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Abstract
Concern for mental health has increased in the last years due
to its impact in people life quality and its consequential ef-
fect on healthcare systems. Automatic systems that can help in
the diagnosis, symptom monitoring, alarm generation etc. are
an emerging technology that has provided several challenges
to the scientific community. The goal of this work is to de-
sign a system capable of distinguishing between healthy and
depressed and/or anxious subjects, in a realistic environment,
using their speech. The system is based on efficient repre-
sentations of acoustic signals and text representations extracted
within the self-supervised paradigm. Considering the good re-
sults achieved by using acoustic signals, another set of experi-
ments was carried out in order to detect the specific illness. An
analysis of the emotional information and its impact in the pre-
sented task is also tackled as an additional contribution.
Index Terms: acoustic signal, textual information, mental
health monitoring

1. Introduction
Mental Health is an essential component of overall health.
However, depression and anxiety are still common disorders.
As an example, in Europe the overall prevalence of current
depressive disorder is between 5-10%, according to [1], with
potentially large differences between countries and time. This
kind of disorders are a major cause of disability, increasing the
risk of premature mortality, decreasing life quality, and creating
a substantial burden on health systems [2]. Many people may be
described as “living with” a mental illness, and managing their
own symptoms. However, they are often unsure of the thresh-
olds for treatment, how to control their symptoms, which are
the best coping strategies or the available resources.

AI based systems may facilitate watchful waiting and
symptom monitoring by initiating contact and symptom check-
ing at various times of the day and night. Thus, they can play
a relevant role in the detection of the illness and in the patients
care. These automatic systems can take advantage of different
information sources like voice, gait, EEG, facial expressions,
etc. [3, 4]. Speech can be an easily accessible, non-invasive
marker, whose features can significantly change due to slight
psychological or physiological changes [5]. Therefore, it can
be considered a key marker for detecting depression and suicide
risk [5, 6]. Different features like acoustic parameters extracted
from fundamental frequency [7] or vocal-source-based features
(jitter, shimmer, etc.) [5] have been used as successful cues for
predicting depression. These features, among others, have been
exploited by different machine learning algorithms. Spectral
and prosodic features along with their statistics extracted us-
ing openSMILE toolkit [8] have been used to train support vec-
tor machines and random forest models for depression detec-
tion [9]. More recently deep Convolutional Neural Networks
(CNNs) have been used to extract acoustic embeddings [10] and
detect depression from speech [11, 12].

In this work, we focus on an alternative and more efficient
way of representing the audio. The rise in the self-supervised
learning paradigm and the recently proposed transformer archi-
tecture [13], have led to novel speech representations, such as
wav2vec [14], HuBERT [15] or the most recent UniSpeech-
Sat [16]. These models are inspired by deep Transformer-
based text generation models[17] such as GPT[18, 19, 20] and
BERT[21] that are able to extract features from simple text
without additional annotation. Audio encoder models have also
been used to extract speech representations. In this work, the
HuBERT representation was selected to feed a simple neural
network that can be trained with small amounts of data. This
way, we can tackle an anxiety and depression detection task in
a realistic environment where getting a large training set is time
consuming and expensive. The HuBERT representation was
also compared to the spectral and prosodic features achieved
with openSMILE. Moreover, the transcriptions of the utterances
were also considered as an information source. A BERT based
representation of the text corresponding to the audio transcrip-
tions, was also employed with the same aim. This way, an audio
based system and a text based system were built to perform the
anxiety and/or depression detection task. We also carried out
an audio centered analysis in order to measure the impact of
emotions, represented as a 2 dimensional model (Valence and
Arousal), in the prediction of depression and/or anxiety.

The manuscript is organized as follows, Section 2 describes
the task and corpus tackled in this work. Section 3 deals with
the representation of the audio signal and the textual transcrip-
tions. Section 4 and Section 5 detail the different sets of exper-
iments that were carried out and Section 6 sums up the main
conclusions and future work.

2. Mental health monitoring task
This work deals with the data acquired within the framework of
the H2020-MSCA-RISE project MENHIR [22] (Mental health
monitoring through interactive conversations). In this project
60 conversations between a counsellor and a participant were
recorded to form a corpus. Participants were divided in two
groups: AMH and Control. AMH (32 members) consists of
users of the Action Mental Health (AMH) foundation1, diag-
nosed with some kind of mental illness, depression and anxiety
being the most common ones. In contrast the Control group (28
members) is formed of people who have never been diagnosed
with any kind of mental illness.

The interviews consist of three main sections; In the first
section the counsellor asks the patient 5 questions that lead to
non-emotional conversation. The second part consists of four-
teen affirmations from the Warwick-Edinburgh Mental Well-
Being Scale (WEMWBS) [23]. The participants have 5 possible
answers that go from ”None of the Time” to ”All of the Time”
to indicate how often they feel the way that these affirmations

1https://www.amh.org.uk/
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Table 1: Distribution of Anxiety/Depression in AMH and Con-
trol.

No. speakers No. interventions
Depression 3 276

Anxiety 2 140
Both 16 824

Control 20 614

express. In this part, in addition to the answer, sometimes the in-
terviewees added some dialogue of their own to explain further
the answer they gave. In this section the counsellor perception
of the speaker emotional status was also annotated according to
the following questionnaire:

How do you perceive the client?
• Excited/activated/agitated
• Slightly Excited/activated/agitated
• Calm
His/her mood is:
• Positive
• Slightly positive
• Slightly negative
• Negative
Finally, in the last part, the participants were asked to read

a text passage of the popular tale ”The Boy and the Wolf”.

2.1. Speech corpus

The second section of the interviews, with its corresponding
emotional information, was used For generating the speech cor-
pus. This section consists of 14 questions that the potential pa-
tients (speakers) respond to. The audio sessions were split ac-
cording to each turn or intervention of the speaker. This way,
the corpus was formed by the audio files corresponding to those
interventions for which the counsellor annotated their percep-
tion of Valence and Arousal levels on the participants speech.
Said interventions were extracted from 41 interview recordings;
21 regarding AMH and 20 regarding Control. The total corpus
consists of 1854 audio files (interventions) and has a length of 4
hr 15 min and 45 sec. The number of speakers and interventions
associated to each mental illness is given in Table 1.

2.2. Textual corpus

The textual corpus consists of transcriptions of the aforemen-
tioned interviews. These transcriptions include both dialogues
written in a literal way and annotations regarding paralinguistic
or acoustic information; noises (music, footsteps etc.), pauses,
laughs and such. We ignored annotations regarding noise and
will refer to the rest of annotations as paralinguistic tokens
from now on. For our task, we only considered the interviewee’s
conversational information and paralinguistic tokens. The tran-
scription of the reading phase was also removed since there is
no distinguishing semantic information associated with it. All
the text associated to the remaining dialogues was gathered as
a corpus consisting of 6741 sentences; 4743 sentences regard-
ing AMH and 1998 regarding Control. Starting from this, we
created four textual data sets to work with.

To create the first two data sets a cleaning process was car-
ried out and thus we will refer to them as clean data. First,
the typos in the text were corrected as far as possible. Then,
the answers to the questions from the WEMWBE scale (fixed
response like “None of the time”, etc.) and the yes/no answers

Table 2: Paralinguistic tokens in CD and their meanings.

Token Meaning
{INTERJECTIONS} uses an interjection
{CUT} stops speaking mid-word
{inhaling} inhales
{laugh} laughs
<pause>WORDS</pause> says something between pauses
{STALLING} makes a sound denoting they are thinking
<laugh>WORDS</laugh> says something while laughing
{breathing} takes a deep breath
{tsk} makes a flicking sound with their mouth
{STUTTER} stutters when saying a word
{PUZZLEMENT} makes a sound denoting puzzlement
{cough} coughs
<breathing>WORDS</breathing> says something while taking a deep breath
<pause>empty</pause> makes a long pause
pause at start marks if the sentence starts with a pause

Table 3: Paralinguistic tokens in D and their meanings.

Token Meaning
(inhaling) inhales
(laugh) laughs
(breathing) takes a deep breath
(tsk) makes a flicking sound with their mouth
(cough) coughs

were removed. In the next step, paralinguistic features that were
gathered as plain text were represented using a unique token
from the ones given in Table 2 (ex. em, ew, jeeze, oh... were
represented as {INTERJECTIONS} ). This process is explained
in more detail in [24]. This way, two data sets were created; one
considering clean plain text, which we will refer to as CD, and
another one considering clean plain text and paralinguistic to-
kens from Table 2, which we will refer to as CD+T. These two
data sets consist of 3955 sentences; 2810 sentences from the
AMH group and 1145 from the Control group. The other two
data sets were formed with a more natural approach; we did not
do any kind of text cleaning, typo correction or word grouping.
We used the literal transcriptions of the dialogues and the par-
alinguistic tokens were written between parentheses to process
them as plain text. Their representations are shorted in Table
3. Two new data sets were created; one considering plain text,
which we will refer to as D, and another one considering plain
text and paralinguistic tokens from Table 3, which we will re-
fer to as D+T.These data sets consists of 4872 sentences; 3308
regarding AMH and 1564 regarding Control.

3. Data processing
3.1. Acoustic Features

Affective processes can change Arousal and tension influencing
both voice and speech production. These changes can be esti-
mated with different parameters of the acoustic waveform. In
this research, we used GeMAPS and Hubert to extract features
of the vocal expressions, from acoustic waveforms, that provide
this kind of information.

The GeMAPS (Genova Minimalistic Parameter Set) [25]
feature set is divided into two main blocks.; the first block is
composed of some prosodic, excitation and vocal tract descrip-
tors, and the second one of some dynamic and cepstral descrip-
tors. The first descriptors are classified depending on their re-
lation to different physical characteristics like frequency (pitch
or jitter) energy (shimmer, loudness or harmonics-to-noise ra-
tio) and spectrum (alpha ratio, hammaberg index, spectral slope



or harmonic differences). The second ones are parameters such
as mel-frequency cepstral coefficients (MFCC) or spectral flux.
Furthermore, features such as arithmetic mean, coefficients of
variation, 20/50/80 percentiles and other temporal parameters
have been added to the set, making a total of 88 different fea-
tures. The OpenSmile Python library [8] was used to achieve
this set of 88 features from an audio file in wav format.

Alternatively, Hubert was chosen with the pre-trained pa-
rameters hubert-large-ll60k, which have been fitted with the
Libri-Light [26] corpus at 16k hertz. Such models trained only
on raw audio have proven to be able to extract very representa-
tive features that have been widely used for different tasks. The
model extracts a total of 1024 features every 20ms which have
then been reduced by averaging to 1024 features.

3.2. Text representation

For text representation we worked with BERT (Bidirectional
Encoder Representations from Transformers) [21]. BERT is
based on a deep Transformer encoder network [17]. This kind
of network can process long texts efficiently by using self-
attention. BERT is bidirectional, which means that it uses the
whole input text to understand the meaning of each word. In its
base size (the one presented in [21]), BERT is composed of 12
successive transformer layers, each having 12 attention heads
and has a total number of 110 million parameters. The BERT
Encoder block calculates a 768-long vector representing an em-
bedding of each input token.

4. Prediction of a mental disorder
Regarding the detection of mental illness, two different experi-
ments were conducted. The first one tried to differentiate AMH
and Control group members (Section 4.1).The second one will
try to identify which participants suffer from anxiety and which
ones from depression within the AMH members (Section 4.2).

For this purpose, 8 folds of the data set have been built in
order to create a Cross-Validation in which no intervention from
the interviews that form the test subset appears in the train par-
tition. This way more robust and reliable results were achieved.

4.1. Prediction of interventions related to Healthy and Ill
subjects

The task to discriminate healthy and ill subjects was carried out
using both acoustic and textual information separately.

As for the acoustic information, the speech corpus de-
scribed in Section 2.1 was considered. The GeMAPS and Hu-
BERT feature sets were used to feed a Deep Neural Network
and a random oversampling method was used in the training set
to balance the data. In both cases the network consisted of two
hidden layers, the first one with a ReLu activation function and
an output layer with the softmax activation function. Due to the
different feature dimension in each set the hidden layer was 32
dimensional when using GeMAPS and 128 dimensional when
using HuBERT. Adam optimizer was used with a learning rate
of 1e-4. The batch size was set to 32 and the cross-entropy loss
function was used. The training was done over 250 epochs.

When regarding textual information, BERT was used to
classify mentally ill and healthy people. To carry out this task,
we used a model that consisted of a BERT main layer and a clas-
sification head [27]. Three different pre-trained models were
used as a checkpoint for the BERT main layer and for the tok-
enizer: bert-base-cased and bert-base-uncased witch were pre-
sented in [21] and bert-base-uncased-emotion [28] which is a

Table 4: Macro F1-scores of the results obtained in the audio
based and text based approaches to the AMH and Control group
discrimination problem.

GeMAPS HuBERT
Acoustic DNN 0.88 0.94

CD CD+T D D+T
bert-base-cased 0.61 0.56 0.66 0.60

bert-base-uncased 0.60 0.55 0.67 0.56
bert-base-uncased-emotion 0.60 0.60 0.65 0.68

pre-trained bert-base-uncased model fine-tuned with the emo-
tion data set [29]. Then, the whole model was fine-tuned using
the four variations of the textual corpus described in Section 2.2.
The chosen optimizer was AdamW and a linear scheduler was
used. The learning rate was set to 5e-5, the batch size to 16 and
the fine-tuning was done in 3 epochs. These parameters were
chosen following the recommendations in [21]. In the case of
CD+T the paralinguistic tokens were added to the tokenizer as
additional special tokens to try and learn a representation for
them. In contrast, when working with D+T, we processed par-
alinguistic tokens as if they were plain text. The obtained results
for this task are shorted in Table 4.

As seen in Table 4, when working with text the best result
is obtained when using bert-base-uncased-emotion, which can
be a cause of this model being fine-tuned on emotional data.
The general lack of accuracy in BERT’s predictions is proba-
bly a consequence of the majority of sentences having a length
of one or two words. In addition, most long sentences were
difficult to classify even by humans (ex.”two rounds of gra-
nary toast with a banana”) and the data set was noisy, which
has shown to significantly degrade BERT’s performance when
fine-tuning it for tasks such as sentiment analysis [30]. The re-
sults are better when working with non clean data. This might
be because BERT uses features to provide context information
that are being removed by cleaning words and representing par-
alinguistic features with tokens (ex. replacing wh-what? with
{STUTTER}). It can also be observed that when using bert-
base-cased and bert-base-uncased taking paralinguistic tokens
into account makes the results worse. In the case of CD+T,
this can be because there was not a pre-learned representation
for these tokens and the performed training is not enough as to
learn one. In the case of D+T this might be because they contain
no semantic information. In contrast, when working bert-base-
uncased-emotion, D+T has a better outcome than D. This might
mean that there is some kind of emotional information in the to-
kens from Table 3. In the case of CD and CD+T it appears that
while a representation for tokens in Table 2 still seems hard to
learn, their presence does not worsen the results as seen when
using other model checkpoints. It is worth noting that in this
case the transcriptions were done by humans and if a full auto-
matic system is required, an ASR for text detection would have
to be introduced, which would lead to slightly worse results.

When working with acoustic signals the system perfor-
mance was significantly better. This shows that the acoustic
model is able to identify some features that are not detectable in
text and that help differentiating one group from the other. The
GeMAPS features turned out to be worse than those extracted
with the Hubert model. This highlights the power of the acous-
tic embeddings achieved making use of semi-supervised learn-
ing. Besides, the number of features extracted with GeMAPS
(88) is smaller than those extracted with HuBERT (1024).



Table 5: Averaged F1-Score for the Cross-Validation on anxiety
and depression detection problems.

GeMAPS HuBERT
Anxiety 0.64 0.71

Depression 0.53 0.70

4.2. Prediction of Depression and Anxiety Interventions

The results achieved with speech signal encouraged us to try
to discriminate between depression and anxiety. These sets of
experiments were only performed on the AMH group.

With this aim, a system was designed to predict whether
an intervention corresponds to a patient with or without depres-
sion. Alternatively, an additional network was designed to pre-
dict whether it corresponds to a patient with or without anxiety.

Both experiments replicate the procedure mentioned in Sec-
tion 4.1 but with an adapted output to the new classification
problem. The results are shown in Table 5. The results are not as
good as those in Section 4.1 because the task is now more chal-
lenging as a consequence of the two classes being more similar
between them. All samples belong to the AMH group, which
means that even if the subject does not have the target illness, it
does suffer from another one. Additionally, the class imbalance
problem is more relevant in this case. However, the results with
HuBERT features are still promising.

5. Detection of Emotional Information
As a first step to include affective information, an analysis of
the counselors emotional annotations was carried out. Figure 1
shows the histogram for the interventions annotated with dif-
ferent values of Valence and Arousal from the AMH and the
Control group. As expected, lower values of pleasure were per-
ceived in AMH group, meaning that their status is generally
more negative than the status of the members of Control group,
whose values are more positive. Something similar can be ob-
served in the Arousal levels, where AMH members show lower
levels of excitement. However, the difference is not as signifi-
cant in this case, revealing that Valence might be a more infor-
mative feature for the detection of anxiety and depression.

When focusing on specific illnesses and differences be-
tween them, the analysis shown in Figure 2 was carried out.
This figure shows the percentage of interventions from each
group (Depression, Anxiety, Both, None) that were annotated-
with an emotional label for Valence and Arousal. When re-
garding Valence, patients with depression are the most nega-
tive ones and those with no illnesses the most positive. Patients
with anxiety who are not also diagnosed with depression are in
between, suggesting that they might be differentiated from de-
pressed ones using Valence as a cue for illness detection. On the

Figure 1: Percentage of interventions per group.

Figure 2: Percentage of interventions per illness.

Table 6: F1-Score on Valence and Arousal detection problems.

GeMAPS HuBERT
Valence 0.35 0.46
Arousal 0.41 0.57

other hand, the differences in Arousal levels are not as meaning-
ful when comparing depression and anxiety.

Finally, an experiment was conducted in order to predict
Valence and Arousal associated to each intervention. Thus, a
classifier was designed to predict among the 4 different Valence
categories and the 3 statuses of Arousal. Once again the DNN
architecture and training paradigm explained in Section 2 were
implemented for the classification, but considering a random
90%-10% train-test split instead of the designed 8-folds Cross-
Validation, due to a lack of emotion distribution across the folds.
The achieved results are given in Table 6.

The task of identifying emotions is even more complicated
since it involves a larger number of classes and the emotional
annotation is a perception of the interviewer, what makes the
task very subjective. Even so, we still draw the same conclu-
sions as in Sections 4.1 and 4.2. Looking at the achieved results
and by looking at Figures 1 and 2 it might be interesting to focus
on Valence for future work, since it seems to provide more rele-
vant information related to depression and anxiety than Arousal
despite having worse results. Moreover, simplifying the Va-
lence information into two different classes (positive and nega-
tive) might lead to more accurate results.

6. Conclusions
This manuscript provides a system capable of detecting depres-
sion and/or anxiety from speech signal uttered by potential pa-
tients in an interview. Our experiments show that acoustic fea-
tures based on HuBERT transformer significantly outperform
the classical GeMAPS extended set. Thus, an additional exper-
iment was carried out in order to distinguish between anxiety
and depression. Although the achieved results are not as im-
pressive, HuBERT features still provide promising results. The
text associated to transcriptions is also taken into account to
build an alternative system that, although provides worse re-
sults, can be considered as an alternative information source.
Finally, an analysis of emotional information associated to the
interventions was conducted to study its potential use for future
work showing that Valence might be an interesting marker.
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