Note this architecture can generalize most GNN models with some exceptions.
Figure 1 summarizes this design pipeline.
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Fig. 1: The general design pipeline for a GNN

2.2 Traffic prediction with advanced graph neural networks

Safe transit and routing problem.[Nogami et al. 1996] [24] is a typical large-scale
scheduling problem that has the following characteristics:

1. Immediate decision making at any discrete decision point is needed, so that
real operation (traffic flow) is not delayed.

2. The environment surrounding this decision making process change dynami-
cally with time, and involve various uncertain elements, some are governed
by stochastic processes and some others are difficult to formulate mathemat-
ically.

3. Optimization criteria cannot be obtained until large unspecified number of
successive decision timings occur, requiring the long-term anticipation of the
discrete events expected to occur throughout the planning horizon.

4. Various strategies to avoid the so-called combinatorial explosion are needed
to deal with a great number of constraints

5. Negotiation and regulation among multiple agents, which have individual
requirements conflicting with each other are needed

Traffic prediction in road networks has been recently tackled with GNNs ap-
proaches by the well known DeepMind branch of Google. The initial proof
of concept began with a straight-forward approach that used the existing traf-
fic system as much as possible, specifically the existing segmentation of road
networks and the associated real-time data pipeline. This meant defining Su-
persegments covering a set of road segments, where each segment has a specific
length and corresponding speed features. A first approach consisted on training a
single fully connected neural network model for every Supersegment. Promising
initial results demonstrated the potential in using neural networks for predicting
travel time. However, given the dynamic sizes of the Supersegments, a separately
trained neural network model is required for each one. To deploy this approach

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
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Fig. 2: The general software design pipeline for the Air Traffic Management
(ATM) problem

at scale implies training millions of these models, which poses a considerable
infrastructure challenge. This lead DeepMind researchers to look into models
that could handle variable length sequences, namely Recurrent Neural Networks
(RNNs). However, incorporating further structure from the road network proved
difficult. In modeling traffic, it is important how cars flow through a network of
roads, and GNNs are able to model network dynamics and information propa-
gation.

In the end, DeepMind’s model treats the local road network as a graph, where
each route segment corresponds to a node and edges exist between segments
that are consecutive on the same road or connected through an intersection.
In a Graph Neural Network, a message passing algorithm is executed where
the messages and their effect on edge and node states are learned by neural
networks. From this viewpoint, the Supersegments are road subgraphs, which
were sampled at random in proportion to traffic density, as we can see in Fig. 3
. A single model can therefore be trained using these sampled subgraphs, and
can be deployed at scale.
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Fig. 3: Deepmind approach to road network traffic modeling and prediction

3 Target problem

We focus on analyzing the transportation networks where we can observe in-
tersections as nodes, and path segments as edges connecting them. These edges
can be enriched with additional attributes such as the path length, current or
historical speeds along their segment and the like, but in this work we will work
with attribute-less edges. Our problem consists on identifying the most critical
nodes: for a given candidate route over the transportation graph, we want to
identify the critical nodes that must be avoided for navigation maintaining the
estimated time of arrival. Critical nodes of the transportation network are those
whose congestion that may induce great delays in the overall traffic flow or where
there is high risk of multiple collisions [30] [26] [39]. GNNs have shown immense
promise for this task, and can be used to directly predict the critical nodes for
a relevant subgraph of the network.

4 Data

The contents of the dataset that has been used for the computational experi-
ments reported below have been obtained from Kaggle. It consists in the graph
corresponding to the Vienna subway network. The analysis of the path network
is done by expecting that every path has a start and a stop, and every path

https://www.kaggle.com/datasets/lenapiter/vienna-subway-network
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can be considered as separated from the others, like in the usual subway lines,
where each start and stop is a subway station. Since we will be considering the
network as graph, the real use of the network is dispensed given this represen-
tation serves to analyze both subways networks, airways or road networks. For
the Vienna subway network we have the following information: Start station,
Stop station, Line and Color, as it is represented in the Table 1, representing
the segments of a line as shown in Table 2. The next step will be to represent
the information of the table as a graph as shown in Fig. 4.

Table 1: Vienna subway network dataset raw information
Start (Station) Stop (Station) Line Color

Oberlaa Neulaa 1 Red
Neulaa Alaudagasse 1 Red

Alaudagasse Altes Landgut 1 Red
Altes Landgut Troststrasse 1 Red
Troststrasse Reumannplatz 1 Red

. . . . . . . . . . . .

Table 2: Vienna subway network dataset raw information
Start (Station) Stop (Station) Line Color

Oberlaa Leopoldau 1 Red
Karlsplatz Seestadt 2 Purple
Simmering Ottaking 3 Orange
Hüttledorf Heiligenstadt 4 Green
Floridsdorf Slebenhirten 6 Brown

5 Data preprocessing

Machine learning is recognized as an effective method by which some novel and
evolutionary knowledge is acquired and generalized systematically. The follow-
ing Unsupervised Learning machine learning techniques and well-known graph
embedding algorithms have been applied for network data preprocessing whose
results are shown in Fig. 6.

PageRank(PR): It is a link analysis algorithm that assigns a numerical weight-
ing to each element of a hyperlinked set of documents, with the purpose of
measuring its relative importance within the set. The numerical weight that it
assigns to any given element E is referred to as the PageRank of E and de-
noted by PR(E). The rank value indicates an importance of a particular page.
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(a) Subway map network

(b) Subway network graph

Fig. 4: (a) Map network of the Vienna subway train (b) The Vienna subway
network visualized as a graph network
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A hyperlink to a page counts as a vote of support. The PageRank of a page
is defined recursively and depends on the number and PageRank metric of all
pages linked to it (”incoming links”). A page that is linked to by many pages
with high PageRank receives a high rank itself. In a similar way, we could apply
this algorithm to find the relevance of a node in a graph set. Overlooking the
graph we could say that a critical node would be the point in the graph several
lines intersect. By obtaining the page ranking, we have a ranking of the most
influential nodes to later on select critical nodes to each line

DeepWalk [KDD 2014]: It uses a randomized path traversing technique to
provide insights into localized structures within networks. It does so by utiliz-
ing these random paths as sequences, that are then used to train a Skip-Gram
Language Model. We apply this algorithm to calculate the relation between the
lines, to analyze the dependencies between the lines trying to locate the most
important lines.

Node2Vec: algorithmic framework for representational learning on graphs.
Given any graph, Node2Vec can learn continuous feature representations for
the nodes, which can then be used for various downstream machine learning
tasks. We apply this algorithm to calculate the transition probabilities between
nodes
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(a) Network labels

Fig. 5: (a) Vienna subway network with the numerical labels corresponding to
nodes.

6 Computational methods

This work started trying to reproduce the results of a previous published anal-
ysis published analysis over a metro network whose graph representation is rel-
atively small and manageable. We have extended this analysis proposing two
additional GNN architectures.

6.1 Semi-supervised Learning with Graph Convolutional Network:

Deep neural networks have been long-established for computer vision and pat-
tern recognition tasks. Here is considered the problem of classifying nodes in a
graph, where labels are only available for a small subset of nodes. This problem
can be framed as graph-based semi-supervised learning, where label informa-
tion is smoothed over the graph via graph-based regularization by using a graph
Laplacian regularization term in the loss function [17]:

L = L0 + λLreg,with Lreg =
∑
i,j

Aij ∥f(Xi)− f(Xj)∥2 = f(X)⊤∆f(X) (1)

Here, L0 denotes the supervised loss w.r.t. the labeled part of the graph, f(·)
can be a neural network-like differentiable function,λ is a weighing factor and

https://www.kaggle.com/code/openjny/graph-machine-learning-with-subway-data
https://www.kaggle.com/code/openjny/graph-machine-learning-with-subway-data
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(a) PageRank analysis results

(b) DeepWalk analysis results

(c) Node2Vec analysis results

Fig. 6: Vienna subway network node labeling by unsupervised approaches (a)
Map network of the Vienna subway train indicating the most relevant nodes by
PageRank (b) Representation of the relation between lines in the Vienna subway
network (c) Representation of the transition probabilities between the stations
in the Vienna subway network
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X is a matrix of node feature vectors Xi. ∆ = D−A denotes the unnormalized
graph Laplacian of an undirected graph G = (V, E) with N nodes vi ∈ V, edges
(vi, vj)E , an adjacency matrix A ∈ RN×N (binary or weighted) and a degree
matrix Dii =

∑
j

Aij . The formulation of Eq1 relies on the assumption that con-

nected nodes in the graph are likely to share the same label. This assumption,
however, might restrict modeling capacity, as graph edges need not necessarily
encode node similarity, but could contain additional information. This way, we
can encode the graph structure directly using a neural network model f(X,A)
and train on a supervised target L0 for all nodes with labels, thereby avoiding
explicit graph-based regularization in the loss function. Conditioning f() on the
adjacency matrix of the graph will allow the model to distribute gradient infor-
mation from the supervised loss L0 and will enable it to learn representations of
nodes both with and without labels.

Given that our target is, given a graph with incomplete node labelling, pre-
dict the class of the remaining nodes, being the class relevant or no relevant.
For our problem, the relevancy will be translated as critic or non critic. Each
node has unique id that will be the number of the station, and a representative
nodes for each color will be chosen as follows: Red(60, 47, 38), Brown(20,77,35),
Purple(76,80), Green(31,69), Orange(78,61), that correspond to the first station
of the line (the ends of the graph), the end station of the line, and in some cases
when the line is to long, an intermediate station is chosen (near a point of many
intersections) Fig. 5(a).

Viewing this problem as a semi-supervised node classification, we can relax
certain assumptions typically made in graph-based semi-supervised learning by
conditioning our model f(X,A) both on the data X and on the adjacency matrix
A of the underlying graph structure.

Fig. 7: Architecture of the proposed basic GCN
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6.2 Enhanced GCN

The second approach is to enhance a GCN taking into account the following
guidelines [15]:

1. Let X = (x1, x2, . . . , xn) ∈ Rn×p be the collection of n data vector in p
dimensions.

2. Let G(X,A) be the graph representation of X with A ∈ Rn×n encoding pair
wise relationship (similarities between neighbours) among data X.

3. The GCN contains one input layer, several propagation (hidden) layers and
one final perceptron layer.

4. Given an input X(0)=X and a graph A, GCN conducts the following layer-
wise propagation show in Eq2

X(k+1) = σ(D−1/2AD−1/2X(k)W (k)), (2)

where, k = 0, 1, . . . ,K − 1 and D = diag(d1, d2, . . . , dn) is a diagonal matrix
with di =

∑n
j=1 Aij . W

(k) ∈ Rdk×dk+1 , d0 = p is a layer-specific weight matrix
needing to be trained. σ(·) denotes an activation function, in this case we used
ReLU(·) = max(0, ·), and Xk+1 ∈ Rn×dk+1 denotes the output of activations in
the k-th layer.

For semi-supervised classification, GCN includes a final perceptron layer de-
fined as

Z = softmax(D−1/2AD−1/2X(K)W (K)) (3)

where WK ∈ RdK×c, and c denotes the number of classes. The final output
Z ∈ ⋉n×c denotes the label prediction for all data X in which each row Zi

denotes the label prediction for the i-th node. The optimal weight matrices
W (0),W (1), . . . ,WK are trained by minimizing the cross-entropy loss function
defined as follows,

LSemi−GCN = −
∑
i∈L

c∑
j=1

Yij lnZij (4)

where L indicates the set of labeled nodes.
The architecture of the proposed enhanced GCN shown in Fig. 8 [38], consists

of 3 hidden layers topped with a softmax layer and loss, a size of the hidden
layer of 16, 0.3 of dropout, , weight decay of 5e-4, a learning rate of 0.01. This
architecture training time is set to 200 epochs.

6.3 Third approach

Finally the third approach is a more advanced GCN to improve the results of
the second approach, which includes a GCN layer, that will contain a graph
convolution layer and for each hidden layer another graph convolution layer,
with a MLP layer, that will contain a dropout layer and linear regressor. There
would be 16 graph convolutions and 8 mlps, as shown in Fig. 9 [38]. It will be
trained for 100 epochs.
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Fig. 8: Architecture of the proposed enhanced GCN

Fig. 9: Architecture of the proposed Advanced GCN



Critical nodes for drone airways graphs 17

7 Results

The models proposed in the Section 6 have been simplified for a better adaptation
to the functions of PyTorch libraries, as it happened with the loss function, for
example.

7.1 First aproach results

First, we apply the basic graph convolutional network composed of two layers,
a two-layer GCN for semi-supervised node classification on a graph with a sym-
metric adjacency matrix A (binary or weighted), Fig. 7 [38], that consist of a
graph convolution layer, a ReLu layer and an up graph convolution and 100
epochs. We want to predict which node is most relevant to which line, classify a
node with the color of the line they might create a block on. In the visual results
shown in Fig. 10(b), for instance, a brown node on a purple line would indicate
that this node is critical for the brown line.

More specifically, the biggest nodes, representing the most relevant nodes for
each line, is influential to the line they represent. Moreover, we can also see that
a node influences the line they belong to, even though, a big percentage of the
nodes influence the purple line, a lesser percentage influence the brown one, and
a very few of them the red line. This test has obtained an accuracy of 52.01%

7.2 Second approach results

The Fig. 11 shows us that still the representative nodes influence their own line
as expected, but mostly a big percentage of the rest of the nodes influence the
green line, and to a lesser extent, the purple line, which we can see are the very
own nodes for that line. A very few of them influence the brown line, being also
the ones for that line, and the same applies in the case for the nodes influencing
the orange and red lines. In this case, we obtained a bigger accuracy for the test,
being 60.12%

7.3 Third approach results

In this case the Fig. 12(c) shows the achieved critical node predictions. We
find that still the representative nodes influence their own line to which they
belong, with the difference that the representative nodes for the purple lines
also influence the orange line, one of the representative nodes for the brown
line (top, corresponding to Floridsdorf station) also influences the orange line,
whereas the other brown representative one (left, corresponding to Siebenhirten
station) influences the green line. Both representative nodes fro the purple line
influence the orange one, and one of the representative ones of the orange line
influences the red line. The vast majority of nodes are critical for the orange line
and green lines. Very few of them influence the red line. This test obtained a
bigger accuracy reaching the 72.23%
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(a) Loss by epoch

(b) Basic 2-layer GCN Predictions

Fig. 10: First approach: (a) Evolution of the loss function along the 100 training
epochs (b) Predictions of the basic 2-layer GCN of the critical nodes for each
line.



Critical nodes for drone airways graphs 19

(a) Loss by epoch

(b) Sophisticated GCN Predictions

Fig. 11: Second approach: (a) Graph of the loss by 200 epochs (b) Critical node
predictions from the enhanced GCN



20 Igone Morais-Quilez

It is interesting to visualize the predictions with the t-Distributed Stochastic
Neighbor Embedding for two components, since a big percentage of the nodes
are either classified as orange or green, and this way we can try to verify if
there actually exists two subgroups. As shown in Fig. 12(c), we can see that two
subgroups are formed.

8 Discussion of the broad paradigm of this work

8.1 Air Traffic Management

The Single European Sky Air Traffic management (ATM) Research (SESAR)
project is the technological pillar of the European Commission’s Single Euro-
pean Sky Initiative to modernize ATM. They describe the process of establish-
ing SESAR and the main parts of the project: the research and development
(RD) part, which is led by the SESAR Joint Undertaking; the deployment part,
which is managed by the SESAR Deployment Manager; and the European ATM
Master Plan, which collects and lays out both the RD and deployment needs.
The latest European ATM Master Plan was adopted just prior to the current
pandemic. The huge loss in air traffic due to the pandemic, and the speed of
the recovery of the aviation industry will require re-prioritization, but the main
elements that have been established—particularly those in support of the envi-
ronment—remain valid.

8.2 UAV Environment interaction

Small unmanned aerial vehicles have gained significant interest in the last decade.
More specifically these vehicles have the capacity to impact package delivery lo-
gistics in a disruptive way. The research problems and state-of-the-art solutions
that facilitates package delivery [28], are multiple and in many fields. Different
aerial manipulators and grippers are listed along with control techniques to ad-
dress stability issues. Landing on a platform is next discussed which encompasses
static and dynamic platforms. Landing on a dynamic platform presents further
challenges. This includes the delayed control responses and poor precision of
the relative motion between the platform and aerial vehicle. Subsequently, risks
such as weather conditions, state estimation and collision avoidance to ensure
safe transit is considered. Finally, delivery UAV routing is investigated which
categorises the topic into two areas: drone operations and drone-truck collab-
orative operations. Additionally, it is compared the solutions against design,
environmental and legal constraints.

1. Aerial Manipulation: Different manipulator designs have been identified
which includes: rigid linked, cable, continuum, foldable, hydraulic, and ejec-
tion; providing contrasting advantages and disadvantages. One major issue
with aerial manipulation relates to the coupling effect experienced when op-
erating a package. Centralized and decentralized methods deal with the dis-
turbances, caused when operating the manipulator, differently. Specifically
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(a) Loss by epoch

(b) Advanced GCN Predictions

(c) tSNE of the predictions

Fig. 12: Third approach: (a) Plot of the loss function by 100 epochs (b) Critical
node predictions of the advanced GCN (c) t-distributed stochastic neighbor em-
bedding (t-SNE) for the predictions of the third approach
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for cable based controllers, cable tension must be accounted for to gener-
ate smooth or aggressive trajectories. Additionally, calculating the tension
within the cable is still an open research question due to the difficulty in
modelling the kinematics of the cable attached to the UAV.

2. Aerial Grasping: Additionally, different end-effector designs have been
identified, which includes: ingressive, magnetic, tendon, and vacuum based.
Center of mass misalignment can occur due to errors when gripping the pay-
load. Stability can be compromised if not this is not incorporated into the
control system through an adaptive mechanism. Furthermore, the centre of
mass won’t always alight with the centre of geometry. The contents of the
package are not known a priori, which can lead to non-uniformity. Dam-
age to the payload can be prevented through haptic feedback and gripper
compliance using soft-tissue based materials. Dynamic grasping can also be
utilized to improve the efficiency of the logistic operation by grasping the
object mid-flight.

3. Autonomous Landing: Before a package can be delivered, the target zone
must first be located. More recently, this has been done using computer vi-
sion and machine learning techniques. However, alternative techniques exist,
such as GPS based. Nevertheless, GPS based methods are not suitable for
dynamic platforms due to the inaccurate measurements. Landing on dynamic
platforms is advantageous for truck and UAV collaborative operations. De-
tecting the relative motion between the two vehicles is crucial. The delayed
control response and poor precision of the relative motion makes this prob-
lem extremely difficult. Researchers are either able to use pure computer
vision techniques or build a dynamic model of the ground vehicle to calcu-
late the relative motion. Finally, researchers have investigated reducing the
impact force caused when landing through passive and active landing gears.

4. Safe Transit: Environmental conditions have an impact on component
health, battery life, and flight performance. Software can aid with the anal-
ysis of weather data and forecasting for safe flight. When landing, the UAV
is exploring an unknown and potential GPS-denied environment. This can
lead to difficulties observing features for localization and obstacle detec-
tion. Cooperative vehicles, on the other hand, can utilize radar to broadcast
positional information to surrounding vehicles using automatic dependent
surveillance broadcast systems. In spite of this, broadcasting systems have
security flaws such as denial of service attacks and spoofing. Unmanned traf-
fic management systems provide a solution to these attacks while also being
scalable for autonomous flight, which is crucial for autonomous package de-
livery.

5. Routing: Routing problems can be classified into either drone or drone-
truck combined operations. Furthermore, depending on the location of the
depot, drone-truck combined operations can be further classified into flying
sidekick or parallel operations. Flying sidekick based operations result in the
truck and UAV working in tandem. Whereas, no cooperative behaviour oc-
curs in parallel operations. Researchers found the latter to be more optimal
when the target location was within the UAV’s flight range of the depot. Dif-
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ferent constraints can be incorporated into the optimization problem which
includes design, operational and legal constraints

6. Design, Environmental, and Legal Constraints: Aviation regulatory
bodies establish national and international standards and regulations to en-
sure safe and efficient use of the airspace. These heavily impact the logistic
operations of unmanned package aerial vehicles. Regulations on autonomous
flight are heavily limited, requiring special licences to fly. However, regula-
tions on piloted flight are currently more flexible. These regulations consist
of operational constraints which are influenced by: privacy, security, safety,
and environmental impacts. Operational constraints consist of vertical height
limitations and critical separation distances from secure locations such as
airports and military bases. Furthermore, certain technical capabilities may
be required, such as the ADS-B out transmitters. Privacy issues arise when
the delivery UAV needs to land on private property. Developers need to
adhere to a privacy-by-design philosophy to ensure protection of personal
data. Classification algorithms can capture personal belongings and identifi-
able human features, which can be intrusive. Furthermore, lost packages can
lead to personal information and, in the worst case scenario, identity theft.
Addressing privacy issues, along with provable reliability of the system, will
help to increase public trust of delivery UAVs. Equivalent level of safety of
manned aerial vehicles is required for the safe integration of autonomous de-
livery UAVs, which is currently an open research area. Hazard assessment,
identifying the major risks of delivery UAVs, would also provide benefits to
insurance companies. These hazards would include take-off and landing in
unknown environments and aerial manipulation of the package. To provide
a complete insurance policy, insurance companies need to understand all
the parameters that influence these risks. This includes: legality, operational
use, training and experience with a list of human factors, system reliability,
and system or package value. Finally, environmental factors consist of noise
pollution, aesthetic impact and effects on wildlife. Researchers have shown
noise from UAVs is considerably more irritating than road traffic.

7. Future Trends: Organizations attempting to break into the autonomous
aerial package delivery space will struggle to ‘lift-off’ due to restrictive leg-
islative constraints and design problems. Cable based manipulators show
promise due to the ability to deliver a package without landing and low-
ering the payload to the target area. This payload delivery mechanism has
been therefore being used by Google Wing. This overcomes the privacy is-
sue of landing within the curtilage of private property. Furthermore, noise
generated from the UAV is minimized as the separation distance is large.
Alternatively, soft-based tendon grippers also serve as landing gears which
reduces the force impact and can also utilize perching for UAV-truck collab-
orative operations. However, more research is required in reducing fatigue
caused by consistent landing. Gripping based methods need further work to
better generalize to all packages. Ingressive and magnetic grippers require
custom designed packages. Furthermore, vacuum based grippers are too sus-
ceptible to the environment due to pressure leakage. However, Soft-tendon
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based grippers provide package compliance which shows promise. On the
other hand, stability and control of gripping while ensuring strong and reli-
able grip on the package is a challenge. Finally, the use of unmanned traffic
management systems will be utilized to cooperative identify other unmanned
aerial vehicles, while equivalent sense and avoid capabilities will loosen reg-
ulation and enable safe integration into the airspace.

8.3 Last Mile Problem

Rapid technological developments in autonomous unmanned aerial vehicles (UAV
or drones) and an evolving legislation may soon open the way for their large-scale
implementation in the last mile delivery of products. The use of drones could
drastically decrease labour costs and has been hyped as a potential disrupt to the
parcel delivery industry. Online retailers and delivery companies such as Amazon
[32] [2], are already filing up patents for the development of multi-level fulfilment
centres for unmanned aerial vehicles or “drone-beehives” that would allow the
deployment of this technology within built environment. A substantial amount
of research has been carried out in the last years on the potential use of drones
for parcel delivery, principally in the area of logistic optimisation. However, lit-
tle is known about the potential market and economic viability of such services
in Europe. Modelling framework using EU-wide high-resolution population and
land-use data to estimate the potential optimal location of drone-beehives based
on economic viability criterion, estimates the potential number of EU28 citizens
that could potentially benefit from last mile-drone delivery services under four
scenarios.

8.4 Algorithms for obstacle avoidance and drone flock interaction

In drone swarm control it is important the flock interaction and communication
for a successful behaviour in obstacle avoidance. The success of swarm behaviors
often depends on the range at which robots can communicate and the speed
at which they change their behavior. Challenges arise when the communication
range is too small with respect to the dynamics of the robot, preventing inter-
actions from lasting long enough to achieve coherent swarming. To alleviate this
dependency, most swarm experiments done in laboratory environments rely on
communication hardware that is relatively long range and wheeled robotic plat-
forms that have omnidirectional motion. Instead, Reynolds flocking [13] focus
on deploying a swarm of small fixed-wing flying robots. Such platforms have
limited payload, resulting in the use of short-range communication hardware.
Furthermore, they are required to maintain forward motion to avoid stalling
and typically adopt low turn rates because of physical or energy constraints.
The trade off between communication range and flight dynamics is exhaustively
studied in simulation in the scope of Reynolds flocking and demonstrated with
up to 10 robots in outdoor experiments.
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There exists also a theoretical framework for design and analysis of dis-
tributed flocking algorithms [25]. Two cases of flocking in free-space and pres-
ence of multiple obstacles are considered using three flocking algorithms: two for
free-flocking and one for constrained flocking. The first algorithm embodies all
three rules of Reynolds. This is a formal approach to extraction of interaction
rules that lead to the emergence of collective behavior. This algorithm generi-
cally leads to regular fragmentation, whereas the second and third algorithms
both lead to flocking. A systematic method is provided for construction of cost
functions (or collective potentials) for flocking. These collective potentials pe-
nalize deviation from a class of lattice-shape objects called /spl alpha/-lattices,
and it is used a multi-species framework for construction of collective potentials
that consist of flock-members, or /spl alpha/-agents, and virtual agents asso-
ciated with /spl alpha/-agents called /spl beta/- and /spl gamma/-agents. We
show that migration of flocks can be performed using a peer-to-peer network
of agents, i.e., ”flocks need no leaders.” A ”universal” definition of flocking for
particle systems with similarities to Lyapunov stability is given. Several simu-
lation results are provided that demonstrate performing 2-D and 3-D flocking,
split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the
proposed algorithms.

Aerial restrictions are often a problem in order to analyze the correct be-
haviour of a single drone or swarm,in adition, a fundamental issue of collec-
tive motion of aerial robots presents itself: how to ensure that large flocks of
autonomous drones seamlessly navigate in confined spaces [35]. The numerous
existing flocking models are rarely tested on actual hardware because they typ-
ically neglect some crucial aspects of multi-robot systems. Constrained motion
and communication capabilities, delays, perturbations, or the presence of bar-
riers should be modeled and treated explicitly because they have large effects
on collective behavior during the cooperation of real agents. Handling these
issues properly results in additional model complexity and a natural increase
in the number of tunable parameters, which calls for appropriate optimization
methods to be coupled tightly to model development. The proposal of such a
flocking model for real drones incorporating an evolutionary optimization frame-
work with carefully chosen order parameters and fitness functions, is numerically
demonstrated that the induced swarm behavior remained stable under realistic
conditions for large flock sizes and notably for large velocities. Coherent and
realistic collective motion patterns persisted even around perturbing obstacles.
Furthermore, the model is validated on real hardware, carrying out field experi-
ments with a self-organized swarm of 30 drones. This is the largest of such aerial
outdoor systems without central control reported to date exhibiting flocking with
collective collision and object avoidance. The results confirmed the adequacy of
our approach. Successfully controlling dozens of quadcopters will enable sub-
stantially more efficient task management in various contexts involving drones.

Often, this algorithms are tested using convex obstacles. It is important to
investigate a particular behavior of autonomous mobile robots for obstacle avoid-
ance, where the geometry of obstacle is non convex in nature [19]. The detection
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and avoidance of the obstacle is done by means of robot exploration in the
given environment. This behavior is modeled using Hybrid Cellular Automata
controllers.

There exist the need to also take into account dynamic environments, where
objects may have a movement and therefore can interfere with the previously
set path. In the problem of decentralized multi-robot target tracking and obsta-
cle avoidance in dynamic environments [33], each robot executes a local motion
planning algorithm which is based on model predictive control (MPC). The plan-
ner is designed as a quadratic program, subject to constraints on robot dynamics
and obstacle avoidance. Repulsive potential field functions are employed to avoid
obstacles. The novelty of this approach lies in embedding these non-linear po-
tential field functions as constraints within a convex optimization framework.
This method convexifies non-convex constraints and dependencies, by replacing
them as pre-computed external input forces in robot dynamics.

9 An approach to carry out systematic simulation
experiments

We used the existing obstacle avoidance simulator SwarmLab [31], adapting it
to use different kinds of obstacles, for a first simulation of the flight movement,
making a comparative of the decentralized algorithms from the state of the art
for the navigation of aerial swarms in cluttered environments, Olfati-Saber’s [25]
and Vasarhelyi’s [35] algorithms.

We apply this algorithms on a 3D occupancy grid mapping approach, Fig. 17,
that provides data structures and mapping algorithms in C++ particularly
suited for robotics. The map implementation is based on an Octree and is de-
signed to meet several requirements [14] fulfilled by the OctoMap library.

Once we have analysed the obstacle avoidance problem, we need to analyze
the movement in predefined path itself in a simulated environment [12] to mon-
itorize the flow of the drones, using several techniques of reinforcement learning
for the UAVs to follow a proper and safe route [27]. This raises a new topic of
Traffic Forecasting [18] [3] [8] using Graph Neural Networks [6] [37] - [20] as a
guide.

10 Conclusions and Future Work

This work started trying to reproduce the results of a previous published anal-
ysis over a metro network whose graph representation is relatively small and
manageable. We have extended this analysis proposing two additional GNN ar-
chitectures. The assumption is that the aerial paths may be shaped in a similar
way as the subway network paths following approximately the layout of streets
in the city: In fact the airspace allows more freedom to maneuver, taking into
account the limitations to the legislation.

The analysis has been made with a relatively manageable network where the
results of the analysis are the expected and promising, but it still remains to be



Critical nodes for drone airways graphs 27

(a) Trajectories generated by Olfati-Saber’s algorithm

(b) Performance of the algorithm

Fig. 13: Olfati-Saber’s algorithm for multiple obstacle avoidance: (a) Trajectories
generated for a swarm of 5 drones (b) Overall performance
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(a) Trajectories generated by Vasarhelyi’s algorithm

(b) Performance of the swarm group

Fig. 14: Vasarhelyi’s algorithm for a single obstacle avoidance: (a) Trajectories
generated by Vasarhelyi’s algorithm (b) Performance of the swarm group ac-
cording to the algorithm
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(a) Trajectories generated by Vasarhelyi’s
algorithm

(b) Performance of the algorithm

(c) Distances to the obstacles

Fig. 15: Vasarhelyi’s algorithm for multiple obstacles avoidance: (a) Trajectories
generated by Vasarhelyi’s algorithm (b) Performance of the swarm group ac-
cording to the algorithm
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(a) Global Aceleration

(b) Global Speed

(c) Global distance

Fig. 16: Global values of the swarm: (a) Global acceleration of the swarm during
time (b) Global speed of the swarm during time (c) Global distance of the swarm
during time
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(a) Trajectories generated by
Olafti-Saber’s algorithm without

smoothing

(b) Trajectories generated by Vasarhelyi’s
algorithm with smoothing

(c) Side view of the trajectories generated
by Vasarhelyi’s algorithm with smoothing

Fig. 17: Trajectories generated on an occupancy map: (a) Trajectories generated
by Olafti-Saber’s algorithm without smoothing (b) Trajectories generated by
Vasarhelyi’s algorithm with smoothing (c) Side view of the trajectories generated
by Vasarhelyi’s algorithm with smoothing
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analyzed if the result is just as promising in a more complete and extensive graph,
and in the same way, in a much less extensive graph. Since we are analyzing
the importance of the most influential nodes in the paths, the Graph Neural
Networks allow us to incorporate more information in each node and therefore
more restrictions on the state of each line can be added, and it would allow us
to merge the analysis of the network with state analysis.

Future works will address the extraction of airways graphs from simulation
and from real data, in order to extend our analysis to more complex graphs and
to test the identification of critical nodes against the actual congestion in the
simulated or real network when such nodes fail or are compromised. This lead
to the notion of traffic security that may be further examined.

References

1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks (2015).
https://doi.org/10.48550/ARXIV.1511.02136, bluehttps://arxiv.org/abs/1511.
02136

2. Aurambout, J.P., Gkoumas, K., Ciuffo, B.: Last mile delivery by drones: an esti-
mation of viable market potential and access to citizens across european cities. Eu-
ropean Transport Research Review 11 (12 2019). https://doi.org/10.1186/s12544-
019-0368-2

3. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recur-
rent network for traffic forecasting (2020)

4. Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and
deployment with aerial robots for search and rescue missions. Journal of Field
Robotics 28, 914–931 (11 2011). https://doi.org/10.1002/rob.20401
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