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Summary

Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries (LIB) can

improve the durability, reliability, and maintainability of battery system operation in

di�erent scenarios such as, electric vehicles. To achieve high-accuracy RUL prediction, it is

necessary to develop an e�ective method for long-term nonlinear degradation prediction

and quantify the uncertainty of the prediction results. The RUL prediction for lithium-ion

batteries (LIB) is a challenging task due to long-term dependencies among the capacity

degradation.

In this work, we propose RUL prediction models based on long short-term memory

(LSTM). It is employed to learn the long-term dependencies among the degraded capacities

of lithium-ion batteries. In order to estimate RUL, an introduction to Severson fast-charging

battery dataset are done, complemented by outlier detection and feature selection consider-

ing multiple measurable data such as, the evolution of internal resistance and temperature.

Using Severson LIB dataset, we verify the accuracy of the proposed LSTM-based RUL

prediction taking into consideration di�erent variables (univariate, bivariate and multivari-

ate). Conducted experiments reveal that the proposed univariate LSTM model outperforms

bivariate and multivariate LSTM model learnt. Furthermore, proposed univariate model

achieve less that 0.1 of mean absolute error (MAE) in short- and long-term prediction. In

spite of this, a sign of over�tting is observed that leads to further investigation.
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CHAPTER 1

Introduction

In the �rst chapter, an introduction to CIDETEC and project framework is presented.

Moreover, the background of battery life prediction as well as the goals of the work are

introduced.

1.1 Cidetec

CIDETEC is a private organization for applied research founded in 1997. Located in the

city of Donostia-San Sebastián, CIDETEC is comprised of three international technological

reference institutes in Energy Storage, Surface engineering and Nanomedicine.

CIDETEC Energy Storage is specialised in creating new battery technologies according

to speci�c challenges, and its ultimate transference to the industry. The institute has the

capacity to develop complete products and processes and o�ers material validation, pilot

manufacture, pack engineering and battery testing services. CIDETEC overall workforce

consists of 180 employees, 95 % of whom are university graduates and 45 % PhD holders.

Its volume of activity came up to 13.1M€ in 2018.

Energy Storage involves up to 57 specialized researchers distributed into two techno-

logical units: Materials for Energy –approx. 2/3 of the workforce with a background of

chemistry, electrochemistry, mathematics and materials- and Systems Engineering - mainly

electrical and mechanical engineers-. As a result of this approach, CIDETEC Energy Storage

cooperates closely with the industry in the context of bilateral, direct contract research

and product development projects, both at the National and International level.

CIDETEC Energy Storage is heavily involved in the European batteries community,

including several EU level platforms and associations where energy storage and its applica-

tions is at the core. We are active member in several industrial and research associations

and platforms like the ETIP Batteries Europe, the European Battery Alliance (EBA), EGVIA,

EARPA, EMIRI or EERA.

Moreover, it is also regular participant in H2020 European funded projects, frequently

from the coordination of international consortia –currently CIDETEC Energy Storage is

coordinator of iModBatt, iHeCoBatt, and E-Magic projects, plus one more from the last

CC-BAT-2019 calls-. We accumulate more than 15 participations in EU funded R+D battery

1



1. Introduction

projects under FP7 and H2020. Finally, CIDETEC Energy Storage is involved as well in the

core team of BATTERY 2030+, the initiative for a long-term large-scale research program

towards the European battery of the future.

1.2 Project context

This project is a set on to the Battery Interface Genome – Materials Acceleration Platform

(BIG-MAP)
1
. This project is part of the large-scale and long-term European research initia-

tive BATTERY 2030+ 2
. BIG-MAP propose a radical paradigm shift in battery innovation,

which will lead to a dramatic speed-up in the battery discovery and innovation time; reach-

ing a 5-10 fold increase relative to the current rate of discovery within the next 5-10 years.

In addition, BIG-MAP relies on the development of a unique R&D infrastructure and accel-

erated methodology that unites and integrates insights from leading experts, competences

and data across the entire battery (discovery) value chain with Arti�cial Intelligence (AI ),
High Performance Computing (HPC), large-scale and high-throughput characterization and

and autonomous synthesis robotics. In short, BIG-MAP aims to reinvent the way we invent

batteries and to develop core modules and Key Demonstrators of a Materials Acceleration

Platform speci�cally designed for accelerated discovery of battery materials and interfaces

(Fig. 1.1).

This will not be achievable in the three years of this project, but the BIG-MAP consor-

tium has identi�ed a set of Speci�c Objectives and 12 Key Demonstrators for the 3-year

ramp-up phase that will develop and demonstrate the infrastructural backbone needed to

achieve a 5-10 fold acceleration in the discovery process. In summary, the speci�c objectives

are:

• Develop the scienti�c and technological building blocks and models for accelerated

battery discovery.

• Deliver cross-cutting initiatives to ensure the implementation and use of project data

and results throughout the battery discovery value chain.

• Disseminate information/innovations to the battery community throughout the

Battery value chain, to boost EU advanced battery development and manufacturing.

1.3 Battery cycle life prediction

In 2021, the battery industry will mark the 30th anniversary of a remarkable scienti�c

invention that led to great commercial success, and the awarding of the 2019 Nobel Prize

in Chemistry: the rechargeable lithium-ion battery. Three decades of performance im-

provements have occurred because of innovative research, with enhanced manufacturing

e�ciency bringing about mass-market penetration. Nowadays, lithium-ion batteries (LIB)

are widely used as power sources for many types of systems, including consumer electron-

ics, electric vehicles (EVs), owing to their high energy density, high galvanic potential, and

long lifetime.

1

BIG-MAP url : https://www.big-map.eu/.

2

BATTERY 2030+ url : https://battery2030.eu/.

2

https://www.big-map.eu/
https://battery2030.eu/


1.3. Battery cycle life prediction

Figure 1.1: A illustration of the BIG-MAP project.

Moreover, with new legislation ending the sale of new petrol and diesel vehicles in the

UK by 2030, there is a need to further reduce costs and improve performance to convince

consumers that electri�cation can meet their usage requirements. Improvements are needed

in the electric vehicle range, to increase the speed with which batteries can be charged and

deliver power (which is enabled by power density levels) and, of course, to safety during

both operation and storage.

Figure 1.2a compares the di�erent battery energy storage system where LIB is domi-

nant with the regard to speci�c power (W/kg) and speci�c energy (Wh/kg). Besides, the

performance comparative analysis between LIB and other EV batteries in terms of nominal

voltage, life cycle, depth of discharge and e�ciency demonstrates that LIB appears to be a

better choice for EV application, as shown in Figure 1.2b.

(a) Speci�c energy and power comparison among BESS Acronyms. (b) Characteristics of di�erent EV batteries

Figure 1.2: Comparison of LIB against other batteries [1].

However, their performance degrades over repeated charge/discharge cycles. For many

applications, failure is considered to occur when the battery’s capacity decreases below 80%

3



1. Introduction

of its initial capacity. This way, battery useful life or remaining useful life (RUL) is the area

of predicting the number of charge–discharge cycles until the battery reaches end-of-life

(EOL). As an important indicator of battery health, RUL is closely linked to the reliability

and durability of battery system operation. Thus, RUL prediction can provide important

information for the battery management system and maintenance. Because the battery’s

capacity and power tends to drop much faster, its performance is thus unreliable after this

point, and it should be replaced. Despite this unreliability on high demanding tasks, they

can be used in less necessity assignments.

Battery degradation is a collection of events that leads to a loss of performance over

time. It is a successive and complex set of dynamic chemical and physical processes, slowly

reducing the amount of mobile lithium ions or charge carries [6]. In order to explain battery

degradation, it is useful to �rst consider what is a cell, where batteries are collectives of

individual cells.

Figure 1.3: Simpli�ed view of a lithium-ion cell composition and functionality.

A cell is composed by two opposing electrodes, cathode and anode, impregnated by an

electrolyte solvent and electrically isolated by a porous separator, as a way of preventing a

short circuit, Figure 1.3.

In a cell, chemical energy is transformed into electricity through oxidation and reduction

processes. When a component of the cell oxidizes, it releases electrons that leave the core

of the material, travel through an external circuit, and rejoin the cell through the other end,

reducing the material of the opposite electrode. Therefore, it is necessary that the materials

be easily reducible and oxidable.

In this way, the electrical charge step is pairing up to a chemical reaction. This type

of reaction is known as redox, where there is a transfer of electrons from one species to

another. These electronic transfers take place in two half-reactions, in which the anode

and the cathode participate. In the anode the oxidation of some species is occurred, loss of

electrons, while in the cathode the reduction of other species, gain of electrons.

It is important to highlight that the roles of each of the electrodes are exchanged each

4



1.3. Battery cycle life prediction

time the cell starts charging or discharging. That is why it is not suggested to use cathode

and anode expressions in rechargeable cells.

For maximising cells performance, an optimised coating structure or architecture is

required. This is directly dependent on a uniform distribution of sub-components with

desired properties, and is critical to ensuring complete mass and charge transport during

operation. However, there are numerous chemical, electrochemical and physical processes

that occur during operation of the battery that can lead to incomplete charge/mass transfer.

This invariably results in degradation and eventual failure. It is said that the capacity fade

is caused by numerous modes of degradation that lead to an impaired ability of the battery

to store power. It is generally motivated by a combination of these three events.

• The loss of electrolyte.

• The loss of the lithium ions in the electrode as a result of mechanisms such as Solid

Electrolyte Interphase (SEI ) growth or/and lithium plating.

• The electrode active materials becoming unavailable for participation in the electro-

chemistry of the cell.

Regarding battery useful life prediction, the aim is to protect lithium-ion user against

unexpected battery dead or in worst cases the cell explosion. This becomes much unpre-

dictable and susceptible when the cell discharge capacity is lower than 80% of nominal

capacity. Besides this goal, it could be used also to optimize cell investigation. If a reliable

predictive model is achieved, instead of doing a complete charging/discharging experiment

of a cell until the threshold, the model will predict the cell durability, reducing time costs

of tests.

Motivated by the di�erent contexts of applications, remaining useful life prediction

methods for batteries can be categorized into two main families: model-based methods

and data-driven methods [7]. Model-based methods use mathematical models to capture

the long-term dependencies of battery degradation, which are combined with advance

�ltering techniques, such as the particle �lter (PF ) algorithm, to predict the battery RUL

[8][9]. The �ltering process can be used to update the model parameters by evaluating the

importance of the data points adaptively based on the measured signals. However, due

to the lack of knowledge of the degradation evolution, the mathematical model is usually

constructed by �tting the degraded capacities of lithium-ion batteries, but this step could

lead to over�tting. Therefore, the model is able to �t the training data accurately but its

prediction accuracy is frequently low.

Although signi�cant progress has been made in model-based RUL prediction methods

in recent years, two drawbacks still. First, there is no accurate aging model that can be

used as a basis for RUL prediction. Second, RUL prediction accuracy based on the most

widely used �lter method, PF, is limited by the particle degeneracy problem.

In addition to model-based methods, a new branch in the prediction paradigm has

emerged with the application of data-driven methods which do not need an explicit mathe-

matical model to describe the degradation evolution of batteries and are only dependent on

historical degradation data. Therefore, it should be noted that the uncertainty quanti�cation

of prediction results is an important factor a�ecting �nal decision-making [10] [11]. These

5



1. Introduction

methods try to extract key degradation information from the data points by a speci�c

learning algorithm.

1.4 Goals

The main goal in this work is to study the relevance of battery charging/discharging

experiments features on battery life expectancy. Within the main goal, the �rst aim is

to optimize CIDETEC’s feature measurement equipments in order to, �rstly, identify the

relevant vaiables to collect, and secondly, discover variables that where not considered

important, but might be useful in the prediction task.

The second aim is to investigate the connection between collected features with the

measurement equipment, and battery durability. To that end, a predictive model is created to

forecast the discharge capacity until the 80% of the nominal capacity. This way, apart from

the �rst goal, this enables to speed up the charging/discharging capacity if the predictive

model is good enough to rely on.

In order to carry out previous goals, a complete understanding of the working environ-

ment is relevant in order to �gure out internal relationship between features and perceive

incoherent data, such as, outliers. For the purpose of the work, the dataset by Severson et

al. [12] will be used. Then the dataset must be analyzed and preprocessed to get an optimal

features to train the model. Afterwards, the best models of the literature will be studied

and the most relevant ones will be considered for experimental evaluation. Finally, the

prediction will be done combining selected data and models.

1.5 Structure of the document

Figure 1.4 shows the structure of this project based the previous mentioned goals. This way,

each of the stages represents an important task during the experiment. Moreover, in order

to introduce the manuscript, each color represents a chapter. Therefore, it is composed of 5

chapters, each one describing the following:

• Chapter 2 : This chapter introduce the data used in this investigation, in addition to

their features and characteristics.

• Chapter 3 : In this chapter the data is preprocessed. This means that a depth analysis

of raw data is done in order to, �rst, detect and correct outliers, and second do an

feature selection.

Figure 1.4: Illustration of the project structure divided on stages, where each box represents an

important event during the investigation.

6



1.5. Structure of the document

• Chapter 4 : This chapter describes the learning scenario of the problem, comple-

mented by the state-of-the-art and the proposed model.

• Chapter 5 : This chapter introduce the experimental framework and four experimental

studies in order to a better understanding of the predictive model.

• Chapter 6 : In this last chapter a summary of the work is made. Not limited to that,

lines for future improvements are described.

7





CHAPTER 2

Severson dataset

In this chapter, a broad description of the problem statement, complemented by the Severson

dataset [12] is provided. Moreover, an exploratory data analysis is also included, as well as

the experiments conditions and irregularities.

2.1 Data collection

Severson dataset [12] consists of 135 commercial lithium-ion batteries cycled to failure under

fast-charging conditions. The aim is to simulate a real high demand environment, and

approximately 96.700 cycles have been recorded, the largest publicly available for nominally

identical commercial lithium-ion batteries cycled under controlled conditions. These

lithium-ion phosphate (LFP)/graphite cells, manufactured by A123 Systems (APR18650M1A),

were cycled in horizontal cylindrical �xtures on a 48-channel Arbin LBT potentiostat in a

forced convection temperature chamber set to 30°C. The cells have a nominal capacity of

1.1 Ah and a nominal voltage of 3.3 V.

Figure 2.1: Illustration of the experimental design, where

x, policy1 and policy2 attributes are di�erent in each cell

experiment.

The objective of the research

work that generated this data is to

optimize fast charging for lithium-

ion batteries. As such, all cells

in this dataset are charged with a

one-step or two-step fast-charging

policy. First a cell is charged

with one-step policy until a spe-

ci�c state-of-charge (SOC, %) at

which the currents switch. The

second current steps ends at 80%

SOC, after which the cells charge

at 1C CC-CV, (Fig. 2.1). The upper

and lower cuto� potentials are 3.6

V and 2.0 V, respectively, which

are consistent with the manufac-

turer’s speci�cations. Finally, all

9



2. Severson dataset

cells discharge at 4C and rests are placed after reaching 80% SOC during charging and after

discharging.

As a way to start analysing data, these two charging policies are illustrated to gain

information about the connection of charging conditions and �nal battery life. It is believed

that with high and hard charging and discharging conditions, battery capacity will fall

faster, thus getting less number of useful cycle.

It is seen that each of these policies separately do not show any evidences of this

relationship between hard charging/discharging conditions and battery life. Therefore,

with the aim of gaining useful knowledge, a weighted mean of charging C rate is done,

applying the Eq. 2.1, to inference all the information to create a new one that overalls the

experiment charging conditions, as the discharge conditions is always the same.

Weighted C rate average = policy1 ∗ x+ policy2 ∗ y + 1 ∗ 0.2 (2.1)

where x is speci�c state-of-charge between 0 and 1 to describe the usage of policy 1, which

is di�erent every experiment. While y is the percentage usage of policy2 (y = 0.8 − x).

This way, x+ y+ 0.2 = 1 is preserved and an overall charging C rate average is calculated.

Figure 2.2a shows a visual point of view of the policies used in these experiments. As

(a) Histogram of C rates used on Severson

fast-charging experiments.

(b) A scatter graph where each experiment is

illustrated taking into account the durability

and the weighted C rate average. While the

color introduces the charging policy1.

(c) A scatter graph where the color of each

points illustrate the second charging policy

used on the experiments.

(d) Relation between the charging C average

rates and the number of cycles before end of life.

Figure 2.2: Illustrations of charging policy diversity and its relationship with �nal battery life.
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2.1. Data collection

the experiment consists of fast-charging conditions, low C rates are rarely tested. Note that

in order to have fast-charging environment, high C rates must be provided. That’s why

most of policies are between 3C and 6C, far form common 1C condition.

According to other three Figures 2.2b, 2.2c and 2.2d, a scatter graph is illustrated to

describe the connection between C rate used and the durability of the cell. As it was

expected, an inverse correlation between high charging policies and battery life. This

means, that using high C rates decreases the number of useful cycles of the cell.

Although the weighted C rate average is used to illustrate each fast-charging experi-

ment, in each scatter, the color introduce the charging variables, policy1, policy2 and the

percentage of switch. It is interesting to highlight, as it is introduced on Figure 2.2d, that

those with high durability use mainly one policy, as the switching percentage is very high.

However, those sequence of experiments with weighted C rate average around 4C were

not foreseen. Searching for a reason to describe this results, a lack of replicability is found

on Severson dataset. In other words, from the observed data and in that particular context

(Severson et al. [12]), we conclude that using the same cell and conditions, the ability to

get similar results is not guaranteed.

In order to ensure the replicability, a set of tests in the same conditions must be done

and compare their results. Despite in theory seems to be easy, in real life conditions might

be, somehow, waste of time when a big amount of time is spent to ensure only this, or just

because the study has a limited time. That is why usually very few test are done in each

conditions, but gaining uncertainty on the way.

Table 2.1 gives example of test done to create this dataset. There the battery cycle life

and charging conditions are described. In total 135 tests have been done, divided in 69

di�erent experiments, taking into account that all cells are identical. Moreover, only 25 of

69 tests have more that one repetitions. Not only that, most of them have acquired very

varied lifetimes, for instance, 7C(30%)-3.6C charging policies cells have reached 627 and

966 cycles, in which the di�erence is huge. In contrast, 5.6C(19%)-4.6C have obtain almost

the same results.

This could be a reason for those experiments around 4C charging average rate. On

the other hand, in order to get a more reliable dataset, more repetitions should be done to

Table 2.1: Description of few cells included in dataset, taken from Severson Supplementary Informa-
tion (Supplementary Table 9.) [5].

Cell barcode Cycle life Charging policy

EL150800460514 1852 3.6C(80%)-3.6C

EL150800460486 2160 3.6C(80%)-3.6C

EL150800460623 2237 3.6C(80%)-3.6C

EL150800460642 625 7C(30%) -3.6C

EL150800463229 966 7C(30%) -3.6C

EL150800737276 817 5.6C(19%) -4.6C

EL150800737319 816 5.6C(19%) -4.6C

EL150800460518 300 1C(4%) -6C

EL150800460634 511 3.6C(30%) -6C

11



2. Severson dataset

(a) Discharge capacity of all experiments.

There are multiple machine error outliers

getting more capacity than the maximum of

these cells, (1.1 Ah).

(b) Histogram of cell lifetime. Point out that

the mean is 798 and most experiments are

placed between standard deviation.

Figure 2.3: Severson dataset battery cycle life results.

calculate the shape of the variations.

Following with the exploratory analysis, Figure 2.3a illustrates the lifetime of all experi-

ments. On one hand, discharge capacity evolution of all the tests is shown. The degradation

is exponential, �rst the degeneration seems to be meaningless as the capacity seems to be

almost maintaining. However, increasing the number of fast charging/discharging cycles,

this ability of preserving is loosing until, at the end, the capacity looks like an abyss.

Despite the regular evolution, some unexpected vertical lines appear on the �gure. This

irregularities have been considered as outliers and they should be taken into account on

the data preprocessing in the next chapter.

On the other hand, an histogram is displayed in Figure 2.3b in order to aggregate the

lifetime of experiments. It is noteworthy to point out that the minimum life expertise of

a cell in these fast-charging dataset is about 128 cycles and the maximum of 2237. The

mean is 800 cycles and the standard deviation is 371. Although this numbers seems too low

when comparing to a commercial battery lifetime, it is important to highlight that in real

usage these batteries will last more cycles, as these experiments are done in a fast charging

conditions.

2.2 Exploratory data analysis

In this section all the features of the dataset are, and can be divide in two groups. Firstly,

there are those characteristics that represents the whole experiments, such as, the evolution

of the capacity or the temperature progression. Each instance of these time series represents

a complete fast charging/discharging cycle, named as "features of an experiment".

On the other hand, there are variables that describe the cycles. Features that describe

the evolution of internal characteristics of a cycle are named as "features of a single cycle".

These features introduces a second dimension to the learning scenario as they add additional

information to each variable in each cycle value.

To sum up, Figure 2.4 illustrates these two groups of features. Firstly, on the left,

"features of an experiment" are introduced as a multivariate time series with 6 features,

12



2.2. Exploratory data analysis

where a time series is multivariate when it has more than one features. Whereas, on

the right, another multivariate time series is shown to represent second type of features.

Taking into consideration that there are 135 experiments stored in the database, the present

learning scenario can be considered as a "bi-dimensional multivariate multiple time series"

problem.

(a) Illustration of a two dimensional multivariate time series.

Figure 2.4: A visual picture of an experiment divided in two types of features.

In order to illustrate each of the features, b2c2 experiment and its second cycle are

chosen. In this test 2C and 5C one-step and two-step fast-charging policies are used,

respectively. 2% is the threshold to switch these strategies and in total 438 cycles are

achieved before the getting 80% of nominal discharge capacity.

2.2.1 Features of a single cycle

The experiments consists of fast-charging and discharging repetitions in which little by

little discharge capacity fades until the cell is considered dead. Meanwhile in each cycle

time step 5 features are recorded, current, voltage, charging- and discharging-capacity and

temperature.

Figure 2.5 shows the current and voltage values at every instant. Regarding current

(I) evolution, the charging and discharging policies can be �gured out. Note that at the

beginning of the cycle, the cell must be charged and then discharged. Therefore, at the

beginning of the current time series, three current values are constantly measured. First one-

step policy (in Figure 2.5a, 2C) is shown, then second policy (5C) and �nally 1C condition.

This way, the minimum value is the discharging C rate value set as -4 in all cases, this

means, 4C at discharge. On the other hand, the maximum value of current (I) feature is

di�erent each time as the charging policies varies in each test, and the maximum value of

the time series is the maximum C rate used in the experiment.

Moving to voltage progression, highest and lowest points are lead to experiments upper

and lower cuto�, which are 3.6V and 2.0V respectively.

Regarding the capacity, Figure 2.6 expose the cell charging situation. Figure 2.6a shows

the charging strategy of one cycle while Figure 2.6b all cycles together. Note that on the
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2. Severson dataset

(a) Current value on each time step. Positive

values represents cell is charging, while

negative ones discharging process. On the other

hand, 0 Ah represents break of the current

process.

(b) Illustration of voltage used on cycle

measurements. Point out, it is not possible put

them constant both features at the same time.

Figure 2.5: Illustration of a battery current and voltage on a experiment.

(a) Charging capacity curve of a single cycle. It

is divided among di�erent activity. After that

discharging process starts.

(b) Charging capacity degradation over the

experiments. 8 di�erent cycles are shown to

describe the evolution through time.

Figure 2.6: Battery charging evolution during a cycle and the whole experiment.

�rst cycles the cell is charged properly, reaches the maximum capacity (around 1.1Ah).

However, as it is illustrated in the second �gure, during the experiment it is not possible to

charge totally, this means that there is a degradation in the course of a test.

On the other hand, Figure 2.7 describes discharging capacity progression. Note that

always, both capacities, charging and discharging, goes from 0Ah to 1.1Ah, the nominal

capacity of these cells, to illustrate the capacity evolution during these processes. Figure

2.7a shows the progression of capacity of the �rst cycle, highlighting the 4C rate is used in

the whole process. Finally, discharge capacity degradation is illustrated on the Figure 2.7b.

In the same way, maximum range decreases over time and repetition. As a result, when it

reaches 80% of total capacity, the cell is taken as unstable and, thus, it is suggested to be

replaced.

Regarding internal temperature attribute, Figure 2.8 introduces graphical point of view

of the feature during a cycle and a complete test. Charging and discharging hard C rates

causes the growth of the temperature achieving those two peaks. On the contrary, the

break freshen internal heat between them, as it is illustrated on Figure 2.8a and 2.8b.
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2.2. Exploratory data analysis

(a) Charging capacity curve of a single cycle. It

is divided among di�erent activity. After that

discharging process starts.

(b) Charging capacity degradation over the

experiments. 8 di�erent cycles are shown to

describe the evolution through time.

Figure 2.7: Battery discharging evolution during a cycle and the whole experiment.

(a) Temperature curve of a

single cycle displaying the

mean and standard deviation

horizontal lines.

(b) Internal temperature

evolution over the experiments.

Orange horizontal line

represents �rst cycle mean

temperature as a way to have a

better view of the growth.

(c) Illustration of the

relationship during the

experiment between

temperature and discharge

capacity. Showing a connection

within detriment of capacity

with increment of the heat.

Figure 2.8: Temperature evolution during a cycle and the whole experiment.

Not limited to that, we observe that, during the experiment the temperature is increasing

until 42°C in this example, as it is shown in Figure 2.8b. Finally, internal connection of

temperature and discharge capacity is described in Figure 2.8c, concluding that there are a

relationship between the incremental of the temperature and the capacity detriment.

2.2.2 Features of an experiment

After introducing all the features of a single cycle, there are six more attributes that

corresponds to each particular experiment. However, most of them are a sum up of previous

information as these features describes a set of cycles.

The most important property is illustrated in Figure 2.9 accompanied with charging

energy progression. In the current work and as the key of the investigation, discharge

capacity evolution is the feature which will be forecast. Although the nominal capacity is

1.1Ah in these cells, during the experiments this value is rarely reached. Nevertheless, in

this study, as well as, in the Severson [12] article, nominal capacity will be used to calculate

the battery life threshold.

Moreover, charging capacity progression an anomalous data is being detected. Point

15



2. Severson dataset

(a) Evolution of discharge capacity during the

test. Note that at the beginning the energy is

kept, whereas at the end is a steep curve.

(b) Charge capacity progression. Although it is

seems very similar, discharge evolution will be

used to forecast battery life.

Figure 2.9: Discharge and charge capacity evolution during a experiment.

out that each value of this time series corresponds with a cycle, this means that the whole

cycle should be considered as an outlier and special treatment should be done in order not

to send unwanted noise to the data-driven model, as it is studied in Chapter 3.

Figure 2.10: Internal resistance evolution during a experiment.

Moving on, even though most of these attributes are a summary of all cycles, Internal
Resistance (IR) is calculated taking into account the current and the voltage in each cycle.

Moreover, while capacity is often used to determine the life of a battery, the end of life

could be also settle down from IR. Although in this work discharge capacity (QD) is used.

Opposed to the capacity evolution, internal resistance has a incremental behaviour, as

introduced in Figure 2.10. However, this series has small and continues ups and downs that

complicates the prediction, similar to a noisy time series. Nevertheless, it will be used as

additional helpful feature to the model.

Finally, Figure 2.11 describes the temperature changes through the experiment. As it

is expected, the minimum temperature measured is around 29°C, less than the nominal

temperature set to 30°C, while the maximum is quanti�ed to be 42°C. Besides, the average

and maximum temperature series seem to be interesting to take into account to predict the

cell discharge capacity.
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2.3. Experiments’ irregularities

(a) The evolution of the

minimum temperature measure.

(b) The progression of the

average temperature calculated

from each cycle.

(c) The evolution of the

maximum temperature

quanti�ed.

Figure 2.11: Minimum, average and maximum temperature evolution during a test.

2.3 Experiments’ irregularities

During the experimental process, some irregularities were occurred that lead to unusual

values. These experimentation deviations are described on the available web page 1
to

download the dataset itself. According to what noti�ed:

• The test in channel 13, 19, 21, 22 and 31 for the �rst batch and 33 and 41 of third

batch were terminated before the cells reached 80% of nominal capacity (the dataset

is divided into three batches). Figure 2.12 introduces two examples of those 7 experi-

ments. These limited tests will be considered as anomalies, therefore, as events of

interest.

(a) The degradation of state-of-health of the

b1c8 cell. Note that 80% of 1.08Ah is 0.86Ah.

(b) The evolution of state-of-health of the b1c10
cell.

Figure 2.12: Example of a cells which is not reached to 80% discharge capacity through the test.

• Unfortunately, in the �rst batch, the temperature control is somewhat inconsistent,

leading to variability in the baseline chamber temperature.

• During some tests uncontrollably stops were come about. In the �rst batch, the

computer automatically restarted twice. As such, there are some time gaps in the

data. Similarly in the second batch, the computer automatically restarted, a�ecting

all tests (around cycle 250 for most policies). This e�ectively lead to around an 8-hour

1

Project - Data-driven prediction of battery cycle life before capacity degradation : https://data.matr.
io/1/.
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2. Severson dataset

‘rest’. Therefore, there are some peaks in capacity as it is illustrated in Figure 2.13

and 2.14.

(a) Illustration of the current evolution

of the b2c4 cell at cycle number 246.

Note that this halt causes the anomaly

on SOH.

(b) Integrating current curve in

discharge the discharge capacity is

obtained. Thus, when a halt is occurred,

the resulting capacity is miscalculated.

Figure 2.13: Irregularities on SOH due to unexpected halt.

(a) Gaps in cycle 252 of b2c12 battery,

thus, di�erent charging strategy seems

to be used.

(b) The consequence of the having gaps

during the test of b2c12 cell. In theory,

less time discharging means less

discharge capacity.

Figure 2.14: Illustration of the relevance of gaps on the evolution of the SOH.

Figure 2.15: The consequence of restarting the computer at b1c2 cell. Here 3.6C(80%)-3.6C policy is

used and �nally 2237 cycles were measured.

• In the same way, also in the second batch, the computer also restarted near the end

of b1c2 cell, Figure 2.15.
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2.3. Experiments’ irregularities

• Moreover, in the second batch, upon unloading the cells, the thermocouples was

noticed from channels 7 and 21 had fallen o� the cell. The consequences of this issue

are introduced in the Figure 2.16.

(a) Apart from the big peak, some

irregularities are illustrated on the

evolution of SOH.

(b) Deviations of the SOH due to

thermocouples, note that only in these

two test happens these degradations.

Figure 2.16: Outcome of the thermocouples on the state of health.

• Also in the second batch, channel 10 dies quite quickly. Therefore, this cell might be

defective, Figure 2.17.

Figure 2.17: It might be considered as defective because it uses a 2C(10%)-6C policy and it gets

only 148. Whereas with a similar policy, 1C(4%)-6C, is measured 300 cycles.

(a) An example of a noisy voltage cycle.

Note that as it was introduced on Figure

2.5 the evolution of the voltage must be

a smooth line.

(b) b3c37 experiment has a huge

deviations during the whole test. Note

that the big peak is not derived by the

noise.

Figure 2.18: Illustration of a noisy voltage and its outcome.
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2. Severson dataset

• Moving to the third batch, the cell in channel 46 has noisy voltage pro�les, likely

due to an electronic connection error, Figure 2.18.

• Finally, also in the third batch, some cells had OCV errors (caused by the internal

resistance test) that lead to temporary pauses in cycling.
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CHAPTER 3

Data preprocessing

In recent years, large amount of data over time is stored in diverse areas of the society due

to the recent advances in technology. These data observations are frequently correlated

in time, and constitute a time data series. Under this type of data, time series data mining

aims to extract all meaningful knowledge from this data, and several mining tasks have

been considered in the literature [2]. Among these tasks, the forecasting of real processes

on a future horizon can present a number of di�culties arising from the nature of the low

quality data and the objective itself. In fact, the data coming from a real system, can present

anomalies such as, noise, missing values or useless variables that do not provide useful

information.

It is important to note that low quality data have a direct in�uence on the quality of

the predictions, resulting in an increase in this in�uence when the predictions are made

in distant horizons. Without proper treatment of these problems the predictions will be

considered to be of insu�cient quality and even useless [13]. Thus, the generation of

high-quality synthetic information for such inputs from real-world historical time-series

through data preprocessing technique is vital to obtain improved accuracy in forecasting.

The data preprocessing is followed by input selection to reduce the prediction uncertainty.

The time series of these inputs are often vulnerable to outliers causes several challenges

to preprocessing process. Outlier detection has been studied in a variety of application

domains such as credit card fraud detection or fault diagnosis in industry. In the �rst study

on this topic [14], two types of outliers in univariate time series were de�ned: those that

a�ect a single observation, and those a�ects both, particular and subsequent observations.

Since that study, many de�nitions of the term outlier and numerous detection methods

have been proposed in the literature. However, to this day, there is still no consensus on

the term. Despite this, from a classical point of view, [15], an outlier is "an observation
which deviates so much from other observations as to arouse suspicions that it was generated
by a di�erent mechanism." Thus, outliers can be thought as observations that do not follow

the expected behavior. This way, in this study all the irregular or unexpected points will be

considered as outliers.

These irregularities can have two di�erent meanings, and the semantic distinction

between them is mainly based on the interest of the analyst or the particular scenario
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3. Data preprocessing

considered. Most of them are unwanted data related to noise or erroneous measurements,

which should be deleted or improve the data quality and generate a cleaner dataset. However,

although not following usual behaviour, there are some outliers that explain real and

interesting phenomena. These intriguing observations are often referred as anomalies [16].

Moreover, especially in the area of time series data, many researchers have aimed to

detect and analyze unusual but interesting phenomena. Fraud detection is an example of

this because the main objective is to detect and analyze the outlier itself.

The process of detection of these data points is known as outlier detection or anomaly

detection. If one of these processes is followed by outlier correction, it is called the prepro-

cessing of data [17].

This way, outlier detection techniques in time series data vary depending on the input

data type, the outlier type, and the nature of the method. Therefore, Figure 3.1 introduces

an overview of the resulting taxonomy.

Figure 3.1: Proposed taxonomy of outlier detection techniques in time series data [2].

While input and output data refers to the search space and the type of data detected

within. Nature of the method describes to the essence of the detection method employed,

univariate or multivariate. A univariate detection method only considers a single time-

dependent variable, whereas a multivariate detection method is able to simultaneously

work with more than one time-dependent variable.

Regarding Severson data preprocessing, because of the relationship among all the

features, it is vital to correct all connected features to each outlier. Thus, in this work,

�rst outlier cycles are going to be located using the evolution of the discharge capacity, as

regular values have a smooth progression. Then, these cycles will be corrected on all the

features due to their internal connections.

3.1 Outlier detection

As other data mining tasks, each data type has di�erent preprocessing methods due to their

characteristics. Thus, there are also preprocessing methods that apply to data that are not

time-series. The existing outlier detection and correction methods for a univariate time

series as input and points as output can be categorized into four major types, de�ned as

under:

• Statistical-based methods: In these type of methods, the data points are modeled using

a stochastic distribution and outliers are detected based on the relationship with
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3.1. Outlier detection

the distribution model. Here, the outliers are those points that do not agree with or

conform to the underlying model for the data.

– Parametric methods: These methods assume the time-series to follow a speci�c

parametric distribution model.

– Non-parametric methods: On the contrary, these methods do not assume a

speci�c parametric distribution. But, they are not suited for multivariate nor

large datasets as intensive computations are involved.

• Density-based methods: The density-based outlier detection methods work on the core

principle that an irregularity can be found in a low-density region. Thus, non-outliers

are assumed to appear in dense neighborhoods. Despite this, they are not applicable

to univariate data and there is not any approach to correct outliers.

• Distance-based methods: These methods detect outliers by computation of the dis-

tances between points, where the data points far from their nearest neighbor are

considered outliers. Similarly, they are incapable of correcting outliers and they are

not suited to apply on multivariate nor large series.

• Cluster-based methods: Clustering-based techniques usually rely on the usage of

clustering methods to describe data behaviour. However, these methods are not

applicable to univariate data nor capable for correcting outliers.

For example, k-nearest neighbor (kNN)-based approach is one of the most widely used

distance-based methods, because its ease application to various kinds of data without

knowing the distribution or characteristics of the data. The method segregates the entire

time-series into several groups or windows [18].

Other methods are based on the de�nition for the concept of anomaly, where it is a

point that signi�cantly deviates from its expected value. Therefore, given a univariate time

series, a point in time t can be declared an outlier if the distance to its expected value is

higher than a threshold γ:

|xt − x̂t| > γ (3.1)

where xt is the observed data and x̂t is its expected value.

The methods based on the strategy described in Equation 3.1 are denominated model-
based methods and the technique to approach x̂t estimation models. The most simple models

are based on constant models, where basic statistics such as the median or the Median

Absolute Deviation (MAD) are used to obtain x̂t.

Other estimation-based techniques intend to identify data points that are unlikely if a

certain �tted model or distribution is assumed to have generated the data. For instance,

some authors model the structure of the data using smoothing methods such as B-spline
smoothing-based approach. This method is based on the modelling of inherent patterns of a

time-series to detect the presence of outliers, [19]. The data can be modeled as

X = m(t) + ε (3.2)
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3. Data preprocessing

where m(t) is the underlying function and ε is the error term. The most important task is

to �nd a suitable estimate of the function m(t) using the collected data.

Some other univariate outlier detection methods analyze all the residuals obtained from

di�erent models to identify the outliers. For instance, ARIMA models, linear regression or

Arti�cial Neural Netowrks (ANNs).

In contrast, statistical-based sliding window prediction-based approach will be used in

this study. It is a prediction-based method which uses the nearest neighborhood of data,

[20]. Considering a time-series X , the k
′th

nearest neighborhood nk
′

i of width 2k′ of a data

point xi at a time instant i is de�ned as,

nk
′

i = {xi−2k′ , xi−2k′+1, ..., xi−1} (3.3)

where nk
′

i is one-sided window which considers 2k′ data points before xi.

A both-sided window which considers k’ data points before xi and k’ data points after

xi is given as,

nk
′

i = {xi−k′ , xi−k′+1, ..., xi−1, xi+1, xi+2, ..., xi+k′} (3.4)

In general, one-sided window is preferred over both-sided window in case of outlier

detection as k’ data points after xi may have undetected and uncorrected outliers. The

predicted value of xi i.e., x′i, based upon one-sided nearest neighborhood nk
′

i is de�ned as

x′i =

∑2k′

j=1wi−jxi−j∑2k′

j=1wi−j
(3.5)

where wi−j is the weight of data point xi−j , which is inversely proportional to the distance

between points xi and xi−j , which is given by

wi−j =
1

|xi − xi−j |
(3.6)

The greater the distance between the data points, the smaller is the weight indicating

that the dependence of xi on xi−j is insigni�cant and vice versa. Based on the prediction

on Equation 3.5, predicted con�dence interval (PCI) is calculated for xi.

Algorithm 1 Sliding window prediction-based outlier detection

1: for i = 2k′ + 1 until i = n do
2: Compute the k

′th
nearest neighborhood nki

3: Compute the prediction value

4: Compute the PCI for xi
5: if xi is not within the PCI then
6: Replace the data point xi with its predicted value x̂t.
7: end if
8: end for
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3.1. Outlier detection

If xi does not lie within PCI, it is treated as an outlier. The corrupted data point xi
is replaced by the corrected data, which is the predicted value x′i. This detection and

correction process continues until the last data point of the time-series is checked. The

�owchart for preprocessing using SWP is as given in Algorithm 1. Figure 3.2 illustrates the

methodology. Although a correction is possible, in this occasion, it will be used only to

detect rare cycles.

(a) The evolution of the discharge capacity

during a complete test. Note that SWP precisely

detect the outlier at cylce 249 of b2c3 cell.

(b) SOH of b2c12 experiment after and before

applying preprocessing. Highlight that the PCI

of the whole time series is computed before the

correction.

Figure 3.2: Performance of Sliding Prediction on State-of-Health.

3.1.1 Real Outliers

In order to evaluate the detection algorithm and taking into account that there is no

information about whether such points are outliers or not in reality, the only way to classify

whether a data point is a true outlier or not is to check the near by data points and see

whether it follows similar characteristics. Thus, experiments by experiments, 109 outliers

on 61 di�erent time series were detected by an expert on battery life evolution. As a result,

56% of the experiments, in the observed data, su�er from at least one unexpected value in

the series. Moreover, 15 of them (24%) have more than one outlier.

(a) Illustration of outliers type 1 and 4 on b1c0
test.

(b) An example of outliers type 2 and 3 on b1c2
experiment.

Figure 3.3: Performance of Sliding Prediction on State-of-Health.

These outliers can be organized according to their behaviour in four groups, clari�ed on

Figure 3.3. First and second types are those with signi�cant peak, whereas, the third group
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consists of small drops on the discharge capacity and, �nally, fourth collection introduce

other small irregularities.

Regarding �rst and second groups, 20 outliers are classi�ed as it is described on Table

3.1. These two categories are caused by the unexpected restart of the computer and by gaps

in the data as introduced in Figures 2.13 and 2.14.

Table 3.1: The exact experiments and cycles are described for those 20 outliers, where those 5 �rst

group experiments are represented in bold.

Experiment Cycle Experiment Cycle Experiment Cycle Experiment Cycle

b1c0 10 b1c2 1485 b1c4 1125 b1c5 907

b1c18 38 b2c3 249 b2c4 246 b2c6 257

b2c10 250 b2c11 249 b2c12 252 b2c13 245

b2c20 248 b2c22 246 b2c28 249 b2c29 246

b2c37 246 b2c42 246 b2c44 247 b3c37 596

Thirdly, 7 small peaks were detected as outliers, presented on Table 3.2. Although they

show less irregularity on the behaviour of the time series and the inability to recover the

previous capacity, these cycles are also taken as outliers. As an example, one of these was

illustrated on the Figure 2.15 on the 1175 cycle, before the huge drop at cycle number 1485.

Table 3.2: Seven outliers from the third group are detailed.

Experiment Cycle Experiment Cycle Experiment Cycle Experiment Cycle

b1c1 1177 b1c2 1175 b1c4 1125 b3c6 550

b3c24 295 b3c35 356 b3c37 950

In regard to the fourth outlier type, the Table 3.3 describes smaller deviation during the

experiments. In total there are 36 outliers that should be corrected.

Table 3.3: More 36 irregularities are introduced. Note that b1c0 experiments there is a range of

cycles, that are taken into account as one.

Experiment Cycle Experiment Cycle Experiment Cycle Experiment Cycle

b1c0 250-900 b1c0 1715 b1c0 1725 b1c0 1735

b1c1 485 b1c2 485 b1c3 500 b1c7 569

b1c8 491 b1c9 886 b1c20 12 b1c21 12

b2c0 72 b2c17 112 b2c17 144 b2c17 232

b2c28 104 b2c28 125 b2c30 247 b2c31 250

b2c32 357 b2c33 247 b2c35 247 b2c39 247

b2c40 64 b2c40 338 b2c40 358 b2c47 257

b3c37 16 b3c37 53 b3c37 60 b3c37 366

b3c37 1058 b3c37 1059 b3c37 1062 b3c37 1063

Finally, it seems to have been a data collection issue in some of the experiments, due to

this 46 experiments have their �rst cycle, in all features, set to 0. Thus, the outlier detection
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method should equally take into account. As a result, the expert of battery life evolution

has detected 109 cycles with this type of outliers.

3.1.2 Evaluation

The preprocessing methods existing in the literature di�er from each other in their prepro-

cessing capabilities. Therefore, a comparison and the basis for the analysis must be settled

down. To do so, outliers are introduced manually, taking into account that there are only

135 experiments, and then the method applied to the data, and its performance is analyzed.

Four indicators are used as de�ned as:

• True positive (TP) : The data points identi�ed correctly as outliers by the method.

• False positive (FP) : The genuine data points marked as outliers by the algorithm.

• False negative (FN) : The outliers that are not identi�ed by the method.

• True negative (TN) : The data points correctly identi�ed as non outliers by the

method.

Based on these indicators, three bases for comparison are de�ned as follows:

• Precision (P) : It is the percentage of outliers detected correctly, out of the total

number of data points marked as outliers by the algorithm. The higher the precision

a the better is the performance of the method.

Precision =
TP

TP + FP
(3.7)

• Recall (R) : It is the percentage of outliers detected correctly by the method with

respect to the total number of outliers present in the dataset. The method with the

highest recall value is considered the best.

Recall =
TP

TP + FN
(3.8)

• F-measure (F) : Is the harmonic mean of precision and recall. Its signi�cance lies in

the comparison of methods when two methods have contradictory P and R values.

In this case, the method with higher F-measure is considered better.

F-measure = 2 ∗ Precision ∗Recall
Precision+Recall

(3.9)

In this work a simpli�ed version of the sliding window prediction-based method is

evaluated, which has two hyperparameters to tune: one is the size of the both-sided

window and the predicted con�dence interval calculated as:

PCI = x′i ± (γ ∗ std) (3.10)

where x′i is the predicted value and std means the standard deviation of the window. This

way, there are two tuning parameters, the length of the window and the γ value.
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• The window is used to estimate the real value. The larger is the window, the more

di�erent values will be taken into account, thus, rarer outlier will be detected. This

means, that less outleirs will be tracked. It is studied that a very small percentage of

total time series must be taken into consideration, in this project, in total 3.5% will

be used.

• γ value: It is also used to make the model more or less sensitive. The greater is the

value, the less outliers will be detected.

The model was tuned taking into account previously considered as real outliers. This

way, Table 3.4 introduce three di�erent models, with three γ value as the window length

was already set. In addition, Figure 3.4 introduce the performance of each tuned model.

The table con�rms the relevance of γ on model’s performance. Despite it could be

believed that detecting and correcting more than one thousand cycles might be dangerous,

in order to preserve the reality of the database, in practice, as the correction will not change

the value of false positive points. Therefore, the model with the biggest F measure will be

chosen, in this case, with the γ tuning variable set to 1.5

Table 3.4: Evaluation of SWP model with di�erent γ value.

γ TP FN FP Precision Recall F measure

1.5 108 1 1082 0.091 0.991 24.056
1.9 102 7 429 0.199 0.935 12.15

2.5 89 20 208 0.299 0.816 9.123

Figure 3.4 is divided in rows and columns, in a matrix style. Each column represents a

di�erent experiment, b1c32, b2c40 and b3c37 respectively. Whereas each row introduces a

γ tuning value, where the �rst row illustrates only raw values and second, third and fourth

rows shows the performance SWP with γ value equal to 1.5, 1.9 and 2.5.

In the view of the results, due to the sensitivity of the model, increasing the γ value,

decreases the number of detected outliers. Therefore, false positive outlier are also decreased,

while the chances to get false negatives increases.

To sum up, it is decided to use the Sliding window prediction-based method to detect

outlier cycles during the experiments, taking into account 3.5% of the time series, as window,

to predict the value with the predicted con�dence interval (PCI) set as 1.5 ∗ std. As the

correction method will not modify much those false positive values.

3.2 Outlier correction

As it was mentioned before, each outlier detected with sliding window corresponds to a

cycle. Thus, all the data from "features of a cycle" must be corrected and on "features of an

experiment" only that point.

Although missing values and outliers are di�erent, the correction method is quite similar,

to replace the missing value or the outlier with reasonable values without in�uencing the

predictive model so much. This way, the replacement or imputation is a huge area, where
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Figure 3.4: The performance of SWP with γ parameter set as 1.5, 1.9 and 2.5 (rows) in b1c32, b2c40
and b3c37 experiments (columns).

lots of research has already been done, for instance Multiple Imputation [21] or Nearest

Neighbor [22] methods. In the research �eld of imputation, univariate time series are a

special challenge. Most of the su�ciently well performing standard algorithms rely on

inter-attribute correlations to estimate values. E�ective univariate algorithms instead need

to make use of the time series characteristics [23].

On the other hand, imputation methods fall primarily into two broad classi�cations:

traditional and modern techniques. Traditional techniques such as simple deletion, averag-

ing, or regression estimation are limited but still used in many cases. On the other hand,

modern approaches such as multiple imputation and maximum likelihood routines, have

proved superior and are gaining favour [24].

Despite of recent growth of new approaches, due to the slow evolution of the LIB

features, a simple traditional methodology will be used. The irregular value or cycle, on

features of a single cycle, will be replaced by the nearest regular point or repetition as

it is illustrated on Figure 3.5. Although replacement strategy is considered, the mean of
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nearest neighbours also was taken into account. However, due to the slow evolution of

the discharge capacity time series, minor di�erence has been achieved between these two

strategies.

(a) The evolution of the discharge capacity of

b2c42 experiment without any preprocessing,

note big irregularity on cycles 596 and 597.

(b) Corrected discharge capacity of b2c42 test.

Green points represents true positive error

before the correction.

(c) The cause of the irregular peak on capacity

on cycle 596, there is not any rest after charging.

(d) Irregular current cycle replaced by the next

nearest regular neighbour as other cycles’s

features, in this case cycle number 598.

Figure 3.5: Performance of Sliding Prediction on State-of-Health.

3.3 Feature selection

In order to e�ectively use machine learning methods, preprocessing data is essential. Feature

selection is one of the most frequent and important technique in data preprocessing, and has

become an indispensable component of the machine learning process [25]. It is also known

as variable selection, attribute selection, or variable subset selection in machine learning and

statistics. It is the process of detecting relevant features and removing irrelevant, redundant,

or noisy data. This process speeds up data mining algorithms, improves predictive accuracy,

and increases comprehensibility. Irrelevant features are those that provide no useful

information, and redundant features provide no more information than the currently

selected features [26]. Therefore, the correct use of feature selection algorithms for selecting

features improves inductive learning, either in term of generalization capacity, avoiding

over-�tting, learning speed, or reducing the complexity of the induced model.

Feature selection (FS) techniques are typically classi�ed into three groups: wrapper

methods, �lter methods and embedded methods [27]. The main di�erence between them is

that wrapper and embedded methods are speci�c for the used classi�er, while �lter methods
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are independent of the employed classi�er. Due to the aim of this study is prediction, a

�lter method will be used.

In the context of multivariate time series forecasting, all of the �lter methods try to �nd

the subset of predictor time series that best improves the prediction accuracy of a target time

series, in this case, being the evolution of discharge capacity. Which the selection is usually

based on correlation of a dataset. Far from highly used Principal Component Analysis

(PCA) [28], due to time series peculiarities other techniques must be applied, for instance

model-based correlation between two time series or cross-correlation. Cross-correlation is

the comparison of two di�erent time series, while auto-correlation is the comparison of a

data with itself.

In spite of di�erent type of correlation methods, Pearson correlation, Spearman correlation
and Mutual information will be used in feature selection in this work. Firstly, Pearson
correlation quanti�es the linear relationship between two features where a change in one

feature is associated with a proportional change in the other feature. It is the covariance

of two features divided by the product of their standard deviations [29]. The Pearson

correlation coe�cient, rpear , between two resource metrics xi an xj is given by

rpear = corr(xi, xj) =

∑T
t=1(x

t
i − µi)(xtj − µj)√∑T

t=1(x
t
i − µi)2

√∑T
t=1(x

t
i − µi)2

(3.11)

where µi and µj represent the average value of the features xi and xj , respectively. Pearson

correlation gives a value in [−1,+1], where +1 denotes maximum positive correlation

and −1 speci�es negative correlation between the two variables. Note that the Pearson

correlation coe�cient is symmetric: corr(xi, xj) = corr(xj , xi).

To select signi�cant features from a set of features, a subset Z is rede�ned recursively.

Initially, Z = {}. The candidate resource metric whose Pearson correlation coe�cient

value for the desired resource metric is greater than a threshold is selected [30].

As regards to the Spearman correlation, it measures the strength and direction of

monotonic association between two variables which tend to change together but not

necessarily at a constant rate. Let xi and xj be two resource metrics having T observations

each. A rank of each value in the resource metrics xi and xj is obtained by assigning 1 to

the lowest value, 2 to the next lowest and so on. The correlation coe�cient is computed as:

rspear = 1−
6
∑T

t=1(c
t)2

T (T 2 − 1)
(3.12)

where ct is the di�erence in ranks of two features at time t. Spearman correlation gives a

value between +1 and −1. If time series xj tends to increase when time series xi increases,

the correlation coe�cient is positive. If Xj tends to decrease when xi increases, the

coe�cient is negative. A Spearman correlation of zero indicates that there is no tendency

for Xj to either increase or decrease when xi increases [31]. Similar to Pearson correlation

coe�cient, only those features greater than a threshold will be selected.

Finally, regarding Mutual information, oppose to the others, it is not a correlation

measurement. It quanti�es the similarity between to labels of the same data. Despite the

data used in this study is continuous, time series, with the aim of simplify, �rst, it will
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be explained with discrete values, for instance the similarity between no time correlated

variables.

This way, mutual information between clusters U and V is give as,

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log
N |Ui ∩ Vj |
|Ui||Vj |

, (3.13)

where |Ui| is the value that instance i takes from variable U and |Vj | is the the value that

instance j takes from variable V . This metric is symmetric, this means that same score will

get switching the order of clusters order.

According to time series, in order to apply mutual information on time sereis, it must

be based on regression. This function relies on nonparametric methods based on entropy

estimation from k-nearest neighbors distances as described in [32] and [33].

Regarding Severson data, two types of features were de�ned, which describes a cycle

and an experiment. Taking into account that the predictive feature is the discharge capacity

during an experiment, �rst this type of features will be selected. Therefore, Pearson and

Spearman correlation are calculated in each experiment. Figure 3.6 introduces the distribu-

tion of Pearson and Spearman correlation to each pair of features, while Figure 3.7 shows

the histogram of Mutual information between pair of features among all the experiments.

According to [34] and [35] studies, a strong relationship is considered when the cor-

relation is higher than 0.7. Despite this, a strong relationship not always means a good

feature to predict, as it could be very similar. This means, that the model will need more

time and memory to train model that it could not be bene�cial at forecasting.

Therefore, instead of selecting those features with high interest, the idea in this work

will be to refuse those features with lack of relevant information. For instance, as it was

expected, charging and discharging capacities have high correlation and similarity. This

way, as they share almost all the data, charging capacity does not add new interesting

information with respect to discharging capacity.

On the contrary, the three temperature features, broadly, has low interest. As we see,

Tmin features has very low information with the rest of features and a great number of

experiments has near to zero correlation. This way, it seems that to be a noisy feature.

Moreover, Tmax and Tavg have similar behaviours, therefore, these two features will not

taken on the feature selection.

In summary, the selected experiments’ features are discharge capacity (QD) and internal

resistance (IR), and they will be used to learn the models and predict the RUL of lithium-ion

batteries. Despite feature selection, the model will be trained with di�erent input features

in order to study the relevance of the input information.
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Figure 3.6: Distribution of Pearson and Spearman correlations between pair of features.
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Figure 3.7: Distribution of mutual information between pair of features and among all the experi-

ments.
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CHAPTER 4

Models

In this chapter, the introduction of the state-of-the-art, complemented by the learning

scenario is provided. In addition, the selected algorithm will be present as well as the

proposed learning process and model.

4.1 Learning scenario

Learning scenario of an machine learning task highly depend on the data available and the

internal characteristics of the problem. Therefore, the learning environment of lithium-ion

battery remaining useful life prediction using [12] is divided in these properties:

• Uni-step forecasting: In each iteration of the model, an instance will be forecast.

• Early prediction : Only �rst 100 cycles of an experiment will be used to forecast the

rest of the evolution of the discharge capacity, until it reaches 80%.

• Multiple time series : Due to lack of past information on predictive time series, the

rest of experiments will be used to train the model.

• Second dimension : As optional and additional information, each instance, cycle, of

the capacity time series has another dimension with multivariate time series.

4.2 State-of-the-art review

Time series forecasting is the generalization of battery life prediction. This way, fundamen-

tally, the goal of time series prediction is to estimate some future value based on current

and past data samples. Mathematically stated as,

x̂(t+ ∆t) = f(x(t− a), x(t− b), x(t− c), ...), (4.1)

where, in this example, x̂ is the predicted value of a (one dimensional) discrete time series

x.
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This way, the objective of time series prediction is to �nd a function f(x) such that x̂(t),

the predicted value of the time series at a future point in time, is unbiased and consistent.

The challenge in Remaining useful life (RUL) forecasting of lithium-ion batteries lies

in how to store and update the key information from the degradation data via e�ective

learning of long-term dependencies. In this sense, RUL prediction methods for batteries can

be classi�ed into two main categories: model-based and data driven methods [36]. (This is

an extension of the state-of-the-art presented in the introduction).

Model-based or physics-based methods are approaches that involve the knowledge of

a system’s failure mechanism (e.g. crack growth) to build a mathematical description of

the system’s downgrading process in order to estimate the RUL. The numerical models

quantitatively characterize a system’s behaviour using the �rst principles. Therefore, model-

based methods use mathematical models to capture the long-term dependencies of battery

degradations, which are combined with advanced �ltering techniques. For instance, this

�ltering process, particle �lter (PF) algorithm, can be used to update the model parameters

by evaluating the importance of the data points adaptively based on the measured signals.

He et al. [37] used the Dempster-Shafer theory (DST) and PF methods to predict the

RUL of batteries. DST is used to initialize model parameters, and PF is then used to update

the system parameters and forecast the RUL based on the available data through battery

capacity monitoring. To further improve modeling accuracy, Xing et al. [38] developed an

ensemble model to characterize the capacity degradation and predict the RUL batteries. Due

to lack of knowledge of the degradation evolution, the highly complex chemical reactions

inside the lithium-ion battery (LIB), the mathematical model is usually constructed by

�tting the degraded capacities of LIB, but this step could lead to over�tting. This means

that, the approach is able to �t the training data precisely but its prediction accuracy is low.

In addition, the state of lithium-ion battery is highly vulnerable to working temperature,

circuit, load and other environmental factors, therefore it is di�cult to establish an accurate

model for lithium-ion battery degradation [39].

The data-driven method has recently drawn signi�cant interest in lithium-ion battery

RUL prediction research area. Yet most data-driven methods are concentrated on making

short-time forecasting for same battery based on its historical data , few existing models

can realize multi-battery prediction by using data from multiple batteries. The advances

in Arti�cial Intelligence (AI) and Deep Learning introduce new data-driven approaches to

this issue. Especially Deep Neural Network (DNN) are suitable for high complex non-linear

�tting by training multi-layer arti�cial neural networks, and can achieve better accuracy

for complex prediction problems such as multi-battery RUL estimations [40].

Speci�cally, the data-driven approach does not require speci�c knowledge of the issue.

Statistical techniques and/or machine learning algorithms are used to observe parameter

changes, isolate faults and estimate RUL for failure diagnosis prediction. In other words,

data-driven methods rely solely on historical data rather than requiring precise mathe-

matical models of battery degeneracy or internal mechanisms of the battery. Thus, these

techniques are �exible and be applied to problems with similar format, even when the

underlying physics are di�erent.

Hu et al. [41] proposed a data-driven forecasting system for by using a combination of

sample entropy and sparse Bayesian predictive modeling. Hong et al [42] presented a novel

performance degradation assessment method for bearing based on ensemble empirical
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mode decomposition (EEMD) and Gaussian mixture model (GMM).

Sasha et al. [43] and Zhou et al. [44] uses inner parameters of the storage to build a

Relevance Vector Machine (RVM) model and uses Particle �lter(PF) algorithm to determine

the adaptive variables of the RVM model to predict the decline of the lithium battery.

However, the long-term forecasting ability of the RVM algorithm is poor, so it is di�cult to

obtain decent RUL estimation outcome by directly using the RVM model.

Moving on, the kernel regression approach models the non-linear relationship between

the measurable features (e.g., cell terminal voltage, current and temperature) and the cell

capacity by means of kernel functions. Kernel regression techniques that were employed

to evaluate the capacity of Li-ion battery include support vector machine (SVM) and

relevance vector machine (RVM). For instance, Nuhic et al. introduced SVM to forecast

lithium-ion battery’s state of health (SoH) and RUL [45], and Liu et al. proposed RVM

algorithm, an online training method, to improve the accuracy of RUL prediction [46].

Patil et al. have desired an online multistage SVM method utilizing battery voltage and

temperature data as characteristic parameters to improve the precision of RUL prediction

[47]. Nevertheless, these algorithms require a large amount of past data to learn the patterns

of cell capacity degradation, and in case battery degeneration data are deeply nonlinear,

forecasting accuracy may not be guaranteed.

To overcome these limitations, neural network (NN) techniques have been recently

employed to predict the lithium-ion battery (LIB) RUL. The NN approaches basically

builds a web structure of interconnected "neurons" to model the dependency between the

measurable features and the cell capacity. For example, Liu et al. introduced the adaptive

recurrent neural network (RNN) for predicting RUL by estimating the dynamic state of cell

[48]. Using NASA’s battery data on lithium-ion degradation [49], the authors veri�ed that

RNN works more precisely than RVM and PF techniques. However, RNN has the long-term

dependency problem as the number of cycles increases [50]. Very recently, Zhang et al. [51]

used long short-term memory (LSTM) to re�ect long-term memories of battery degradation

tendency, as it is studied that this NN can maintain and update timing information, thereby

achieving excellent performance in long-term time series prediction.

Long short-term memory (LSTM) is a type of Recurrent Neuronal Network (RNN) which

is a subdivision of Arti�cial Neural Network (ANN) which are widely applied to model

sequential data like time series or natural language. Moreover, deep learning models

have been proposed for many other applications such as: image, speech, video, and audio

reconstruction, natural language understanding, sentiment analysis, question answering,

and language translation [3].

Even so, these LSTM predictions did not capture the capacity regeneration, the irregular

capacity increase, which cannot be well predicted by using capacity data only. In addition,

LSTM basically requires a large number of parameters for training. To overcome the

shortcoming of LSTM with a large number of training variables, Xiao et al. [52] used gated

recurrent unit (GRU) to estimate the state of charge, and Song et al. [53] used GRU to

predict the battery RUL.

In order to signi�cantly improve the forecasting precision even in the presence of

capacity regeneration, Park et al. [54] proposed two learning methods using LSTM. They

leverage the multichannel measurable data of voltage, current and temperature charging

pro�les from Battery Management System (BMS) whose patterns vary with cycles as aging.
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In order to use this various data e�ciently, unlike the traditional LSTM prediction that

matches input layer with output layer as one-to-one structure (the same size of capacity

vectors for input and output), they match, also, input layer with output layer as many-to-one

structure.

Although the massive use of machine learning and deep learning approaches, Hu et al.
[55] proposed a genetic algorithm (GA) to develop a simple, but an accurate model. This

model is composed by a k-nearest neighbor (kNN) regression to build a non-linear kernel

regression model, with the aim to capture the complex dependency of the capacity on the

features. In addition to this, a particle swarm optimization (PSO) is adapted to �nding the

optimal combination of feature weights for creating a kNN regression model that minimizes

the cross validation (CV) error in the capacity estimation.

In addition to the previous, hybrid approaches that combine two or more model-based

or data-driven approaches has been also proposed [56]. Particularly, this type of schemes

try to overcome the limitations of a single algorithm which results in many cases to an

improvement of the prediction performance. Generally, there are two kinds of hybrid

systems, one combines model-based and data-driven, while the other combines di�erent

kinds of data-driven approaches.

The �rst type of hybrid approach can be divided into the following two categories:

1. Data-driven predictors are employed to provide the predicted information for the

models. Because there are no measurements in the prediction phase, the predicted

values from the data-driven approach can be used by the state observer to update

model parameters in the prediction phase. Liu et al. [57] use a data-driven approach

to predict future measurements, and these predicted measurements are added to the

PF to update model parameters.

2. A data-driven approach is proposed to overcome the limitations of �ltering methods.

The selection of the initial value of the parameters a�ects the convergence of the

�ltering algorithm. Therefore, He et al. [58] initialize the model parameters based on

Dempster–Shafer theory, update the model parameters using the PF �ltering algorithm

based on the existing capacity degradation data, and achieve the RUL prediction.

The second type of hybrid approach combines two or more types of data-driven ap-

proaches. Hu et al. [59] combine multiple data-driven algorithms based on a weighted-sum

formulation and the weighting scheme determines the weights of each algorithm. Because

ensemble learning is still challenging for the fusion of di�erent data-driven approaches,

here we mainly focus on the �rst type of hybrid approach.

Note that the model-based approach needs complex mechanism modeling, and it is

di�cult to build a high-accuracy model to complex electrochemical systems like batteries.

The data-driven approach avoids the modeling process, and its prediction accuracy depends

on historical observation data. However, this approach needs a large amount of data, thus

inducing high computational complexity. Overall, developing an e�ective hybrid approach,

which combines the bene�ts of both approaches to improve accuracy and con�dence might

be very interesting.
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4.3 Selected Algorithm

The Long Short-Term Memory (LSTM) neural network is selected to study the behaviour of

di�erent features and hyperparameter combinations, due to the recent LSTM outperforming

investigations [60]. This election is not only motivated by large number of algorithms that

started to apply RNNs, such as LSTMs, to time series forecasting, but also, it is as far as we

have investigated, the only one that permits to incorporate the all the data that has been

considered in the present learning scenario.

Despite this severe decision, other classical models were also taken into account. Given

the historical impact of ARIMA models in time series forecasting [61][62], Vector Autore-
gression Moving Average regressor (VARMA) model was also considered [63]. In addition, as

a result of studies of remaining useful life (RUL) of lithium-ion batteries (LIB) in last few

years using Support Vector Regressor (SVR) was also considered [64].

However, due to newborn area of using multiple time series to forecast, limitations

were found on open source machine learning libraries, statsmodels for ARIMA models and

scikit for SVR, to train with more than one dataset, as in this case each experiment must

be considered as di�erent dataset or time series. In spite of this restriction, it seems that

the constraints come from repositories and not from models as there are signs of optimism

after reading the use of multiple time series as input of SVR model, although it is not a

trivial task [65]. As a result of this restriction and the aim of studying features importance

of LIB RUL prediction, a decision of using LSTM models was taken.

4.3.1 MLP

Multi Layer Perceptron (MLP) is the simplest model of ANN. Even though particular model

architectures might have variations depending on di�erent problem requirements, MLP

models consist mainly of three layers: input, hidden and output, Figure 4.1. Thanks to this

simplicity, it could be easily used in wide range of learning scenarios.

Figure 4.1: Topology of a Multilayer Perceptron Neural Network.

The number of neurons on each layer and the number of layers are one of many
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hyperparameters of the network. In general, each neuron in the hidden layers has input (x),
weight (w), and bias (b) terms. In addition, each neuron has a nonlinear activation function,

which produces a cumulative output of the preceding neurons, as introduced in Equation

4.2.

yi = σ
(∑

i

wixi + bi
)

(4.2)

where yi is the output of the neuron and σ represents the activation function. The most

common used nonlinear activation functions are sigmoid, hyperbolic tangent, Recti�ed
Linear Unit, leaky-ReLU, swish and softmax [66].

The MLP, as other NN models, learning stage is implemented using backpropagation
technique. It is based on the idea of propagating the learning errors of output layers

back to the preceding layers. Optimization algorithms are used to �nd the optimum

parameters/variables of the NNs. After that, they are used to update the weights of the

connections between between the layers. Di�erent optimization algorithms have been

developed: Stochastic Gradient Descent (SGD), SGD with Momentum, Adaptive Gradient

Algorithm (AdaGrad), Root Mean Square Propagation (RMSProp), and Adaptive Moment

Estimation (ADAM) [67] [68] [69].

Gradient descent is an iterative method to �nd optimum parameters of the function

that minimizes the cost function. For instance, SGD is an algorithm that randomly selects a

few samples for each iteration instead of the whole dataset. While ADAM is an updated

version of RMSProp that uses running averages of both the gradients and second moments

of the gradients. ADAM combines the advantages of RMSProp (works well in online and

non-stationary settings) and AdaGrad (works well with sparse gradients) [69].

As it is introduced in the Figure 4.2, the e�ect of backpropagation is transferred to

the previous layers [70]. Using the chain rule, layers that are deeper into the network go

through continuous matrix multiplication in order to compute their derivatives.

In a network of n hidden layers, n derivatives will be multiplied together. If the

derivatives are large then the gradient will increase exponentially as they propagate down

the model until they eventually explode, called as exploding gradient problem. Similarly, if

the derivatives are small then the gradient will decrease exponentially, until it eventually

vanishes, named as vanishing gradient problem.

In the case of exploding gradients, the accumulation of large derivatives results in the

model being very unstable and incapable of e�ective learning. Large changes in the models

weights creates a very unstable network, which at extreme values the weights become so

large that is causes over�ow resulting in NaN weight values of which can no longer be

updated. However, the accumulation of small gradients results in a model that is incapable

of learning meaningful insights since the weights and biases of the initial layers, which

tends to learn the core features from the input data, will not be updated e�ectively. In the

worst scenario the gradient will be 0 which in turn will stop the network will stop further

training.

As other machine learning model, the important issue in the MLP are the hyperpa-

rameters of the networks, which are the variables of the network that a�ect the network

architecture and performance of the networks. The number of hidden layers, number of

units in each layer, regularization techniques, network weight initialization, activation
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Figure 4.2: Deep multi layer neural network forward pass and backpropagation [3]

functions, learning rate, decay rate, momentum values, number of epochs, batch size and

optimization algorithms are the hyperparameters of a MLP. Choosing better hyperparame-

ter values/variables for the network results in better performance. Therefore, �nding the

best hyperparameters for the methods is a signi�cant issue.

4.3.2 RNN

Moving on, as it has been mentioned before, LSTMs are a type of Recurrent Neural Network

(RNN). This deep learning network is used for time series or sequential data, such as

language and speech. Although it is possible to face the sequential issue with other NN

models, RNNs are preferred due to their ability to include longer time periods. Unlike multi

layer perceptron, recurrent networks use internal memory to process incoming inputs.

This way, as stated in the literature, RNNs are good at predicting the next character in text,

language translation applications, and sequential data preprocessing as time series [71].

The RNN model architecture consists of di�erent numbers of layers and di�erent types

of units in each layer. The main di�erence between RNN and MLP is that each RNN unit

takes the current and previous input data at the same time. The output depends on the

previous data in the RNN model. RNNs process input sequences one by one at any given

time during their operation. The units in the hidden layer hold information about the

history of the input in the state vector. When the output of the units in the hidden layer is

divided into di�erent discrete time steps, an RNN is converted into a MLP, as illustrates in

Figure 4.3, [3].

RNNs can be trained using the Backpropagation Through Time (BPTT) algorithm. As

well as usual learning method, optimization algorithms are used to adjust the weights. With

the BPTT learning method, the error change at time t is re�ected in the input and weights

of the previous t times. The di�culty of training an RNN is that the RNN structure has a

backward dependence over time. Therefore, RNNs become increasingly complex as the

learning period increases. Although the main aim of using an RNN is to learn long-term

dependencies, studies in the literature show that when knowledge is stored for long time
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periods, it is not easy to learn with an RNN [72]. To solve this particular problem, LSTMs

with di�erent structures of ANN have been developed [3].

Figure 4.3: Illustration of a Recurrent Neural Network structure folded and unfolded.

where, I is the input layer, H the hidden layer and O the output. Matrix U connects the

input layer and the hidden layer, matrix V connects the hidden layer and the output layer,

and matrix W connects the hidden layer at di�erent times [73].

Hyperparameters of the RNN also de�ne the network architecture, and the performance

of the network is a�ected by the parameter choices, as in DMLP case. The number of

hidden layers, number of units in each layer, regularization techniques, network weight

initialization, activation functions, learning rate, momentum values, number of epochs,

batch size (minibatch size), decay rate, optimization algorithms, model (Vanilla RNN, Gated
Recurrent Unit (GRU), LSTM), and sequence length are the hyperparameters of a RNN.

4.3.3 LSTM

Long Short-Term Memory (LSTM) [74] are a type of RNN where the network can remember

both short term and long term values. LSTM networks are the preferred choice of many

deep learning model developers when facing complex problems such as automatic speech

and handwritten character recognition. LSTM models are mostly used with time-series

data. Their applications include Natural Language Processing (NLP), language modeling,

language translation, speech recognition, sentiment analysis, predictive analysis, and

�nancial time series analysis [75] [76]. With attention modules and auto encoder (AE)

structures, LSTM networks can be more successful in time series data analysis, such as

language translation [77].

LSTM networks consist of LSTM units. LSTM units merge to form an LSTM layer. An

LSTM unit is composed of cells, each with an input gate, output gate, and forget gate as

introduced in Figure 4.4. The goal of these gates is to regulate the information �ow. With

these features, each cell remembers the desired values over arbitrary time intervals.

• Forget gate: The forget gate ft decides whether to retain or forget the previous

information. The decision-making is completed by the sigmoid activation function

(denoted as σ) of the forget gate, which is composed of the inputs vector It and
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Figure 4.4: A global view of the components of the LSTM model [4].

previous hidden stateHt−1 and outputs a value between 0−1. The concrete equation

is described as follows:

ft = σ(WfIIt +WfHHt−1 + bf ) (4.3)

• Input gate: The input gate it decides whether to update the state using the current

input or not. Concretely, this step consists of two parts: A tanh activation function is

chosen to form the new memory gt, and the activation function sigmoid of the input

gate determines which information in the new memory gt can be updated into the

cell state,

gt = tanh(WgIIt +WgHHt−1 + bg) (4.4)

it = σ(WiIIt +WiHHt−1 + bi) (4.5)

By combining Equations 4.3, 4.4 and 4.5, the cell state at the previous moment st−1
can update to the cell state at the current moment st

st = gt × it + st−1 × ft (4.6)

• Output gate: Finally, the output gate ot is designed to decide which information is

converted from the cell state st into current hidden layer Ht. Concretely, after the

cell state st passes through an activation function tanh, its value is placed between

-1 and 1 and then multiplied by the output of the activation function sigmoid of the

output gate, and the information of the cell state can be transferred to the hidden

layer

ot = σ(WoIIt +WoHHt−1 + bo) (4.7)
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Ht = ot × tanh(st), (4.8)

where, for all equations, σ and tanh are denoted as the sigmoid and tanh activation

functions. WfI , WiI , WgI , WoI are weight matrices between the input layer It
and the hidden layer Ht at time t. WfH , WiH , WgH , WoH are hidden layer weight

matrices between current moment t and previous moment t− 1. And �nally, bf , bi,
bg , bo are bias matrices.

This way the cell memory enables LSTMs to handle long-term dependencies, because

information can remain in the memory for many steps. Several LSTM layers can be stacked

on top of each other in a model or having a di�erent architecture, such as, bidirectional
LSTM [78]. However, the last LSTM layer is followed by a traditional fully connected dense

layer (output layer), which the number of output neurons corresponds to how many values

(features or steps) are going to be predicted in each repetition.

LSTM models are a specialized version of RNN. Thus, the weights updates and preferred

optimization methods are the same. In addition, the hypeparameters of LSTM are just like

those of RNN.

4.4 Proposed RUL prediction

The proposed LSTM-based prediction framework is divided in two main tasks, �rstly, in

order to train the model, data must be organize in a speci�c way to go into it. Then, the

proposed model will take care of training internal weights and to forecast the degradation

of discharge capacity.

Figure 4.5 introduces the learning process of the framework. Firstly, the time series of

each battery experiment are reorganized and considered in a supervised learning scenario.

This means that a set of �nite Dk data, of instance k and length L (called as window), will

be matched with the next cycle, in this case, Dk+1. This means that, the model will try

to predict the future value, Dk+1, from L history data at each iteration. This way, the

predictive model will learn internal patterns and connections between past data and the

future value. Note that in order to continue forecasting, it is necessary to predict every

features used on the training to feed the model. That’s why it is used the same notation for

each window data and future value, D.

Highlight that as the data of each battery is reorganized, all the supervised data pairs

can be come together to create a huge supervised dataset within di�erent fast-charging

experiments, named as multiple time series forecasting. Therefore, taking 100 cycles of

window to predict the next cycle, there are more than 120.000 supervised pairs, which most

of them will be used for training the model.

Due to time limitation, a hold-out strategy was decided to use opposed to widely known

k-fold cross-validation. In this work, randomly 80% of the batteries were chosen to train,

108 batteries, and the other 20% for testing, 27 batteries. Although the goal of those testing

fast-charging experiments, or batteries, is to evaluate the performance of the model, the

�rst cycles of these batteries can not be forecast as the model needs an initial starting

point. This way, this initial data will be used to for training and, in the next Chapter 5,

the signi�cant of the amount of data used for initializing will be studied. Note that this
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Figure 4.5: Input format and con�gurations for training.

information is illustrated on the lower right part of the Figure 4.5, named as training cycles,
where the �rst cycles of testing batteries are colored in blue, as the rest of training data.

In regarding to the proposed model, in this work a stacked LSTM neural network is

presented in Figure 4.6. The predictive model is divided in two main parts, �rst two LSTM

layers are stacked with the aim of understanding the patterns of the input time series. While

on the second part, a dense layer is used to generate the future value from the internal

information generated by those LSTM layers.

This way, in the training task, all the supervised pairs will be used to adjust all the inside

weights of the model. To do so, the window will be used as the input data and the future

value, the next cycle, as the output data. However, on the testing or forecasting task, the last

window of the training data of each battery will be used as the starting point and in each

repetition the predicted cycle will be including on the window, as it is illustrated in Figure

4.7. For instance, if the goal is to predict 500 cycles, the model will need 500 iterations to

predict the whole time series, as the model predicts only the next cycle in each repetition.

Moreover, due to predicted cycles must include on the window, and as the window has a

�nite length (in this work of 100 cycles), the window will easy be completed by predicted

cycles, getting a huge uncertainty in upcoming predictions. Carrying on with the example,

400 cycles of those 500, will be forecast taking into account a complete uncertainty window.

As regards to the input and output data, aforementioned, the same features, D, must be

used, although in the input data a set of this data is used. According to which features used

on the prediction, a interesting debate appears. From one side, if the objective is to predict

from a particular dataset, for instance Severson dataset [12], apriori more features will be

bene�cial to the predictive neural network model in order to get an accurate forecasting.

However, from the other side, if the objective is to generalize the model to other battery
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Figure 4.6: An illustration of the proposed LSTM neural network.

Figure 4.7: An illustration of forecasting process, where predicted cycles, oranges, are introduced

on the window in each iteration. Note that blue color represents the real or raw cycles.

Remaining Useful Life (RUL) prediction, it could be hard to �nd another dataset with the

same features, as the infrastructure of generating the data will rarely be the same. For

example, NASA’s dataset [49] only has the evolution of the discharge capacity (QD) and

the current (I), voltage (V) and temperature (T) used on each cycle.

Apart from this, the goal of this work is focused on the importance of each feature on

the performance of the proposed model, Section 1.4. Therefore, in this investigation three

di�erent data will be use to forecast the evolution of the discharge capacity (QD). Firstly,
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only this feature will be used to forecast itself, called as univariate time series (Eq. 4.9a).

Secondly, due to the feature selection done in Section 3.3, discharge capacity and internal

resistance will be used, named as bivariate time series (Eq. 4.9b). Finally, all the features

that explains an experiments will be used, called as multivariate time series (Eq. 4.9c).

Dk = QDk (4.9a)

Dk =

{
QDk

IRk

(4.9b) Dk =



QDk

IRk

QCk

Tmaxk

Tavgk

Tmink

(4.9c)

where k represents a cycle.

Unfortunately, the second dimension or features referred to a cycle will not be taken

into account, due to time limitation. Nevertheless, as described in the �nal chapter, this

line will stand as one of the initial future lines to continue this work.
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CHAPTER 5

Computational studies

In order to obtain a preliminary picture of the performance of the studied LSTM models, in

this chapter, a battery of experiments are conducted. To that end, �rst, the experimental

framework is presented, which settles down the environment used in the four experiments

that are described later on.

5.1 Experimental framework

The code is implemented by Tensor�ow in Python [79] and executed on a machine with

the next characteristics: Intel i5-4590 CPU with 3.30 Ghz and 8GB memory, and the average

training time is around 20 minutes. Although the predictive model was proposed, for the

purpose of improving its performance some hyperparameters must be tuned. Despite the

list of hyperparameters can be long, in this work the most important ones will be tuned

and for others the most common values according to Severson data [12] will be used.

Before explaining the hyperparameters, it is interesting to highlight that all the training

data were normalized using Max normalization technique, Equation 5.1, to rede�ne all the

data between 0 and 1. The main reason of using this normalization is that, this way, the

evolution of discharge capacity (QD) is converted to widely used state-of-health (SOH)

feature, a visual feature to easily control the threshold of 80%, as it is equal to 0.8. The max

normalization is de�ned as:

Max normalization =
value

max
(5.1)

where max refers to the maximum value of each feature. For example, as nominal capacity

of these batteries is 1.1 Ah, the maximum value, max, of discharge capacity is set to this

value.

According to the activation functions in the LSTM model, ReLU, Eq. 5.2, function has

been considered. Each layer will consists of 50 units and Adam optimizer [69] is used

to learn the parameters of the model. Similarly, the dense layer will also use ReLU as

activation function, but the number of neurons depends on the number features. This
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means that in order to predict a feature, a neuron is needed. Moreover, as regards to training

hyperparameters, the batch size is set to 800 and 25 epoch are settled down.

ReLU(z) =

{
z, if z > 0

0, z ≤ 0
(5.2)

In relation to loss function, it is said that there is not a single loss function that works

for all kind of data. This means that it is suggested to attempt with di�erent loss function

to identify the best one for the learning scenario, as it can depend on great number of

factors including the presence of outliers, the machine learning algorithm or ease of �nding

the derivatives. In this work Mean Square Error (MSE) is chosen after having a try with

Huber Loss, Log-Cosh Loss and Mean Absolute Error. Aforementioned MSE [80] is the most

commonly used regression loss function, in which it is the sum of squared distances between

the target variable, yi, and predicted values ŷi, Eq. 5.3.

MSE =

∑n
i=1(yi − ŷi)2

n
(5.3)

Finally, as a way to evaluate the forecasting Mean Absolute Error (MAE) [81] metric

will be used. In spite of this, there are other metrics that could be used, such as, R-squared,

Mean Squared Error (MSE) or Mean Absolute Percentage Error (MAPE) metric. The reason

why MAE is used in this work is because its easy interpretability and the possibility to

compare di�erent predictions with di�erent lengths, as MAE calculates the error you can

expect from the forecast on average, Eq. 5.4.

MAE =

∑n
i=1 |yi − ŷi|

n
(5.4)

where the resulting error is between 0 and 1. Zero value means a perfect prediction, while

increasing the MAE value the prediction is getting worse. This way, for instance, 0.3 error

means that the di�erence between the prediction and the real value is about 30%.

Note that in this work the accuracy of the model is calculated by comparing the

preprocessed raw data and the predicted data, this way, the evaluation is purely based on

time series, rather than the signi�cance of the time series. In other words, although it could

be possible to measure the performance of predictive model by the di�erence between the

real and predicted last cycle above the threshold, in this project this idea was discharged as

not all the predicted time series end under the limit.

To sum up, taking into consideration the proposed model with its hyperparameters,

Severson dataset and experimental framework, 4 consecutive experiments have been carried

out. Since each of them analyzes a particular aspect of the performance of the LSTM model

considered, the content has been divided in separated sections.

5.2 Experiment 1: The performance of the LSTM model

The objective of the �rst experiment is to show the performance of predictive model in

di�erent scenarios. To do so, those three input data will be taken into account, univariate,
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Equation 5.5a; bivariate, Equation 5.5b, and multivariate, Equation 5.5c.

Dk = QDk (5.5a)

Dk =

{
QDk

IRk

(5.5b) Dk =



QDk

IRk

QCk

Tmaxk

Tavgk

Tmink

(5.5c)

On the other hand, as it was explained on Figure 4.5 and Section 4.4, the number of

initial cycles of testing batteries will be varied to predict the rest of the time series, as it is

illustrated in Figure 5.1. For instance, in Figure 5.1a only 10% of the data is used for training

and the rest for testing or forecasting. Similarly, Figure 5.1b uses 50% of the data to train

and Figure 5.1c 90% of the time series. Although in the illustrations a multivariate time

series, with 6 features, are displayed for training and discharge capacity for testing, it is

just for a better illustration as they must be the same. Moreover, despite the �gure gives an

example of multivariate time series to train, as all the features are included, not necessarily

all of them will be used.

(a) Illustration of using 10% for

initializing or training.

(b) An example of testing 50% the

fast-charging battery experiment.

(c) Illustration of using 90% of testing

batteries for training.

Figure 5.1: Examples of using 10, 50 and 90% of testing batteries for training.

This way, Figure 5.2 shows the performance of the predictive model taking into account

three input data types, univariate, bivariate and multivariate, and the number of initializing

data, in percentage. In addition, as the training process has randomness, 10 repetitions

have been done in each permutation between input data and the amount of training data

on those testing data (3 input data types, 9 di�erent training data and 10 repetitions). This

way, the mean value is represented as a point and the shading represents the inter-quartile

range, between �rst and third quartile.

Several conclusions can be drawn from �gure, �rstly, the proposed model’s performance

is inferior when more features are included. Although, it is believed that neural networks

can distinguish between useful and useless features to give more importance to some

features, apparently, the proposed LSTM model is unable to do the right comprehension of

the data.

Secondly, as it is expected, increasing the length of the prediction or reducing the

number of training data for those testing batteries, prediction is getting worse. In other
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Figure 5.2: The performance of proposed LSTM model with three di�erent inputs.

words, the forecast is easier when the goal is to predict the near future, rather than long

future. Speci�cally, we see that the multivariate case is the one that worst performance

shows, followed by bivariate, and being the univariate the best performing option, under

10% of mean error on all scenarios. The number of predictive values in each instance, hence

the number of features, could be a reason for this inferior performance, as the number

of features increases, the number of possible error values will also rise. Moreover, this

possible inaccuracies will grow while when the greater the length of forecasting since the

predicted cycles are included on the window.

5.3 Experiment 2: Describing the predicted time series

In the second experiment, the forecast time series are illustrated in order to better under-

stand the model’s performance. Figure 5.3 introduces the mean of those 10 repetitions in

each scenario.

(a) Illustration of predictive ability of

three model after 10% of training data.

(b) The output of forecasting 50% of

the time series.

(c) Illustration of model’s

performance to predict the last 10% of

the cycles.

Figure 5.3: Performance of proposed model using univariate, bivariate and multivariate time series,

and training the b3c43 battery on three scenarios, 10, 50 and 90% of initialization.

Firstly, it can be seen that when the objective is to forecast near future or in this

case training with 90%, Figure 5.3c, the performance of proposed three models are similar.

However, increasing the number of predicted cycles and taking into consideration that
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proposed LSTM model forecast only one cycle in each iteration (Fig. 4.7), the uncertainty is

heavily introduced when a great number of iterations are done, as it can be observed in

Figures 5.3a and 5.3b, thus getting worse results. This way, the initial believe of challenge

on long distance prediction is rea�rmed.

Secondly, taking into account the results of MAE, Figure 5.2, and these predictions,

univariate time series’ superiority over others is re�ected. On the contrary, multivariate

time series in the worst. Among possible reasons to explain this behaviour, it seems that the

proposed model outperforms with less features, and included features achieve an opposite

outcome although the feature analysis and feature is already done to avoid this situation.

Thirdly, in spite of error calculated on univariate time series using 10% and 90% seem

similar (Fig. 5.2), from battery life prediction an important di�erence between them is

perceived. In other words, MAE metric measures the mean error of all predicted time series

and it does not quantify the error at the end. Therefore, despite the dissimilarity at the end

of predicted time series in Figure 5.3a, as a great number of initial cycles are accurately

predicted, a small overall MAE error is obtained.

Finally, the major di�erence between proposed multivariate forecasting and the others

is that almost always the prediction drops very fast and a constant 0 value is forecast for the

rest of the time series, while the other two models try to forecast the initial slow capacity

degradation. This way, the MAE error increases so much as the length is also increasing,

Figure 5.2.

5.4 Experiment 3: Over or under�tting?

Due to the unexpected inability to, at least, achieve similar results using more information,

the idea of bad training conditions came up. Therefore, the evolution of the Mean Squared
Error (MSE) loss during the training is displayed in Figure 5.4.

Figure 5.4: The evolution MSE loss during the training. Note that �rst 4 epoch are not shown to

focus on the di�erence between di�erent models’ losses.

Here there are also few notes to highlight. Firstly, there is a substantial di�erence on

the training losses. Univariate time series usually reach at 2e-06 error while multivariate

stack at 3e-04, when they should be similar. Secondly, there might be a small over�tting
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on the training as it seems that after 15 epoch the model does not improve. In order to �x

this issue, an early stop was proposed to stop the training when the loss of the current

epoch was higher than the previous one. However, we �nd that rarely this situation was

happening before 25 epoch. This means that although the improvement is slow or hardly

any, an improvement takes place.

On the other hand, the biggest surprise was to �nd almost zero MSE error during the

training. Even though this meaningless error should be an positive point, in this scenario

where the predictive model is not as good as expected, this zero error is, at least, confusing.

On the search of a possible reason, we came across that there is a huge similarity between

the two sides of supervised learning pairs, Figure 4.5. Here the interesting point is that as

the evolution of the capacity is so slow, the variability is almost none, specially of the �rst

part of the time series.

5.5 Experiment 4: Is preprocessing useful for prediction?

Finally, in the last experiment, the need of the feature selection of the data is revised. Note

that in this work the preprocessing consists of outlier detection and correction, as explained

on Chapter 3. To do so, already proposed univariate time series forecasting is used to train

with �rst, preprocess data as it is done in previous experiments, and later with data without

preprocessing.

Figure 5.5: Proposed univariate predictive model is trained and testing in di�erent initial data

scenarios and with and without preprocessing.

Figure 5.5 introduces the experiment results, similar to Figure 5.2. Like the faculty

of neural networks to learn similarly whether or not doing a feature selection, it is also

believed that they can master similar knowledge from with or without preprocessing the

data. According the results of this experiment, this faculty is not observed when the model

is trained with 10% and 20%. In other words, outliers have manifest an error on long-term

forecasting, although in short predictions seems not to have much relevance. Therefore, in

batteries Remaining Useful Life (RUL) prediction scenarios, as the goal is to predict with

very few cycles, the outlier detection and correction is suggested on LSTM based predictive

models.
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CHAPTER 6

Conclusions and future work

In the last chapter an overall summary and conclusions of the investigation are presented,

complemented by organized future works.

6.1 Conclusions

Battery life prediction is important for the prognostics and health of battery management

systems. This way, Remaining Useful Life (RUL) prediction can provide the probable failure

time of lithium-ion batteries (LIB) in advance. The main challenge of RUL forecasting for

LIB lies in how to accurately learn the long-term dependencies over hundreds of cycles

based on degradation data. In this work, an initial approach for RUL prediction is presented,

where �rst a background of RUL forecasting complemented with Severson [12] dataset is

introduced.

Secondly, we develop an outlier detection and correction in order to, on one hand, gain

a better understanding of lithium-ion batteries features, and, on the other hand, improve the

performance of predictive model. Moreover, a feature selection is proposed to understand

relationships between features measured with Pearson, Spearman correlation, as well as,

mutual information.

Finally, we proposed data-driven LSTM-based RUL prediction methods for lithium-ion

batteries on di�erent learning scenarios. Experiments on Severson fast-charging batteries

dataset exhibit an accurate prediction on short-term scenarios, while it is getting worse

on long-term predictions. In spite of this, the proposed univariate time series forecasting

outperforms on all training scenarios measuring less than 0.1 of MAE and getting an

interesting prediction using 100 cycles for an initial approach (Fig. 6.1).

6.2 Future works

Future works are presented in an organized list according to time, where the tasks are

planned to be done from top to bottom
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6. Conclusions and future work

Figure 6.1: An example of a good prediction of proposed univariate model on b3c19 fast-charging

experiment using 100 cycles.

• Optimize proposed predictive model: In order to rely on data-driven predictive

model for RUL prediction, it is vital to forecast accurately long distances as the aim

is to forecast with as less cycles as possible. Therefore here some suggestions:

– A thorough investigation on proposed model LSTM hyperapameters and hier-

archies.

– Train the model with additional information, such as, charging policies or taking

into account features that explains a cycle, called in this work as second dimen-

sion. Park et al. [54] proposed a way of introducing the second dimensionality

using this type of data (Eq. 6.1).
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k , V

2
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k

I1k , I
2
k , ..., I

S
k

T 1
k , T

2
k , ..., T

S
k

(6.1)

where V and I corresponds to the distribution of the voltage, (Fig. 2.5b) and

current, (Fig. 2.5a); whereas, T represents the evolution of the temperature (Fig.

2.8a).

Moreover, S is the number of sample points during one charging/discharging

pro�le. According to Park et al. [54] investigation: "For e�cient learning of

LSTM, it is not desired to utilize all data, even if there are many voltage, current

and temperature points in the charging process according to the BMS’s settigns.

We choose S=10 in Equation 6.1, i.e., 10 sample points for each charging pro�le

of voltage, current and temperature as done in [82][83]."

– Change forecasting strategy: Although in this work the strategy was to predict

windows’ next cycle in each repetition (Fig. 4.7), a drawback was found and

introduced on the third experiment (Section 5.4). The window used for predict-

ing and the next cycle are very similar, getting a meaningless variance and loss

error during training. Thus two new strategies consisting on predicting more
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6.2. Future works

than one cycles, S, in each repetition (Fig. 6.2a) and forecasting a J distance

cycle instead of next cycle (Fig. 6.2b), tries to forecast in a di�erent point of

view, such that the a better training is possible.

(a) Introduction of predicting S cycles strategy. Note that S cycles will be predicted in a row and all of them

will be included on the window to continue forecasting.

(b) An illustration of the second predictive plan. Highlight that in this strategy more to

the past cycles are used to predict current cycle, instead of using prior cycles.

Figure 6.2: Illustration of new forecasting strategies and their application on RUL prediction.

• Compare: After optimizing the proposed model, it could be a good chance to validate

the performance predictive with di�erent datasets such as, data generated from

CIDETEC, NASA’s lithium-ion degradation battery data [49] or recently publicated

ENPOLITE dataset [84]. On the other hand, it could be of interest to compare with

other physic-based or data-driven predictive models, such as, the one developed by

Technical University of Denmark (DTU) or with proposed by Park et al. [54].

• Hybrid model: Finally, it could be intriguing an hybrid model between previously

developed physic-based model by CIDETEC and proposed data-driven model in order

to, �rst, learn how to complement both models, and then, analyze and compare the

results with other models to opt for the best one for RUL prediction.
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